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i 

 

Abstract 

 

 

Distinguishing between similar experiences is achieved by the brain in a process 

called pattern separation. In the hippocampus, pattern separation reduces the 

interference of memories and increases the storage capacity by decorrelating similar 

inputs patterns of neuronal activity into non-overlapping output firing patterns. 

Winners-take-all (WTA) mechanism is a theoretical model for pattern separation in 

which a "winner" cell suppresses the activity of the neighboring neurons through 

feedback inhibition. However, if the network properties of the dentate gyrus support 

WTA as a biologically conceivable model remains unknown. Here, we showed that the 

connectivity rules of PV+ interneurons and their synaptic properties are optimized for 

efficient pattern separation. We found using multiple whole-cell in vitro recordings that 

PV+ interneurons mainly connect to granule cells (GC) through lateral inhibition, a form 

of feedback inhibition in which a GC inhibits other GCs but not itself through the 

activation of PV+ interneurons. Thus, lateral inhibition between GC–PV+ interneurons 

was ~10 times more abundant than recurrent connections. Furthermore, the GC–PV+ 

interneuron connectivity was more spatially confined but less abundant than PV+ 

interneurons–GC connectivity, leading to an asymmetrical distribution of excitatory 

and inhibitory connectivity. Our network model of the dentate gyrus with incorporated 

real connectivity rules efficiently decorrelates neuronal activity patterns using WTA as 

the primary mechanism. This process relied on lateral inhibition, fast-signaling 

properties of PV+ interneurons and the asymmetrical distribution of excitatory and 

inhibitory connectivity. Finally, we found that silencing the activity of PV+ interneurons 

in vivo leads to acute deficits in discrimination between similar environments, 

suggesting that PV+ interneuron networks are necessary for behavioral relevant 

computations. Our results demonstrate that PV+ interneurons possess unique 

connectivity and fast signaling properties that confer to the dentate gyrus network 

properties that allow the emergence of pattern separation. Thus, our results contribute 

to the knowledge of how specific forms of network organization underlie sophisticated 

types of information processing.  
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Chapter 1  

INTRODUCTION 

 

  

1.1 Information processing: pattern separation 

 

The mammalian brain possesses the ability to filter, process and store sensory 

information inputs to respond to environmental demands with complex behaviors. In 

this context, distinguishing between similar animals, odors or places has become a 

highly relevant task for the nervous system. Pattern separation is the computational 

brain process for discriminating similar inputs patterns of neuronal activity into non-

overlapping activity patterns, which is essential for many types of information 

processing that leads to a neuronal representation (Aimone et al., 2011). However, 

there are few brain regions where the mechanisms underlying pattern separation have 

been extensively studied, such as cerebellum (Cayco-Gajic et al., 2017), olfactory bulb 

(Friedrich and Wiechert, 2014; Gschwend et al., 2015) and hippocampus (Leutgeb et 

al., 2007; Leal and Yassa, 2018). For instance, in the cerebellum, pattern separation 

is fundamental for detecting small differences in sensory inputs and amplify them for 

efficiently generate a motor performance (Marr, 1969; Albus, 1971; Cayco-Gajic et al., 

2017). In sensory circuits, such as the olfactory bulb (Wiechert et al., 2010) and visual 

system (Cohen and Maunsell, 2009) pattern separation allows the detection of small 

differences in the environment for eliciting appropriate behavioral responses. Most 

importantly, in the hippocampus, pattern separation is tightly related to the emergence 

of episodic memory (Rolls, 2016), in which discrimination between similar experiences 

becomes relevant for accurately create memory presentations and for increasing the 

memory storage capacity of the brain. Finally, impairments in pattern separation in 

humans contribute to memory and emotional deficits such as anxiety and 

posttraumatic stress disorders, which highlight the relevance of pattern separation in 

the formation of adaptive behaviors (Lange et al., 2017).   
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1.2 Pattern separation in the hippocampus: a historical perspective 

 

The idea that pattern separation is required for memory formation dates back to the 

1970s. Theoretical work carried by David Marr associated the recurrent hippocampal 

networks to temporary memory storage and recognized its limited storage capacity 

(Marr, 1971). Later, Hopfield and Amit while worked on attractor network models 

realized the importance of an upstream structure that orthogonalizes input patterns of 

neuronal activity (Hopfield, 1982; Amit et al., 1987). They pointed out that decorrelation 

of patterns would increase the storage capacity of the network and reduce the 

interference for the recalling of similar firing patterns. From the biological side, the 

“classical trisynaptic architecture” of the hippocampus (Ramón y Cajal, 1911; 

Andersen, 1975) was at this time already known and the powerful connection between 

mossy terminals and the apical dendrites of the CA3 neurons confirmed by functional 

and anatomical findings (Blackstad and Kjaerheim, 1961; Harris and Carl, 1986). 

Thus, hippocampal network models of memory introduced mossy fiber pathway as the 

system that provides uncorrelated activity pattern to the CA3 network from an 

upstream region (McNaughton and Morris, 1987; Treves and Rolls, 1992; O’Reilly and 

McClelland, 1994). The initial assumptions of these theoretical models included sparse 

activity and random projections (O’Reilly and McClelland, 1994). Despite the 

development of an extensive theoretical frame, it was only after two decades, that the 

first behavioral evidence supporting pattern separation in the hippocampus was 

published (Gilbert et al., 2001; McHugh et al., 2007; Clelland et al., 2009; Sahay et al., 

2011) and the first place modulated granule cells (GCs) were reported (Leutgeb et al., 

2007). Since then, extensive experimental work is being conducted to elucidate the 

mechanisms underlying pattern separation in the hippocampus. 

 
 
 
1.3 The hippocampus: connectivity and function 

 

The hippocampal formation is the brain structure involved in the creation and retrieval 

of episodic memories, which are the memories of the experiences (what) associated 

to a particular time (when) and place (where) (Dere et al., 2005). Therefore, the 

hippocampus processes spatiotemporal, perceptual and emotional information 

provided for many structures across the brain. Thus, most of the spatial and contextual 
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content is forwarded by the entorhinal cortex through the perforant path (Witter et al., 

2017), while perceptual information (e.g., visual and auditory stimuli in primates) 

emerge from the perirhinal cortex and the parahippocampal gyrus, allowing the 

hippocampus to relate objects to temporal information (Eichenbaum, 2017). The 

amygdala and the orbitofrontal, structures involved in processing reward/avoidance 

value of experiences (valence), provide the emotional content by projecting to the 

entorhinal cortex (Rolls, 2016).  

In the hippocampus, memory representations occur as a result of different 

computations at the level of specific subnetworks, which have been classically 

described in a “trisynaptic circuit” as: dentate gyrus, Cornu Ammonis region 3 (CA3) 

and Cornu Ammonis region 1 (CA1) (Andersen, 1975). 

 

1.3.1 Hippocampal microcircuitry: dentate gyrus 

 

The hallmark computation of the dentate gyrus, the input region of the hippocampus, 

is to convert highly overlapping synaptic input patterns into non-overlapping action 

potential (AP) output patterns, a phenomenon referred to as orthogonalization, 

decorrelation, or pattern separation (Leutgeb et al., 2007; Rolls, 2016; Cayco-Gajic et 

al., 2017; Chavlis and Poirazi, 2017; Leal and Yassa, 2018). The anatomical structure 

that supports this function is a banana-shaped formation that extends from the septal 

nuclei rostrally to the temporal cortex caudally, which is constituted by three layers: 

molecular layer, granule cell layer (GCL) and hilus (Fig. 1.1) (Leranth and Hajszan, 

2007).  

The most abundant principal neurons (PNs) of the dentate gyrus are the GCs. 

Roughly one million in rats and ~10 million of GCs in humans (Amrein et al., 2004; 

Jonas and Lisman, 2014) are tightly packed forming the GCL. They possess dendrites 

branching into the molecular layer while their axons extend to the hilus. GCs have 

unmyelinated axons, named by Ramon and Cajal “mossy fibers” characterized by 

large boutons that form en passant synapses with CA3 pyramidal neurons. Before 

entering to the CA3 region, each main mossy fiber branches almost seven times in 

thinner collaterals, extensively branching again and giving rise to much thinner 

collaterals that innervate mossy cells and GABAergic interneurons (Amaral et al., 

2007).  
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The primary input of the dentate gyrus arrives from layer II of the entorhinal 

cortex via perforant path, which is divided into medial and lateral according to their 

specific cortical origin (Witter, 2007). The medial perforant path carries spatial 

information, arise from the medial entorhinal cortex (MEC) and innervate the middle 

one-third of the molecular layer of the ipsilateral dentate gyrus (Witter, 2007). In 

contrast, the lateral perforant path carries object-related, attentional and motivational 

information, originates from the lateral entorhinal cortex (LEC) and innervates the 

outer one-third of the molecular layer. The inner part of the molecular layer receives 

inputs from the contralateral dentate gyrus through the commissural/associational 

pathway (Amaral et al., 2007; Leranth and Hajszan, 2007). The spatial/temporal 

information originated in the entorhinal cortex is expanded into the dentate gyrus (GCs 

are 5-10 times more abundant than EC cells) and suggested to be translated into 

sparse representations.  

Additionally, few inputs from subcortical nuclei into the dentate gyrus have also 

been described. Septal nuclei (medial septal nucleus and diagonal band of Broca) 

provide mostly cholinergic projection (50-70%), while the supramammillary area and 

the medial mammillary nuclei (hypothalamic input) bring glutamatergic inputs to the 

proximal dendrites of the GCs. Besides, the brain stem sends noradrenergic inputs 

from the nucleus locus coeruleus, dopaminergic projections from the ventral tegmental 

area, and serotoninergic afferents from medial and dorsal raphe nuclei (Amaral et al., 

2007; Leranth and Hajszan, 2007).   

These projections follow a specific functional – anatomical organization 

observed through the whole longitudinal axis of the dentate gyrus (Fig 1.1) (Fanselow 

and Dong, 2010). In rodents the dorsal part of the dentate gyrus receives inputs almost 

exclusively from the lateral portions of the LEC and MEC, providing mostly visual and 

navigational information. By contrast, the ventral regions of the dentate gyrus receive 

inputs from the medial parts of the LEC and MEC, which carry olfactory, visceral and 

gustatory information related to the emotional content of experiences (Witter, 2007; 

Fanselow and Dong, 2010). Moreover, each subfield of the trisynaptic hippocampal 

circuit maintains this topographic organization (Fanselow and Dong, 2010). Thus, the 

richness of the afferent system of the dentate gyrus together with their functional 

compartmentalization into the dorsal/ventral axis reveals the complexity of the 

contextual information processing and the broad functional implications of pattern 

separation computations. 
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1.3.2 Hippocampal CA3 and CA1 subfields 

 

The activity patterns that were separated in the dentate gyrus are subsequently 

relayed to the CA3 subfield through the mossy fiber synapses, leading to the storage 

of information in the CA3 recurrent network (Bischofberger et al., 2006a; Guzman et 

al., 2016; Rolls, 2016). The CA3 region was shown to harbor only one-third of the 

dentate gyrus PNs, which are powerfully connected (each CA3 PN receives 

approximately 50 mossy fiber inputs) (Rolls, 2016). In addition, the connectivity among 

CA3 PNs is sparsely present (with a probability ~1%), and appears organized in a non-

random manner into specific connectivity motifs (Guzman et al., 2016). This 

configuration seems to be optimized for the retrieval of the information from partial or 

noise cues, in a process named “pattern completion” (Guzman et al., 2016). 

The CA1 subfield constitutes the main synaptic output of the hippocampus and 

participates in the retrieval and consolidation of information through back-projections 

to the neocortex (Kesner and Rolls, 2015). The CA1 PNs are functionally organized in 

a superficial and a depth layer (Valero et al., 2015), receiving inputs mainly from the 

CA3 subfield through the Schaffer collaterals (Fig. 1.1). These circuits underlie the 

emergence of the sharp-wave ripple, a physiological rhythm recognized for remarkably 

synchronous events appearing during consummatory behaviors (e.g., immobility, 

grooming) (Buzsáki, 2015). It carries the replay of the sequence of the neuronal firing 

resembling the activity of the neurons during previous walking periods, which is 

thought to contribute to the long-term storage of neuronal ensembles in the neocortex 

(Buzsáki, 2015). Finally, besides to the hippocampal afferent input, CA1 receives 

direct monosynaptic connections from the entorhinal cortex (layer II and III) which are 

involved in context-depend processing of fear memories (Kitamura et al., 2015) and 

the temporal association of memories (Fig 1.1) (Suh et al., 2011).  
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Figure 1.1: Hippocampal local circuits  
(a) Schematic illustration of the orientation of the hippocampal longitudinal axis in 
rodents (Strange et al., 2014). (b) Schematic representation of the hippocampal 
trisynaptic circuit and the afferent and efferent pathways from the entorhinal cortex. 
The perforant path forward the primary input to the hippocampus. Mossy fibers, the 
terminal collateral of the GCs, innervate the PNs of CA3, while the Schaffer 
collaterals constitute the final path of the trisynaptic circuit synapse onto CA1 PNs. 
Besides, direct communication from layer II/III of the entorhinal cortex provide direct 
context-depending information to CA1. Continue lines indicate the direction of the 
trisynaptic circuit and dashed lines represent the monosynaptic connections from the 
entorhinal cortex. Modified from Neves et al., 2012. 

 

 
Nowadays, the classical feedforward trisynaptic circuit in the hippocampus is 

challenged for providing a simplistic overview of the hippocampal organization. One 

example is the CA2 region, an area lying between CA1 and CA3 subfields (Chevaleyre 

and Siegelbaum, 2010), which besides of the neuronal expression of specific neuronal 

markers is associated to the emergence of social behaviors (Hitti and Siegelbaum, 

2014; Leroy et al., 2018). Also, a more sophisticated hippocampal afferent and efferent 

circuit have been described, with direct entorhinal connections to each hippocampal 

subfield (Witter et al., 2017) and functional feedback projections from CA3 to the 

dentate gyrus (Amaral et al., 2007). Moreover, the classical description of the 

hippocampus does not consider the inhibitory component, thought to be highly 

unspecific at least in the neocortex (Packer and Yuste, 2011). Thus, in the light of 

recent findings, the hippocampal organization needs to be further discussed in terms 

of anatomical organization and functional computations.  
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1.4 Hippocampal inhibition 

 

Synaptic inhibition in neuronal networks is mediated in large extent by GABAergic 

interneurons, which are very diverse in morphology, genetic expression, chemical 

markers, physiological properties, connectivity patterns, and tempo-spatial origin 

(Kepecs and Fishell, 2014). According to this diversity, interneurons are mainly 

classified using morphological, physiological and molecular criteria (Fig 1.2) (Zeng 

and Sanes, 2017).  

Specifically, in the dentate gyrus, the first attempts for characterizing 

interneurons were based on Golgi technique leading to the identification of 21 different 

cellular types (Amaral, 1978). Further endeavors have combined physiological and 

morphological properties (Freund and Buzsáki, 1996; Mott et al., 1997; Sik et al., 1997; 

Houser, 2007; Hosp et al., 2014) resulting in the description of at least five main 

interneuron types (Fig 1.2a, b): a) axo-axonic cells: fast-spiking interneurons that 

target the axon initial segment of PNs; b) basket cells: interneurons innervating most 

of the GCL and inner molecular layer, together with axo-axonic cells provide the 

perisomatic inhibition to GCs; c) hilar-perforant pathway-associated axonal-terminal 

(HIPP) cells: large multipolar interneurons with spiny dendrites in the hilar region. Their 

axons innervate the outer molecular layer; d) hilar-commissural-associational 

pathways-associated axons (HICAP) cells: pyramidal-shaped cells with bodies located 

in the subgranular layer and axons extended into the inner molecular layer and GCL; 

e) molecular layer perforant path-associated (MOPP) cells: provide feedforward 

inhibition to GCs by targeting their dendritic shaft (Stam et al., 2013). The functional 

characterization of these interneurons have been done in in vitro and in vivo 

experiments (Sik et al., 1997; Klausberger and Somogyi, 2008; Stam et al., 2013). 

Genetic and molecular markers have also been extensively used to classify 

GABAergic interneurons, with the advantage of providing genetic tools for identifying 

and manipulating the activity of specific groups of interneurons (Taniguchi et al., 2011). 

The three major interneuron types in the hippocampus are parvalbumin (PV), 

somatostatin (SST), and cholecystokinin (CCK) expressing interneurons (Fig 1.2c) 

(Freund and Buzsáki, 1996; Savanthrapadian et al., 2014). 
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1.4.1 Parvalbumin positive (PV+) interneurons 

 

This group constitutes almost 15% of the GABAergic interneurons in the hippocampus 

(Hosp et al., 2014). The two most important morphological types are the basket cells 

and axo-axonic cells, which provide perisomatic inhibition to PNs by targeting their 

soma and axonal initial segment. Somatic current injection into PV+ interneurons elicits 

a fast non-accommodating spiking phenotype, allowing their easy identification (Hu et 

al., 2014). In the dentate gyrus, PV+ interneurons exhibit dendrites that expand into 

the inner molecular layer and hilus, suggesting their participation in feedback and 

feedforward inhibition (Hosp et al., 2014). Also, PV+ interneurons provide fast and 

precise synaptic signaling (Hu et al., 2014), whose contributing mechanisms were 

proposed as the following: first, weakly excitable dendrites enriched in Kv3 channels, 

that acting synergistically with AMPA receptors, generate large and fast excitatory 

postsynaptic potentials (EPSPs). This effect was proposed to decrease the temporal 

window for summation and promotes AP generation at high speed with precise 

temporal resolution (Hu et al., 2014). Second, the high axonal expression of Na+ 

voltage channels allows conveying information in a highly reliable manner together 

with an increased speed of AP propagation (Hu and Jonas, 2014). Finally, their axon 

terminals were shown to almost exclusively express P/Q type calcium channels (Hefft 

and Jonas, 2005), which tightly coupled to the release sensors, shortens the synaptic 

delay and enhances the temporal precision of the transmitter release (Hu et al., 2014).  

At the network level, the fast output of the PV+ interneurons allows the 

synchronization of neuronal ensembles and the emergence of cortical rhythms (Bartos 

and Elgueta, 2012). In CA1 region, recordings in anesthetized rodents show fast-

spiking interneurons firing time-locked to the descending phase of gamma oscillations 

(Klausberger et al., 2005), while in head-fixed running mice PV+ interneurons seem to 

regulate the theta phase precession (Royer et al., 2012).  

Furthermore, the involvement of PV+ interneurons in the performance of 

accurate neuronal computations has also been reported in other brain circuits. In the 

primary visual cortex, the optogenetic activation of PV+ interneurons sharpen neuronal 

feature selectivity and improve orientation discrimination (Lee et al., 2012). Besides, 

PV+ interneurons modulate gain responses of primary sensory computations (Wilson 

et al., 2012). Finally, their role in complex behavioral tasks such as associative-fear or 

reward learning has also been explored in circuits of the amygdala, the auditory 
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system and the prefrontal cortex (Letzkus et al., 2011; Davis et al., 2017; Marek et al., 

2018; Takesian et al., 2018).  

 

 

1.4.2 Somatostatin positive (SST+) interneurons 

 

Interestingly, SST+ interneurons share an embryological origin with PV+ interneurons 

in the medial ganglionic eminence (MGE) (Xu et al., 2004; Butt et al., 2005). 

