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Abstract
Light is a union of electric and magnetic fields, and nowhere is the complex relationship between these fields more
evident than in the near fields of nanophotonic structures. There, complicated electric and magnetic fields varying
over subwavelength scales are generally present, which results in photonic phenomena such as extraordinary optical
momentum, superchiral fields, and a complex spatial evolution of optical singularities. An understanding of such
phenomena requires nanoscale measurements of the complete optical field vector. Although the sensitivity of near-
field scanning optical microscopy to the complete electromagnetic field was recently demonstrated, a separation of
different components required a priori knowledge of the sample. Here, we introduce a robust algorithm that can
disentangle all six electric and magnetic field components from a single near-field measurement without any
numerical modeling of the structure. As examples, we unravel the fields of two prototypical nanophotonic structures: a
photonic crystal waveguide and a plasmonic nanowire. These results pave the way for new studies of complex
photonic phenomena at the nanoscale and for the design of structures that optimize their optical behavior.

The advent of metamaterials and structures with a large
response to the optical magnetic field ushered in a new
age of near-field microscopy, where the ability to measure
only electric near fields is no longer sufficient. Many
nanoscopic structures, such as split ring resonators1,2,
dielectric Mie scatterers3–6, and even simple plasmonic
holes7,8, have an optical response that depends on the full
electromagnetic field. Likewise, measurements of many
nanoscale photonic phenomena, such as superchiral
fields9,10 or extraordinary spin and orbital angular
momentum11–13, require access to both the electric E and
magnetic H fields.
Motivated by this demand, there have been a number of

efforts to extend the capability of near-field scanning
optical microscopes (NSOMs) beyond the traditional
measurements of E14. Proof-of-concept measurements of
H at the nanoscale have relied on specially designed near-
field probes15,16; however, these are difficult to fabricate

and tend to measure only one component of H. Recent
strategies have therefore focused on measurements with
traditional aperture probes17,18, which demonstrate that
even circular apertures are simultaneously sensitive to the
four in-plane components Ex;y and Hx;y

19.
However, a crucial challenge remains. Although a

polarization-resolved NSOM measurement (see Supple-
mentary Note 1) contains information from the four in-
plane components, it is encoded into only two complex
signals Lx and Lx, as shown in Fig. 1. To date, unraveling
these measurements to extract the individual components
of the electric and magnetic fields has not been possible
without the use of additional information coming from
detailed simulations of the structure being measured20, on
far-field optical beams21 or a symmetry plane where one
component is identically zero22. At best, numerical
simulations can be used to determine the spatial evolution
of Ej j2 and Hj j2 near nanophotonic structures but not
separate electromagnetic components or their phases23.
Here, we show how to simultaneously extract Ex, Ey, Hx,
and Hy from a single two-channel NSOM measurement
with no a priori knowledge of the nanophotonic struc-
tures being measured. By inserting these fields into
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Maxwell’s equations, we can obtain the two out-of-plane
components Ez and Hz and thus achieve a full vectorial
measurement of the electromagnetic near-field. The
separation algorithm is robust to noise and realistic
measurement conditions, as we show from exemplary
NSOM experiments on both photonic crystal waveguides
(PhCWs) and plasmonic nanowires.
At the heart of near-field microscopy lies the process by

which the near-field probe images the light fields above a
structure. For example, in the field distributions in Fig. 1b,
which were measured 280 nm above a PhCW (Supple-
mentary Notes 1 and 2), a representative height where the
electric and magnetic field distributions contain sub-
wavelength features and are expected to differ19,24. These
images are produced as the aperture probe, which acts as
an effective spatial filter, merges all four in-plane com-
ponents of the sample’s near-field. When this light field is
highly structured with feature sizes smaller than the
probe aperture, this process becomes increasingly
complex, and it is less obvious exactly how efficiently and
with what phase Ex, Ey, Hx, and Hy contribute to the

measured signals Ly and Lx. In other words, calculating
the transfer function of a near-field probe, which propa-
gates the fields from the sample to a detector, has not
been possible.
However, it is possible to calculate the fields that are

