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Abstract. Template polyhedra generalize intervals and octagons to
polyhedra whose facets are orthogonal to a given set of arbitrary directions.
They have been employed in the abstract interpretation of programs and,
with particular success, in the reachability analysis of hybrid automata.
While previously, the choice of directions has been left to the user or a
heuristic, we present a method for the automatic discovery of directions
that generalize and eliminate spurious counterexamples. We show that for
the class of convex hybrid automata, i.e., hybrid automata with (possibly
nonlinear) convex constraints on derivatives, such directions always exist
and can be found using convex optimization. We embed our method inside
a CEGAR loop, thus enabling the time-unbounded reachability analysis
of an important and richer class of hybrid automata than was previously
possible. We evaluate our method on several benchmarks, demonstrating
also its superior efficiency for the special case of linear hybrid automata.

1 Introduction

Template polyhedra are convex polyhedra whose defining halfspaces are orthogo-
nal to a template, i.e., a finite set of directions. In other words, they are those
conjunctions of linear inequalities where all coefficients are fixed and constants
can vary. Template polyhedra naturally generalize geometrical representations
like intervals or octagons, yet maintain low computational cost for several set oper-
ations. Template polyhedra have been employed for the abstract interpretation of
programs [17, 38], but in particular they have recently gained popularity with the
abstract interpretation of hybrid automata [27, 37, 25, 18, 12], i.e., the extension
of finite automata with continuous dynamics [26]. In fact, verification of hybrid
automata via template polyhedra has shown promise in practice [23, 13, 20, 8, 35],
in spite of the theoretical undecidability even for the reachability question [29].
In this paper, we develop a novel abstraction refinement procedure for template
polyhedra and we evaluate its use in the time-unbounded reachability analysis of
hybrid automata.

Efficiency often comes at the price of precision, and template polyhedra are
no exception. The precision is sensitive to the choice of template and a bad one
might cause several problems. First, even computing the tightest of the template
polyhedra around a set won’t necessarily bring to an exact representation. This



holds for linear sets, think about using intervals or octagons for representing
arbitrary polyhedra, and for non linear sets, think about using any finite set
of directions for representing ellipses or parabolae. Second, template polyhedra
suffer from the so called wrapping effect, that is to say that even if you represent
initial and guard constraints of a hybrid automaton precisely, discrete transitions
and time elapse might make new directions necessary. Think about representing
a box using intervals, applying a slight rotation, and representing it again using
intervals. Thus the question is: how do you choose the template?

The current approaches for the abstract interpretation by means of tem-
plate polyhedra are affected by multiple problems. First, they do not guarantee
avoidance of spurious counterexamples. In fact, they either assume a priori fixed
templates or derive directions from initial and guard constraints [38, 37]. The
online refinement techniques focus on improving local errors rather than induc-
tively eliminating and generalizing whole paths [6, 22]. Counterexample-guided
methods have been developed, but not for template polyhedra [15, 4, 19, 7].
Second, they partition and bound the time domain. Differential equations are in
general hard to solve, thus time partitioning is often necessary [25, 23]. Efforts
in taking larger time intervals have been made, but not for unbounded time [24].
Third, the approaches to the analysis of non-linear systems do not handle tem-
plate refinement, even offline. The abstraction refinement of Bernstein and Taylor
expansion-based approximations relies on global parameters that are hard to
infer from counterexamples [18, 39, 20, 12, 13].

We propose a method which, for the first time, discovers template directions
from spurious counterexamples and adds to the template a few of them at a time.
Let us look at a refinement workflow. Initially, we search for a spurious counterex-
ample using a fixed (and possibly empty) template. Once such a counterexample
is found, we extract an inductive sequence of halfspace interpolants, i.e., Craig’s
interpolants that consist of single linear inequalities [2]. We take their outward
pointing directions and we add them to the template. Such directions eliminate
the counterexample and generalize to all other counterexamples with the same
switching sequence and any (and possibly unbounded) time elapse. We repeat
the procedure in CEGAR fashion [16].

We target the time-unbounded reachability analysis of convex hybrid au-
tomata (CHA), i.e., hybrid automata whose flow constraints consist of differential
inclusions (on derivatives only) and all constraints (flow, guards, and invariants)
are (possibly non-linear) closed convex sets, and the special cases of linear hybrid
automata (LHA) and quadratic hybrid automata (QHA). A large class of systems
belongs to CHA, e.g., timed systems with convex non-linear clock drifts, or can
be approximated as CHA, e.g., systems with Gaussian disturbances truncated by
elliptic sets. The reachability analysis of LHA has a long history [5], while for
QHA or beyond only bounded reachability analysis has been explored [11, 14].

We show that (i) for every CHA halfspace interpolants suitable for refinement
always exist and that (ii) they can be computed efficiently using convex opti-
mization [10], in particular using linear programming for LHA and second-order
conic programming for QHA. We implement a tool based of this technology and
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Fig. 1. A CHA with two variables x and y, three good modes zero, one, and two,
two bad modes badone and badtwo, and four switches a, b, c, and d. The good modes
have three different relative speeds for x and y with an additional spherical drift. All
invariants, the jump guards of a and of b are linear and the jump guards of c and of d
are spherical.

evaluate it on several linear and quadratic benchmarks, comparing (favorably)
against PHAVer where that tool applies [21, 23], namely LHA. This gives the
following new results. First, we enable the use of template polyhedra for the
abstract interpretation and the abstraction refinement of CHA, thus enabling the
efficient time-unbounded reachability analysis for the full class where efficient
convex optimizers are available, namely QHA. Second, we achieve greater practi-
cal performance against the state-of-the-art techniques for the time-unbounded
reachability of even LHA. We evaluate our tool on multiple scaling and linear and
non-linear variants of three different benchmarks, namely Fischer’s protocol [31],
the TTEthernet protocol [9], and an adaptive cruise controller [30].

