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The emergence of syntax during childhood is a remarkable

example of how complex correlations unfold in nonlinear ways

through development. In particular, rapid transitions seem

to occur as children reach the age of two, which seems to

separate a two-word, tree-like network of syntactic relations

among words from the scale-free graphs associated with the

adult, complex grammar. Here, we explore the evolution of

syntax networks through language acquisition using the

chromatic number, which captures the transition and provides a

natural link to standard theories on syntactic structures. The

data analysis is compared to a null model of network growth

dynamics which is shown to display non-trivial and sensible

differences. At a more general level, we observe that the

chromatic classes define independent regions of the graph, and

thus, can be interpreted as the footprints of incompatibility

relations, somewhat as opposed to modularity considerations.
1. Introduction
The origins of human language have been a matter of intense

debate. Language is a milestone in our evolution as a dominant

species and is likely to pervade the emergence of cooperation

and symbolic reasoning [1–4]. Maybe the most defining and

defeating trait is its virtually infinite generative potential: words

and sentences can be constructed in recursive ways to generate

nested structures of arbitrary length [3,5]. Such structures are the

product of a set of rules defining syntax, which are extracted by

human brains through language acquisition during childhood
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after a small sample of the whole combinatorial universe of sentences has been learned. And yet, in spite of

its complexity, syntax is accurately acquired by children, who master their mother tongue in a few years of

learning. Indeed, around the age of two, linguistic structures produced by children display a qualitative

shift on their complexity, indicating a deep change on the rules underlying them [6–8]. This sudden

increase of grammar complexity is known as the syntactic spurt, and defines the edge between the two
words stage, where only isolated words or combinations of two words occur, to a stage where the

grammar rules governing this syntax are close to the one we can find in adult speech—although

the cognitive maturation of kids makes the semantic content or the pronunciation different from the

adult one. How can we explain or interpret such nonlinear pattern?

Statistical physicists have approached the problem of language evolution showing, for example, that

non-trivial patterns are shared between language inventories—collections of words—and some genetic

and ecological neutral models [9] (see [10] and references therein). However, most of these models do

not make any assumption about the role played by actual interactions among words, or, more

generally, linguistic units, which largely define the nature of linguistic structures. In this context, a

promising approach to its structure and evolution involves considering language in terms of networks

of interconnected units instead of unstructured collections of elements—e.g. words or syllables

[11–15]. In this context, syntactic networks, in which nodes are words and links the projection of

actual syntactic relations, have been shown to be an interesting abstraction to grasp general patterns

of language production [7,8,16]. Specially valuable has been the quantitative data obtained from

syntax networks obtained along the process of syntax acquisition, for they provided solid and

quantitative evidence of sudden qualitative shifts in the cognitive machinery involved in the process,

present also in other linguistic domains [7,8,16–19].

At the fundamental level, syntax can be understood as a set of symbols associated under a universe of

potential combinations somewhat similar to chemistry. Atoms and words would then be linked through

compatibility relations defining what can be combined and what is forbidden. The power of this picture

is supported by the use of linguistic methods in the systematic characterization of chemical structures

[20]. Chemical structure diagrams can thus be seen as some sort of language, with chemical species

and bonds as key ingredients. In a more abstract fashion, we can say that general rules of combining

elements within a given set of interacting pieces with well-defined functional meaning is at work in

both language and chemistry. Following the chemical analogy, where abstract classes of ‘nodes’ can

be defined, we will take advantage of graph colourability theory as a general framework to detect

transitions based on qualitative changes of compatibilities. Specifically, we suggest that a new

combinatorial approach grounded on graph colouring may enable a better understanding of the

evolution of networks having internal relations of compatibility—e.g. some kind of syntactic rules. In

this context, we propose the chromatic number—and complementary measures—of the graph [21–23]

as an indicator of network complexity. The chromatic number is defined as the minimal number of

colours needed to paint all nodes of the graph in a way that no adjacent nodes have the same colour

[22]. In other words, classes of nodes would be defined precisely by the fact that there are no

connections among them, a measure conceptually opposite to graph modularity. The q-colouring problem,

i.e. to know whether a graph can be coloured with q different colours, is one of the most important

NP-complete problems. From the statistical physics point of view, an analogous problem is defined

within the context of the Potts model [24]. Transitions in the evolution of the chromatic number,

which is the main objective of this work, have been widely studied in abstract models of random

graphs [23,25–27].