Specifically in the dentate, gyrus SST+ interneurons account for almost 16% of the 

glutamic acid decarboxylase (GAD)-expressing interneurons (Tallent, 2007). They 

were classically identified as HIPP cells (Savanthrapadian et al., 2014), dendritic 

targeting interneurons that provide weak feedback inhibition to the local GCs (Sik et 

al., 1997; Tallent, 2007; Royer et al., 2012; Hosp et al., 2014). However, a recent study 

has identified a second group of SST+ interneurons termed hilar interneurons (HILs), 

which target local GABAergic interneurons and project to the medial septum (Yuan et 

al., 2017).  

Although SST+ interneurons have not been as extensively studied as PV+ 

interneurons, the current evidence suggests that these interneuron types modulate 

neural computations in a highly complementary manner (Royer et al., 2012; Wolff et 

al., 2014; Khan et al., 2018). Specifically, at the cellular level, dendritic inhibition 

regulates synaptic plasticity by modulating the gating for dendritic electrogenesis 

(Lovett-Barron et al., 2012). At the network level, neocortical SST+ interneurons 

receive excitation from nearly 30% of surrounding PNs and provide inhibition to almost 

100% of these cells (Urban-Ciecko and Barth, 2016). Thus, SST+ interneurons, 

specifically Martinotti cells, control neighboring PNs by disynaptic inhibition when PNs 

discharge at high frequencies (Silberberg and Markram, 2007). This form of delayed 

lateral inhibition is characterized by a slow temporal resolution response that can be 

modulated by cholinergic inputs, which makes it suitable for controlling synaptic 

integration and burst firing (Obermayer et al., 2018). However, if this specific inhibitory 

motif is present in the hippocampus remains elusive.  
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1.4.3 Cholecystokinin positive (CCK+) interneurons 

 

The best characterized CCK+ interneurons in the dentate gyrus are HICAP and CCK+ 

basket cells. They share with PV+ interneurons some morphological properties such 

as the dendritic arborization of HICAP in the molecular layer and hilus. In addition, 

CCK+ basket cells target the soma and proximal dendrites of PNs, providing 

perisomatic inhibition together with PV+ interneurons. However, CCK+ interneurons 

also possess unique properties that allow to distinguish them from other interneuron 

types. First, in contrast to PV+ interneurons, CCK+ interneurons originate from the 

caudal ganglionic eminence (CGE) (Kepecs and Fishell, 2014). Second, they show a 

regular non-accommodating spiking phenotype after somatic current injection. Third, 

according to the expression of molecular markers, CCK+ interneurons can be further 

classified in VGlut3 expressing neurons and vasoactive intestinal peptide (VIP) 

positive cells (Somogyi et al., 2004). Fourth, at the input level, electron microscopy 

studies revealed that CCK+ interneurons receive three times less excitation than PV+ 

interneurons in CA1 (Gulyás et al., 1999; Mátyás et al., 2004) which could explain why 

the amplitude of excitatory postsynaptic currents (EPSCs) recorded at CCK+ are 

smaller than PV+ interneurons contained synapses (Bartos and Elgueta, 2012). Fifth, 

at the output level, CCK+ basket cells exhibit less reliable neurotransmitter release 

(Hefft and Jonas, 2005). Additionally, these terminals characteristically express 

endocannabinoid 1 receptors (CB1Rs) (Katona et al., 1999), which can further provide 

synaptic modulation (Glickfeld and Scanziani, 2006). Finally, at the synaptic level, the 

weak coupling between the N-type calcium channel and the calcium sensors could 

explain the low temporal resolution that characterized CCK+ synapses (Hefft and 

Jonas, 2005); that together with broadening of the AP at the synaptic terminals (after 

repetitive stimulation) could confer a wide temporal windows for synaptic integration 

(Bartos and Elgueta, 2012).  

At the network level, in vivo studies in the hippocampus have shown that during 

fast network oscillations, CCK+ interneurons are less reliable recruited than PV+ 

interneurons. Moreover, CCK+ interneurons fire predominantly during the ascending 

phase of theta waves, while PV+ interneurons do it in the descending phase, 

suggesting a differential contribution to the formation of neuronal ensembles 

(Klausberger et al., 2005).  
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Figure 1.2: Interneuron classification in the hippocampus.  
(a) Principal morphological type of interneurons in the dentate gyrus (adapted from 
Freund and Buzsáki, 1996). Five interneuron types are depicted in green. The green 
horizontal lines indicate the main orientation and distribution of the dendritic 
arborization. The green boxes represent the region in which the axon of each 
interneuron typically branches. On the background are GCs (cyan). (b) GAD65 
labeled axons in the dentate gyrus and their hypothetical cell type origin (taken from 
Houser 2007) (a–b) Mo = outer molecular layer, Mi = inner molecular layer, G = 
granule cell layer, and H = hilus. (c) Characterization of hippocampal interneuron 
classified according to chemical expression. Parvalbumin (PV+), somatostatin (SST+) 
and cholecystokinin (CCK+)-positive expressing interneurons constitute the major 
GABAergic interneurons in the hippocampus. Basket cells and axo-axonic cells 
provide perisomatic inhibition and exhibit a characteristic fast-spiking phenotype 
under somatic current injection. PV+ interneurons originate at different embryological 
stages (i.e., axo-axonic cells at the embryonic day 15 to 18) from Nkx2.1 progenitors 
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in the medial ganglionic eminence (MGE). The activity of Nkx2.1 induces the 
expression of Lhx6, which promotes the differentiation of PV+ and SST+ interneurons. 
SatB1, Sip1, and Sox6 are transcription factors expressed by PV+ and SST+ 

interneurons that selectively affect their development. Morphological examples of 
SST+ interneurons are oriens-alveus-lacunosum-molecular (OLM) interneurons in 
CA1 and perforant pathway-associated axonal terminal (HIPP) cells in the dentate 
gyrus. They are dendritic-targeting interneurons and share an embryological origin 
with PV+ interneurons. CCK+ interneurons constitute a highly heterogeneous group 
in the hippocampus. The CCK+ basket cells, the most well studied CCK+ interneuron 
type, are present in all hippocampal subfields. CCK+ mossy-fiber-associated 
interneurons (MFA-IN) are found in CA3 while CCK+ commissural-associational 
pathways-associated (HICAP) interneurons are located in the dentate gyrus. CCK+ 
basket cells provide perisomatic inhibition, exhibit a regular non-accommodating 
firing phenotype and have an embryological origin at the caudal ganglionic eminence 
(CGE) (Bartos and Elgueta, 2012; Kepecs and Fishell, 2014). Firing patterns were 
obtained from our recordings. 
 
 

Overall, in the dentate gyrus, the interneuron diversity ensures a fine-tuning of 

neuronal computations, allowing the emergence of sophisticated forms of information 

processing, which are far from merely guarding to excitatory networks from runaway 

of excitation (Douglas et al., 1995). Among these functions are to provide feedforward 

and feedback inhibition, affect the timing of the signals, synchronize neuronal 

ensembles, control neuronal thresholds, modulate the synaptic gain and segregate 

the activity of PNs through lateral inhibition (Hu et al., 2014). However, it is not clear 

how local network topologies involving PNs and interneurons (INs) ensure the 

emergence of such computations. So far, it is known specific interneurons targeting 

either dendritic or somatic domains or even higher order of network organization, such 

as fast and slow forms of lateral inhibition, involving specific interneuron types 

(Obermayer et al., 2018). However, for understanding the structural bases of neuronal 

computations further research is needed. Thus, the differential contribution of each 

interneuron type to the diverse forms of information processing such as pattern 

separation remains for being elucidated. 
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1.5 Local connectivity and information processing 

 

The understating of the function of a brain region requires not only the study of its 

elementary units (neurons) but also the way that each component interacts. Graph 

theory, a branch of the mathematics born in the 18th century (Euler, 1736), provides 

models and measurements that allow the study of networks (graphs) or systems 

composed of interconnected elements (Sporns, 2018). The reasoning behind the 

study of network topologies emerges from the notion that connectivity is tightly related 

to local functional specializations (Sporns, 2018). Thus, following the principles “send 

only what is needed, send at the lowest acceptable rate; minimize wire, which is length 

and diameter of all neuronal processes” (Sterling and Laughlin, 2015) each brain 

circuit had strategically evolved for accomplishing specific functions under energetic 

and spatial constraints (Bullmore and Sporns, 2012). Moreover, Passingham and 

collaborators proposed that different brain areas possess “connectional fingerprints” 

that reveal their specific network functions (Passingham et al., 2002).  

Accordingly, there is increasing evidence showing specific local features in the 

organization of mammal neuronal circuits (Fig 1.3). The combination of techniques 

(e.g., electrophysiology, calcium imaging) for sampling activity of neuronal population 

associated to graph theory analysis (Bullmore and Sporns, 2009) have revealed 

macroscopic connectivity rules at the circuit level and specific connectivity motifs at 

the cellular level. Motifs according to graph theory represent patterns of connectivity 

(edges are the connections mediated by chemical or gap junction synapses) between 

few nodes (neurons) (Sporns, 2011). According to some authors, motifs may underlie 

the elementary units of information processing in neuronal circuits and could provide 

the structural bases for the emergence of behavioral relevant responses (Schröter et 

al., 2017). Among non-random topological features of neuronal networks are: 
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1.5.1 Distance-dependent connectivity 

 

Studies using intracellular recordings in the primary auditory cortex (Levy and Reyes, 

2012) and hippocampus (Strüber et al., 2017) have shown connection probabilities 

between PN–INs decaying as a function of the intersomatic distance. This organization 

may support the emergence of specific local computation such as synchronic activity 

between neurons in the gamma frequency range (Strüber et al., 2017). Moreover, 

changes in connection probabilities as a function of the intersomatic distance seems 

to be circuit specific since it was not observed among PNs in the CA3 (Guzman et al., 

2016). 

 

1.5.2 Clustered connectivity 

 

A neuronal cluster occurs when neighbors of a node are directly connected to each 

other (Bullmore and Sporns, 2012). In the mammalian brain, the evidence for synaptic 

clustering started with the finding of reciprocally connected PNs in layer V of the 

neocortex appearing with a higher probability than expected by chance (Markram, 

1997). Later Song and collaborators performing simultaneous quadruple whole-cell 

recordings in the visual cortex, showed that clusters of neuronal triplets were 

overrepresented (Song et al., 2005). A higher order of clustered connectivity is 

depicted by small-world organization, a topological description of global network 

complexity introduced by Watts and Strogatz (Watts and Strogatz, 1998). Small-world 

networks are characterized for being highly clustered and yet having short equivalent 

path lengths (number of synapses that need to be traversed to connect two nodes) in 

comparison to random networks (Schröter et al., 2017) (Fig 1.3a). This network 

topology is observed among PNs in the neocortex (Perin et al., 2011). Theoretical 

models have found that small-world organization enhances information-propagation 

speed and synchronicity between neurons (Watts and Strogatz, 1998). Finally, there 

is a conceptual distinction between ‘topological clustering,’ which refers to structural 

connectivity and ‘spatial clustering’ which is related to the drop-off connection 

probability due to the distance-dependent phenomenon (see 1.5.1 distance dependent 

connectivity) (Schröter et al., 2017).  
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1.5.3 Long-tailed distribution of connections 

 

In the somatosensory cortex, one study using multi-electrode arrays and transfer 

entropy analysis found that the degree distribution (number of connection per neuron) 

was heavy-tailed, indicating the presence of high-degree neurons (hubs, Fig 1.3b)  

(Shimono and Beggs, 2015). Long-tailed distributions were more often observed in 

functional studies involving neuronal pair recordings, in which the synaptic strength of 

the majority of the EPSPs had small amplitude with only a small proportion of large 

EPSPs (Buzsáki and Mizuseki, 2014). The functional relevance of this phenomena 

has been explored by Cossell and collaborators, whose results showed that in the 

primary visual cortex few strong and reciprocal connections occurred between 

neurons with similar spatial field while weak connections were present among neurons 

with uncorrelated responses (Cossell et al., 2015). 

 

1.5.4 Network motifs 

 

In addition to the classical network motifs (Fig. 1.3d), which are feedforward inhibition, 

feedback inhibition (Jonas and Buzsáki, 2007), disinhibition, feedforward excitation, 

feedback excitation and convergence/divergence motifs (Schröter et al., 2017) (Fig. 

1.1d), higher-order networks motifs have been used for describing network topologies. 

The bidirectional connectivity motif between PNs constitutes an example, which is 

overrepresented in several brain region (Song et al., 2005; Oswald et al., 2009; 

Guzman et al., 2016; Schröter et al., 2017). One study performed in layer V of the 

somatosensory cortex relates the high abundance of bidirectional motifs to the 

‘neighbor rule,’ which states that the degree of connectivity is directly proportional to 

the number of common neighbors (Fig. 1.3a) (Perin et al., 2011). Besides, there are 

inhibitory specific motifs containing chemical and gap junction synapses, which have 

been described in the cerebellum when triplets of neurons were analyzed (Rieubland 

et al., 2014).  
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Figure 1.3: Structured connectivity in brain networks.  
(a) Different macroscopic connectivity rules are schematized. 1) Erdös and Rénji 
networks have neurons (nodes) with connection probabilities uniformly distributed 
across different intersomatic distances (path length). 2) Random networks with 
connections restricted to the neighbor cells. 3) Small-world networks are 
characterized by local cluster of neurons (hubs) and short path length. 4) Networks 
with a power-law distribution of connectivity regardless of any other structure are 
called free-scaled networks. 5) Braitenberg and Schüz described a functional 
connectivity network that follows an inverse power function rule. Schematic taken 
from Freeman and Breakspear, 2007.  
(b–c) Microscopic connectivity rules: (b) complex networks with high degree nodes 
(highly interconnected) are called hubs (orange). (c) Hubs can be part of a bigger 
structured network, rich clubs (orange), which contain a core of nodes more 
connected than hubs inserted in random networks. Note these graphical 
representations depict undirected connectivity (--), in which edges (connections) 
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have not directions. (d) Description of heterosynaptic motifs with both inhibitory and 
excitatory neurons: 1) feedforward inhibition or local disynaptic inhibition; 2) 
disinhibition; 3) general form of feedback inhibition and two especial cases of 
feedback inhibition: 4) lateral inhibition and 5) recurrent inhibition. 6) Mutual inhibition, 
7) convergence and divergence motifs. Note these representations correspond to 
directed graphs, in which the edges (synapses) have directionality. (b–d) Modified 
from Schröter et al 2017.   

 

Despite the abundant description of specific motifs at the cellular and network level, it 

is not clear the relation between these architectural designs and precise network 

functions. Some experimental and theoretical work indicates that reciprocal motifs 

between PNs may be involved in synchronizing neuronal activity, increasing the signal 

of inputs and shaping receptive fields (Ko et al., 2011; Lee et al., 2016; Schröter et al., 

2017). In the olfactory system, convergence and divergence motifs have been 

hypothesized to support efficient information transmission providing a higher signal to 

noise ratio (Euler et al., 2014; Jeanne and Wilson, 2015). Moreover, chain motifs in 

the hippocampal CA3 circuit are crucial for retrieval information in a network model of 

pattern completion (Guzman et al., 2016).  

Higher order brain functions are network phenomena that emerge as a 

collective property of a large number of neurons (Sporns, 2011). Regarding the 

structural bases of these computations, most of the research has been focused on the 

study of large-scale neurocognitive networks (Bullmore and Sporns, 2009; Sporns, 

2011) concerning functions such as language, spatial awareness, object recognition, 

executive functions or memory (Mesulam, 1998). In particular, segregation and 

integration are the two architectural principles underlying these functions. In this 

regard, convergence higher-order motifs and synchrony have been involved in the 

functional integration required for such computations (Sporns, 2011). Also, studies 

have recognized hub neurons, small-world properties, feedforward and feedback 

motifs participating in the emergence of cognitive functions (Bullmore and Sporns, 

2009; Sporns, 2011). However, despite the assumption that the properties of local 

connectivity determine the appearance of complex computations, further experimental 

research is needed to provide biological substrate to higher order functions such as 

pattern separation.     
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1.6 General mechanisms of pattern separation 

 

Extensive theoretical work has been conducted for elucidating the network properties 

for supporting efficient pattern separation. Among the primary mechanisms are adult 

neurogenesis, thresholding, inhibition, and expansion and sparse coding. Moreover, 

the contribution of each mechanism to pattern separation seems to be circuit specific. 

Thus, in the cerebellum, code expansion has a predominant role in decorrelating input 

patterns (Cayco-Gajic et al., 2017) while in the olfactory system, inhibition seems to 

be the most crucial mechanism (Lin et al., 2014; Gschwend et al., 2015).  

 

1.6.1 Adult-born granule cells (abGCs) 

 

Theoretical work supports the hypothesis that abGCs could facilitate pattern 

separation by providing uncorrelated inputs to the network (Rolls, 2013). Besides, 

experimental studies in which mice undergo manipulations for decreasing abGCs 

show impairs in fine discrimination while performing in a pattern separation task 

(Clelland et al., 2009; Aimone et al., 2011; Nakashiba et al., 2012). However, animals 

with increased neurogenesis showed difficulties for discriminating between very 

different environments in a contextual-fear discrimination paradigm probably as a 

consequence of overgeneralization (Clemenson et al., 2015). Additionally, despite the 

increased excitability of abGCs, manipulations of adult neurogenesis inversely 

correlate with the overall activity in the dentate gyrus, which seems to be related to a 

reduction of the inhibitory input to the network (Johnston et al., 2016). This effect could 

be explained for the limited ability of abGCs for recruiting feedback inhibition 

(Temprana et al., 2015). Thus, functional distinction between mature and immature 

abGCs in encoding new representation has been done (Fig. 1.4b). Overall, despite 

the vast amount of experimental data (França et al., 2017) the mechanism by which 

adult neurogenesis contribute to orthogonalize input patterns remains controversial 

(Cushman et al., 2012; Groves et al., 2013).  
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1.6.2 Thresholding 

 

Theoretical models have shown that synaptic non-linearities can affect the correlated 

activity of randomly connected neurons (De la Rocha et al., 2007; Wiechert et al., 

2010). Wiechert and colleagues showed that the thresholding mechanism notable 

decreases correlation but increases the sparseness of the output activity in a 

feedforward circuit resembling the connectivity of the olfactory bulb (Fig. 1.4c). This 

silencing effect was overcome by adding recurrent connections to the network, which 

additionally amplified the effect of thresholding by decorrelating the output activity and 

feed them back into the network (Wiechert et al., 2010).  

 

1.6.3 Expansion coding 

 

This mechanism is observed in feedforward networks spreading the information into a 

large population of neurons (Cayco-Gajic et al., 2017). Early theoretical work in 

cerebellum conducted by Marr and Albus suggested that at mossy fiber–GC synapses, 

divergent-excitatory networks enhance the capacity of pattern discrimination and 

increase the learning speed of the Purkinje cells (Marr, 1969; Albus, 1971). 

Feedforward divergent excitatory networks have also been described between the 

entorhinal cortex and the dentate gyrus (Witter, 2007), but the contribution of this 

mechanism to pattern separation at this location has not been addressed yet.  

 

1.6.4 Sparseness 

 

The encoding of information using sparse active neurons is referred to as ‘sparse 

coding.’ Different network modalities use this strategy for increasing storage capacity, 

improving contrast between similar inputs, optimizing energy and facilitating the read-

out information in subsequent levels of processing (Olshausen and Field, 2004). 