In summary, our contribution is threefold. First, we develop the first complete
counterexample-guided procedure for the discovery of template directions. Second,
we enable, for the first time, abstraction refinement for the time-unbounded
reachability analysis for all CHA. Third, we build an efficient tool for the new
class of time-unbounded QHA verification, which shows superior performance
also for the special case of LHA.

2 Motivating Example

Consider a system with two real-valued variables x and y whose dynamics follows
some differential equation, which in turn is discontinuously switched by an
automaton with three modes. Figure 1 shows such an example. The trajectory
starts in the origin and enters mode zero and follows any differential equation
whose derivative is ẋ = 1 and ẏ = 2 with possibly some drift in the ball of radius
10−

1
2 around this value. The invariant allows the trajectory to stay in mode zero

as long as y ≤ 2. The trajectory can take a if y ≥ 1 and switch to mode one,
where the derivative of y halves. The dynamics continues similarly on mode one,
switch c, and mode two, and similarly can take a switch to badone and badtwo
when the respective guards are satisfied. We know that there does not exists a



1 2 3 4

1

2

3

4

0 x

y

X1
X0

X2

1 2 3 4

1

2

3

4

0 x

y

X1

X0

X2

1 2 3 4

1

2

3

4

0 x

y

X1

X0

X2

(a) octagonal abstraction (b) w/o path to badone (c) w/o path to badtwo

Fig. 2. Template-polyhedral abstraction refinement for the CHA in Fig. 1. In dark gray,
gray, and light gray the points reachable on the modes zero, one, and two, resp., and
the striped polyhedra X0, X1, and X2 are the resp. template polyhedra. The lower and
the upper dashed circles are, resp., the guards of the switches c and d to the bad modes.
The variant (a) show the octagonal abstraction, and (b) and (c) show resp. the results
of the templates obtained after refinement of the paths to badone and then to badtwo.

trajectory that leads to one of the bad modes, namely the system is safe. We
want to prove it automatically by means of template polyhedra.

The set of states that are respectively reachable on modes zero, one, and two
are the cones spanned by the points that enter the mode and take any possible
trajectory, as respectively depicted in Fig. 2 in three shades on gray. We abstract
the whole systems by representing each of these sets using template polyhedra.
But first, we need to discover a suitable template. In fact, different templates
produce different abstractions and not all of them can prove safety. Figure 2
shows three different such abstractions (striped polyhedra), but (a) and (b) hit
the guards (dashed circled) to the bad modes while only (c) accomplishes the
task. Our goal is to construct a good template like in (c).

We begin with abstraction (a) which uses the octagonal template, i.e., the
8 orthogonal directions to the facets of an octagon. The abstract interpreter
will produce several abstract paths (sequences of pairs of modes and polyhedra
interleaved by switches) among which will occur the path zero, a, one, c, badone,
for the regions X0, X1 ⊆ IRn where X0 = initzero abstracts the flow on zero, and
X1 = posta(X0) abstracts the flow on one (see Fig. 2a). This path reaches a bad
mode, but it is spurious, namely it does not have a concrete counterpart. We prove
it by computing a sequence of halfspace interpolants, i.e., two halfspaces H0 and
H1 such that initzero ⊆ H0 and posta(H0) ⊆ H1 and H1 does not intersect with
the guard of the switch c (see Fig. 3b). The outward pointing directions d0 and d1
of H0 and H1 are the directions that generalize and eliminate all counterexamples
with the switching sequence zero, a, one, c, badone (see Fig. 3c). We add them to
the template and we recompute the abstraction, obtaining a necessarily different
counterexample (see Fig. 2b). We repeat and eventually obtain Fig. 2c, finally
proving the safety of the hybrid automaton.



In the next section we define the modeling and the (template-polyhedral)
abstraction framework for CHA. In Sec. 4 we present our interpolant-based
refinement technique and in Sec. 5 we phrase it as a convex optimization problem.
In Sec. 6 we instantiate it to QHA and in Sec. 7 we show our experimental results.

3 Template-polyhedral Abstractions for Convex Systems

Hybrid automata extend finite automata adding constraints on the (discrete and
continuous) dynamics of a set of real variables [26]. Convex hybrid automata
(CHA) are the class whose constraint define non-linear convex sets that exclusively
constrain either variables or variable derivatives, as it is the case for the well-know
class of linear hybrid automata (LHA) [26], which is thus generalized by CHA.

Definition 1 (Convex hybrid automata). A convex hybrid automaton H
with n real-valued variables consists of a finite directed multigraph (V,E) where
the vertices v ∈ V are called control modes and the edges e ∈ E are called control
switches. Each v ∈ V is decorated by an initial constraint Zv ⊆ IRn, an invariant
constraint Iv ⊆ IRn, and a flow constraint Fv ⊆ IRn, each e ∈ E is decorated by
a jump constraint Je ⊆ IR2n, and all constraints define closed convex sets.

A finite control path v0, e1, v1, . . . , ek, vk of the CHA H is a path of the control
graph of H, i.e., for all 0 ≤ i ≤ k it holds that vi ∈ V and for all 1 ≤ i ≤ k it
holds that ei ∈ E and is a switch with source vi−1 and destination vi. When a
control path is clear from the context, we abbreviate any object indexed by vi or
ei as the same object indexed by i, e.g., we abbreviate Fvi as Fi. The semantics
associates modes to points x ∈ IRn. For every two points x, x′ ∈ IRn, for every
control mode v ∈ V we say that x′ is a v-successor of x if there exists a derivable
function f : IR≥0 → IRn and a time delay δ ∈ IR≥0 such that f(0) = x, f(δ) = x′,
and for all 0 ≤ γ ≤ δ it holds that ḟ(γ) ∈ Fv and f(γ) ∈ Iv, and for every control
switch e ∈ E we say that x′ is an e-successor of x if (x, x′) ∈ Je.