The chromatic number may convey structural information among the classes of relations the graph is

showing within the system it aims to abstract. This is exactly the point by which graph colouring is

relevant for syntactic phenomena. We will work with a graph of aggregated syntactic relations using

the paradigm of dependence grammar [28], which provides a natural framework to extract graphs from

syntactic relations [7,8]. The aim of using the chromatic number comes from the intuition that

syntactic relations do not glue elements for free but display consistent rules of compatibility/

incompatibility among lexical elements. This may seem obvious at the level of the sentence analysis,

but to extrapolate how these combinatorial rules among different classes of elements work at the

global system level is a hard task, and even harder, if we want to do it quantitatively. For example, to

grasp the relevance of chromatic number, one must perform parallel measurements on the network

using indicators taking into account potential deviations—which will be the footprints of the non-

trivial compatibility relations. The interplay between the evolution of the chromatic number and its

deviations from a null model made of free associations will be the target of our paper. As we shall

see, non-trivial transitions between different, increasing chromatic numbers, along with interesting
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deviations from a null model of syntax-free sentence generation are identified. This is, to the best of our

knowledge, the first time that such transitions have been reported in a real system.
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2. Graphs and colouring: basics
We will work over undirected graphs. An undirected graph G(V, E)—hereafter, G—is composed by the

set of V ¼ fv1, . . ., vng nodes and a set E ¼ fejk1 � j � mg# V � V of edges. Each (unordered) pair ej ¼

fvi, vkg depicts a link between nodes vi and vj. The number of links k(vi) attaching node vi is the

degree of the node and kkl is the average degree of the graph G. The degree distribution P(k) accounts for

the probability to select a node at random having degree k. The identity card of a graph is the

so-called adjacency matrix, a(G), which is defined as follows:

aij ¼
1, iff (9ek [ E) : (ek ¼ {vi, vj})

0, otherwise:

(
(2:1)

We observe that the adjacency matrix of undirected graphs is symmetrical, i.e. aij ¼ aji.

We can map the chromatic problem into the antiferromagnetic q-dimensional Potts model at T ¼ 0

[24]. This model is a generalization of the classical Ising model for lattices: at every node of this lattice

we place a particle having a spin which energetically constrains the state of its neighbours.

Traditionally, spins can have only two states, namely j � l and j � l. In the Potts model, compatibility

relations take into account an arbitrary number q . 2 of different states. Let us consider a partition of

nodes V containing q different classes, namely, Gq(V ) ¼ fg1, . . ., gqg of V, i.e.\
Gq ¼ � and

[
Gq ¼ V, (2:2)

The state si of node vi indicates the class of Gq(V ) to which the node belongs, i.e. si [ gj. Let F q(V) be the

ensemble of all partitions of V containing q different classes. Every element in F q(V) has the following

energy penalty1:

H(Gq) ¼ J
X
i,j

aijd(si, sj), (2:3)

where J ¼ 1 is the coupling constant and d is the Kronecker symbol

d(si, sj) ¼
1, iff i ¼ j
0, otherwise:

(
(2:4)

Intuitively, the higher the presence of pairs of connected nodes belonging to the same state, the higher

will be the energy of the global state of the graph. Given a fixed q, the configurations displaying minimal

energy may have an amount of non-solvable situations, leading to the unavoidable presence of connected

nodes at the same state. This phenomenon is called frustration, and for these configurations, the ground

state of the Hamiltonian defined in (2.3) displays positive energy. If there is no frustration, i.e.