radiated through the probe by a point dipole at position
r0 of a hypothetical detector (Fig. 2a) with current
density jdetδðr� r0Þ. These fields, which we label Er

i and
Hr

i , where i = x,y indicates the orientation of jdet
(Fig. 2b, middle column, for the dipole in the x direc-
tion), have been extensively measured and resemble
those below a hole in a metal film14,25; hereafter, we take
our tip to be ideally symmetric to ensure equal sensi-
tivity to the x and y components of the electromagnetic
field. Via the optical reciprocity theorem (ORT), we can
use these probe fields to relate the sample fields Ee and
He (Fig. 2b, left column) to dipoles at our detectors and,
consequently, our measured signals (Fig. 2b, right col-
umn)19,26,27. In other words, in this approach, Er

i and Hr
i

can be considered the spatial filters that exactly define
how efficiently and with which phase different sample
field components are detected. Each independent dipole
orientation x or y is associated with all four in-plane
components of the probe field, which explains why each
detection channel typically contains information of all
in-plane components of the sample fields. Using a spe-
cific sensing configuration28 or material composition16,
it is possible to design probes that primarily detect Ee or
He of specific near fields. However, such probes pre-
clude complete electromagnetic measurements, so we
consider aperture probes that are similarly sensitive to
Ee and He in this work.
The image formation via the ORT can be expressed as

(see Supplementary Note 4 for derivation)

Li Rtip
� � ¼Z

S
dS Ee Rð Þ ´Hr

i R� Rtip
� ��

� Er
i R� Rtip
� �

´He Rð Þ� � ẑ ð1Þ

where S is a surface between the probe and the sample,
which is 10 nm below the probe in this case; Rtip ¼
xtip; ytip
� �

is the position of the tip above this plane; R ¼
x; yð Þ are the coordinates of the fields on S; and the
integral is taken over all R. Subscript i refers to the x or y
orientation of the reciprocal dipole and not to a compo-
nent of the fields. The dot product with ẑ shows that the
measured image only depends on the in-plane field
components. This process of image formation is shown in
Fig. 2b, where we use the calculated probe and sample
fields to predict the measured signals (see ref. 19 for details
on the calculations). In fact, we observe an excellent
agreement between our predictions (right column,
Fig. 2b) and the measurements (Fig. 1b) at 280 nm above
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Fig. 1 Polarization-resolved near-field measurements. a Sketch of
the essentials of the polarization-sensitive NSOM used in this work.
The blue arrows near the sample indicate the electric and magnetic
fields along x and y. The probe converts these fields to radiation
polarized along x and y, as indicated by the top blue arrows. The inset
shows an SEM of the aperture probe used for the photonic crystal
waveguide measurements. b Two-dimensional maps of the amplitude
of Lx (left panel) and Ly (right) measured by raster-scanning the tip
280 nm above the photonic crystal waveguide
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the PhCW, which validates this approach and the sym-
metry of our probes.
When we want to retrieve the sample fields, instead of

studying the image formation, we face two challenges:
first, we require two additional equations to match the
number of unknowns; second, we must be able to invert
Eq. 1 (Supplementary Note 3). To address the first
challenge, we recognize that the electromagnetic field at
and near the sample plane can be decomposed into a
superposition of different plane waves, each of which is
represented by a total wavevector k ¼ kz ẑþ κκ̂;
where κ ¼ jκj ¼ jðkx; kyÞj28. Here, kz is the out-of-plane
component of the wavevector, and κ is the in-plane
component, as shown in Fig. 2a. We can write each
plane wave in the Cartesian basis (Ex, Ey, Ez) or in terms
of its s- and p-field components (Esþ, Es�, Epþ, Ep�),
which enables us to identify the upward (real (kz) > 0,
subscript +) or downward (real (kz) < 0, subscript −)
propagating waves. In principle, the full field between
the sample and the probe is a combination of both
upward and downward propagating fields, where the
latter arise due to the interaction of the probe tip with
the sample. However, this interaction is negligible if the
probe and sample do not have a joint resonance29, as is
indeed the case for our normal aperture probe, which
has a broad spectral response7,28. Therefore, we can take
the field above the sample surface to be purely upward

propagating (i.e., there is no backscattering, so Ep� ¼ 0),
which implies that we must only consider two compo-
nents of the electric field and four components of the
total field: Es, Ep, Hs, and Hp, where all s and p com-
ponents are upward propagating (i.e., p+ ). Finally,
Maxwell’s equations straightforwardly relate the electric
and magnetic field components of these transverse plane
waves (see Supplementary Note 5 for the derivation and
conversion between the different bases)