Definition 2 (H-feasibility). A finite control path v0, e1, v1, . . . , ek, vk is H-
feasible if for some x0, x′0, x1, x′1, . . . , xk, x′k ∈ IRn it holds that x0 ∈ Z0, and for
all 0 ≤ i ≤ k, x′i is a vi-successor of xi and xi is a ei-successor of x′i−1.

The semantics of H is the maximal set of H-feasible paths. A mode v ∈ V is
reachable if there exists an H-feasible control path whose last mode is v, and a
point x′ ∈ IRn is reachable on v if x′ is the last point of a sequence as in Def. 2.

The abstraction associates modes to regions of IRn into abstract paths whose
elements are related by the init and post operator of an abstraction structure A.

Definition 3 (Abstraction structure). An abstraction structure A for the
CHA H consists of an init operator initv ∈ ℘(IRn) for every v ∈ V and of a post
operator poste : ℘(IRn)→ ℘(IRn) for every e ∈ E.

Similarly as for H, a control path with an abstract counterpart is called A-feasible.



Definition 4 (A-feasibility). A finite control path v0, e1, v1, . . . , ek, vk is A-
feasible if for some non-empty sets X0, X1, . . . , Xk ⊆ IRn holds that X0 = init0
and for all 1 ≤ i ≤ k, Xi = posti(Xi−1).

An A-feasible path is genuine if it is also H-feasible, and spurious otherwise. An
abstraction structure A is sound if all H-feasible control paths are A-feasible.

The support function [36] in direction d ∈ IRn of a convex set X ⊆ IRn is

ρX(d)
def
= sup{d · x | x ∈ X}. (1)

The support function of X characterizes the template polyhedron [38, 25] of X
for the template ∆ ⊆ IRn (a finite set). We call it the ∆-polyhedron of X, that is⋂

d∈∆

{x ∈ IRn | d · x ≤ ρX(d)}. (2)

We aim at computing template polyhedra for the (continuous) flow and the
(discrete) jump post operators (and their compositions) of the hybrid automaton.
The flow operator of mode v ∈ V gives the points reachable by time elapse on v:1

flowv(X)
def
= (X ⊕ coniFv) ∩ Iv. (3)

The jump operator of switch e ∈ E gives the points reachable through e:2

jumpe(X)
def
=
[
0n×n In

](([ In
0n×n

]
X ⊕

[
0n×n
In

]
IRn

)
∩ Je

)
. (4)

Flow and jump operators are an exact symbolical characterization for the seman-
tics of CHA, and follow as an extension of the symbolic analysis of LHA [26].

Lemma 1. For every CHA H and every set X ⊆ IRn it holds that (i) x′ ∈
flowv(X) if and only if x′ is a v-successor of some x ∈ X for every control mode
v ∈ V and (ii) x′ ∈ jumpe(X) if and only if x′ is a e-successor of some x ∈ X
for every control switch e ∈ E.

The exact symbolic analysis of CHA has in general high complexity, as it re-
quires eliminating quantifiers, and possibly from formulae that contain non-linear
constraints. For this reason we approximate them using template polyhedra.

The template-polyhedral abstraction computes the template polyhedra of the
flow and jump operators above and, in our definition, using a different template
for each mode, given by the precision function prec : V → ℘(IRn).

Definition 5 (Template-polyhedral abstraction). The template-polyhedral
abstraction for the CHA H and the precision function prec : V → ℘(IRn) is the
abstraction structure where the init operator initv is the prec(v)-polyhedron of
flowv(Zv), and the post operator poste(X) is the prec(t)-polyhedron of flowt ◦
jumpe(X) where t ∈ V is the destination of e.
1 For X ⊆ IRn, coniX denotes the conical combination {0} ∪ {αx | α > 0 ∧ x ∈ X}
and for Y ⊆ IRn, X ⊕ Y denotes the Minkowski sum {x+ y | x ∈ X ∧ y ∈ Y }.

2 For M ∈ IRm×n and X ⊆ IRn, MX denotes the linear transformation {Mx | x ∈ X}.



It is well-know that the template-polyhedral abstraction constructs a conservative
over-approximation for linear systems [38], and the same holds for CHA.

Theorem 1. For every CHA H and every precision function prec the template-
polyhedral abstraction for H and prec is sound.

The obvious difficulty is in finding a precision function that is suitable for proving
or disproving reachability. In the next section, we show how to form one such
automatically by means of counter-example guided abstraction refinement.

4 Refining the Template-polyhedral Abstraction

A counter-example guided abstraction refinement (CEGAR) loop [16] for a hybrid
automaton H and a set of bad modes T consists of an abstractor and a refiner
interacting with each other. At each iteration i, the abstractor takes an abstraction
structure Ai and attempts to construct the finite state machine that recognizes
all Ai-feasible paths. If it terminates and it does not find a counterexample, i.e.,
a path leading to a bad mode, then it returns no. Otherwise, it passes Ai and a
set of counterexamples Wi to the refiner. The refiner attempts to construct an
abstraction structure Ai+1 that refines Ai and eliminates all counterexamples in
Wi. If it fails, then it reports yes and a set W̄i ⊆Wi of genuine counterexamples.
Otherwise, it passes Ai+1 to the abstractor.