Concerning pattern separation, theoretical and experimental evidence suggests that 

in the input layer of the cerebellum, sparse connectivity is essential for separating 

spatially correlated inputs, allowing to the network processes information over a wide 

range of activity patterns (Fig. 1.4d) (Billings et al., 2014; Cayco-Gajic et al., 2017). 

Thus, this mechanism is also suitable for pattern separation in the dentate gyrus, 
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where GCs characteristically have a low spontaneous activity (Pernía-Andrade and 

Jonas, 2014) allowing the formation of a sparse and distributed code.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1.4: Mechanisms of pattern separation.  
(a) A schematic representation of pattern separation. Venn diagrams of input and 
output patterns. Overlapping input patterns (A, B; top) are converted into non-
overlapping output patterns (A’, B’; bottom). (b) Effect of adult-born GCs (abGCs) in 
neuronal computations (Johnston et al., 2016). Here, the yellow area represents the 
pattern separation while the light blue area indicates pattern completion computation 
(Guzman et al., 2016). The Blue diagonal represent non-computation. Immature 
abGCs have double effects, for one hand they integrate patterns across a wide range 
of inputs, resulting in pattern completion, in the other hand, they dynamically 
modulate pattern separation by acting on mature abGCs at the network level 
(Johnston et al., 2016). (c) Thresholding mechanism at the olfactory bulb-like circuit 
(Wiechert et al., 2010). Increasing the threshold level in the network can result in 
strong decorrelations, which is gradually represented by the output–input Person 
correlation curves for different thresholds. This effect was modeled in a stochastic 
system of rectifying elements connected by synapses of uniform weight (Wiechert et 
al., 2010). (d) Sparse connectivity at the cerebellum. A biologically detailed spiking 
network model of the cerebellar input layer was used for probing that sparse synaptic 
connectivity is essential for separating correlated input patterns over a wide range of 
network activity. Bottom, an example of a GC voltage trace (Cayco-Gajic et al., 2017).  

 
 

 

 

 



Chapter 1: Introduction 

 

21 

 

1.6.5 Winner-takes-all (WTA) mechanism  

 

A highly attractive model of pattern separation is based on a WTA mechanism and 

feedback inhibition (Majani et al., 1988; de Almeida et al., 2009; Myers and Scharfman, 

2009; Tetzlaff et al., 2012; Faghihi and Moustafa, 2015) (Fig. 1.5). WTA is a 

mechanism in which the selection of active neurons occurs through competitive stages 

in recurrent networks (Chen, 2017). The "winner neurons" are the cells having higher 

firing rates or fastest responses, and exert the most robust inhibition on its competitors  

(Coultrip et al., 1992; Maass, 2000). This model has been widely used for explaining 

feature selectivity and pattern formation across brain regions (Ermentrout and Cowan, 

1979; Wang, 2002; Tozzi and Peters, 2018). However, most of the experimental 

support for this model comes from the olfactory system (Wiechert et al., 2010; Lin et 

al., 2014; Gschwend et al., 2015). Similar mechanisms may operate in the dentate 

gyrus (Engin et al., 2015; Temprana et al., 2015), but the details of this operation 

remain unclear. In particular, it is unknown whether the rules of PN–INs connectivity 

are adequate to support pattern separation and the identity of the interneuron type 

involved in the circuit.   
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Figure 1.5: Pattern separation mediated by winner-takes-all mechanism.  
Schematic illustrations of the network mechanism underlying pattern separation. Top, 
left, activity pattern A in upstream neurons (e.g., in the entorhinal cortex; top), causes 
the firing of a large subpopulation of downstream neurons (e.g., GCs) in the absence 
of inhibition (including cells receiving various levels of excitatory drive, dark and light 
blue). Top, right, however, in the presence of inhibition, a small subpopulation would 
fire (including only cells with the strongest drive, “WTA” mechanism). Bottom, for a 
slightly different activity pattern B, the output pattern is similar in the absence of 
inhibition but very different in the presence of inhibition. Thus, overlapping input 
patterns (A, B) are converted into non-overlapping output patterns (A’, B’). Triangles: 
GABAergic interneurons; circles, principal neurons: entorhinal cortex neurons (ECs) 
or GCs.  

 

 

 

1.7 Inhibition and WTA in pattern separation  

 

Two forms of local feedback inhibitory motifs have been proposed: recurrent inhibition, 

in which an active PN inhibits itself via reciprocal PN–IN connections (Fig. 1.1d), and 

lateral inhibition, in which an active PN inhibits neighboring PNs but not itself (Jonas 

and Buzsáki, 2007). Theoretical work has recognized the importance of inhibitory 

feedback motifs for decorrelating neuronal activity (Tetzlaff et al., 2012), relevant 

process not only for improving the readout of information from a given neuronal 

ensemble (e.g. in presence of noise) (Tetzlaff et al., 2012) but also for increasing the 

storage capacity in downstream networks (Marr, 1971). Experimental evidence based 

on electrophysiological recordings and calcium imaging suggests the role of inhibition 

for decorrelating activity patterns in the neocortex (Sippy and Yuste, 2013). Moreover, 

one study in macaques chronically implanted with multielectrode arrays showed that 

nearby neurons in the visual primary cortex exhibit uncorrelated activity even when 

sharing similar orientation tuning. A suggested explanation for this phenomenon was 

the presence of a mechanism that is actively decorrelating the firing of the PNs, yet 

the details of such operation are not well understood (Ecker et al., 2010). 

Furthermore, models of WTA with lateral inhibition have been already 

implemented in biologically inspired networks showing that this mechanism could exist 

under certain network constraints (Coultrip et al., 1992; Shoemaker, 2015). 

Specifically, the dentate gyrus a neuronal implementation of WTA mechanism requires 

lateral inhibition, recurrent inhibition may be counter-productive, because it could 

suppress potential winners (Jonas and Buzsáki, 2007; de Almeida et al., 2009; Chow 
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et al., 2012). However, experimental data show that in both neocortex and brain areas 

tightly connected to the hippocampus, recurrent inhibition and lateral inhibition appear 

is equally represented. Thus, PN–IN connectivity in these brain regions is the 

combination of a high excitatory connection probability with a non-random enrichment 

of recurrent motifs (Holmgren et al., 2003; Yoshimura et al., 2005; Couey et al., 2013; 

Peng et al., 2017). We think that such a circuit design would be inappropriate for 

pattern separation in the dentate gyrus.  

Overall in the dentate gyrus, the mechanisms of pattern separation are entirely 

unclear. We propose that one of the primary mechanism underlying pattern separation 

in the dentate gyrus is based on WTA mechanism. However, whether the PN–IN 

connectivity in the dentate gyrus is specialized to support pattern separation remains 

an open question. Besides, the identity of the specific interneuron types involved in 

circuits performing pattern separation also remains for being addressed.  
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1.6 Aim of this project 
 
 
The principal aim of this project was to elucidate the local synaptic mechanisms of 

pattern separation in the dentate gyrus. To achieve this goal, we combined 

experimental and theoretical approaches. To examine functional PN–IN connectivity 

rules, we performed simultaneous whole-cell patch-clamp recordings from up to seven 

GCs and up to four GABAergic interneurons in the dentate gyrus. To identify 

interneurons we used different transgenic mouse lines in which either PV+, SST+ or 

CCK+ neurons were fluorescently labeled. Our experiments revealed a uniquely high 

abundance of lateral inhibition, primarily mediated by PV+ interneurons and an 

overrepresentation of specific disynaptic motifs containing PN and INs (i.e., 

convergence, divergence, and mutual inhibition motifs). As a second approach, we 

developed a full-size biologically inspired model of the dentate gyrus based on our 

empirical connectivity. In this way, we could strictly preserve the connectivity rules of 

GC–PV+ interneurons networks while studying the mechanisms underlying pattern 

separation. Our theoretical work supports the hypothesis that in the dentate gyrus, 

strong lateral inhibition, and structured connectivity allow efficient pattern separation. 

Finally, our behavioral data show for the first time the involvement of PV+ interneurons 

for discriminating between highly similar contexts when mice are acutely exposed to 

the environments, suggesting a role of dentate gyrus PV+ interneurons in pattern 

separation. 
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Chapter 2 
METHODS 

   

 

2.1 Experimental methods  

 

2.1.1 Hippocampal acute slice preparation 

 

Experiments on genetically modified mice were performed in strict accordance with 

institutional, national, and European guidelines for animal experimentation and were 

approved by the Bundesministerium für Wissenschaft, Forschung und Wirtschaft of 

Austria (A. Haslinger, Vienna; BMWFW-66.018/0007-WF/II/3b/2014; BMWF-

66.018/0010-WF/V/3b/2015; BMWFW-66.018/0020-WF/V/3b/2016). 

To label PV+ interneurons, C57BL/6J PV-Cre knockin mice 

(http:/jaxmice.jax.org/strain/008069) crossed with Ai14 loxP-flanked red fluorescent 

protein tdTomato reporter mice (https://www.jax.org/strain/007914) were used. To 

identify SST+ interneurons, somatostatin-ires-Cre mice (C-SSTtm1Npa, kindly 

provided by H. van der Putten; Novartis Pharma; MTD36044, Basel, Switzerland) 

crossed with Ai14 tdTomato reporter mice. Finally, to label CCK+ interneurons, CCK-

ires-Cre/DLX 5/6-Flp mice (https://www.jax.org/strain/012706 and 

https://www.jax.org/strain/010815) were crossed with dual reporter mice expressing 

either EGFP or tdTomato (RCE = R26R CAG boosted EGFP mice, 

https://www.jax.org/strain/010812; Ai65, https://www.jax.org/strain/021875) 

(Taniguchi et al., 2011). Mice (20- to 44-days-old; mostly postnatal day 20–25) of 

either sex were lightly anesthetized with isoflurane (Forane, AbbVie, Vienna). For 

animals up to postnatal day 30, mice were sacrificed by decapitation. For animals older 

than 30 days, transcardial perfusion was performed with ice-cold sucrose-artificial 

cerebrospinal fluid (sucrose-ACSF) solution. Mice were deeply anesthetized with 

isoflurane followed by the intraperitoneal injection of a mixture of xylazine (0.5 ml, 2%), 

ketamine (1 ml, 10%), acepromazine (0.3 ml, 1.4%), and physiological NaCl solution 

(1.5 ml, 0.9%). Anesthetics were applied at a dose of 0.033 ml/10 g body weight. The 

depth of the anesthesia was verified by the absence of toe pinch reflexes.  

For preparing hippocampal slices, the brain was rapidly removed and immersed 

in ice-cold sucrose-ACSF solution during dissection. A block of tissue containing the 
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hippocampus was transferred to a vibratome (Leica VT 1200), and transverse slices 

of 300-µm thickness were cut with a blade oscillation amplitude of 1.25 mm and a 

blade forward movement velocity of 0.03 mm s-1 (Bischofberger et al., 2006b). Finally, 

slices were incubated at ~35°C in ACSF for 30 minutes and subsequently maintained 

at ~22°C for maximally 5 hours before transfer into the recording chamber.  

 

2.1.2 Solutions and chemicals  

 

The ACSF used for recordings contained 125 mM NaCl, 25 mM NaHCO3, 25 mM 

glucose, 2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, and 1 mM MgCl2. The sucrose 

standard artificial cerebrospinal fluid (sucrose-ACSF) used for dissection contained 

64 mM NaCl, 25 mM NaHCO3, 10 mM glucose, 120 mM sucrose, 2.5 mM KCl, 

1.25 mM NaH2PO4, 0.5 mM CaCl2, and 7 mM MgCl2. The osmolarity of the solutions 

was 290–315 mOsm and the pH was maintained at ~7.3 when equilibrated with a 95% 

O2 / 5% CO2 gas mixture.  

The intracellular solution for in vitro recordings contained 120 mM K-gluconate, 

40 mM KCl, 2 mM MgCl2, 2 mM Na2ATP, 10 mM HEPES, 0.1 mM EGTA, and 0.3% 

biocytin, pH adjusted to 7.28 with KOH. Chemicals were purchased from Merck or 

Sigma-Aldrich. 

 

2.1.3 Multi-cell patch clamp recordings 

 

Glass micropipettes were fabricated from thick-walled borosilicate tubing (2 mm outer 

diameter, 1 mm inner diameter) and had open-tip resistances of 3–8 MΩ. They were 

manually positioned with eight LN mini 25 micromanipulators (Luigs and Neumann) 

under visual control (Guzman et al., 2016) provided by a modified Olympus BX51 

microscope equipped with 60x water-immersion objective (LUMPlan FI/IR, NA = 0.90, 

Olympus, 2.05 mm working distance) and infrared differential interference contrast 

video microscopy and epifluorescence. Targeted cell bodies were located ~30–

120 μm below the surface of the slice. Interneurons were identified from the tdTomato 

or EGFP fluorescence in epifluorescence illumination and the AP phenotype upon 1-

s current pulses (> 50 Hz in a series of pulses of 100–1,200 pA for PV+ interneurons). 

Mature GCs were identified by their morphological appearance in the infrared image 

and from their passive and active membrane properties. Cells with input resistance > 
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500 MΩ, potentially representing newborn GCs (Schmidt-Hieber et al., 2004), were 

not included in the analysis. Cells with resting potentials more positive than −55 mV 

were discarded. In total, the number of successfully recorded cells per recording varied 

between eight and two. Recording temperature was ~22°C (range: 20–24°C, room 

temperature) unless specified differently.  

Electrical signals were acquired with four two-channel Multiclamp 700B 

amplifiers (Molecular Devices), low-pass filtered at 6–10 kHz, and digitized at 20 kHz 

with a Cambridge Electronic Design 1401 mkII AD/DA converter via custom-made 

stimulation-acquisition scripts using Signal 6.0 software (CED). For current-clamp 

recordings, pipette capacitance was ~80% compensated, and series resistance was 

balanced by the bridge circuit of the amplifier; settings were readjusted throughout the 

experiment when necessary. For voltage-clamp recordings, series resistance was not 

compensated but repeatedly monitored using 2-mV hyperpolarizing pulses.  

To test synaptic connections, a presynaptic neuron was stimulated with a train 

of five or ten current pulses (2 ms, 1–2 nA) at frequencies of 20 or 50 Hz, while all 

other neurons were voltage-clamped at −70 mV. A connection was defined as 

monosynaptic if synaptic currents had latencies < 4.0 ms and peak amplitudes larger 

than 2.5 times the standard deviation of the baseline of the average trace (computed 

from 15–30 individual traces). Events with latencies  4.0 ms were considered 

polysynaptic.  
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2.1.4 Data analysis 

  

Recordings were analyzed using Stimfit and Python-based scripts (Guzman et al., 

2014). Synaptic latency was measured from the peak of the presynaptic AP to the 

onset of the postsynaptic potential or current. Kinetic analysis of EPSCs or inhibitory 

postsynaptic currents (IPSCs) was performed in pairs with a series resistance of < 15 

MΩ. Distance was measured from soma center to soma center. Analysis of the axonal 

arbor of PV+ interneurons and GCs revealed that the axonal length was 2.21 ± 0.20 

and 1.59 ± 0.07 times larger than the corresponding intersomatic distance (Fig. 2.1). 

Connection probability was calculated as the number of connected pairs over the total 

number of tested pairs in each 50-µm distance interval. 95%-confidence intervals were 

obtained assuming normality. Distance dependence of connectivity was fit with a 

sigmoidal function f(x) = A [1 + Exp[(x – B)/C]-1, where x is absolute distance, and A, 

B and C are fitted parameters. Throughout the test, the maximal connection probability 

(cmax) was determined as f(0), and the space constant (dhalf) was determined as the x’ 

value that specified the condition x = 0.5.  To test whether connectivity differed 

between synapses, 10,000 bootstrap replications of the inhibitory PV+ interneuron–

GC data set were obtained, and the mean values of the GC–PV+ interneuron and PV+ 

interneuron–PV+ interneuron experimental data sets were compared against the 

simulated distribution (Efron and Tibshirani, 1998). Values are given as mean ± 

standard error of the mean (SEM). Box plots show lower quartile (Q1), median 

(horizontal line), and upper quartile (Q3). The interquartile range (IQR = Q3–Q1) is 

represented as the height of the box. Whiskers extend to the most extreme data point 

that is no more than 1.5 x IQR from the edge of the box (Tukey style). Statistical 

comparisons were made either with a non-parametric Mann-Whitney U two-sided test 

or by linear regression, testing whether the slope was significantly different from 0. 
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Figure 2.1: Relation between intersomatic distance and axon length.  
(a) Reconstructed fast-spiking dentate gyrus basket cell (BC). Soma and dendrites 
are drawn in black, the axon is color-coded according to the length of the axonal path. 
Basket cell 2 (BC2) from the sample of Nörenberg et al. (Nörenberg et al., 2010). (b) 
Plot of axon length (trajectorial distance) against intersomatic distance (Euclidian 
distance). Data points were analyzed by regression with linear function through the 
origin (red line) or with offset (light blue line). Left, interneuron (BC2) (Nörenberg et 
al., 2010); right, GC (Cell number 9) (Bausch et al., 2010). All distance values were 
measured relative to the center of the soma. (c) Slope of the axon length–
intersomatic distance relation (fit with a line through the origin). Box plots show lower 
quartile (Q1), median (horizontal red line), and upper quartile (Q3). The interquartile 
range (IQR = Q3–Q1) is represented as the height of the box. Whiskers extend to the 
most extreme data point that is no more than 1.5 x IQR from the edge of the box 
(Tukey style). Data from individual cells are plotted on top of the corresponding box. 
Data from six fast-spiking dentate gyrus BCs (Nörenberg et al., 2010) and six dentate 
gyrus GCs (cells number 9, 47, 52, 56, 58, and 61) (Bausch et al., 2010). 
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To test whether disynaptic motifs (Zhao et al., 2011) occurred significantly more 

frequently than expected by chance, we simulated the entire set of recording 

configurations including PV+ interneurons (41 octuples, 62 septuples, 54 sextuples, 37 

quintuples, 14 quadruples, 7 triples, and 3 pairs in 218slices) 10,000 times, assuming 

random connectivity (Erdös and Rényi, 1959; Zhao et al., 2011; Guzman et al., 2016). 

The connection probabilities were set to the experimentally determined distance-

dependence values. For each simulated data set, we counted the number of all 25 

possible disynaptic motifs (Fig. 3.12). From the 10,000 bootstrap replications, mean, 

median, and confidence intervals for these counts were determined. P values were 

calculated as the number of replications in which the motif number was equal to or 

larger than the empirical number, divided by the number of replications. If a motif was 

never encountered in the 10,000 replications, P was assumed as < 0.0001. For 

assessing statistical significance, correction for multiple testing was performed using 

a Benjamini–Hochberg method that controls the false discovery rate (Benjamini and 

Hochberg, 1995). P values for m comparisons were sorted in increasing order 

(P1 ≤ P2 ≤ … ≤ Pm), the first Pi value that satisfied the condition Pi ≤ i / m 0.05 was 

identified (starting with Pm), and the motifs corresponding to Pj values with 1 ≤ j ≤ i were 

considered significant. For illustration purposes, P values were converted into z 

scores, using the quantiles of a standard normal distribution. 