EeðκÞ ¼ Ee
s ðκÞŝþ Ee

pðκÞp̂;
HeðκÞ ¼ 1

Z0
Ee
s ðκÞŝ� Ee

pðκÞp̂
h i ð2Þ

where Z0 is the impedance of free space. Considering
Eq. 1, we have reduced our problem to two unknowns (Ee

s
and Ee

p) and two equations, one each for Lx and Ly. In
terms of the Fourier components, we can rewrite Eq. 1 as

1
Z0

Lx κð Þ
Ly κð Þ

� �
¼ Nx;s κð Þ Nx;p κð Þ

Ny;s κð Þ Ny;p κð Þ
� �

Ee
s κð Þ

Ee
p κð Þ

" #
ð3Þ

where tensor N is essentially the transfer matrix that
maps the sample electric fields expressed in their
polarization components to the detection channels
associated with the x- and y-directions. Different
components of N are related to the Cartesian
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Fig. 2 Image formation and field retrieval. a Schematic of the coordinate bases and experimental setup. All fields are evaluated on a surface
(transparent yellow) that completely separates the probe from the sample. The purple arrows indicate the in-plane (κ̂) and out-of-plane (ẑ) unit
vectors of a plane wave on this surface, whereas the gray arrows show the corresponding unit vectors ŝ and p̂ for an upward traveling wave. b Real
space image formation process according to Eq. 1. In real space, the measured image Lx;y can be understood as the convolution (indicated by the
asterisk sign) of the sample fields Ee and He and the probe fields Er

i and Hr
i , shown here for the x-oriented dipole (i= x). c Top row: In Fourier space,

the image formation process that corresponds to (b) is described by the multiplication of the sample fields and probe response function N, which
was here calculated for an ideally symmetric probe. Bottom row: The reverse process, which results in the separated fields, therefore simply involves
the multiplication of the measured signals with the inverse probe response function N�1 . Note that we only show only the x-oriented dipole (i= x)
components of N and N�1 . All maps in (b, c) show the calculated fields that are normalized to their maximum amplitude
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components of Er
i and Hr

i as follows

Ni;s κð Þ
Ni;p κð Þ

� �

¼
� kz

k0
sinφ kz

k0
cosφ Z0 cosφ Z0 sinφ

cosφ sinφ Z0
kz
k0
sinφ �Z0

kz
k0
cosφ

" # Er
i;x �κð Þ

Er
i;y �κð Þ

Hr
i;x �κð Þ

Hr
i;y �κð Þ

2
6664

3
7775

ð4Þ
where φ is the angle between κ and the x-axis (Fig. 2a).
We show the image formation process in terms of these
plane wave components in the top row of Fig. 2c, which
corresponds to the real space plots in Fig. 2b, where
Nx;s κð Þ and Nx;p κð Þ are plotted in the middle column.
These N maps clearly show which wavevector com-
ponents contribute the most to the detected image.
Then, unraveling the near-field measurements is simply

a matter of inverting N to obtain

Ee
s κð Þ

Ee
p κð Þ

" #
¼ 1

Z0

Nx;s κð Þ Nx;p κð Þ
Ny;s κð Þ Ny;p κð Þ

" #�1
Lx κð Þ
Ly κð Þ

� �
ð5Þ

which has a unique solution if det Nð Þ≠0 for all κ, as is
indeed the case for our probes. Therefore, we can
deconvolve a near-field measurement simply by following
the steps illustrated in the bottom row of Fig. 2c. First, the
measurements are Fourier transformed in the xy-plane to
generate Lx;y κð Þ, which are multiplied by N�1 κð Þ to obtain
Ee
s;p κð Þ according to Eq. 5. Then, these fields are trans-