The above procedure is sound (upon termination), provided Ai is sound, in
the sense that if it reports no then no mode in T is reachable. It is complete
(upon termination), namely if it reports yes then some mode in T is reachable, if
it returns an abstraction Ai+1 that is locally complete w.r.t. Wi when one exists.

Local completeness An abstraction structure A for the CHA H is locally
complete w.r.t. the set W of control paths of H if all H-infeasible control
paths in W are A-infeasible.

Moreover, if it ensures local completeness w.r.t. ∪{Wj |0 ≤ j ≤ i}, then it ensures
progress of the procedure if the counterexamples are given one by one.

Whenever we find a spurious counterexample, we augment the precision
of the modes along the path with additional template directions, so to make
it A-infeasible. First of all, we start with finding a sequence of Craig’s in-
terpolants and only Craig’s interpolants that are halfspaces [2]. Formally, let
w = v0, e1, v1, . . . , ek, vk be a control path of H, then a sequence of halfspace
interpolants for w is a sequence of sets H0, H1, . . . ,Hk ⊆ IRn such that each
element is either the universe, a closed halfspace, or the empty set and

flow0(Z0) ⊆ H0,flow1 ◦ jump1(H0) ⊆ H1, . . . ,flowk ◦ jumpk(Hk−1) ⊆ Hk, (5)

and Hk ⊆ ∅. If such sequence exists, then the path is clearly H-infeasible.
Conversely, it is not trivial that for every H-infeasible path such sequence exists.
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Fig. 3. Refinement for the control path zero, a, one, b, badone of the CHA in Fig. 1.
In dark gray, the points reachable on mode zero. In (a), (b), and (c), in light gray are
the points reachable on mode one resp. from X0, H0, and X0. In (a) the spurious path,
in (b) the interpolants, and in (c) the abstraction with the outward pointing directions.

Lemma 2. For every CHA H and every control path w of H it holds that w is
H-infeasible if (and only if)3 there exists a sequence H0, H1, . . . ,Hk ⊆ IRn of
halfspace interpolants for w as in Eq. 5.

Indeed, existence relies on further technical conditions that are out of the scope of
this paper [36]. With this in mind, simply assuming all non-linear constraints to be
bounded (e.g., Fig. 1) ensures existence, yet without preventing time-unbounded
reachability. Computing interpolants is the subject of the next section.

The refining directions are the outward pointing directions of the halfspace
interpolants, respectively for each mode along the path. In fact, it is enough to
observe that every abstraction we obtain after adding such directions also satisfy

init0 ⊆ H0, post1(H0) ⊆ H1, . . . , postk(Hk−1) ⊆ Hk. (6)

Figure 3 shows such an example. The path is the one leading to badone from the
CHA of Fig. 1, which is spurious with octagonal template (see Fig. 3a), and, in fact,
a sequence H0 and H1 of halfspace interpolants exists (see Fig. 3b). The halfspace
H1 is disjoint from the guard of c (dashed circle) and includes the points reachable
from H0 (light gray), which in its turn includes the points reachable from Zzero,
i.e., flowzero(Zzero) ⊆ H0, flowone ◦ jumpa(H0) ⊆ H1, and jumpc(H1) ⊆ ∅. Taking
the supporting halfspaces in the same directions preserves these inclusions, hence
adding d0 to prec(zero) and d1 to prec(one) causes initzero ⊆ H0, posta(H0) ⊆ H1,
and postc(H1) ⊆ ∅. Thus d0 and d1 eliminate the counterexample, and regardless
of whether prec contains further directions (see Fig. 3c).

Definition 6 (Template-polyhedral refinement). Let H be a CHA and let
w = v0, e1, v1, . . . , ek, vk be a control path. Define the precision function prec such
that for some (if one exists) sequence of halfspace interpolants H0, H1, . . . ,Hk ⊆
IRn for w as in Eq. 5 then for all 0 ≤ i ≤ k set di ∈ prec(vi) where di is the
outward pointing direction of Hi. We define the template-polyhedral refinement
for H and w as the template-polyhedral abstraction for H and prec.
3 We exclude the pathological cases of disjoint convex sets w/o separating hyperplane.



Local completeness w.r.t. a single path easily generalizes to local completeness
w.r.t. multiple paths by taking the union of the discovered directions.

Theorem 2. For every CHA H and every set W of finite control paths of H
the union4 over all w ∈W of the template-polyhedral refinements for H and w is
locally complete w.r.t. W .

Summarizing, we search for abstract counterexamples and we accumulate all
outward pointing directions of the respective halfspace interpolants. If either the
abstractor finds a fixpoint or interpolation fails, then we obtain a sound and
complete answer. In the following section, we show how to compute init and post
operators and sequences of halfspace interpolants by using convex optimization.

5 Craig’s Interpolation as Convex Optimization

The support function is a central actor both in abstraction, as it defines template
polyhedra, and refinement, as it gives a powerful formalism to talk about inclusion
in halfspaces and separation of convex sets. In either case, the sets we deal with
are arbitrary compositions of flow and jump operators, which in their turn are
compositions of Minkowski sums, linear transformations, conical combinations,
and intersections. We characterize the support functions of such operations as
convex programs, with the aim of characterizing abstraction and refinement as
convex programs.