 

2.1.5 Morphological analysis

 

Neurons that were filled with biocytin (0.3%) for > 1 hour were processed for 

morphological analysis. After withdrawal of the pipettes, resulting in the formation of 

outside-out patches at the pipette tips, slices were fixed for 12–24 hours at 4°C in a 

0.1 M phosphate buffer (PB) solution containing 2.5% paraformaldehyde (PFA), 

1.25% glutaraldehyde, and 15% (v/v) saturated picric acid solution. After fixation, 

slices were treated with hydrogen peroxide (1%, 10 min) to block endogenous 

peroxidases, and rinsed in PB several times. Membranes were permeabilized with 2% 

Triton X100 in PB for 1 h. Slices were then transferred to a phosphate-buffered solution 

containing 1% avidin-biotinylated horseradish peroxidase complex (ABC, Vector 

Laboratories) and 1% Triton X100 for ~12 hr. Several rinses in PB removed the excess 

ABC, and the slices were developed with 0.05% 3,3'-diaminobenzidine 
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tetrahydrochloride and subsequently hydrogen peroxide. Finally, slices were 

embedded in Mowiol (Sigma-Aldrich).  

 

2.1.6 In vivo recordings from dentate gyrus PV+ interneurons 

 

These set of experiments were performed by Xiaomin Zhang. Whole-cell patch-clamp 

recordings in vivo were performed in male 35- to 63-day-old mice as described 

previously (Pernía-Andrade and Jonas, 2014). Animals were in the head-fixed, fully 

awake configuration, and were running on a linear belt treadmill (Royer et al., 2012; 

Bittner et al., 2015). The head-bar implantation and craniotomy were performed under 

anesthesia by intraperitoneal injection of 80 mg/kg ketamine (Intervet) and 8 mg/kg 

xylazine (Graeub), followed by local anesthesia with lidocaine. A custom-made steel 

head-bar was attached to the skull using superglue and dental cement. The day before 

recording, two small (~0.5 mm in diameter) craniotomies, one for the patch electrode 

and one for a local field potential (LFP) electrode, were drilled at the following 

coordinates: 2.0 mm caudal, 1.2 mm lateral for whole-cell recording; 2.5 mm caudal, 

1.2 mm lateral for the LFP recording. The dura was left intact, and craniotomies were 

covered with silicone elastomer (Kwik-Cast, World Precision Instruments). Pipettes 

were fabricated from borosilicate glass capillaries (1.75 mm outer diameter, 1 mm 

inner diameter). Long-taper whole-cell patch electrodes (9–12 MΩ) were filled with a 

solution containing: 130 mM K-gluconate, 2 mM KCl, 2 mM MgCl2, 2 mM Na2ATP, 

0.3 mM NaGTP, 10 mM HEPES, 18 mM sucrose, 10 or 0.1 EGTA, and 0.3% biocytin. 

Whole-cell patch electrodes were advanced through the cortex with 500–600 mbar of 

pressure to prevent the electrode tip from clogging. After passing the hippocampus 

CA1 subfield, the pressure was reduced to 20 mbar. After the blind whole-cell 

recording was obtained, series resistance was calculated by applying a test pulse (+50 

mV and −10 mV) under voltage-clamp conditions. Recordings were immediately 

discarded if series resistance exceeded 70 MΩ. After the bridge balance was 

compensated, step currents from −100 pA to 400 pA were injected into the cell to 

calculate the input resistance and maximal firing frequency of the recorded cells. All 

the recordings were done in current-clamp experiment configuration without holding 

current injection using a Heka EPC double amplifier. Signals were low-pass filtered at 

10 kHz (Bessel) and sampled at 25 kHz with Heka Patchmaster acquisition software. 

After recording, the patch pipettes were slowly withdrawn to form an outside-out patch, 
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verifying the integrity of the seal. Data included were obtained from three fast-spiking 

cells in the dentate gyrus, which generated APs during sustained current injection at 

a frequency of > 100 Hz. To determine the relative AP threshold, spontaneous action 

potentials (sAPs) were detected and aligned either at the sAP peak or at the first AP 

when burst firing occurred. The membrane potential preceding the sAP was measured 

in a 10–20 ms time window before the sAP. sAP absolute threshold was determined 

from a dV / dt–V phase plot; the rising phase was fit with an exponential function 

including a shift factor, and the intersection of the fit curve with the baseline was 

defined as the threshold.  
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2.2 Computational methods 

 

2.2.1 Full-size dentate gyrus network model  

 

Simulations of pattern separation were performed using Neuron version 7.5 

(Carnevale and Hines, 2006) in combination with Mathematica version 11.2 (Wolfram 

Research). In essence, the present model provided a neuronal network 

implementation of a WTA mechanism mediated by lateral inhibition (Majani et al., 

1988; de Almeida et al., 2009). The pattern separation network model consists of two 

layers, the first layer representing the entorhinal cortex, typically with 50,000 entorhinal 

cortex cells (ECs) and the second layer constituting the dentate gyrus, with 500,000 

GCs and 2,500 PV+ interneurons. The EC–GC synapses connected the layers to 

represent the perforant path input to the dentate gyrus. A WTA mechanism mediated 

by lateral inhibition was implemented by connecting GCs and INs by excitatory (EI) 

synapses in one direction and by inhibitory (IE) synapses in the other direction. 

Unlike other models (Myers and Scharfman, 2009; Faghihi and Moustafa, 

2015), the model was implemented in full-size. The model contained 500,000 GCs, to 

represent the dentate gyrus of one hemisphere in adult laboratory mice (Amrein et al., 

2004) (Table 1). A full-size implementation was necessary first, to increase the realism 

of the simulations; second to implement measured macroscopic connectivity rules 

without scaling, and finally, to simulate sparse coding regimes, which were unstable 

in smaller networks. The model was designed to incorporate the connectivity rules of 

PV+ interneurons and GCs in the dentate gyrus (Fig. 3.5). Other types of interneurons, 

such as SST+ or CCK+ interneurons were not considered because of their low 

connectivity (Fig. 3.4) and their slower signaling speed (Hu et al., 2014).  
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Parameter Meaning 
Standard value 

(range) 
References 

nEC number of entorhinal cells (ECs) 
50,000 (12,500– 

200,000) 
 

nE number of granule cells (GCs) 500,000 Amrein et al., 2004 

nI number of PV+ interneurons (PV+ INs) 2,500  

cEI maximal connection probability EI synapses 0.1a  

EI connection width EI synapses 150 µmb  

JEI synaptic strength EI synapses 8 nSc  

rise,E EPSC rise time constant 0.1 ms Geiger et al.,1997 

decay,E EPSC decay time constant 1 ms Geiger et al.,1997 

cIE maximal connection probability IE synapses 0.3a   

IE connection width IE synapses 300 µmb  

JIE
 synaptic strength IE synapses 0.025 (0.005–0.1)d  

IE IPSC decay time 10 ms  

cII maximal connection probability II synapses 0.6  

II connection width II synapses 300 µmb  

JII synaptic strength II synapses 16 nS  

II IPSC decay time constant  2.5 ms Bartos et al., 2001 

VAP,EI, 

VAP,IE 
axonal AP propagation velocity  

0.2 m s-1  

(0.05–0.8)e 

Doischer et al., 2008; 

Hu and Jonas, 2014 

Jgamma 
external inhibitory gamma-frequency drive 
to GCs 

1.0 (0.5–3.5)d 
de Almeida et al., 
2009 

cgap 
maximal connection probability gap 

junctions 
0.8  

gap connection width gap junctions 150 µmb  

Rgap gap junction resistance  300 M   

cEC-GC 
maximal connection probability EC–GC 

synapses 
0.2 (0.05–0.1) 

Tamamaki and 

Nojyo, 1993; Witter, 

2007 

EC-GC connection width EC–GC synapses  
500 µm 

(0.1–infinity) 

Tamamaki and 

Nojyo, 1993; Witter, 

2007 

EC average activity in EC neurons  0.1 (0.02–0.5)  

Iµ amplitude of excitatory drive in E neurons 1.8 (1–2.0)d  
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Table 1. Standard parameters for the full-size network model of pattern 
separation. 
(a) For the standard parameter set, the ratio of lateral inhibition over reciprocal 
inhibition motifs was 6, consistent with the experimental data. (b) Space constants 
refer to a total length of the hippocampal formation of 5 mm. (c)  Firing threshold of 
PV+ INs was ~18 nS. (d) Unitless, because GCs were modeled as integrate-and-fire 
(IF) neurons. (e) For the standard values of VAP,EI, VAP,IE and EI, and IE, the weighted 
mean latency is 0.60 ms for EI synapses and 1.20 ms for IE synapses, consistent 
with experimental observations. 
Values in parentheses indicate explored parameter range. EPSC, excitatory 
postsynaptic current; IPSC, inhibitory postsynaptic current, AP, action potential. 

 

 

2.2.2 Implementation of neurons 

 

Individual PV+ interneurons were modeled as single-compartment neurons with Wang-

Buzsáki-type active conductances (length and diameter 70 µm, Cm = 1.0 µF cm-2, gpas 

= 0.1 mS cm−2, Vrest = −65 mV; (Wang and Buzsáki, 1996). Single neurons were 

assumed to be cylinders with diameter and length of 70 μm, giving a surface area of 

15394 μm2 and an input resistance of 65 MΩ. Neurons showed a current threshold for 

AP initiation of 0.039 nA and a fast-spiking, type I action potential phenotype 

(Ermentrout, 1996), as characteristic for PV+ interneurons (Fig. 3.2a, 3.6c). Individual 

GCs were modeled as IF spiking neurons, using the IntFire2 class of Neuron; the 

membrane time constant and synaptic time constant were assumed as 15 ms and 30 

ms, respectively.  

 

2.2.3 Implementation of synaptic interconnectivity 

  

Synapses between neurons were placed with distance-dependent probability. 

Normalized distance was cyclically measured as x = 0.5 – abs[abs[(i/imax – j/jmax)] – 

0.5], where i and j are indices of pre- and postsynaptic neurons, imax and jmax are 

corresponding maximum index values, and abs(r) is the absolute value of the absolute 

number r. Connection probability was then computed using a Gaussian function as 

p(x) = c 𝑒
−

𝑥2

2 2, where c is maximal connection probability (cEI, cIE, cII, and cgap) and  

is the corresponding standard deviation representing the width of the distribution (EI, 

IE, II, and gap; Table 1).  
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Connection probability between upstream ECs and GCs was computed from a 

Gaussian function with peak connection probability of 0.02 and a standard deviation 

of 0.5 mm, to represent the expansion of coding space from the entorhinal cortex to 

the dentate gyrus (Witter, 2007; Cayco-Gajic et al., 2017). For 50,000 ECs and 

500,000 GCs, this corresponds to a convergence of 2,507 and a divergence of 25,066 

cells. Binary activity patterns in upstream neurons were then converted into patterns 

of excitatory drive of GCs. Although this drive was primarily intended to represent input 

from entorhinal cortex neurons, it may equally represent contributions from other types 

of excitatory neurons (e.g., mossy cells or CA3 pyramidal cells) (Myers and 

Scharfman, 2009). 

Excitatory GC–interneuron synapses, inhibitory interneuron–GC synapses, and 

inhibitory interneuron–interneuron synapses were incorporated by random placement 

of NetCon objects in NEURON (Carnevale and Hines, 2006); gap junctions were 

implemented by random placement of pairs of point processes. For excitatory GC–

interneuron synapses and inhibitory interneuron–interneuron synapses, synaptic 

events were simulated using the Exp2Syn class of NEURON. For excitatory GC–

interneuron synapses, we assumed rise,E = 0.1 ms, decay,E = 1 ms, and a peak 

conductance of 8 nS. For inhibitory interneuron–interneuron synapses, we chose rise,I 

= 0.1 ms, decay,I = 2.5 ms, and a peak conductance of 16 nS. For inhibitory 

interneuron–GC synapses, the synaptic weight was chosen as 0.025 (relative to the 

threshold, because GCs were modeled as IF neurons). For all chemical synapses, 

synaptic latency was between 0 and 25 ms according to the distance between pre- 

and postsynaptic neuron. Gap junction resistance was assumed as 300 MΩ, 

approximately five times the input resistance of the cell. Synaptic reversal potentials 

were 0 mV for excitation and −65 mV for inhibition. The maximal length of the 

hippocampal network was assumed as 5 mm, consistent with anatomical descriptions 

in mice. 

 

2.2.4 Simulation of network activity and analysis pattern separation  

 

Simulations were performed in four steps (Fig. 2.2). First, we computed 100 random 

binary activity patterns in the ECs. To generate input patterns over a wide range with 

defined correlations, 100 uncorrelated random vectors ai of size nEC were computed, 
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where individual elements were pseudorandom real numbers in a range of 0 to 1 and 

nEC is the number of ECs. Vectors were transformed into correlated vectors as 

r * a1 + (1 − r) * ai, where a1 is the first random vector and r corresponds to the 

correlation coefficient. r was varied between 1 and 0.1. Finally, a threshold function 

f(x) = H(x − θ) was applied to the vectors, where H is the Heaviside function, and θ is 

the threshold that determines the activity level in the pattern. Empirically, 100 input 

patterns were sufficient to continuously cover the chosen range of input correlations. 

Unless stated differently, the average activity in EC neurons (EC), i.e. the proportion 

of spiking cells, was assumed to be 0.1. 

Second, the patterns in the upstream neurons were converted into patterns of 

excitatory drive in GCs, by multiplying the activity vectors with the previously computed 

connectivity matrix between ECs and GCs. Unless otherwise indicated, the mean tonic 

current value was set to 1.8 times the threshold value of the GCs (i.e., Iμ = 1.8; unitless, 

since GCs were implemented as IF units; Table 1). In a subset of simulations (Fig. 

3.14a–c), the tonic current was replaced by Poisson trains of EPSPs to convey a 

higher degree of realism. In these simulations, events were simulated by NetStim 

processes. In another subset of simulations (Fig. 3.14d–f), the excitatory tonic drive 

computed from the EC activity and the EC–GC connectivity was applied in parallel to 

GCs and INs to implement feedforward inhibition. 

Third, we computed the activity of the network for all 100 patterns. Simulations 

were run with 5 μs fixed time step over a total duration of 50 ms. At the beginning of 

each simulation, an inhibitory synaptic event of weight 1 (relative to the threshold) was 

simulated in all GCs to mimic recovery from a preceding gamma cycle (de Almeida et 

al., 2009). Spikes were detected when membrane potential reached a value of 1 in the 

GCs and 0 mV in the interneurons. The final result of the computations was a set of 

100 binary output vectors. 

Finally, Pearson’s correlation coefficients were computed for all pairs of 

patterns ((100
2

) = 4,950 points), at both input (tonic excitatory drive vector) and output 

level (spike vector) in parallel, and output correlation coefficients (Rout) were plotted 

against input correlation coefficients (Rin). Three parameters quantitatively 

characterized the separation of patterns. (1) The efficacy of pattern separation was 

quantified by an area-based pattern separation index (), defined as the area between 

the identity line and the Rout versus Rin curve, normalized by the area under the identity 
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line (
1

2
). Thus,  = 2 ∫ (𝑥 − 𝑓(𝑥))𝑑𝑥

1

𝑥=0
, where f(x) represents the input-output 

correlation function. In practice, f(x) was determined by fitting a 10th-order polynomial 

function to the Rout versus Rin data points.  is 1 for perfect separation, and 0 for 

pattern identity; values < 0 would correspond to pattern completion (Guzman et al., 

2016). (2) The reliability of pattern separation () was quantified by the Pearsson’s 

correlation coefficient of the ranks of all Rout versus the ranks of all Rin data points. (3) 

Finally, the gain of pattern separation () was quantified from the maximal slope of the 

Rout versus Rin curve. In practice, this value was determined from the first derivative of 

the 10th-order polynomial function fit to the Rout versus Rin data points as f’(x) for x → 

1. Thus, the gain factor is >> 1 for efficient pattern separation and 1 for pattern identity. 
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Figure 2.2: Schematic illustration of full-size network simulations.  
(a) Computation of activity in upstream neurons. 𝑎⃗EC,i represents the ith binary activity 
vector in the entorhinal cortex neurons (50,000 ECs). (b) Computation of drive 

patterns in GCs. 𝑑GC,i represents the ith drive vector in GCs (500,000 neurons). 𝑑GC,i 
was computed as the dot product of  𝑎⃗EC,I, and the connectivity matrix AEC-GC. (c) 
Simulation of network activity in the dentate gyrus. Activity in the full-size network 
was simulated using NEURON version 7.2. 𝑎⃗EC,i represents the ith binary spiking 
vector in GCs, determined by the spiking activity. Interneurons (red) were 
implemented as a single compartment-based model (2,500 cells). Left, schematic 
illustration of the model structure. Right, traces of membrane potential of GCs (black) 
and interneurons (red). Traces from every 1,000th GC (500 traces) and every 10th 
interneuron (250 traces) are superimposed. For PNs, membrane potential is unitless, 
specified relative to firing threshold. (d) Computation of pattern correlation and input-
output correlation curves. Correlations Rin were computed between pairs of drive 
vectors, and correlations Rout were computed between pairs of activity vectors. 
Finally, Rout and Rin values were plotted against each other, and a continuous function 
f(x) was obtained by linear interpolation. (e) Quantification of pattern separation. Left, 

pattern separation index () was computed as the area (light gray) between the 
interpolated curve (f(x), blue) and the identity line (red dashed), normalized to the 

maximal value. Right, the maximal gain of pattern separation  computed as the slope 
of the interpolated curve f´(x) for x → 1; yellow line indicates the corresponding 
tangent.  
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2.3 Behavioral methods  

 

2.3.1 Pharmacogenetics 

 

Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based 

chemogenetics was used for manipulating neural activity in vivo (Wiegert et al., 2017). 

We used an Adeno-associated virus (AAV) encoding hM4Di and the red fluorophore 

mCherry (AAVdj-hSyn-DIO-hM4Di-mCherry) for silencing the activity of PV+ 

interneurons and AAV carrying only a fluorophore for control experiments (AAVdj-

hSyn-DIO-mCherry). Bilateral virus injections were performed into the dorsal dentate 

gyrus of homozygous PV-Cre male mice between postnatal days 30–90 (0.5 µl of AAV, 

at a flow rate of 60 nl per minute; stereotaxic coordinates from bregma: x = 1,3 mm, y 

= 1.8 mm, z = 1.9 mm). Anesthesia was delivered by intraperitoneal injection of 160 

mg/kg ketamine (Intervet) and 6 mg/kg xylazine. Analgesia during the surgery was 

provided by subcutaneous injection of Novalgin (Metamizole) (100 mg/kg), and for the 

post-surgery period, the analgesic Metacam (50 mg/Kg) was used. Throughout the 

surgery, two small holes were drilled through the parietal bones after exposure of the 

skull. After the removal of the Hamilton syringe containing the viruses, the head wound 

was closed with contact adhesive. 

For silencing the PV+ interneurons during the behavioral sessions, clozapine-

N-oxide (CNO) was administrated by intraperitoneal injection (doses 3 mg/kg) 30 

minutes before the behavioral test starts. Because of the potential anxiolytic effects of 

CNO (Gomez et al., 2017), our controls also received CNO. The specificity of the 

viruses in targeting interneurons was later confirmed by checking the injection location 

and the mCherry expression on PV+ interneurons. The specificity of the viruses in 

silencing the activity PV+ interneurons has been previously confirmed (Xia et al., 

2017).  
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2.3.2 Contextual fear discrimination 

 

For measuring pattern separation in a behavioral task, we used the fear context 

discrimination task (McHugh et al., 2007; Sahay et al., 2011). To assess the 

discrimination between very similar environments we used freezing responses, 

defined as “absence of movement except for respiration” (Curzon et al., 2009). 