9Gq [ F q(V), we can find a partition that satisfies

H(Gq) ¼ 0, (2:5)

and we say that the graph is q-colourable, being the q different colours the q different classes or members

of Gq. When the graph is q-colourable, there is at least one partition Gq [ F q(V) such that, if vi, vj [ V
belong to the same class or colour of the partition, namely gl [ Gq. We deduce that

(vi, vj [ gl) ) aij ¼ 0: (2:6)

Relation (2.6) maps colour classes onto disjoint sets of graph elements (adjacent nodes have a different

colour). Now, the colouring problem consists in finding the minimal number of classes (or colours)

required to properly paint the graph. This is the so-called chromatic number of the graph G

x(G) ¼ min {q : (9Gq [ F q(V)) :H(Gq) ¼ 0}: (2:7)

Now suppose network partition(s) G�q [ F q(V) having minimal energy, see equation (2.3), given a

number of colours q

G�q ¼ min
Gq[F q(V)

{H(Gq)}: (2:8)
1In our approach, the energy units of this Hamiltionian are arbitrary.
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In general, the process of search for the chromatic number yields a decreasing sequence of energies

ending at H(G�x(G)) ¼ 0

H(G�1) � � � � � H(G�x(G)) ¼ 0, (2:9)

In order to assess the statistical significance of chromatic numbers, we define the relative energy of any

q-colouring as follows:

fq(G�q) ¼
H(G�q)

jEj , (2:10)

where jEj is the number of edges in the graph G. This quantity 0 � fq(G�q) � 1 corresponds to the minimal

(relative) number of frustrated links or violations (i.e. when adjacent nodes have the same colour).

Despite the high complexity of this problem—computing the chromatic number in an arbitrary graph

is a NP-hard problem—several bounds can be defined. A lower bound can be defined from the so-called

clique number. A clique is a subgraph in which every node is connected to all other nodes in the subgraph.

The clique number v(G) is the size of the largest clique in the graph, which is a natural lower bound for

x(G) [22]

v(G) � x(G): (2:11)

Alternatively, an upper bound on x(G) can be defined by looking at the K-core structure of G. The K(G)

core is the largest subgraph whose nodes display degree higher or equal to K. Now, let K�(G) be the

K-core with largest connectivity that can be found in G

K� ¼ max {K : K(G) = �}: (2:12)

Then, it can be shown that K� sets an upper bound to the chromatic number [22]

x(G) � K� þ 1: (2:13)

Finally, let us mention that, for some families of random graphs the chromatic number has an asymptotic

behaviour depending on the average connectivity [23], x(G) � hki=loghki. However, the above

relationship does not hold for scale-free networks with exponent 2 , g , 3. These heterogenous

networks cannot have a stable value of the chromatic number because their clique number (2.11)

diverges with the graph size, even at constant kkl [29].
3. The evolution of x along syntax acquisition
Here, we study the evolution of the chromatic number through language development as captured by

syntax graphs. We compare the chromatic number with the lower and upper bounds provided by the

clique number and the maximal K-core, respectively. We assess the relevance of computed chromatic

numbers with the corresponding minimal energy. The combination of these two measurements enable

us to interpret the nature of the chromatic number. Specifically, we can check whether changes in this

number reflect a global pattern or instead some anomalous behaviour of a small, localized subgraph.

Finally, we provide further validation of our analysis by comparing chromatic numbers in empirical

and synthetic networks obtained through a random sentence generator.

3.1. Building the networks of early syntax
Through the process, networks built upon the aggregation of syntactic structures from child’s

productions grow and change in a smooth fashion until a rapid transition occurs [7,8,30,31] (see also

[13]). We reconstruct syntactic networks by projecting the raw constituent structure, i.e. phrase

structure of children’s utterances, into linear relations among lexical items, in what is known as

dependency grammar analysis [28,32]. Then, we aggregate all these productions in a single graph where

nodes are lexical items and links represent syntactic relations between them [7,30,31]. We emphasize

that these networks have been built by hand, in the sense that no automatic procedure has been at

work. The reason stems from the fact that early child language is far from normative, but, still,

structures can be identified. Therefore, each link is discussed after checking its suitability according to

specific linguistic criteria developed for this analysis (see [7,30,31] and references therein). These

networks provide a unique window into the patterns of change occurring in the language acquisition

process.
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Figure 1. Optimal colourings of syntactic networks before and after the syntactic spurt. (a) A syntactic network before the transition
(3rd corpus) is largely bipartite (this network accepts a 2-colouring). (b) Post-transition network (7th corpus) is remarkably more
complex, which corresponds to high chromatic number x(G7) ¼ 6. All networks coming from Peter dataset. Time spent between
these two corpora is about two and a half months—see text.
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The two cases studied here are obtained from the CHILDES database [33,34] which includes

conversations between children and parents. Specifically, we choose Peter and Carl’s corpora, whose

structure has been accurately extracted and curated. For both Peter and Carl’s corpora, we choose 11

different recorded conversations distributed in approximately uniform time intervals ranging from the

age of approximately 20 months to the age of approximately 28 months. The chosen interval

corresponds to the period in which the syntactic spurt takes place. From every recorded conversation,

we extract the syntactic network of child’s utterances obtaining a sequence of 11 syntactic graphs

corresponding to the sequence of Peter’s conversations GP1, . . . ,GP11 and Carl’s conversations GC1, . . . ,GC11.