We present a characterization of support functions that is compositional for
the set operations above. The classic support function representation framework5

offers a very similar machinery [25], but it suffers from the following shortcomings.
First, it requires the operand sets in Minkowski sums and intersections to be
compact (i.e., closed and bounded) and boundedness cannot be easily relaxed,
e.g., ρIRn(d) + ρ∅(d) = +∞−∞ while ρIRn⊕∅(d) = −∞ for every d 6= 0. Since
we aim at time-unbounded reachability, it would be too restrictive to assume
boundedness. Second, substituting boundedness with nonemptiness might cause
uncorrect results, e.g., for the sets A = {(x, y) | x ≤ −1}, B = {(x, y) | x ≥ 1},
and the direction c = (0, 1) we obtain inf{ρA(c − a) + ρB(a)} = +∞, while
ρA∩B(c) = −∞. We relax both the assumptions of boundedness and nonemptiness
by characterizing the support function ρX(d) with a convex program

minimize ρ̄X(λ)
subject to (λ, d) ∈ ΛX , (7)

with objective function ρ̄X : IRm → IR and constraint ΛX ⊆ IRm+n. The minimum
of ρ̄X(λ) over λ characterizes ρX(d) for directions in which X is bounded, while
ΛX characterizes boundedness. This is encapsulated by the notion of duality.

4 The union of the abstractionsA1, . . . ,Ai forH and resp. the precisions prec1, . . . , preci
is the abstraction for H and the precision λv.prec1(v) ∪ · · · ∪ preci(v).

5 ρX⊕Y (d)= ρX(d)+ρY (d), ρMX(d)= ρX(MTd), and ρX∩Y (d)= inf{ρX(a)+ρY (d−a)}.



Duality Let X ⊆ IRn be a nonempty closed convex set. The convex program of
Eq. 7 is dual to ρX if for all d ∈ IRn it holds that
(i) ρX(d) = +∞ if and only if there does not exist λ such that (λ, d) ∈ ΛX ,
(ii) ρX(d) < +∞ if and only if ρX(d) = min{ρ̄X(λ) | (λ, d) ∈ ΛX}.

We define inductive rules for constructing dual convex programs for the support
functions of set operations, provided dual convex programs for their operands
(whose instantiation for sets defined by symbolic constraints is subject of Sec. 6):

ρ̄X⊕Y (λ, µ)
def
= ρ̄X(λ) + ρ̄Y (µ),

ΛX⊕Y
def
= {(λ, µ, d) | (λ, d) ∈ ΛX , (µ, d) ∈ ΛY },

(8)

ρ̄MX(λ)
def
= ρ̄X(λ),

ΛMX
def
= {(λ, d) | (λ,MTd) ∈ ΛX},

(9)

ρ̄coniX(λ)
def
= 0,

ΛconiX
def
= {(λ, d) | ρ̄X(λ) ≤ 0, (λ, d) ∈ ΛX},

(10)

ρ̄X∩Y (λ, µ)
def
= ρ̄X(λ) + ρ̄Y (µ), and

ΛX∩Y
def
= {(λ, µ, a, d) | (λ, a) ∈ ΛX , (µ, d− a) ∈ ΛY }.

(11)

Nevertheless, duality is not sufficient to characterize operations producing the
empty set. Considering the examples above, the constraint ΛIRn⊕∅ is infeasible
for every direction d 6= 0 and the constraint ΛA∩B is infeasible for direction c,
contradicting (i). However, it suffices that the convex program is unbounded for
at least d = 0, providing an alternative for deciding emptiness beforehand.

Alternativity The convex program of Eq. 7 is alternative to ρ∅ if for every
ε < 0 there exists (λ, 0) ∈ Λ∅ such that ρ̄∅(λ) ≤ ε.

Altogether, we compute the support of X in direction d as follows. We decide
whether there exists a negative solution in direction 0. If so we return −∞,
otherwise we decide whether ΛX is infeasible in direction d. If so we return +∞,
otherwise we solve the convex program. This is permitted on any combination of
the set operations above, as our construction preserves duality and alternativity.

Lemma 3. Let X,Y ⊆ IRn be closed convex sets. If the convex programs for
ρ̄X , ΛX and ρ̄Y , ΛY are dual and alternative to resp. ρX and ρY then the convex
programs for Eq. 8, 9, and 10 are dual and alternative to the respective support
functions. If either X and Y intersect or they admit a separating hyperplane then
also the convex program for Eq. 11 is dual and alternative to ρX∩Y .

In addition, the construction allows us to inductively extract separating hyper-
planes and therefore sequences of halfspace interpolants.

The emptiness check or more generally deciding whether a support function
is below a threshold permits us to inductively extract interpolants. For each of
the four set operation we wish first to prove inclusion within a given halfspace
(or the empty set) H and then to find a second halfspace H ′ which interpolates
the operand. For instance, for an intersection X ∩ Y such that X ∩ Y ⊆ H, we
wish to find a H ′ such that X ⊆ H ′ and H ′ ∩ Y ⊆ H. Indeed, we just need their
outward pointing directions, and our construction carries this information.



Lemma 4. Let X,Y ⊆ IRn be closed convex sets. Let the convex programs for
ρ̄X , ΛX and ρ̄Y , ΛY be dual and alternative to ρX and ρY . Let H be the set
{x ∈ IRn | d · x ≤ ε}, which is empty if and only if d = 0 and ε < 0.

– If either X and Y are both nonempty or H is empty then for every (λ?, µ?, d) ∈
ΛX⊕Y such that ρ̄X⊕Y (λ?, µ?) ≤ ε there exists H ′ = {x ∈ IRn | d · x ≤ ε′}
such that ρ̄X(λ?) ≤ ε′ and H ′ ⊕ Y ⊆ H.

– If either X is nonempty or H is empty then for every (λ?, d) ∈ ΛMX such
that ρ̄MX(λ?) ≤ ε there exists H ′ = {x ∈ IRn | (MTd) · x ≤ ε′} such that
ρ̄X(λ?) ≤ ε′ and MH ′ ⊆ H.