Freezing is a specific response to fear, species-specific that may last for seconds to 

minutes depending on the strength of the aversive stimulus, the number of 

presentations, and the degree of learning achieved by the subject” (Curzon et al., 

2009).  

One week after brain injections, animals were handled by a behavioral 

experimentalist. This pre-training phase lasted one week, which was immediately 

followed by the contextual discrimination test. In total 13 mice were blinded tested (8 

experiments, 7 control), which had access to food and water ad libitum, and lived on 

a 12:12 hour light/dark cycle. All procedures occurred during the light cycle. 

We used two chambers for providing similar contexts. In context A, mice 

received the foot-shock, while in the context B did not. Importantly, we maintained an 

identical grid floor (McHugh et al., 2007)  while changing the lighting, walls, and odor 

of the chambers. Previous studies have shown the importance of the floor in the 

generalization of the fear memories (Huckleberry et al., 2016).  

 

Chamber A: the dimensions were 28 x 21 x 21 cm. Two side walls and ceiling were 

made of steel while the front door and back wall was made of clear Plexiglas. The floor 

consisted of 33 stainless steel rods, separated by 6 mm, which were wired to a shock 

generator and scrambler. The background noise was set at 65 dB. The chamber was 

lit from above with a house light. A stainless steel pan coated with the acetic acid was 

placed under the grid floor to provide a distinct odor. Ethanol (70%) was used to clean 

grids between runs.   

 

Chamber B: the dimensions were 28 x 21 x 21 cm. Black and white strips were 

covering the side walls. The floor of each chamber consisted of 33 stainless steel rods, 

separated by 6 mm, which were wired to a shock generator and scrambler. The room 
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was lit with infrared light. As an olfactory clue, we used rum aroma. A white noise 

generator provided the 65 dB background noise.  

To identify the mice across the experiments, they were tail marked. Each day, 

mice received an intraperitoneal injection of CNO 30 minutes before starting the test, 

then mice were transported to an adjacent room to the experimental, and kept 

undisturbed. The whole set of experiments can be dived in three stages. The first one, 

during the days 1 to 3 mice experienced the context A, in which after 192 s, they 

receive a single foot-shock (2 s; 0.65 mA) and after one minute following foot-shock 

termination, they were removed from the chambers (total session time: ~4 minutes). 

During the second stage, the days 4 and 5, mice were placed in a counterbalanced 

order either into the context A or B. No foot-shock was delivered (total session time: 8 

minutes). The last experimental phase took place during the days 6 to 17, in which 

daily, mice experienced both contexts separated in a morning and afternoon session. 

The exposure order was day 6 BA, day 7 AB, day 8 AB, day 9 BA, day 10 BA, day 11 

AB. For the remaining days, the order of the context exposition was reversed. Across 

this entire discrimination phase, all animals receive a single foot-shock in context A, 

while never was delivered during context B exposures. Mouse behavior was recorded 

by digital video cameras mounted above the conditioning chamber. FreezeFrame and 

FreezeView software (Actimetrics) were used for recording and analyzing freezing 

behavior, respectively. The freezing score was measured during the first 192 s (pre-

shock) in each context on each day. Discrimination ratios were calculated for using 

these freezing percentage scores according to the following formula: FreezingChamber 

A/(FreezingChamber A + FreezingChamber B) 
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Figure 2.3: Schematic illustration of contextual fear conditioning. 
Top, two contexts were used. Context A consisted of a chamber with walls made of 
steel and clear plexiglass, enlightened from the ceiling with white light. The animals 
received a 2 s foot-shock after 193 s of exploration. Context B had an identical grid 
floor to chamber A but had different walls, lighting and olfactory clues. Bottom, the 
configuration of the experimental protocol. Three consecutive days were used for 
conditioning mice to the chamber A. Next, mice were exposed either the context AB 
or BA, where generalization took place. Discrimination between contexts was 
measured starting from day 6, while mice experienced both contexts within a day in 
a morning and afternoon session. 
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Chapter 3 

RESULTS 

 

 

3.1 Experimental results 

 

3.1.1 Octuple recordings from granule cells and GABAergic interneurons in the 

dentate gyrus. 

  

To determine the functional connectivity rules between PNs and INs in the dentate 

gyrus, we performed simultaneous whole-cell recordings from up to eight neurons (up 

to seven GCs and up to four interneurons) (Fig. 3.1). PV+, SST+, and CCK+ 

interneurons were identified in genetically modified mice obtained by crossing Cre or 

Flp recombinase-expressing lines with tdTomato or EGFP reporter lines. PV+ 

interneurons showed the characteristic fast-spiking AP phenotype during sustained 

current injection, whereas both SST+ and CCK+ interneurons generated APs with 

lower frequency, corroborating the reliability of the genetic labeling (Fig. 3.2).  

 To probe synaptic connectivity, we stimulated presynaptic neurons under 

current-clamp conditions and recorded EPSCs or IPSCs in postsynaptic neurons in 

voltage-clamp configuration (Fig. 3.1, 3.3). In total, we tested 9,098 possible 

connections in 50 octuples, 72 septuples, 68 sextuples, 48 quintuples, 17 quadruples, 

10 triples, and 5 pairs in 270 slices. Interestingly, PV+ interneurons showed much 

higher connectivity than both SST+ and CCK+ interneurons. For GC–PV+ interneuron 

pairs with intersomatic distance ≤ 100 µm, the mean connection probability was 11.0% 

for excitation and 28.8% for inhibition (Fig. 3.4). In contrast, for both SST+ interneurons 

and CCK+ interneurons, the mean connection probability was substantially lower (1.4 

and 2.8% for SST+ interneurons, 1.2 and 12.1% for CCK+ interneurons; Fig. 3.4). 

Excitatory interactions between GCs were completely absent, and disynaptic inhibitory 

interactions (Miles, 1990; Jouhanneau et al., 2018) were extremely sparse (0.124%). 

These results indicate that in the dentate gyrus PV+ interneurons show markedly 

higher connectivity than SST+ and CCK+ interneurons, extending previous results 

obtained in vivo in the neocortex (Pala and Petersen, 2015). As PV+ interneurons 



Chapter 3: Results 

 

46 

 

showed the highest input and output connectivity, we focused our functional 

connectivity analysis on these interneurons.  
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Figure 3.1: Experimental analysis of synaptic mechanisms of pattern 
separation in the dentate gyrus.  
(a) Top, infrared differential interference contrast video micrograph of the dentate 
gyrus in a 300-μm slice preparation, with eight recording pipettes. Shaded areas 
represent the 2D projections of cell bodies (light blue, GCs; red and yellow, PV+ 
interneurons). Blue dashed lines, boundaries of GC layer. Bottom, partial 
reconstruction of one GCs and two PV+ interneurons. For clarity, only the 
somatodendritic domains were drawn for the PV+ interneurons. Insets, biocytin-
labeled putative synaptic contacts, corresponding to boxes in main figure. Data in (a) 
and (b) from same recording. (b) Coexistence of different synapses in an octuple 
recording (seven cells successfully recorded) containing two PV+ interneurons and 
five GCs. In this recording, an excitatory GC–PV+ interneuron connection, an 
inhibitory PV+ interneuron–GC connection, a chemical inhibitory connection between 
the PV+ interneurons, and an electrical connection between the PV+ interneurons 
were found (from top to bottom). (c) Connectivity matrix of an octuple recording (all 
eight cells successfully recorded). Rows represent the presynaptic and columns the 
postsynaptic cells. In this example, 56 connections were tested; 7 excitatory GC–PV+ 
interneuron connections, 7 inhibitory PV+ interneuron–GC connections, and 42 
connections between GCs. In this octuple recording, an inhibitory synaptic 
connection was identified between the PV+ interneuron (red) and GC5 (blue) and an 
excitatory synaptic connection was found between GC1 (blue) and the PV+ 
interneuron (red). The presence of a unidirectional excitatory GC–PV+ interneuron 
connection and a unidirectional inhibitory PV+ interneuron–GC connection 
documents the existence of lateral inhibition in this recording. 
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Figure 3.2: Action potential phenotype and membrane properties of different 
types of genetically identified interneurons in the dentate gyrus. 
(a) Functional properties of identified PV+ interneurons in the dentate gyrus. Left, 
voltage changes evoked by long depolarizing and hyperpolarizing current pulses 
(0.6, 0, and −0.1 nA) applied to the PV+ interneuron. Fast-spiking phenotype (> 100 
Hz) and low input resistance (< 100 MΩ) are characteristic. Right, single AP 
waveform evoked by a depolarizing current ramp. (b) Box plots of resting membrane 
potential (mean, –66.9 mV), input resistance (70.2 MΩ), maximal evoked AP 
frequency (116 Hz), and evoked AP half-duration (0.45 ms; 173 cells). PV+ 
interneurons were identified in slices based on tdTomato labeling in PV-Cre;Ai14 
mice. (c, d) Similar data as in (a, b), but for SST+ interneurons. SST-Cre mice were 
used for labeling. (e, f) Similar data as in (a, b), but for CCK+ interneurons. CCK-
Cre;DLX 5/6-Flp mice were used for labeling. In (c, e), voltage changes were evoked 
by long depolarizing and hyperpolarizing current pulses (0.3, 0, and −0.1 nA). Box 
plots in (b, d, and f) show lower quartile (Q1), median (horizontal red line), and upper 
quartile (Q3). The interquartile range (IQR = Q3–Q1) is represented as the height of 
the box. Whiskers extend to the most extreme data point that is no more than 1.5 x 
IQR from the edge of the box (Tukey style). Data from individual cells are plotted on 
top of the corresponding box. 
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Figure 3.3: Synaptic connections of SST+ and CCK+ interneurons. 
(a) Light micrograph of a SST+ interneuron filled with biocytin during recording, and 
visualized using 3,3′-diaminobenzidine as chromogen. Cells were identified by 
genetic labeling in SST-Cre mice. Axon branches in the molecular layer (red arrows) 
suggest that the cell was a HIPP or TML interneuron (Han et al., 1993; Hosp et al., 
2014). GCL, granule cell layer. (b) Light micrograph of a CCK+ interneuron filled with 
biocytin. Cells were identified by genetic labeling in CCK-Cre;DLX 5/6-Flp mice. Axon 
branches in the inner molecular layer (red arrows) suggest that the cell was a HICAP 
interneuron (Han et al., 1993; Hefft and Jonas, 2005; Hosp et al., 2014). (c, d) 
Excitatory and inhibitory connectivity of SST+ interneurons. GC–SST+ interneuron 
unitary EPSCs are shown in (c), SST+ interneuron–GC IPSCs are illustrated in (d). 
Individual synaptic responses (gray) and average trace (magenta or blue, 15 traces) 
are shown overlaid. Note the facilitation of EPSCs during train stimulation in (c). (e, 
f) Excitatory and inhibitory connectivity of CCK+ interneurons. GC–CCK+ interneuron 
EPSCs are shown in (e), CCK+ interneuron–GC IPSCs are illustrated in (f). Note the 
asynchronous release during and after train stimulation in (f), which is highly 
characteristic of CCK+ interneuron output synapses (Hefft and Jonas, 2005).  
 

 
 
 

 

 

 

 

 

 

 

 
Figure 3.4: Hypoconnectivity of SST+ and CCK+ interneurons in comparison to 
PV+ interneurons. 
Comparison of average connection probability for pairs with an intersomatic distance 
of ≤ 100 μm. Whereas PV+ interneurons were highly connected, SST+ and CCK+ 
interneurons showed markedly lower excitatory and inhibitory connectivity (number 
of tested connections 767, 71, and 165). Error bars represent 95%-confidence 
intervals estimated from a binomial distribution. 
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3.1.2 Connectivity rules for excitatory inputs of PV+ interneurons  

 

A WTA mechanism mediated by recurrent inhibition requires sufficient excitatory 

connectivity of PV+ interneurons and sufficient strength of unitary synaptic inputs. To 

test these predictions, we examined the functional connectivity rules for PV+ 

interneuron excitatory input by measuring EPSCs (Fig. 3.5a–c). We found that PV+ 

interneurons were highly and locally connected to GCs. The connection probability 

showed a peak of 11.3%, and steeply declined as a function of intersomatic distance, 

with a space constant of 144 µm (Fig. 3.5b). In contrast, the EPSC peak amplitude 

showed no significant distance dependence (Fig 3.5c). To determine the efficacy of 

unitary GC–PV+ interneuron connections, we measured unitary excitatory 

postsynaptic potentials (EPSPs). Unitary EPSPs had a mean peak amplitude of 

1.79 ± 0.3 mV (range: 0.30 to 7.16 mV; Fig. 3.6a, b); (Miles, 1990; Scharfman et al., 

1990; Geiger et al., 1997). To assess the efficacy of these events in triggering spikes 

in the presence of ongoing synaptic activity from multiple sources, we performed in 

vivo whole-cell recordings from fast-spiking interneurons in the dentate gyrus in awake 

mice running on a linear treadmill (Fig. 3.6c–g). Under in vivo conditions, the 

difference between baseline membrane potential and threshold was 10.3 ± 1.8 mV (3 

in vivo recordings from fast-spiking interneurons in dentate gyrus). Thus, although the 

largest unitary EPSPs were close to the threshold of AP initiation, they were 

insufficient to trigger a spike. However, the high focal GC–PV+ interneuron connectivity 

(Fig. 3.5b) may ensure activation of PV+ interneurons by spatial summation.  
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Figure 3.5: Rules of excitatory and inhibitory connectivity in GC–PV+ 
interneuron networks. 
(a–c) Rules of GC–PV+ interneuron synapses in the dentate gyrus. (a) Unitary 
excitatory postsynaptic currents (EPSCs), with individual synaptic responses (gray) 
and average trace (red, 15 traces) in a representative GC–PV+ interneuron pair. (b) 
GC–PV+ interneuron connection probability plotted versus intersomatic distance. 
Connection probability was determined as the ratio of the number of found 
connections over that of all possible connections in a given distance range. Error bars 
represent 95%-confidence intervals estimated from a binomial distribution. Data 
points were fit with a sigmoidal function; shaded area indicates the distance width in 
which connection probability decayed to half-maximal value (space constant). Red 
dashed line, maximal connection probability. Maximal connection probability (cmax) 
was 11.3%, and space constant (dhalf) was 144 μm. (c) Peak amplitude of unitary 
EPSCs at GC–PV+ interneuron synapses, plotted against intersomatic distance. Data 
points were fit by linear regression; dashed lines indicate 95%-confidence intervals. 
(d–f) Similar plots as shown in (a–c), but for inhibitory PV+ interneuron–GC synapses. 
Maximal connection probability was 28.9%, and space constant was 215 μm.  
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The high local connectivity allowed us to examine the rules of spatial summation of 

converging inputs (Fig 3.7; 9 connections with 2 converging inputs; 4 connections with 

3 converging inputs). Summation of EPSPs was largely linear. On average, the 

summation factor was 1.007 ± 0.017 for two inputs and 1.160 ± 0.167 for three inputs, 

not significantly different from unity (P = 0.77 and P= 0.14; Fig. 3.7c). Furthermore, 

comparison of peak amplitudes of summated EPSPs evoked by simultaneous 

stimulation of converging inputs with the AP threshold in fast-spiking interneurons in 

the dentate gyrus in awake, behaving mice indicated that, on average, ~6 GCs need 

to be active to trigger APs in PV+ interneurons (6.4; range 5.8–7.5 GCs; Fig. 3.7d). 

Thus, PV+ interneurons in the dentate gyrus operate as coincidence detectors, sensing 

the synchronous activity of small local clusters of GCs.  
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Figure 3.6: Coactivation of converging inputs from granule cells is required to 
initiate APs in PV+ interneurons. 
(a) Unitary excitatory postsynaptic potentials (EPSPs), with individual synaptic 
responses (gray) and average trace (red, 15 traces) in a representative GC–PV+ 
interneuron pair. (b) Box plots of EPSP latency, 20–80% rise time, peak amplitude, 
and decay time constant. (c) AP properties of fast-spiking interneurons in the dentate 
gyrus in vivo in awake, behaving animals. Right, traces of membrane potential in 
response to depolarizing and hyperpolarizing current injections. (d, e) Superposition 
of five spontaneous APs (sAPs) aligned to the sAP peak (d) and expanded plot of a 
single AP (e). Light red area shows the time interval in which the baseline membrane 
potential before the spike was determined. (f) Left, phase plot analysis of the AP 
shown in (e). Right, fit of the rising component of the phase plot by an exponential 
function including a shift factor (red curve). Red arrows indicate the absolute 
threshold of sAP initiation determined from the shift. (g) Summary bar graph of 
baseline membrane potential (in time window 10–20 ms before the AP, left), absolute 
sAP threshold (center), and relative sAP threshold (relative threshold = absolute 
threshold – baseline membrane potential). LFP: local field potential; CC: current 
clamp; Thresholdabs: absolute threshold; MPpreAP: baseline membrane potential 
previous to an AP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 3.7: Spatial summation of granule cell inputs in PV+ interneurons.  
(a, b) Convergence of three presynaptic GCs (blue) projecting to the same PV+ 
interneuron (red). Responses to trains of APs when individual GCs were stimulated 
in isolation (a) and when all individual GCs were stimulated together (b). When 
presynaptic neurons were stimulated together, synaptic responses summated slightly 
supralinearly in this example, indicated by the slightly larger response following joint 
stimulation (red trace) in comparison to the arithmetic sum following individual 
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stimulation (blue trace). (c) Summation factor for simultaneous stimulation of 2 or 3 
inputs. Peak amplitude of EPSPs evoked by joint stimulation of 2 or 3 inputs over the 
arithmetic sum of individual EPSPs (summation factor). Circles, 50 Hz (9 multi-cell 
recordings); triangles, 100 Hz (3 recordings); squares, 200 Hz (1 recording). Data 
from 9 and 4 multi-cell recordings; 9 recordings with 50 Hz, 3 with 100 Hz, and 1 with 
200 Hz stimulation frequency. Note that the summation factor was close to 1, 
suggesting that summation was largely linear. (d) Summated voltage signals induced 
by a different number (1 to 3) of simultaneous GCs firing. Extrapolation by linear 
regression of the voltage responses allowed us to predict that ~6 GC inputs (range: 
5.8–7.5) were necessary to evoke an AP in a PV+ interneuron (horizontal dashed 
lines indicates relative threshold from in vivo experiments showed in Fig. 3.6g). 

 

 

3.1.3 Connectivity rules for inhibitory outputs of PV+ interneurons 

 

Next, we examined the functional connectivity rules for PV+ interneuron inhibitory 

output by measuring IPSCs (Fig 3.5d–f). Similar to excitatory GC–PV+ interneuron 

connectivity, inhibitory PV+ interneuron–GC connectivity was distance-dependent 

(Fig. 3.5e). However, maximal connection probability was higher (28.9%) and the 

width of connectivity was wider (215 µm) than that of excitation. Bootstrap analysis 

revealed that both maximal connection, and space constant were significantly shorter 

for excitatory  GC–PV+ interneuron synapses than for inhibitory PV+ interneuron–GC 

synapses (P < 0.0001 and P = 0.0042, respectively; Fig. 3.8a). Thus, different 

connectivity rules apply for excitatory and inhibitory GC–PV+ interneuron connections 

(focal excitation versus broad inhibition).  