formed back into the Cartesian basis (Supplementary
Note 5) and inverse-Fourier-transformed into the real

space to arrive at the deconvolved sample fields Ee
x;y Rð Þ

and He
x;y Rð Þ. Finally, following the example of Olmon

et al.22, we use Maxwell’s equations to extract the 2D
maps of the out-of-plane electric and magnetic field

components, Ee
zðRÞ and He

z ðRÞ, according to Ez ¼
iZ0k0

∂Hx
∂x � ∂Hx

∂y

� �
and Hz ¼ � ik0

Z0

∂Ey
∂x � ∂Ex

∂y

� �
. Because the

same probe can be used for multiple measurements and
N κð Þ is similar for probes with different aperture sizes
(Supplementary Figure S13), N�1 κð Þ must only be calcu-
lated once and can be used in many experiments.

The inversion of N (in Eq. 5) makes our deconvolution
process sensitive to large-wavevector signals, although the
image formation process is not (bottom and top rows of
Fig. 2c, respectively). Since the experimental fields (left
column, Fig. 2c) do not contain a signal at these large
wavevectors, the measurement noise typically dominates
there. In principle, this sensitivity to large wavevectors
limits our retrieval algorithm, but it does not greatly affect
its performance in practice. As we discuss below (see
Fig. 4), we can simply limit the largest wavevector that we
consider to the wavevector at which we still expect to find
signal from the sample.
Here, we apply our algorithm to the PhCW fields shown

in Fig. 1b and limit ourselves to the smallest allowable
wavevector range κ � 3k0, where k0 is the free-space
wavenumber of the light to test our retrieval procedure in
the lowest resolution limit. As we discuss below and in
more detail in Supplementary Note 7, the maximum
allowable wavevector can by increased to κmax ¼ 9k0. The
amplitudes of the separated field components are shown
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Fig. 3 Retrieved PhCW electric and magnetic fields. The panels show two-dimensional amplitude maps of the retrieved (top) and calculated
(middle) electric and magnetic fields at 280 nm above a PhCW. The field components shown in each column are indicated above that column, where
the black dashed line separates the in- and out-of-plane fields. The retrieved and calculated amplitudes are normalized to the maximum amplitude of
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axis, we scaled the amplitude with the factors shown in the top left of each panel
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in Fig. 3 along with the theoretically calculated mode
profiles. Line cuts, taken at the positions of the dashed
lines are also shown, which demonstrate the excellent
agreement when comparing the experimental (blue) and
theoretical (gray) curves for all six electromagnetic field
components. In fact, the only component for which we
observe significant deviation between the predicted
and measured field amplitude is Ez. We attribute this
difference to the small amplitude of this component,
which makes it more susceptible to errors that arise from
imperfect experimental conditions, which can cause, e.g.,
polarization mixing. In principle, even these small errors
can be improved by calculating the transfer function for
the exact probe used, including minor fabrication
imperfections, and not the idealized, symmetric
probe here. We also observe strikingly good agreement
between the calculated and retrieved phase profiles
(Supplementary Figure S14). In other words, we can
successfully recover the general shape of each field com-
ponent and even resolve the fine features in the amplitude
and phase of these in-plane fields all from a single
measurement.
Our approach is not limited to dielectric structures

but can be extended to nanoplasmonics. As an example,
we consider a plasmonic nanowire, whose electric and
magnetic near-field distributions are known to have
different and nontrivial spatial dependencies30. Using
our protocol, we resolve the different field components
above the nanowire (see Supplementary Note 6 for
details and images of the separated fields). We again
observe good agreement between theoretical and

measured fields, and similar to the dielectric samples,
clear differences in the retrieved electric and magnetic
fields from different samples are revealed (Supplemen-
tary Figure S10).
The ability of our algorithm to retrieve optical fields