– For every (λ?, d) ∈ ΛconiX such that ρ̄coniX(λ?) ≤ ε there exists H ′ = {x ∈
IRn | d · x ≤ ε′} such that ρ̄X(λ?) ≤ ε′ and coniH ′ ⊆ H.

– If either X and Y intersect or H is empty and they admit a separating
hyperplane then for every (λ?, µ?, a?, d) ∈ ΛX∩Y such that ρ̄X∩Y (λ?, µ?) ≤ ε
there exists H ′ = {x ∈ IRn | a?·x ≤ ε′} such that ρ̄X(λ?) ≤ ε′ and H ′∩Y ⊆ H.

We can extract the outward pointing directions by looking at the arguments
instantiated by an emptiness check. Inductively, if d is the outward pointing
direction of H, then the outward pointing direction of H ′ is d for the Minkowski
sum, MTd for the linear transformation, d for the conical combination, and a
for the intersection. As a result, we can extract sequences of interpolants for
arbitrary combinations of basic set operations from one single emptiness check.

We build such a construction for arbitrary sequences of flow and jump
operators induced by control paths. More concretely, let w = v0, e1, v1, . . . , ek, vk
be a control path of some CHA H then the path operator of w is

Pw
def
= flowk ◦ jumpk ◦ · · · ◦ flow1 ◦ jump1 ◦ flow0(Z0). (12)

Similarly to Lem. 2, we assume every path operator to be either nonempty or to
admit a separating hyperplane at some intersection. By applying the above rules,
we construct the convex program for the support function of Pw as follows:

minimize ρ̄Z0
(λZ0

) +
∑k
i=1 ρ̄Ji(λJi) +

∑k
i=0 ρ̄Ii(λIi)

subject to (λZ0 , a0 − b0) ∈ ΛZ0 ,
(λJi ,

[
−ai−1, ai − bi

]T
) ∈ ΛJi for each i ∈ [1..k],

ρ̄Fi(λFi , ai − bi) ≤ 0 for each i ∈ [0..k],
(λFi , ai − bi) ∈ ΛFi for each i ∈ [0..k],
(λIi , bi) ∈ ΛIi for each i ∈ [0..k],
ak = d.

(13)

Duality and alternativity is preserved, therefore we can use such construction to
compute the support functions for init and post (which are special cases of path).

Lemma 5. For every CHA H, every control path w of H, if the convex programs
for every constraint X along the path are dual and alternative to ρX then the
convex program in Eq. 13 is dual and alternative to ρPw

.

We identify the arguments that determine a suitable sequence of halfspace
interpolants after the emptiness check.



Lemma 6. For every CHA H, every control path w of H, every ε < 0, and
every (λ?, 0) ∈ ΛPw

whose projection on a0, a1, . . . , ak is a?0, a?1, . . . , a?k ∈ IRn, if
the convex programs for the constraints X along the path are dual and alternative
to ρX then ρ̄Pw(λ?) ≤ ε if and only if a?0, a?1, . . . , a?k are the outward pointing
directions of a sequence of halfspace interpolants H0, H1, . . . ,Hk for w as in Eq. 5.

In summary, we search by convex optimization for an argument for which the
convex program of Eq. 13 for d = 0 has negative solution. If so, the argument
a?i for the parameter ai is the outward pointing direction for the interpolant at
mode vi. Adding a?i to prec(vi) eliminates the spurious counterexample w.

In this section, we have built a refiner for every spurious path of every CHA,
assuming dual and alternative convex programs for the constraints along the path.
In the following section, we discuss such functions and show how to instantiate
interpolation for the special case of quadratic hybrid automata.

6 Abstraction Refinement for Quadratic Systems

The interpolation technique in Sec. 5 relies on the notions of duality and al-
ternativity. Duality and alternativity are preserved by Minkowski sum, linear
transformation, conical combination, and intersection, but whether they hold
in the first place depends on the constraint of the automaton. We discuss these
properties for (convex) quadratic programs, and we show their implications to
the classes of quadratic and linear hybrid automata.

Closed convex quadratic sets are sets of the form
⋂m
i=1{x ∈ IRn | xQixT +

pTi x ≤ ri} where Q1, . . . , Qm ∈ IRn×n are positive semidefinite matrices of
coefficients, p1, . . . , pm ∈ IRn are vectors of coefficients, and r1, . . . , rm ∈ IR are
constants. Closed convex quadratic sets characterize quadratic hybrid automata.

Definition 7 (Quadratic hybrid automata). A quadratic hybrid automaton
(QHA) is a CHA whose constraints define closed convex quadratic sets.

The support function of a convex quadratic set is a quadratically constrained
(convex) quadratic program, which is known to cast to second-order conic pro-
gramming (SOCP) [3]. We cast the support function to an optimization problem
over a (rotated) second-order cone and we take its dual [3], so obtaining

minimize r1λ1 + · · ·+ rmλm
subject to p1λ1 + LT

1µ1 + · · ·+ pmλm + LT
mµm = d,

λ1 ≥ ‖µ1‖22, . . . , λm ≥ ‖µm‖22,
(14)

where L1, . . . , Lm are the Cholesky decompositions of Q1, . . . , Qm respectively,
and λ1, . . . , λm ∈ IR and µ1, . . . , µm ∈ IRn are the optimization arguments. Under
the regularity conditions for non-linear optimization, e.g., Slater’s condition,
duality and alternativity hold [10, 3]. Encodings that do not need such conditions
exist [34], but are not discussed in this paper.

Every algorithm that solves feasibility and optimization of SOCP solves init
and post computation and halfspace interpolation for QHA, thus enabling their
template-polyhedral abstraction and abstraction refinement.