To compare the connectivity rules in the dentate gyrus with those in other brain 

regions, we quantified the ratio of excitatory to inhibitory connection probability. We 

found that inhibition was much more abundant than excitation, with a connection 

probability ratio of 3.83, substantially higher than in other brain areas (Table 2). 

Furthermore, we quantified the abundance of lateral and recurrent motifs in pairs of 

neurons. In our total sample of 1,301 GC–PV+ interneuron pairs, we found 296 

unidirectional inhibitory connections, but only 32 bidirectional connections (Fig. 3.8b). 

Thus, the ratio of lateral inhibition to recurrent inhibition was 9.25, substantially higher 

than in other circuits (Table 2). These results indicate that connectivity rules of PV+ 

interneurons in the dentate gyrus are unique in comparison to other previously 

examined circuits. 
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Figure 3.8: Predominant lateral inhibition in the dentate gyrus. 
(a) Bootstrap analysis of maximal connection probability and space constant. 
Histograms indicate distributions of cmax (left) and dhalf (right) for 10,000 bootstrap 
replications of the inhibitory PV+ interneuron–GC connections (Fig. 3.5). Red arrows 
indicate experimental mean values for GC–PV+ interneuron synapses. (b) Number of 
reciprocally coupled GC–PV+ interneuron pairs (excitatory and inhibitory synapse; 
“recurrent inhibition motif”) and unidirectionally coupled PV+ interneuron–GC pairs 
(inhibitory synapse only; “lateral inhibition motif”). Note that the number of lateral 
inhibition motifs was almost 10-times higher than that of recurrent inhibition motifs, 
demonstrating the high abundance of lateral inhibition in the dentate gyrus 
microcircuit. 

 

 

 

Brain region pIE / pEI
a nlateral / nrecurrent 

b Reference 

Visual and  

somatosensory cortex 
0.99 0.13 Holmgren et al., 2003 

Visual cortex 2.5 2.0 Yoshimura and Callaway, 2005 

Presubiculum superficial 1.04 1.3 Peng et al., 2017 

Presubiculum deep 0.68 0.67 Peng et al., 2017 

Entorhinal cortex  1.5 1.1 Couey et al., 2013 

Dentate gyrus 3.7 10.0 This work 

 

Table 2: Abundance of lateral inhibition in different brain regions. 
(a) pIE / pEI indicates the ratio of mean inhibitory IN–PN to mean excitatory PN–IN 
connection probability. (b) nlateral / nrecurrent represents the ratio of the number of lateral 
inhibition motifs and recurrent inhibition motifs in all recorded PN–IN pairs. 
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3.1.4 Connectivity rules for mutual inhibition of PV+ interneurons 

 

Then, we analyzed the functional connectivity rules for synapses between 

interneurons (Fig. 3.9). Chemical inhibitory synapses between PV+ interneurons 

showed a connectivity pattern that was more focal than that of inhibitory PV+ 

interneuron–GC synapses (Fig. 3.9a, b). Likewise, electrical synapses between PV+ 

interneurons (Galarreta and Hestrin, 1999, 2001; Bartos et al., 2001) showed a focal 

innervation pattern (Fig. 3.9c, d). Bootstrap analysis revealed that maximal 

connectivity was significantly higher, while the space constant was significantly shorter 

for inhibitory PV+–PV+ interneuron synapses than for PV+ interneuron–GC synapses 

(P = 0.0001 and P = 0.0036 respectively). Furthermore, recordings from GCs and 

multiple PV+ interneurons provided direct evidence for the suggestion (Galarreta and 

Hestrin, 1999) that EPSPs propagate through gap junctions, although the peak 

amplitude is markedly attenuated (Fig. 3.10). Taken together these results indicate 

that connectivity rules in PN–IN microcircuits are synapse-specific. Different 

connectivity rules apply to excitatory and inhibitory synapses between PNs and INs 

(GC–PV+ versus PV+–GC), and to inhibitory synapses terminating on different 

postsynaptic target cells (PV+–GC versus PV+–PV+ synapses). 
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Figure 3.9: Connectivity rules for chemical and electrical connections between 
PV+ interneurons. 
(a) Left, light micrograph of a biocytin-labeled PV+ interneuron–PV+ interneuron pair. 
Right, unitary inhibitory postsynaptic currents (IPSCs), with individual synaptic 
responses (gray) and average trace (red, 15 traces) in the same pair. (b) PV+ 
interneuron–PV+ interneuron chemical connection probability (left) and IPSC peak 
amplitude (right) plotted versus intersomatic distance. Connection probability data 
points were fit with a sigmoidal function; IPSC amplitude data were analyzed by linear 
regression. Maximal connection probability was 58.1%, and space constant was 141 
μm. (c) Electrical coupling between two PV+ interneurons. Voltage changes in the 
pre- and postsynaptic cell caused by the injections of long polarizing current pulses 
(left, +200 pA; right, −200 pA; 200 ms) in one of the coupled cells. (d) PV+ 
interneuron–PV+ interneuron electrical connection probability (left) and coupling 
coefficient (right) plotted versus intersomatic distance. Maximal connection 
probability was 77.3%, and space constant was 146 μm. The coupling coefficient 
(CC) was calculated as the mean ratio of steady-state voltages (V2 / V1, V1 / V2) during 
application of current pulses in one of the cells (cell 1 and cell 2, respectively). 
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Figure 3.10: Propagation of evoked EPSPs in PV+ interneuron networks via gap 
junctions. 
(a) Simultaneous recording from a GC and two PV+ interneurons. APs in the GC led 
to monosynaptic EPSPs (current-clamp conditions) or EPSCs (voltage-clamp 
conditions) in the first PV+ interneuron. (b) The two recorded PV+ interneurons were 
couples by gap junctions. (c) Propagation of EPSPs from PV+ interneuron 1 (red) to 
PV+ interneuron 2 (black). APs in the GC led to EPSCs with peak amplitude < 5 pA 
in the second PV+ interneuron. These excitatory synaptic events were apparently 
propagated via gap junctions (Galarreta and Hestrin, 1999).   

 

 

Finally, to validate our distance-dependence measurements (Fig. 3.5), we further 

included a second method for analyzing connection probabilities across the dentate 

gyrus while considering the anatomy of the whole structure. Specifically, we measured 

the distance-dependence of the connectivity of a subset of pairs (GC–PV+ interneuron 

and PV+–PV+ interneuron pairs) taking into account that GCs are tightly packed 

forming a “c-shaped structure” (Fig. 3.11). These results were comparable to the one 

obtained with the tip-to-tip somatic assessments (Fig. 3.5b, e and 3.9b). Thus, 

together to the axon length analysis (Fig. 2.1), we further validate the measurements 

of our probabilistic distance connectivity.  
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Figure 3.11: Distance-dependent measurements based on dentate gyrus 
shape. 
(a) Light micrograph of a biocytin-labeled PV+ interneuron and four GCs (left). Note 
the curved shape of the granule cell layer (GCL). ML: molecular layer. Right collage 
of light micrographs in which eight pipettes are attached to seven GCs (1–7) and one 
PV+ interneuron (8), the somas are indicated by numbers. The intersomatic-distance 
between pairs was calculated using the mean of two values (d1, d2). d1 corresponds 
to the sum of the perpendicular distance (white-dashed line) from the soma of neuron 
1 to the outer-limit of the GCL (blue dashed-line), plus the perpendicular distance 
from the soma of neuron 2 to the outer-limit of the GCL, plus the outer-border of the 
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GCL that lies between the two measured neurons. d2 was calculated as the sum of 
the perpendicular distance (white-dashed line) from the soma of the neuron 1 to the 
inner-limit of the GCL (yellow dashed-line), plus the perpendicular distance from the 
neuron 2 to the inner-border of the GCL, plus the inner-border of the GCL between 
the two measured cells. (b) From top to bottom: histograms for the number of 
connection tested versus intersomatic distance (corrected by the dentate gyrus “c” 
shape) and connection found versus corrected-intersomatic distance. Connection 
probabilities were calculated using the above information for GC–PV+ interneuron 
pairs. (c, d) Same measurement than (b) but for PV+ interneuron–GC pairs and PV+– 
PV+ interneuron pairs respectively. Note the shape of the curves for the connection 
probabilities of the three type of connections were similar to the curves obtained from 
intersomatic-distance estimated using the Euclidian tip-to-tip measurements (see 
Fig. 3.5b, e, and 3.9b).   

 
 

 
3.1.5 Microscopic connectivity rules and connectivity motifs  

 

Previous studies demonstrated that recurrent principal neuron–interneuron 

connectivity motifs are enriched above the chance level expected for a random 

network in several cortical microcircuits (Holmgren et al., 2003; Yoshimura et al., 2005; 

Larimer and Strowbridge, 2008; Couey et al., 2013; Peng et al., 2017). To test this 

hypothesis in the dentate gyrus, we analyzed the abundance of all 25 possible 

disynaptic connectivity motifs in our sample (Fig 3.12); (Schröter et al., 2017). To 

probe whether connectivity was random (Erdös and Rényi, 1959) or non-random 

(Song et al., 2005; Perin et al., 2011; Cossell et al., 2015; Jouhanneau et al., 2015; 

Guzman et al., 2016), we compared motif numbers in our experimental data to a 

simulated data set assuming random connectivity with experimentally determined 

distance-dependence connection probabilities (Fig. 3.12a, b).  

 Among the 25 possible disynaptic motifs, four types of motifs were 

significantly enriched above the chance level: 1) Gap junction connections between 

PV+ interneurons, 2) mutual inhibition motifs (PV+ interneuron–PV+ interneuron 

connections) combined with gap junction connections (Rieubland et al., 2014), 3) 

convergence motifs (connections of multiple GCs on a single PV+ interneuron), and 4) 

divergence motifs (connections of one PV+ interneuron onto multiple GCs; Fig. 3.12b; 

P < 0.05 after Benjamini-Hochberg correction for multiple comparisons). Similar 

results were obtained for comparison with uniform and distance-dependent random 

models (Methods). Surprisingly, reciprocal GC–PV+ interneuron motifs were not 

significantly enriched.  
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 Previous studies further demonstrated that the amplitude of unitary IPSCs is 

higher in bidirectionally than in unidirectionally connected PN–IN pairs (Yoshimura et 

al., 2005). In contrast, in the dentate gyrus neither the amplitude of EPSCs nor that of 

IPSCs was significantly different between bidirectionally and unidirectionally 

connected GC–PV+ interneuron pairs (Fig. 3.12c). However, the amplitude of IPSCs 

was significantly larger in PV+ interneuron–PV+ interneuron pairs coupled by reciprocal 

inhibitory synapses (Fig. 3.12d). Taken together, these results indicate that in the 

dentate gyrus, like in other cortical areas, synaptic connectivity of PV+ interneurons is 

nonrandom. However, both the types of enriched motifs and the rules setting synaptic 

strength differ among circuits 
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Figure 3.12: Overabundance of disynaptic connectivity motifs in GC–PV+ 
interneuron networks and different functional properties of synaptic motifs.    
(a) Graph analysis of disynaptic connectivity motifs. In total, there are five possible 
disynaptic connectivity motifs with two cells and 20 disynaptic motifs involving three 
cells. Arrows with open triangles indicate excitatory synapses, arrows with filled 
circles represent inhibitory synapses, and arrows with zigzag lines indicate gap 
junctions. Number indicates motif index. (b) Analysis of the number of motifs in 
10,000 simulated data sets. Connection probability for the simulated data set was 
specified according to the experimentally determined spatial rules. Left, absolute 
motif number in experimental (black) and simulated data set (red, median; gray, 90%-
confidence interval). Center, bar plot of relative abundance of various motifs (number 
of motifs in experimental data set over the mean number in simulated data set). Error 
bars were taken from bootstrap analysis. Right, bar plot of z score of the different 
motifs. Light red area indicates z score in the interval [−1, 1]. Motifs 2, 3, 7, and 9 
were significantly enriched above the chance level (P = 0.03145, 0.0085, 0.0272, and 
0.0068 after multiple comparison correction). In contrast, motifs 6, 8, 10, 12, and 16 
were slightly, but not significantly underrepresented (P = 0.15 for motif 6). Note that 
motifs 5, 17, 19–21, and 23–25 were not encountered in the present data set, 
because of the lack of connectivity between GCs. (c) Comparison of EPSC peak 
amplitude (left) and IPSC peak amplitude (right) in bidirectionally versus 
unidirectionally coupled GC–PV+ interneuron pairs. Peak amplitudes were not 
significantly different (P = 0.33 and 0.58, respectively). (d) Comparison of IPSC peak 
amplitude in PV+ interneuron–PV+ interneuron pairs connected by different chemical 
or electrical synapse motifs. IPSC peak amplitude was significantly larger in pairs 
with bidirectional inhibitory connections than with unidirectional connections (P = 
0.016) and slightly higher in connections with than without gap junctions (P = 0.057). 
Asterisk indicates P < 0.05. 
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3.2 Computational results 

 

3.2.1 Full-size network models to perform pattern separation 

 

Our results demonstrate that the dentate gyrus has circuit-specific connectivity rules. 

Whether or not these rules support pattern separation is unclear. To address this 

question, we developed a realistic PN–IN network model of the dentate gyrus (Fig. 

3.13a, 2.2). We simulated the network in full-size, with 500,000 GCs (Amrein et al., 

2004); represented as integrate-and-fire (IF) neurons and 2,500 PV+ interneurons 

(implemented as single-compartment conductance-based models). Connectivity rules 

of excitatory and inhibitory synapses in GC–PV+ interneuron pairs, mutual inhibition, 

and gap junctions were implemented in accordance with experimental observations 

(Fig 3.5, 3.9). At the network input, 50,000 ECs were attached. The EC–GC 

connectivity was constrained by the width of the entorhinal cortex neuron axons (20% 

of the dentate gyrus along the longitudinal axis (Tamamaki and Nojyo, 1993) and the 

number of spines on the dendrites of GCs (~5,000; (Desmond and Levy, 1985; 

Schmidt-Hieber et al., 2007)). As gamma oscillations may contribute to WTA 

mechanism (de Almeida et al., 2009), an inhibitory conductance was initiated at the 

beginning of each simulation epoch (de Almeida et al., 2009). Since gamma 

oscillations show high power in the dentate gyrus (Pernía-Andrade and Jonas, 2014; 

Strüber et al., 2017), this also contributes to the realism of the model.  

Simulation of pattern separation was performed in four steps (Fig. 2.2). First, 

hundred correlated binary activity patterns were applied in ECs. Second, 

corresponding patterns of driving current in GCs were computed from the upstream 

neuron activity vector and the connectivity matrix between ECs and GCs, representing 

the expansion of coding space from the entorhinal cortex to the dentate gyrus (Cayco-

Gajic et al., 2017). Third, spiking activity (output patterns) was simulated for all 

patterns of driving current (input patterns). Then, pairwise correlation coefficients were 

computed for input and output patterns and plotted against each other. We quantified 

the network performance with three measures (methods). First, we measured the 

efficacy of patterns separation using a pattern separation index (), defined as the 

normalized area between the data point and the identity line (Fig. 2.2). For the 

standard parameter set (Table 1), the plot of output versus input correlation was highly 

nonlinear, with a  of 0.560 (Fig 3.13c), as expected for an efficient pattern separator 
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(Leal and Yassa, 2018). Second, we computed the reliability of pattern separation  

from the correlation of the ranked R values; for standard parameters, this value was 

0.98 (Fig. 3.13d). Finally, we measured the maximal gain of pattern separation  from 

the slope of the input-output correlation for Rin  1. In the standard model,  was 11.1, 

implying that small differences in input patterns are converted into large differences in 

output patterns (Fig. 3.13e). 
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Figure 3.13: A biological realistic principal neuron–interneuron network 
generates efficient pattern separation. 
(a) Schematic illustration of the structure of a biologically realistic model of the 
dentate gyrus. Left, partial reconstruction of one GCs and two PV+ interneurons. 
Right, schematic of the connection probability distribution for excitation (light blue, 
cEI) and inhibition (red, cIE), these values were obtained for experimental data (Fig. 
3.5) and incorporated in the model. (b) Schematic illustration of WTA mediated by 
lateral inhibition for pattern separation. Only GCs (circles) and INs (triangles) are 
depicted. Blue indicates cell activity, with intensity reflecting the level of excitatory 
synaptic drive. Left, activity pattern A, right, activity pattern B. Top, network in the 
absence of inhibition, bottom, network in the presence of inhibition. (c) Raster plots 
of AP generation in PNs (right, black) and INs (left, red). Each point represents an 
AP. (d–f) Output–input function in a network with standard parameter settings. Data 
points represent pairwise correlation coefficients between input patterns (excitatory 
drive, Rin) and corresponding output patterns (AP activity, Rout). (d) Left, dashed red 

line indicates identity. With standard parameter settings,  (determined from the area 
between data points and identity line) was 0.560, demonstrating efficient pattern 
separation. Left, illustration shows three different regimes in the graph (a, pattern 
completion; b, pattern identity; c, pattern separation). (e) Furthermore, the reliability 

of pattern separation  was computed as the correlation of ranked Rout versus ranked 

Rin data. (f) Finally, the gain  of pattern separation, determined from the maximal 
slope of a polynomial function fit to the data for x → 1, was 11.2, demonstrating that 
the network amplifies small differences in the input patterns into large differences in 
the output patterns. Blue curve indicates fit function, and the blue line represents the 
corresponding tangent. For details, see Methods. 

 

 

Similar results were obtained when the tonic EC–GC drive was replaced by fast 

excitatory synaptic waveforms (Fig. 3.14a). Likewise, efficient pattern separation was 

also observed in a network model that incorporated feedforward activation of 

interneurons; the value of  was even slightly higher than in the standard network (Fig 

3.14). Taken together, a biologically realistic PN–IN network is able to efficiently and 

reliably perform pattern separation computations. 

 

 

 

 

 
 
 
 
 
 
 
 
 



Chapter 3: Results 

 

69 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.14: A network model with realistic EC–GC synaptic properties and 
feedforward inhibition can perform efficient pattern separation. 
(a) Simulated membrane potentials of a principal neuron (top) and an interneuron 
(bottom) in a model with realistic EC–GC synaptic input represented by Poisson 
trains of APs at different frequencies. (b) Input-output correlation curves for standard 
model with tonic excitatory drive (left; Iμ = 1.6) and a model in which excitatory drive 
was generated by Poisson trains of EPSPs in GCs (right; fPP = 18.8 Hz, activation 
frequency was chosen to give Iμ ≈ 1.6). Note that the randomness of the input trains 
resulted in a drop of the output correlation for input correlation values approaching 1, 

because an additional random process is added to the system. (c) Dependence of  
on activity frequency of the perforant path synapses. The synaptic weight of EC–GC 
synapses was set to JEC–GC = 0.002 in all simulations. Activation frequency was 
chosen to approximately match Iμ = 1, 1.2, 1.4, 1.6, and 2.0 in the standard model. 
(d) Schematic illustration of the network model incorporating feedforward inhibition. 
ECs innervate GCs and INs with similar connectivity rules. The tonic excitatory drive 
in an individual IN is computed from the drive from the nearest GC as: IμI [i] = IμE [ i / 
nI x nE] / < IμE > x Iμ,I , i = 1 … nI, where IμI [i] is the excitatory drive in the ith interneuron 
(unitless), IμE [i] is the excitatory drive in the ith GC, nI is the number of INs, nE is the 
number of GCs, < IμE > is the average excitatory drive overall GCs, and Iμ,I is the 
chosen excitatory drive in the INs (in pA). (e) Input-output correlation function in a 
control network (left) and in a network incorporating feedforward drive to INs (right). 