3.2. Chromatic transition from bipartite to multicoloured networks
From our graph collection (see §3.1), we obtain two sequences of chromatic numbers sP(x) and sC(x)

corresponding to the evolution of the chromatic number in Peter and Carl datasets, respectively:

sP(x) ¼ x(GP1), . . . , x(GP11)

sC(x) ¼ x(GC1), . . . , x(GC11):

The above sequences display similar patterns with some interesting differences (figures 2 and 4). For

example, the middle stages of both datasets show an increase in the chromatic number. At the stage

when the syntactic spurt takes place, Peter’s dataset sP displays a sharp transition from a nearly

constant, low chromatic number (x ¼ 2 up to just before month 23) to a high chromatic number (up to

x ¼ 6, month 25) which is fully consistent with the emergence of complex syntax. The first three

networks in sP accept 2-colourings, i.e., they are bipartite, see figure 1.

The grammar at this stage mainly generates pairs of complementary words, like:

hverb, nouni or

hadjective, nouni:

Typical productions of this stage are, for example, ‘car red’ or ‘horsie run’. This pre-transition pattern, also

called 2-word stage, corresponds to a highly restrictive grammar, e.g. syntactic structures like kverb, verbl
do not exist. Instead, relations between lexical items are strongly constrained by their semantic content.

On the other hand, Carl’s sequence sC shows x � 3 from the very beginning—i.e. these networks are not

bipartite. A detailed inspection of Carl’s productions at this stage shows the presence of functional

particles from the very beginning. Functional particles are those lexical items whose role is essentially

grammatical, and whose appearance must be accompanied by another, strongly semantic word, like a
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noun or a verb. We consider as functional particles the set of lexical items composed by articles—like a or the,
prepositions—like at or with, auxiliary verbs—like do or will, when they accompany another verb. The

presence of functional particles from the very beginning in Carl’s corpus suggests that, in general, high

chromatic numbers relate to high grammar flexibility, this flexibility being provided by the hinge role that

these particles have in the global functioning of grammar.

Still, the behaviour of the chromatic number of a graph x(G) can be quite sensitive to the anomalous

behaviour of small subgraphs. For example, the transition of x(G2) ¼ 2 to x(G3) ¼ 3, when Peter is about

23 months old, is due to a single triangle in a (largely) bipartite network (figure 2a,c). A combination of

measurements enables us to assess whether the chromatic number represents the behaviour of a small

number of nodes or is the natural outcome of global network features. Our choice is to compare x(G)

with the lower bound given by the clique number (2.11) and the upper bound provided by the

maximal K-core connectivity (2.12). Therefore, each sequence sP(x), sC(x) will be accompanied by two

sequences, namely V, k

VP,C ¼ v(GP1,C1), . . . ,v(GP11,C11)

kP,C ¼ K�(GP1,C1), . . . , K�(GP11,C11):

For example, figure 2a,b shows a clear increasing trend both for maximum clique and maximum K-core.

This, combined with the sequence of energy values given in table 1, indicates that the final chromatic
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number can no longer be associated with any trivial clique or a tiny fraction of the maximum K-core. Both

Peter and Carl sequences show that the chromatic number is often close to the clique number (figure

2a,b). Maximum K�-core size is generally more than twice the size it would have in the case that it

would form a clique—see figure 2 (inset). We therefore conclude that an important part of the whole

network structure has enough connectivity to enable the emergence of a non-trivial K-core structure.