Theorem 3. Let H be a QHA with n variables and m inequalities. Let the time
complexity of SOCP be socp(α, β, γ) for α variables, β equalities, and γ cones.

– Init and post operators time complexity is p× socp(n×m,n,m) where p =
max{|prec(v)| | v ∈ V } for the precision function prec.

– Refinement time complexity is c× socp(n×m,n× k,m× k) where c = |W |
and k = max{|w| | w ∈W} for the set of counterexamples W .

Nevertheless, the complexity SOCP remains an open problem on the Turing
machine, while it is known to be in NP ∩ coNP on the real number model [34].
On the other hand, several efficient (but incomplete) numerical procedures are
available, therefore in practice we can obtain support functions and interpolants,
but with weaker guarantees. We are in a better position for the case of linear hybrid
automata (LHA) [26], i.e., the special case of QHA where all constraints define
polyhedra. For linear hybrid automata, the program of Eq. 14 is always a linear
program, i.e., all cones are positive orthants, where duality holds, alternativity is
given by Farkas’ lemma, and time complexity is polynomial. Hence, for LHA, init
operator, post operator, and refinement time complexities are as well polynomial.

7 Experimental Evaluation

We evaluate our algorithms on three main classes of benchmarks, namely Fischer’s
protocol [31], an adaptive cruise controller [30], and the TTEthernet protocol [9].
For each class, we consider a linear version and a non-linear version, as well as
for each a safe version and an unsafe version.

Fischer’s protocol is a time based protocol of mutual exclusion between
processes. The protocol is correct if two processes are never in the critical section
at the same time. For the linear version, the flow constraints are given by
1
2 ≤ ẋ1 ≤ 3

2 , . . . ,
1
2 ≤ ẋm ≤ 3

2 , where xi is the clock of the i-th process, and for
the non-linear case,

√
ẋ21 + · · ·+ ẋ2m ≤ 1. We verify the linear version up to 5

processes and the non-linear version up to 3 processes.
The adaptive cruise controller is a distributed system for safety distance of

platoon of cars. Each car either cruises or recovers by slowing down. The relative
velocity has a drift |ẋ − ẋldr| ≤ 1

2 when cruising and |ẋ − ẋldr + ε| ≤ 1
2 when

recovering, where x and xldr are the positions of each car the car in front, resp,
and ε is the slow-down. We check for car crashes in platoons up to 7 cars.

Finally, we consider the TTEthernet protocol for the remote synchronization
of possibly drifted clocks distributed over multiple components. Similarly to
previous case studies, we consider flows defined in terms of intervals and unit
balls for linear and non-linear cases, respectively. We verify both linear and
non-linear systems with 3, 5, 9, and 17 components.

We implemented a CEGAR loop based on our procedure in C++ and con-
ducted the following experiments on a machine with 2.6GHz CPU and 4 GB
of dedicated RAM. We use the GLPK for solving LPs and MOSEK for solving
SOCPs [1, 33]. We executed our tool under the empty strategy and the octagonal
strategy. With the empty strategy, the initial precision is empty, which means



Benchmark Empty Octagonal PHAVer
#spu #dir cgr [s] itp [s] ver [s] #spu #dir cgr [s] itp [s] ver [s] time [s]

fsr_lnr_2_sf 5 8 0.06 0.02 ≈0 0 256 + 0 0.11 0 0.11 ≈0
fsr_lnr_3_sf 41 69 1.12 0.02 0.02 12 3456 + 12 5.55 ≈0 0.50 1.25
fsr_lnr_4_sf 259 440 33.16 0.29 0.14 221 32768 + 221 1190 0.07 23.06 135
fsr_lnr_5_sf 1379 2335 857 2.08 0.76 oot 256k oot oot oot 78807
fsr_lnr_2_usf 0 0 ≈0 0 ≈0 0 256 + 0 0 0 0.12 ≈0
fsr_lnr_3_usf 0 0 0.03 0 0.03 0 3456 + 0 0 0 0.37 1.01
fsr_lnr_4_usf 0 0 0.06 0 0.06 0 32768 + 0 0 0 1.67 300
fsr_lnr_5_usf 0 0 0.16 0 0.16 0 256k + 0 0 0 13.63 oom
fsr_qdr_2_sf 5 8 5.13 0.10 1.32 0 256 + 0 0 0 8.18 -
fsr_qdr_3_sf 41 69 226 0.44 9.04 12 3456 + 12 3599 0.15 886 -
fsr_qdr_2_usf 0 0 0.66 0 0.66 0 256 + 0 0 0 6.40 -
fsr_qdr_3_usf 0 0 1.76 0 1.76 0 3456 + 0 0 0 26.67 -
acc_lnr_2_sf 2 2 ≈0 ≈0 ≈0 0 32 + 0 0 0 ≈0 ≈0
acc_lnr_3_sf 8 8 0.04 ≈0 ≈0 0 144 + 0 0 0 0.19 0.03
acc_lnr_4_sf 24 24 0.39 ≈0 0.02 0 512 + 0 0 0 0.87 0.53
acc_lnr_5_sf 64 64 0.94 ≈0 0.12 oot 1600 oot oot oot 21.78
acc_lnr_6_sf 160 160 42.12 0.07 0.74 oot 4608 oot oot oot 1455
acc_lnr_7_sf 384 384 569 0.13 4.22 oot 12544 oot oot oot oot
acc_lnr_2_usf 1 1 ≈0 ≈0 ≈0 0 32 + 0 0 0 ≈0 ≈0
acc_lnr_3_usf 2 2 ≈0 ≈0 ≈0 0 144 + 0 0 0 0.05 ≈0
acc_lnr_4_usf 3 3 ≈0 ≈0 ≈0 0 512 + 0 0 0 0.37 0.18
acc_lnr_5_usf 4 4 ≈0 ≈0 ≈0 0 1600 + 0 0 0 0.61 22.51
acc_lnr_6_usf 5 5 0.06 ≈0 0.04 0 4608 + 0 0 0 1.23 4621
acc_lnr_7_usf 6 6 0.17 ≈0 0.06 0 12544 + 0 0 0 2.87 oot
tte_lnr_3_sf 17 18 0.17 ≈0 ≈0 oot 864 oot oot oot oot
tte_lnr_5_sf 49 50 0.32 ≈0 ≈0 oot 2400 oot oot oot oot
tte_lnr_9_sf 161 162 3.47 ≈0 0.06 oot 7776 oot oot oot oot
tte_lnr_17_sf 577 578 239 0.06 1.27 oot 27774 oot oot oot oot
tte_lnr_3_usf 18 24 0.26 ≈0 0.05 0 864 + 0 0 0 0.42 oot
tte_lnr_5_usf 60 80 0.85 ≈0 0.02 0 2400 + 0 0 0 0.95 oot
tte_lnr_9_usf 216 288 15.65 ≈0 0.26 0 7776 + 0 0 0 4.36 oot
tte_lnr_17_usf 816 1088 1722 0.35 8.68 0 27774 + 0 0 0 109 oot
tte_qdr_3_sf 17 18 8.30 0.38 1.36 oot 864 oot oot oot -
tte_qdr_5_sf 49 50 56.31 1.25 4.01 oot 2400 oot oot oot -
tte_qdr_9_sf 161 162 492 3.94 12.29 oot 7776 oot oot oot -
tte_qdr_17_sf 577 578 3325 12.79 47.49 oot 27774 oot oot oot -
tte_qdr_3_usf 18 24 3.65 0.21 0.60 0 864 + 0 0 0 6.33 -
tte_qdr_5_usf 60 80 37.99 0.66 1.82 0 2400 + 0 0 0 21.68 -
tte_qdr_9_usf 216 288 514 2.61 7.32 0 7776 + 0 0 0 58.27 -
tte_qdr_17_usf 816 1088 15515 18.28 58.95 0 27774 + 0 0 0 78.19 -