(f) Dependence of  on feedforward drive on INs. Black bar, default value (no 
feedforward drive); light red bars, larger values (increased feedforward drive). Note 

that  is slightly increased by the incorporation of feedforward excitation of INs.  
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3.2.2 Lateral inhibition is a primary mechanism underlying pattern separation 

 

To identify the key mechanisms underlying pattern separation in the network model, 

we systematically varied the biologically relevant parameters (Fig. 3.15). First, we 

changed the amplitude of the excitatory synaptic drive (Iμ) and the inhibitory gamma 

input (Jgamma) in the network, parameters expected to affect thresholding properties of 

input-output conversion (Fig. 3.15a). Pattern separation was highly dependent on both 

parameters. Contour plot analysis revealed that the combination of small excitatory 

synaptic drive with small gamma input provided efficient pattern separation (Fig. 

3.15b). As the excitatory drive was increased, a higher inhibitory gamma input was 

required to maintain the efficacy of pattern separation. Thus, the balance between 

excitatory drive and inhibitory gamma input determined the efficacy of pattern 

separation. Then, we tested the contribution of lateral inhibition to pattern separation 

in the network model (Fig. 3.15c). Reducing the strength of either excitatory EI or 

inhibitory IE connections (JEI, JIE) reduced pattern separation efficacy  substantially 

(Fig. 3.15c). Furthermore, complete elimination of both excitatory EI and inhibitory IE 

synapses severely impaired pattern separation. Contour plot analysis of  against Iμ 

and Jgamma in the absence of lateral inhibition revealed  values > 0.5 were only 

obtained in a small part of the parameter space (Fig. 3.15d). 
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Figure 3.15: A winner-takes-all mechanism by lateral inhibition plays a critical 
role in pattern separation. 
(a) Output–input functions for changes in network parameters in comparison to 
default values. Left to right, Iμ was set to 1, while external inhibitory gamma drive 
Jgamma was set to 0.5 or 3.5; then Iμ was set to 2.0 while changing Jgamma as before. 
Note that efficient pattern separation was observed in all scenarios except the 

condition with low excitatory drive and high Jgamma (where  activity was 0). (b) 

Contour plot of  against the mean excitatory drive (Iμ, abscissa) and amplitude of 

external inhibitory gamma drive (Jgamma). Contour lines indicate ; warm colors 
represent high values, and cold colors denote low values. In the gray part of the plot, 

the correlation between input and output patterns was  < 0.1 or activity  was > 0.8. 
Note efficient pattern separation in a large subregion of the Iμ–Jgamma parameter 
space. (c,d) Lateral inhibition is necessary for efficient pattern separation. (c) Contour 

plot of  against the mean excitatory drive (Iμ, abscissa) and amplitude of external 
inhibitory gamma drive (Jgamma) after complete elimination of lateral inhibition (cEI = 0, 
cIE = 0). Note efficient pattern separation in only a minimal subregion of the Iμ–Jgamma 
parameter space. (d) Effects of changes in synaptic strength of excitatory EI 

synapses (JEI) and inhibitory IE synapses (JIE). Black bars indicate  for standard 
parameter settings; light blue bars represent reduced values; light red bars indicate 
increased values in comparison to standard values. Note that the reduction in both 

JEI and JIE reduces the  value.  
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Next, we determined how the properties of the synaptic input from ECs 

contribute to pattern separation through the code expansion mechanism (Marr, 1969; 

Albus, 1971; Cayco-Gajic et al., 2017). To address this, we varied the number of 

entorhinal cells (nEC), the average EC activity level (αEC), and peak value and width of 

EC–GC connectivity (cEC–GC and σEC–GC; Fig. 3.16b). Increasing the number of ECs 

decreased , whereas decreasing the number increased it. Likewise, increasing the 

average EC activity decreased , whereas reducing the activity had the reverse effect. 

Furthermore, increasing the EC–GC connection probability and the width decreased 

, whereas decreasing probability or width led to opposite changes (Fig. 3.16b). 

Effects of connection probability and width were similar when the GC drive values were 

shuffled, indicating that spatial correlations in the input played only a minor role in 

pattern separation (Fig. 3.16c, d). Taken together these results suggest that the 

properties of the excitatory synaptic input influence pattern separation, but 

quantitatively play a relatively minor role. Thus, these results emphasize the 

importance of lateral inhibition for the pattern separation computation. 
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Figure 3.16: Effects of structured EC–GC connectivity on pattern separation. 
Schematic illustration of the entorhinal cortex input to GCs. (b) Divergent connectivity 
between ECs and GCs is important for efficient pattern separation. From left to right, 

effects of changes in the number of ECs (nEC), average activity (EC), maximal 

connection probability of EC–GC connectivity (cEC–GC) and width of EC–GC 

connectivity (σEC–GC). Note that high expansion ratio (nGC / nEC), sparse activity (EC), 

and sparse EC–GC connectivity facilitate efficient pattern separation. (c)  for 
different values of peak connectivity probability (cEC–GC, left) and width of entorhinal 
connectivity (σEC–GC, right) for a network in which the excitatory drive in GCs was 
shuffled. Note that the results are only minimally different from those in the standard 
network (b). (d) Effects of structural connectivity rules of EC–GC connections. EC–
GC connectivity was either completely random, completely structured so that EC–
GC synapses were formed within a full connectivity disc, or showed mixed properties. 

Left, bar graph of pattern separation efficiency  for different proportions of 
nonrandom connections. Black bar, fraction of nonrandom connections fNR = 0; i.e. 
all connections random; light red bars, enhanced structured connectivity (fNR = 0.2 to 

1, 1 = all connections structured). Right, a plot of pattern separation efficiency  (red), 

reliability  (green), gain , and average activity  as a function of the fraction of 
nonrandom connections. PP (perforant path). 

 
 
 
3.2.3 Focal connectivity and fast interneuron signaling ensure efficient pattern 

separation 

 

The high pattern separation efficacy was surprising because the network model 

contains experimentally determined focal connectivity rules for both excitatory EI and 

inhibitory IE synapses (Fig. 3.5). In contrast, an efficient WTA mechanism may require 

lateral inhibition with long-range connectivity to ensure that a winner suppresses all 

non-winners in the network. To resolve this apparent contradiction, we explored the 

effects of focal EI and IE connectivity in the network model (Fig. 3.17). To address the 

effects of focal connectivity in isolation, we maintained the total connectivity (i.e., the 

area under the connection probability–distance curve) through compensatory changes 

of maximal connection probability and, if required, synaptic strength (Fig. 3.17a). 

Increasing the width of connectivity for both excitatory EI and inhibitory IE synaptic 

connections reduced ; particularly large changes were observed when focal 

connectivity was fully replaced by global connectivity. Thus, unexpectedly, focal PN–

IN connectivity supported pattern separation more effectively than global connectivity.  

Next, we examined the effects of combined changes in the width of excitatory 

EI and inhibitory IE connectivity (Fig. 3.17b). As in the previous set of simulations, we 

maintained the total connectivity. Contour plot analysis confirmed that focal 

connectivity supported pattern separation more effectively than broad connectivity. 
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However, the effects of changes in the width of excitatory EI and inhibitory IE 

connectivity were asymmetric. Thus, a high  was obtained in an asymmetric 

configuration in which the excitatory EI was more focal than the inhibitory IE 

connectivity (Fig. 3.17b). This effect was consistent with experimental observations 

that excitatory EI is more focal than inhibitory IE connectivity (Fig. 3.5). Thus, 

asymmetric connectivity effectively supported pattern separation. 

Why does focal connectivity support pattern separation better than global 

connectivity? One possibility is that the effects of focal connectivity might be a 

consequence of changes in average latency, which are shorter in a focally connected 

network than in an equivalent random network. To test this hypothesis, we examined 

the effects of changes in axonal action AP velocity at excitatory EI and inhibitory IE 

synapses on pattern separation. Slower conduction velocity reduced , whereas faster 

conduction velocity increased it, for both excitatory EI and inhibitory IE synapses (Fig. 

3.17c, top). To test whether changes in synaptic latency fully account for the functional 

differences between focal and random networks, we changed the space constant 

while maintaining the kinetic properties of disynaptic inhibition through compensatory 

changes of the delay (Fig. 3.17c, middle, and bottom). Notably, differences in latency 

almost entirely compensated the effects of changes in connectivity. Thus, focal 

connectivity and fast biophysical signaling in GC–PV+ interneuron microcircuits play 

synergistic roles in pattern separation (Fig. 3.17d). 
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Figure 3.17: Focal connectivity and fast lateral inhibition enhance pattern 
separation performance. 

(a) Effects of focal connectivity on pattern separation. Summary bar graph of  for 
different values of excitatory σEI (left) or inhibitory σIE (right) in the network. Right bar 
in each bar graph represents uniform random connectivity. Peak connectivity was 
adjusted to maintain the total number of synaptic connections (i.e., the integral under 

the connection probability–distance curve). (b) Contour plot of  against width of 
excitatory EI connectivity (σEI) and inhibitory connectivity (σIE). Note that networks 
with focal connectivity show more efficient pattern separation than networks with 
broad connectivity. Also, note that asymmetry in spatial connectivity rules supports 
pattern separation. This effect is consistent with the experimental observation of focal 
excitatory EI connectivity versus the broader inhibitory IE connectivity (Fig. 3.5). (c) 
Top, effects of fast interneuron signaling on pattern separation. Summary bar graph 

of  for different AP propagation velocity values for both excitatory EI (left) or 
inhibitory IE connectivity (right) in the network. Bottom, effects of focal connectivity 
and signaling speed are closely interrelated. Comparison of effects of changes in the 
width of EI and IE synapses after compensatory adjustment of both connectivity and 
delay to maintain the value under control conditions. Note that broadening of 
connectivity fails to reduce pattern separation performance in the presence of delay 
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adjustment. Thus, the beneficial effects of focal innervation are largely generated by 
faster signaling. (d) Schematic illustration of how spatial connectivity rules shape 
pattern separation. (1) Focal connectivity speeds lateral inhibition and enhances the 
efficacy of the WTA mechanism. (2) Broad connectivity slows lateral inhibition and 
reduces the efficacy of the WTA mechanism. (3) Symmetric connectivity with similar 
spatial rules of excitatory PN–IN synapses and inhibitory IN–PN synapses may fail 
to increase the range of lateral inhibition, because excitatory PN–IN synapses and 
inhibitory IN–PN synapses may statistically run in opposite directions. (4) Asymmetric 
connectivity with different spatial rules for excitatory PN–IN synapses and inhibitory 
IN–PN synapses efficiently increases the range of lateral inhibition for the same axon 
length. 

 

 

3.3 Silencing the activity of PV+ interneurons in vivo impairs pattern separation  

 

Our previous results show that inhibition is highly relevant for decorrelating neuronal 

activity patterns in the dentate gyrus. Moreover, we showed that PV+ interneurons are 

highly connected to GCs through lateral inhibition (Fig. 3.4) and our network 

simulations show that fast signaling is highly relevant for pattern separation through 

WTA mechanism (Fig. 3.17). These findings strongly support the involvement of PV+ 

interneurons in pattern separation. To test the behavioral relevance of these findings, 

we selectively silenced the activity PV+ interneurons by pharmacogenetics. Bilateral 

injections of AAV encoding an inhibitory DREADD (hM4Di) into the dentate gyrus of 

PV-Cre adult male mice postnatal day 60–90 were performed in the experimental 

group. In contrast, the control group received AAV injections encoding only a 

fluorophore (mCherry) (Fig. 3.18a). After two weeks of the intracranial injections, mice 

performed in a fear contextual discrimination task, in which the level of freezing was 

measured as an indicator for discriminating between an environment A (where a foot-

shock was delivered) and a similar environment B (Fig. 3.18b). All mice (from the 

experimental and control group) received a daily dose of CNO, 30 minutes before the 

behavioral trails started. 

When PV+ interneurons were silenced, mice exhibit normal acquisition and 

retrieval of fear memories (Fig. 3.18c, d), but failed to discriminate between similar 

environments, when they were acutely exposed to both contexts (during the same test 

day) (Fig. 3.18e). However, after repeated exposure to the environments the 

difference between experimental and control group was lost (Fig. 3.18f). These results 

are preliminary, and further experiments needed to study the effects of fear 
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generalization on pattern separation and the long-term relevance of PV+ interneurons 

(or other interneuron types) on contextual pattern discrimination.    
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Figure 3.18: Silencing the activity of PV+ interneurons in vivo acutely impairs 
discrimination between similar contexts. 
(a) Illustration of bilateral virus injection into the dentate gyrus and confocal images 
of coronal sections of the dentate gyrus. Middle, labeling of basket cells (BC) in PV-
Cre mice injected with AAVdj-DIO-mCherry (control group). Right, mice injected with 
AAVdj-DIO-hM4Di-mCherry (experimental group). (b) Illustration of the behavioral 
protocol. (c) Contextual fear conditioning during three consecutive days showed no 
difference in the acquisition of fear memories between experimental and control. (d) 
Due to the similitude of the contexts, moderate fear generalization occurred in the 
experimental and control group, since animals showed the same freezing levels in 
both contexts (A and B). (e) Day 6 corresponds to the first exposition to both 
environment A and B during the same day. Control group showed statistically 
significant less freezing in context B in comparison to A, indicating discrimination 
between contexts. However, in mice with silenced PV+ interneuron activity, no 
difference in the freezing level was observed between the contexts, indicating 
impairment in contextual fear discrimination test. (f) Discrimination ratio 
(Freezingcontext A / (Freezingcontext A + Freezingcontext B) during ten consecutive days. 
There was no statistically significant difference between groups (except for the days 
6 and 13). However, mice with silenced PV+ interneuron activity tended to show lower 
discrimination ratios than the control group.  
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Chapter 4 

DISCUSSION 

 

 

The identification of the structural bases of complex behaviors has inspired scientific 

curiosity from the beginning of the neuroscience field (Ramón y Cajal, 1911). Pattern 

separation is a form of information processing underlying neuronal representations 

that in the context of episodic memory, the dentate gyrus has a prominent role. 

Moreover, the dentate gyrus circuit underneath a unique property of the hippocampus: 

memory traces are created and maintained as temporary repositories that can be 

recalled from a network with limited storage capacity (Marr, 1971). These constraints 

could be overcome by decorrelating firing patterns, which not only improve the 

discrimination of similar behavioral relevant experiences but also increase the number 

of events that can be stored. Based on our experimental and computational 

approaches, we provide evidence that the local circuits of the dentate gyrus are 

optimized for accomplishing efficient pattern separation, with behavioral relevant 

consequences. Specifically, we showed that local GCs–PV+ interneuron circuit is 

organized to maximize the separation of input patterns using WTA as the primary 

mechanism. At the connectivity level, we found PV+ interneurons mediating strong 

lateral inhibition, having an asymmetric distribution of the excitatory and inhibitory 

connectivity, and organized in specific disynaptic motifs of PNs and INs. At the 

theoretical level, we showed that fast inhibitory signaling mediated by PV+ 

interneurons, together with structured PN–INs connectivity rules work in synergy with 

the input properties of the dentate gyrus for efficient pattern separation. Finally, these 

findings were supported by behavioral data showing the involvement of PV+ 

interneurons in the emergence of pattern separation in a behavioral task.  
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4.1 Synapse-specific connectivity of PV+ interneuron networks 

 

Despite PV+ interneurons constituting only 15% of the GABAergic interneurons in the 

hippocampus (Hosp et al., 2014), they predominantly connect to GCs in comparison 

to other interneuron types (Fig. 3.4). Besides, the synaptic strength of excitatory and 

inhibitory synapses involving PV+ interneurons is higher than those containing CCK+ 

and SST+ interneurons (Fig. 3.3c; 3.5a, d), as previously described (Bartos and 

Elgueta, 2012; Pfeffer et al., 2013). However, we cannot exclude the possibility that 

for distal SST+–GC synapses connectivity may be underestimated, because of 

substantial attenuation of synaptic signals by cable filtering. Nonetheless, our results 

demonstrate that the rules of functional connectivity of GC–PV+ interneuron networks 

in the dentate gyrus fundamentally differ from those in other cortical circuits (Table 2). 

Thus, the main structural properties of the dentate gyrus can be summarized in 

distance dependence GC–PV+ interneurons connectivity (Fig. 3.5b, e) associated to 

an asymmetrical distribution of connections (Fig. 3.17d) with a predominance of lateral 

inhibition (Fig. 3.5h).  

The distance dependence of connectivity seems to be a topological 

organization, circuit-specific and strongly related to the structure of the input (Levy and 

Reyes, 2012). Previous patch-clamp recordings have shown in layer 2/3 of the 

somatosensory and visual cortex that PN–PN connectivity decreases from 10% (< 25 

µm) to less than 1% for distances further than 200 µm apart (Holmgren et al., 2003). 

Similarly, in layer V of the somatosensory cortex, the drop-off the connectivity goes 

from 20% to 5% for the same distances (Perin et al., 2011). In general, these 

probabilistic distributions have a bell-shaped profile that drops to near zero with broad 

intersomatic distances. Interestingly, this probabilistic connectivity distribution is 

absent among PNs in the CA3 network (Guzman et al., 2016). Regarding the mapping 

of the interneuron connectivity across brains regions, several techniques have been 

used such as patch-clamp, calcium imaging and optogenetics, which could explain the 

difference in the reported results. High connectivity has been shown in PNs–PV+ 

interneurons networks in the V1 (Holmgren et al., 2003; Ko et al., 2011), decreasing 

slowly with the distance (Holmgren et al., 2003), similarly to our results. Interestingly, 

one study using two-photon glutamate uncaging reported differences in the connection 

probabilities of PNs–PV+ interneurons pairs for intersomatic-distances inferior to 200 

µm while comparing different neocortical regions (Packer and Yuste, 2011). However, 



Chapter 4: Discussion 

 

81 

 

the same study highlights the presence of random connectivity between PV+ 

interneurons–PNs. 

In addition, our results show that the local excitatory connectivity associated 

with broad inhibitory connectivity leads to an asymmetrical distribution of connections 

(Fig. 3.5b, e, 3.17d). In our biological inspired model, this topology seems to be highly 

relevant for pattern separation computation, as it is further discussed in the next 

section (Fig. 3.17). Finally, the unidirectional inhibitory connections are ~10-times 

more frequent than reciprocal connections, demonstrating a strong prevalence of 

feedback thought lateral inhibition, which seems to be specific to the dentate gyrus 

(Table 2). In contrast, in presubiculum, visual, somatosensory, and entorhinal cortex 

reciprocal connections are equally or more abundant than unidirectional connections, 

implying feedback inhibition mediated by recurrent inhibition (Table 1). This finding 

makes us questioning about the functional meaning of two forms of feedback inhibition 

involving the same interneuron type. The predominance of feedback inhibition with 

reciprocal PNs–PV+ interneurons connections may respond to a specific form of 

information processing. In sensory circuits, the abundance of reciprocal connections 

is observed between neuronal pairs sharing similar receptive fields or common 

intra\inter-laminar inputs (Yoshimura et al., 2005; Ko et al., 2011; Cossell et al., 2015). 