The whole picture points towards the existence of a broad connectivity pattern responsible for the

emergence of increasing chromatic numbers. Nevertheless, even acknowledging the role and

suitability of the indicators of validity for the chromatic number used here—maximum K-core,

maximum clique number and sequences of relative energy of successive colorations of the graph—one

cannot completely rule out the existence of a pathological, largely statistically deviated small set of

nodes responsible for the behaviour of the chromatic number. We observe that a conclusive response

would involve the analysis of the combinatorics among all subsets of the network, which defines a

computationally unaffordable problem. We warn the reader that this problem is not restricted to the

chromatic number, but it may be present in almost any network measure.

3.3. Real syntax versus null model
Here, we compare the evolution of the chromatic number in real and simulated networks. A data-driven,

syntax-free model that generates random child’s utterances having the same statistics of word production

as Peter and Carl datasets is used as a null model [7]. Underlying the null model outlined below, there is

the aim to reproduce a syntax-free speech flow, with the same statistical indicators as the real data. That

means that we prioritized the simulation of a speaker whose statistics over words usage and sentence

length mimic the ones given by the data. Different realizations of the model may lead, for example, to

slightly different number of used words—for it is a stochastic phenomena with fluctuations at the

sizes we are working in. This is due to the fact that our aim has been, not to randomize the network

itself—which would have been the standard approach—but the process that creates the network. Since

the network is a surrogate of an underlying phenomenon, it is more realistic to create a random

version of such underlying phenomenon and, then, build the network, than randomize the network

itself. This model definition enables us to assess if the high combinatorics displayed by post-transition

networks emerge directly from an increasingly rich vocabulary. We build our model by extracting the

following statistical parameters from the 11 recorded conversations in Peter and Carl corpora:

(1) The number of sentences jSP(i)j, SC(i) in the Peter and Carl datasets.

(2) The probability distribution of structure lengths or the probability P(s) that any syntactic structure has

s words. We obtain two different distributions, one for each dataset.

(3) We assume that the probability of the ith most frequent word is a scaling law

p(i) ¼ 1

Z
i�b, (3:1)

with 1 � i � Nw(T ), b � 1—i.e. Zipf’s Law—and Z is the normalization constant

Z ¼
XNw(T)

i¼1

1

i

� �b

: (3:2)

Note that Z depends on lexicon size, Nw(T ), which grows slowly at this stage.

We run the above model in the two datasets by generating jSP,C(i)j random sentences, each

experiment is repeated 20 times. From the collection of randomly generated syntactic structures we

construct a comparable sequence of syntax networks following the same method as in the real

datasets (see §3.1). Figure 3 shows that our model generates random syntax networks with size and

connectivity comparable to the ones measured in real networks. These statistical indicators display a

huge increase during the studied period, this increase being sharper around the age of two, i.e.

during the syntactic spurt [7]. As discussed in §2, both the mean connectivity and network size play

an important role when determining the values of v, x and K�.
Now, we compute the sequence of averaged chromatic numbers, ~sP(x), ~sC(x), for the simulated Peter

and Carl syntax networks. Similarly, we generate the sequences of average clique number ~VP,C and the

average maximum K-core ~kP,C. The most salient property we find when comparing real networks

obtained from both Peter and Carl’s corpora with their randomized counterparts is a huge increase

of x, v and K� in the simulated networks. That is, the ensemble of random strings displays
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higher complexity parameters than the real corpora. For example, at the end of the studied period,

the three complexity estimators are close to 10 in Peter simulations and close to 9 in Carl simulations

(figure 2c,d ).

A very interesting feature is found at the first stages of the simulated Peter sequence: the random

networks are no longer bipartite—see §3.2. In particular, the third random corpus has an average

chromatic number of 4, which is significantly higher than the observed chromatic number. In this

case, the two-stage grammar imposes severe constraints on what is actually plausible in any

pre-transition syntactic structure. This trend is also observed at later stages of language acquisition.

In general, simulated networks have higher chromatic numbers than empirical networks, although

both two types of networks have similar connectivities—by definition. In some cases, the average

chromatic number of the graphs belonging to the random ensemble is twice the real one (figure 2).