Table 1. Results of the experimental evaluation. Empty and octagonal indicate the
initial precision. #spu is number of discovered spurious counterexamples, #dir is the
number of discovered directions (empty case) or initial directions + discovered directions
(octagonal case). cgr is the total time spent in unsuccessful abstractions (with spurious
counterexample), itp is the total time spent in discovering halfspace interpolants, ver
is the time spent in successful abstractions. oot indicates out of time (24 hours), oom
indicates out of memory (4Gb), and dash indicates unsupported. The benchmark names
are structured as follows. fsr indicates Fischer’s protocol, acc indicates adaptive cruise
controller, tte indicates TTEthernet, lnr indicates linear, qdr indicates quadratic, the
following number indicates the number of components, and sf and usf resp. indicate
safe and unsafe.



that the very first abstraction computation consists of a simple exploration of the
control graph. With the octagonal strategy, the precision at every mode consists
of the octagonal template, with a total of 2|V |n2 directions over all modes. For
all linear instances, we compared against PHAVer [21] (SpaceEx v0.9.8c with
PHAVer scenario).

Table 1 shows the results. The empty strategy has on average the best runtime
and always outperforms PHAVer. It also outperforms the octagonal strategy for
most of the instances. Both strategies spend most of the time in the first phase
(CEGAR iterations ending in a spurious counterexample), and take a very short
time for the final verification step. For Fischer’s protocol the octagonal strategy
is always slower than the empty. For the other benchmarks the difference is less
stunning, in particular for the unsafe cases of the TTEthernet benchmarks, where
the first phase penalizes considerably. On the other hand, we can observe that,
under the assumption that we are not aware of the safety of the systems, our
method shows to be the most scalable. The octagonal strategy tends to run out
of time because the higher number of directions causes the generation of bigger
and bigger abstract regions. In fact, we have verified that for these instances a
spurious counter-example is never found. The same argument likely holds for
PHAVer, as its dump shows that new symbolic states are always found. Not
surprisingly, for QHA the performance is generally worse than for LHA.

In summary, template polyhedra coupled with our abstraction refinement
technique are faster than the exact polyhedral reachability analysis. Noteworthy
is how negligible is the time required in the final verification step on all instances.
Our tool recomputes the whole abstraction after every refinement phase, as
all our efforts have been strictly focused on implementing an efficient template
refinement. The final time sets a lower bound for the verification time achievable
by an incremental abstraction. Furthermore, we could observe that inferring small
template sets plays an important role in the convergence of the whole analysis.

8 Conclusion

We have presented the first template refinement technique that iteratively derives
template directions from spurious counterexamples. These directions eliminate all
counterexamples that pass through the same switching sequence, independently
of any time delays. These directions can refute further spurious paths, so that a
small number of directions may suffice to show safety. This is supported by our
experiments, which terminate with small templates in all cases. Our procedure
can be implemented efficiently for LHA and QHA using convex optimization, and
in principle it applies to every CHA. Our implementation outperforms polyhedral
reachability (PHAVer), and yet has room for further substantial improvement
since the abstraction is constructed from scratch at each iteration and could
be made incremental [28, 32]. In terms of modeling power, extending template
refinement to affine or general polynomial systems also brings further challenges,
as the reachable regions lose the convexity property, thus requiring more powerful
techniques for halfspace interpolation [2].
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