from measurements of a PhCW and a plasmonic nano-
wire already hints at its robustness to noise. To further
explore the effect of measurement noise, we artificially
add white noise to a perfect “measurement” (i.e., theore-
tically calculated fields with a noise level < 10−3) in
increments until we reach a signal-to-noise ratio of unity
in Lx,y. Then, we calculate the normalized error between
the ideal and the retrieved optical fields (see Methods
Section), which is shown in Fig. 4. More importantly, for
all noise levels, we observe that the setting κmax ¼ 2k0
results in a poor field retrieval because this low limit
effectively filters large portions of the input signal (Sup-
plementary Figure S12 for the corresponding retrieved
field maps and Supplementary Section S7 for additional
discussion). However, up to κmax ¼ 5k0, we find near-
perfect deconvolution even in cases where the noise is as
large as the signal.
Finally, we note that while decreasing the probe aper-

ture size results in a decrease in signal and a corre-
sponding increase in resolution, it has little effect on our
algorithm (Supplementary Figure S13); although higher
wavevectors appear in N κð Þ for small probe diameters,
N κð Þ remains nearly identical at low κ. Since the algo-
rithm is robust even when the noise level is comparable to
the signal (c.f. Figure 4), even measurements with such
low-throughput probes can be deconvolved into their
constituent components.
The capability to map both the electric and magnetic

near-field components is important for the study and
development of nanophotonic structures, particularly if
the strategy is simple and robust. Our approach can be
used to measure the full electric and magnetic fields
near dielectric and plasmonic structures, which are
increasingly necessary in a research landscape of nano-
scopic structures with different electric and magnetic
responses. Moreover, because the deconvolution of a
full field takes only seconds when N�1 κð Þ is known
(Eqs. 4 and 5), our algorithm can be applied in real time.
As a demonstration, we have presented the full, complex
electromagnetic near-field of two nanophotonic wave-
guides, but we note that our approach can also be
applied to other systems such as nanoantennas and
cavities. For the latter case, special care must be taken
with high-quality factor resonators Q> 1000, where the
interactions between the near-field probe and the pho-
tonic mode cannot be neglected and in fact can provide
an independent measure of the magnetic field17,31.
Measurements of nanoscale E and H have the potential
to drive progress in fields such as chiral quantum
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optics32,33, plasmonics34, and metasurfaces35, where the
light-matter interactions and device performance
depend on the exact form of vector near fields, often in
the presence of unavoidable fabrication imperfections. A
further intriguing possibility is the combination of our
method with measurements of the emission of a quan-
tum emitter placed on the probe, which map out the
local density of optical states36,37 and are therefore
important to quantum optical applications.

Methods
Robustness to noise
To quantify the robustness to noise of our algorithm, we

compare the calculated fields to the fields retrieved from
a computer-generated field map, which is obtained by
applying the reciprocity theorem to the calculated fields.
To this calculated mapping (such as that in Fig. 2b),
we add a controlled amount of white noise. The
mean amplitude of that noise relative to the maximum
amplitude of the signal is shown on the y-axis of Fig. 4.
Next, we apply our algorithm to these noisy calculated
mappings and compare the retrieved fields to the
calculated fields to obtain the normalized error

Δ ¼ P
Ex;yHx;y

R
Fretrj j � Finj jj j2dr= P

Ex;yHx;y

R
Finj j2dr, where F

indicates the electric and magnetic field components of
the retrieved (retr.) and input (in) fields.

SP coordinate transformations
The orientation of the sp-basis vectors is constructed

from the in-plane wavevector according to

ŝ ¼ κ̂ ´ ẑ ð6Þ
p̂± ¼ κẑ� kzκ̂

k0
ð7Þ

where kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � κ2

p
. In our experiment, there are only

upward-propagating fields, and we use the following
equations to convert the fields in the sp-basis to those in a
Cartesian basis,

ExðκÞ ¼ sinϕ EsðκÞ � kz
k0
cosϕ EpðκÞ

EyðκÞ ¼ � cosϕ EsðκÞ � kz
k0
sinϕ EpðκÞ

HxðκÞ ¼ sinϕ EpðκÞ
Z0

þ kz
k0
cosϕ EsðκÞ

Z0
and

HyðκÞ ¼ � cosϕ EpðκÞ
Z0

þ kz
k0
sinϕ EsðκÞ

Z0

ð8Þ

These equations are derived in Supplementary Note 5 and
can be straightforwardly inverted to find the transforma-
tion from a Cartesian to an sp-basis.
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