To better understand the nature of these deviations, we have compared the behaviour of chromatic

numbers against mean connectivity and the size of the largest connected component. Figure 4 shows

a well-defined, non-trivial deviation between real networks and random networks. In particular, when

comparing the relation between the chromatic number and the average degree of Peter’s corpus

(figure 4a) and Carl’s corpus (figure 4b) with the simulated ones, we observe a clear trend of the real

networks towards smaller chromatic numbers. The comparison of the size of the giant connected

component, GCC, clearly depending on the size in the case of scale-free networks [29], shows the

same trend both in Peter’s (figure 4c) and Carl’s (figure 4d ) corpora. In general, the expected
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chromatic number is larger than the one observed in the real networks. These plots suggest that the

chromatic number is capturing essential combinatorial properties of the underlying system, which

cannot be reproduced with a simple, syntax-free random generation model. We support this argument

by providing a linear regression fit to the data. In the case of the relation of the GCC and the

chromatic number, the mean squared error (MSE) is substantially higher in the case of the real

instances, Peter and Carl (figure 4).
4. Discussion
Syntax is a characteristic, complex and defining feature of language organization. It pervades its capacity

for unbounded generative power of the linguistic system [5], allows sentences to be organized in highly

structured ways and is acquired in almost full power by children after being exposed to a limited

repertoire of examples. Syntax is also one aspect of the whole: semantic and phonological aspects

need to be taken into account, and they are all embedded in (and run by) a cognitive, brain-embodied

framework [35]. Because of the dominant role played by how words actually interact with each other,

computational and theoretical approaches dealing with word inventories or other statistical trends

ignoring interactions are likely to be limited. As an example of the high degree of intricacy involved

in linguistic acquisition, we mention two recent works: First, recent studies on acquisition in French

toddlers provided strong evidences for non-trivial interactions between phonological, semantic and

syntactic modules, showing the presence of inhibition/activation patterns in the acquisition dynamics

involving cross-dependencies among those modules [36]. The second example comes from the

framework of multiplex networks—i.e. networks involving different layers of interaction (see [37,38] and

references therein). Specifically, it has been shown that, taking into account different layers of

interactions, a critical phase can be identified from a simple, restricted grammar towards a flexible,

more complex grammar [18,19], consistent with the results provided in our paper.
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Following previous work that takes advantage of complex networks approaches to language

organization [13] we have made a step further in studying the structure of syntax graphs using graph

colouring. The motivation of this approximation is twofold. On the one hand, graph colourability

allows to properly detect correlations that are not captured by topological approaches. On the other

hand, it seems a natural way to substantiate previous claims connecting syntax with compatibility

relations common with other types of systems, such as chemical structures. In this context, standard

network measurements like average degree, clustering or degree distribution are much more limited.

Since graph colouring naturally defines compatibility through the presence or absence of a common

label to every pair of nodes, it seems the right framework to study the process of network growth in

child language. The behaviour of the chromatic number accurately marks the syntactic spurt

in language acquisition, i.e. it is a footprint of the generative power of the underlying grammar.

There are limitations associated with the network definition. Syntactic relations are structure-

dependent, not sequence dependent. Because the network is an aggregation of text sequences, it

cannot fully grasp the hierarchical nature associated with syntactic constructs. Still, the chromatic

number is a global measurement that can detect grammar constraints by analysing the pattern of

network interaction at different scales. That is, the network representation is an indicator of global

linguistic proficiency and includes some combinatorial signal which can be properly detected with the

chromatic number. Besides the suitability of the measure, it is in force to highlight that more

longitudinal studies are needed. In this case, we studied two single individuals whose data is of

excellent quality. Moreover, we assembled the syntactic networks by discussing the linguistic validity

of each syntactic relation in detail. We therefore have chosen this high level of accuracy in our

analysis, in spite of performing a massive one with less delicate assembling methodology. Further

studies should perform much more longitudinal explorations, involving eventually other languages or

bilingual/multilingual children, with the same degree of detail in the analysis, when possible.

There are other, broader implications of our work. The chromatic number can be viewed as a reciprocal

measure of standard community detection. Here, the chromatic number defines a partition of the network in

classes of unlinked nodes. This definition is particularly relevant in networks where some kind of

compatibility relation is at work in the wiring process. In this case, the standard community structure

can be misleading, because elements of the same class cannot be connected. The case for syntactic graphs

is paradigmatic but the partition induced by the chromatic number could shed light into the behaviour

of many other systems. Additionally, we have proposed to assess the statistical significance of these

partitions with the sequence of minimal violations—see equation (2.10). Future work should explore how

the chromatic number—and related measures—can be exploited to detect forbidden links in the network.

Deviations of the chromatic number, as the ones observed in this paper, suggest the presence of

combinatorial constraints that must be taken into account, for example, when defining proper null-models.

Data accessibility. Data have been extracted from the CHILDES database. Transcripts from Peter’s corpus are found in:

https://childes.talkbank.org/browser/index.php?url=Eng-NA/Bloom70/Peter/. Transcripts for Carl’s corpus are

found in: https://childes.talkbank.org/browser/index.php?url=Eng-UK/Manchester/carl/.

Authors’ contributions. B.C.-M., M.S.F., S.V. and R.S. equally contributed to the idea, development of the research and

writing of the manuscript. B.C.-M. performed the linguistic analysis and M.S.F. and S.V. performed the numerical

analysis. R.S. conducted the research.

Competing interests. We declare we have no competing interests.

Funding. This work was supported by the James McDonnell Foundation (B.C-M., S.V. and R.S.) and the Spanish Plan

NacionalINSOCO DPI2016-80116-P (M.S.F.).

Acknowledgements. We thank Complex Systems Laboratory members for fruitful conversations.
References

1. Maynard-Smith J, Szathmàry E. 1997 The major
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Patterns in syntactic dependency networks.
Phys. Rev. E 69, 051915. (doi:10.1103/PhysRevE.
69.051915)

12. Steele JL. 2009 A hubterranean view of syntax:
an analysis of linguistic form through network
theory. PhD thesis, Doctoral dissertation,
University of Queensland, Australia, p. 305.

13. Solé RV, Corominas-Murtra B, Valverde S, Steels
L. 2010 Genome size, self-organization and
DNA’s dark matter. Complexity 15, 20 – 23.
(doi:10.1002/cplx.20326)

14. Baronchelli A, Ferrer-i Cancho R, Pastor-Satorras
R, Chater N, Christiansen MH. 2013 Networks in
cognitive science. Trends Cogn. Sci. 17,
348 – 360. (doi:10.1016/j.tics.2013.04.010)

15. Karuza EA, Thompson-Schill SL, Bassett DS.
2016 Local patterns to global architectures:
influences of network topology on human
learning. Trends Cogn. Sci. 20, 629 – 640.
(doi:10.1016/j.tics.2016.06.003)

16. Ke JY, Yao. Y. 2008 Analysing language
development from a network approach.
J. Quant. Linguist. 15, 70 – 99. (doi:10.1080/
09296170701794286)

17. Beckage N, Smith L, Hills T. 2011 Small worlds
and semantic network growth in typical and
late talkers. PLoS ONE 6, e19348. (doi:10.1371/
journal.pone.0019348)

18. Stella M, Beckage NM, Brede M. 2017 Multiplex
lexical networks reveal patterns in early word
acquisition in children. Sci. Rep. 7, 46730.
(doi:10.1038/srep46730)

19. Stella M, Beckage NM, Brede M, DeDomenico
M. 2018 Multiplex model of mental lexicon
reveals explosive learning in humans. Sci. Rep.
8, 2259. (doi:10.1038/s41598-018-20730-5)

20. Tauber KRSJ. 1971 Linguistics as a basis for
analyzing chemical structure diagrams. J. Chem.
Doc 11, 139 – 141. (doi:10.1021/c160042a005)

21. Brooks RI, Tutte WT. 1941 On colouring the
nodes of a network. Proc. Camb. Phil. Soc. 39,
194 – 197. (doi:10.1017/s030500410002168x)

22. Bollobás B. 1998 Modern graph theory,
corrected edn. Berlin, Germany: Springer.

23. Bollobás B. 2001 Random graphs. Cambridge,
UK: Cambridge University Press.

24. Wu FY. 1982 The Potts model. Rev. Mod.
Phys. 54, 235 – 268. (doi:10.1103/RevModPhys.
54.235)

25. Bollobás B. 1988 The chromatic number of
random graphs. Comb 8, 49 – 55. (doi:10.1007/
bf02122551)

26. Achlioptas D, Molloy M. 1999 Almost all graphs
with 2.522n edges are not 3-colourable.
Electron. J. Comb. 6, R29. See http://www.
combinatorics.org/ojs/index.php/eljc/article/
view/v6i1r29.
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