Also, in the neocortex, the high activity of PN requires a mechanism to establish 

excitation–inhibition balance; reciprocal PN–IN connectivity seems well suited for this 

purpose (Wiechert et al., 2010). In contrast, in the dentate gyrus, the PN activity is low, 

and such a balancing function may not be required (Pernía-Andrade and Jonas, 2014; 

Pilz et al., 2016; Danielson et al., 2017; GoodSmith et al., 2017; Senzai and Buzsáki, 

2017). Regarding the synchronization of neuronal activity, feedback networks 

mediated by reciprocal PN–IN connectivity could contribute to the generation of slower 

network oscillations in these brain regions (such as lower gamma or beta frequency 

range), which are characteristic for the neocortex. 

 

 

 

 

 

 

 



Chapter 4: Discussion 

 

82 

 

4.2 More about non-random organization, connectivity motifs 

 

Connectivity motifs correspond to topological patterns of neuronal organization that 

may be related to specific forms of information processing. Modeling work has 

suggested a functional role in modulating the dynamical properties of a network, 

synchronization, and transition between periodic to chaotic behaviors of a neuronal 

system (Zhigulin, 2004; Prill et al., 2005; D’Huys et al., 2016). Thus, neuronal motifs, 

together with the description of probabilistic connectivity distribution may reflect not 

only the architectural nature but also the intrinsic functional properties of a network.  

In the dentate gyrus, while analyzing all possible disynaptic connectivity motifs, 

we observed that convergence, divergence and mutual inhibition motifs are statistically 

overrepresented (Fig. 3.11a, b). This above-chance representation of disynaptic 

motifs has also been found in cerebellar networks, where feedforward triplets and 

overlap of chemical and electrical synapses is also described (Rieubland et al., 2014). 

Divergent and convergent motifs have received more attention in the microcircuits of 

the inner retina, in which asymmetric wiring motif of the bipolar cells contribute to the 

feature-oriented representation of the visual world (Euler et al., 2014). In the central 

nervous system, the high abundance of convergence and divergence motifs are 

consistent with scale-free structural properties, which may enhance the robustness of 

network computations, as previous modeling work suggested (Barabási and Albert, 

1999; Albert et al., 2000). Additionally, this fine-circuit design seems to be early 

specified during the development, as it is evidenced by hub GABAergic neurons 

sharing same cellular progenitors (Bonifazi et al., 2009). 

Regarding the functional role of the mutual inhibition motifs, the connectivity 

rules of networks involving PV+ interneurons may be related to the generation of 

network oscillations in the dentate gyrus (Bartos et al., 2007). The dense and focal 

electrical–chemical connectivity may explain the high power and frequency of gamma 

oscillations in the dentate gyrus (Bartos et al., 2007; Strüber et al., 2017). Previous 

modeling work suggested that the small-world interneuron network architecture will 

support the emergence of coherent gamma oscillations (Watts and Strogatz, 1998; 

Buzsáki et al., 2004). Our results support this notion since the high abundance of 

electrical–chemical mutual inhibition motifs would be consistent with small-world 

architectural properties (Song and Wang, 2014). The establishment of a robust 

gamma oscillation circuit may, conversely, be necessary for the pattern separation 
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process. Proposed models of pattern separation imply that the separation of patterns 

takes place in the period during the recovery from a preceding gamma cycle (de 

Almeida et al., 2009). In concordance to that, in our biological inspired-model was 

tested the coexistence of the pattern separation computation and the generation of 

gamma oscillations (Fig. 2.2, 3.14).  

A functional fine-network organization may explain why other previously 

described motifs where not overrepresented or even did not exist in the dentate gyrus 

(chain motifs or motifs involving only GCs) (Fig. 3.11). In CA3, for example, chain 

motifs are critical for the emergence of efficient pattern completion computation 

(Guzman et al., 2016). In the neocortex, recurrent motifs increase the signal of inputs, 

shape receptive fields (Lee et al., 2016) and response properties such as orientation 

selectivity (Cossell et al., 2015). Moreover, a theoretical work had hypothesized that 

different distributions of motifs across brain regions might account for different forms 

of information storage, being the overrepresentation of recurrent PN–PN motifs a type 

of network optimization for maximizing the storage of attractor states (Brunel, 2016). 

In the dentate gyrus, such a mechanism may not exist since in more of 5,000 PN–PN 

tested pairs any connection was found. Nevertheless, mossy cells contribution to this 

specific neuronal computation remains to be tested. 

Together these findings indicate that the fine-scale topological organization of 

the network in precise connectivity motifs are circuit specific and may relate to very 

well define network functions. Thus, the GC–PV+ interneuron networks of the dentate 

gyrus are characterized for a feedback circuit of lateral inhibition with overrepresented 

embedded convergent, divergent and recurrent inhibitory motifs.     
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4.3 Winner-takes-all as a mechanism for pattern separation in the dentate gyrus 

 

Our in vitro measurements suggest that the dentate gyrus network obeys unique 

connectivity rules, probably as an adaptation to specific network functions 

implemented in this brain region. A major function of the dentate gyrus is pattern 

separation (Leutgeb et al., 2007; Rolls, 2016), thought to be generated by a WTA 

mechanism (Majani et al., 1988; de Almeida et al., 2009; Tetzlaff et al., 2012; Faghihi 

and Moustafa, 2015). In an ideal pattern separation circuit, a small population of 

activated “winner cells” must be able to efficiently and rapidly inhibit a large population 

of “non-winner cells” (Fig. 1.5). Thus, this phenomenon is highly dependent on the 

synaptic properties (e.g., synaptic strength, synaptic location, latency) and the circuit 

architecture (recurrent versus lateral inhibition). Previous theoretical work has shown 

that lateral inhibition will suit this function in biological inspired networks (Coultrip et 

al., 1992; Shoemaker, 2015). In agreement with this finding, our experimental data 

showed that dentate gyrus connectivity rules seem to be well suited for these 

functions. First, lateral inhibition efficiently suppresses non-winners, whereas winners 

remain unaffected. Second, the combination of local connectivity and the rapid axonal 

signaling mechanisms of PV+ interneurons (Hu et al., 2014) implements a high-speed 

suppression mechanism, as required for efficient pattern separation. Thus, we decided 

directly test the role of inhibition for pattern separation in a biologically realistic model 

of the dentate gyrus. 

The implementation of a full-size network model allowed us to test whether the 

properties of synapses and microcircuits in the dentate gyrus support pattern 

separation while dissecting the mechanisms underlying this computation. In this 

regard, our main contributions were first to provide evidence that biologically realistic 

network model incorporating lateral inhibition is a highly efficient pattern separator. 

Second, we showed that focal connectivity and fast biophysical signaling properties of 

PV+ interneurons are necessary for efficient pattern separation. Finally, our results 

suggest that specific features of the input region of the dentate gyrus (entorhinal input) 

acting in synergy with winner-takes-all mechanism mediated by lateral inhibition are 

the most important mechanisms underlying pattern separation within the dentate 

gyrus. 

Classical work in the cerebellum suggested code expansion as the key 

mechanism underlying pattern separation (Marr, 1969; Albus, 1971; Cayco-Gajic et 
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al., 2017). Our computational analysis confirms that the connectivity rules between 

ECs and GCs play an important role in pattern separation in the dentate gyrus. First, 

the number of ECs is relevant, with a smaller number of neurons resulting in more 

efficient pattern separation (Fig. 3.16b). This finding is consistent with previous 

models, that emphasized the role of code expansion (Marr, 1969; Albus, 1971; Babadi 

and Sompolinsky, 2014; Cayco-Gajic et al., 2017). Second, the average EC–GC 

connectivity is important, with sparse connectivity enhancing pattern separation 

performance (Fig. 3.16b). Although this is also true for the cerebellum (Cayco-Gajic 

et al., 2017), the mechanisms may be different in the hippocampus, because GCs 

receive a much higher number of synaptic inputs (> 1,000; (Desmond and Levy, 1985; 

Schmidt-Hieber et al., 2007) compared to GCs in cerebellum (~5; (Cayco-Gajic et al., 

2017)). Finally, a mix of structured and random EC–GC connectivity is optimal for the 

pattern separation mechanism (Fig. 3.16d). 

However, the effects of these parameters on pattern separation efficacy are 

moderate. Thus, the rules of EC–GC connectivity, although important, are not the main 

determinants of pattern separation. Previous studies suggested a role of inhibition in 

pattern separation in the olfactory bulb of mammals and zebrafish and the equivalent 

mushroom body of Drosophila (Wiechert et al., 2010; Lin et al., 2014; Gschwend et 

al., 2015). Furthermore, a role of inhibition has been suggested in the hippocampus 

(Engin et al., 2015; Faghihi and Moustafa, 2015). In concordance with previous reports 

(Coultrip et al., 1992; Shoemaker, 2015), we show that lateral inhibition inserted into 

a biologically inspired network model of the dentate gyrus generates an efficient WTA 

mechanism, in which both excitatory EI synapses and inhibitory IE synapses are 

necessary for pattern separation (Fig. 3.15c, d). 

Our results reveal two novel determinants of the efficacy of pattern separation. 

The first key factor is focal connectivity between PNs and INs, which substantially 

enhances pattern separation. This is counter-intuitive, because a long-range divergent 

output may be useful to suppress non-winners (Majani et al., 1988; Maass, 2000). 

However, our simulations show that networks with focal connectivity are much more 

effective than networks with wide connectivity (Fig. 3.17b). Furthermore, the pattern 

separation mechanism works well if the connectivity is asymmetric, with excitatory EI 

synapses showing narrower connectivity and inhibitory IE synapses wider 

connectivity, as observed experimentally. Intuitively, asymmetric connectivity avoids a 

situation in which the axon of the excitatory connection travels in one direction, and 
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that of the inhibitory connection travels oppositely. Such a connectivity pattern would 

fail to extend the range of lateral inhibition but would increase the total axonal wiring 

length involved in the disynaptic pathway, introducing unnecessary conduction delays 

into the circuit (Fig. 3.17d). 

A second key factor is fast signaling in GABAergic cells. It is known that PV+ 

interneurons express an extensive repertoire of fast biophysical signaling mechanisms 

at the level of synaptic input, action potential initiation, and synaptic output (Hu et al., 

2014). Our results put these fast biophysical signaling mechanisms of PV+ 

interneurons into the context of higher network computations.  

What about the other mechanisms of pattern separation? Besides the 

expansion coding mechanism, provided by the EC–GCs connectivity and the WTA 

showed to be mediated by lateral inhibition, other mechanisms such as adult 

neurogenesis, thresholding and sparseness are thought to contribute to pattern 

separation. Thus, the prominent role of adult neurogenesis in pattern separation may 

be explained by preferential innervation to inhibitory synapses (Markwardt et al., 

2009). However, this hypothesis is still controversial (Temprana et al., 2015) and 

require further validation. Regarding the thresholding mechanism, because together 

with inhibition directly affect the firing activity of PNs, their contribution is tightly related, 

as it was shown in our modeling work (Fig 3,15a). Finally, sparseness in the dentate 

gyrus is observed not only in the low spontaneous firing rate of GCs (Pernía-Andrade 

and Jonas, 2014) but also their connectivity, that as we showed nonexistent. A recent 

study in the cerebellum showed the importance of this mechanism for decorrelating 

input patterns (Cayco-Gajic et al., 2017). Thus, the whole architecture of the dentate 

gyrus seems to be maximally optimized for performing pattern separation. 

Overall, from the results of our modeling work, we contribute to the emerging 

view that PV+ interneurons are not only involved in basic microcircuit functions, such 

as feedforward and feedback inhibition but also contribute to higher-order 

computations in neuronal networks (Hu et al., 2014) with plausible behavioral 

implications. Consistent with this idea, we decided to make a further step and study 

how inhibition plays a role in pattern separation from a behavioral perspective. 
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4.4 Pattern separation in a behavioral paradigm 

 

Pattern separation in the context of episodic memory is the ability to distinguish 

between similar experiences or events for the guidance of future adaptive behaviors 

(Leal and Yassa, 2018). In this regard, the nervous system needs to process highly 

complex information enriched in spatiotemporal, perceptual and motivational content, 

which occurs at different brain levels. Thus, memories with negative valence 

(associated to aversive emotions of experiences) are processed in the hippocampus 

and amygdala, which together create strong contextual memories with long-lasting 

periods of extinction (Chaaya et al., 2018). These properties together to their relatively 

simple implementation, make fear conditioning paradigms very suitable models for 

testing memory-related mechanisms (Tovote et al., 2015).  

Therefore, for assessing pattern separation, we selected a behavioral task 

based on contextual fear discrimination that has also been previously validated by 

several groups (McHugh et al., 2007; Sahay et al., 2011; Choi et al., 2015; Engin et 

al., 2015). Previous studies have shown that contextual fear learning requires the 

hippocampus (ventral and dorsal), for processing the multisensorial information of the 

context, and the basolateral amygdala complex for the association with an 

unconditional stimulus (foot-shock) (Fanselow, 2009; Chaaya et al., 2018). The 

discrimination part of the task is dentate gyrus dependent. Our behavioral results show 

that silencing PV+ interneuron activity in the dentate gyrus do not affect the acquisition 

and the consolidation of fear memories since during the training sessions no difference 

in freezing levels was observed between groups (Fig. 3.18c, d). This finding is 

concordant with the idea that contextual fear memory consolidation requires CA1 and 

CA3 but not the dentate gyrus (Chaaya et al., 2018).  

In contrast, our data suggest that PV+ interneurons may be involved in the 

discrimination between similar contexts when the exposition is acute (Fig. 3.16e). The 

role of inhibition in a pattern separation task has been previously explored by 

assessing contextual discrimination on knockout mice lacking the expression of the 

alpha 5 subunit of the GABAA-Rs in GCs (5DGKO mice) (Engin et al., 2015). Even 

though impairment in pattern separation was reported, the contribution of  subunit-

containing GABAA-Rs mediating either tonic or phasic inhibition is yet controversial 
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(Sun et al., 2018). Our results support the contribution of inhibition in pattern 

separation and additionally identify PV+ interneurons as the direct mediators.   

However, our paradigm is not exempt from disadvantages. We cannot ignore 

the effects of the aversive response on memory processing and excessive fear 

generalization may difficult the interpretation of our results. We observed that after the 

day 7 control mice drastically decreased the discrimination between the contexts (Fig. 

3.18f). Thus, our paradigm does not allow us to exclude a further fear 

overgeneralization phenomenon by the foot-shock taking place during the consecutive 

testing days (Fig. 3.18b, f). Generalization is an adaptive mechanism that enables an 

organism to respond to novel and possible harmful experiences by extrapolating the 

features of a known threatened stimulus (pattern completion). Thus, this mechanism 

is oppositely related to pattern separation (in rodents and humans), suggesting that a 

loss of this balance could lead to pathological behaviors such as anxiety and 

posttraumatic disorders (Lange et al., 2017). More exhaustive behavioral paradigms 

are needed to clarify the effects of fear generalization and the long-term effects of 

inhibition on discrimination, when other simultaneous mechanisms of pattern 

separation may also be having a prominent role (e.g., plasticity (McHugh et al., 2007) 

and adult neurogenesis (Sahay et al., 2011)). Moreover, the assessment of pattern 

separation using novel object recognition based paradigms (van Hagen et al., 2015; 

van Goethem et al., 2018) could provide complementary information since they rely 

mostly on the natural curiosity of the mice, with the behavior not being affected by 

aversive responses.  

What about the function of SST+ and CCK+ interneurons in the dentate gyrus? 

Besides pattern separation, the dentate gyrus is also involved in grid-to place code 

conversion and processing of context information (de Almeida et al., 2009; Kesner, 

2018). Thus, SST+ interneurons may coordinate the temporal activity of GCs that have 

been directed by activity patterns originated in the medial septum (Lovett-Barron et 

al., 2014), and control the size of engrams and the stability of associative memories 

(Stefanelli et al., 2016). Regarding specifically to contextual fear learning, in CA1, 

SST+ interneurons provide the dendritic inhibition required for encoding conditioned 

stimulus during fear memory formation (Lovett-Barron et al., 2014). However, their 

contribution to the dentate gyrus has not been tested yet. In general, in the dentate 

gyrus, SST+ interneurons are diverse, with different input-output projections and 
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plasticity properties, which makes them suitable for participating in various modalities 

of information processing (Yuan et al., 2017). 

Regarding the activity of CCK+ interneurons in vivo, less information is 

available. Nevertheless, their strong modulation by neurotransmitters related to 

motivational circuits (serotonin and cholinergic system) make them very suitable for 

participating in motivational aspects of the behavior. A recent article showed that the 

in vivo manipulation of the CCK+ interneurons in the dentate gyrus affected the 

inhibition-excitation balance of the local circuit and modulate anxiety levels when mice 

performed in the forced swim test (Medrihan et al., 2017). Further research needs to 

be conducted to identify the role of different neuronal types and their precise form of 

interaction for allowing the emergence of specific behaviors.  

Overall, the present results contribute to the emerging view that local 

connectivity rules are major determinants of higher computations in neuronal networks 

across multiple circuits. We provide experimental evidence supported by theoretical 

information showing that in the dentate gyrus GC–PV+ interneuron connectivity rules 

provide the architectural structure for efficient pattern separation in the dentate gyrus. 

Besides, we showed for the first time the involvement of PV+ interneurons in a 

behavioral task of pattern separation, which highlights the relevance of PV+ 

interneurons for processing information with behavioral relevant consequences.  
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Parvalbumin+ interneurons obey unique
connectivity rules and establish a powerful lateral-
inhibition microcircuit in dentate gyrus
Claudia Espinoza 1, Segundo Jose Guzman 2, Xiaomin Zhang1 & Peter Jonas 1

Parvalbumin-positive (PV+) GABAergic interneurons in hippocampal microcircuits are

thought to play a key role in several higher network functions, such as feedforward and

feedback inhibition, network oscillations, and pattern separation. Fast lateral inhibition

mediated by GABAergic interneurons may implement a winner-takes-all mechanism in the

hippocampal input layer. However, it is not clear whether the functional connectivity rules of

granule cells (GCs) and interneurons in the dentate gyrus are consistent with such a

mechanism. Using simultaneous patch-clamp recordings from up to seven GCs and up to four

PV+ interneurons in the dentate gyrus, we find that connectivity is structured in space,

synapse-specific, and enriched in specific disynaptic motifs. In contrast to the neocortex,

lateral inhibition in the dentate gyrus (in which a GC inhibits neighboring GCs via a PV+

interneuron) is ~ 10-times more abundant than recurrent inhibition (in which a GC inhibits

itself). Thus, unique connectivity rules may enable the dentate gyrus to perform specific

higher-order computations.
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Throughout the brain, fast-spiking, parvalbumin-expressing
(PV+) GABAergic interneurons play a key role in several
higher functions, such as feedforward and feedback inhi-

bition, high-frequency network oscillations, and pattern separa-
tion1. Understanding how PV+ interneurons contribute to these
complex computations requires a detailed and quantitative ana-
lysis of their synaptic connectivity. While early studies suggested
that connectivity of PV+ interneurons is random2, more recent
work highlighted several specific connectivity rules3–7 (Supple-
mentary Table 1). Analysis of principal neuron (PN)–interneuron
(IN) connectivity in the neocortex revealed that reciprocally
connected pairs occurred much more frequently than expected in
a random network3–7. Moreover, synaptic strength appeared to
be higher in these reciprocally connected motifs4,6. Whether these
connectivity rules also apply in other microcircuits, such as the
hippocampus, has not been determined yet.

Pattern separation is a fundamental network computation in
which PV+ interneurons are likely to be involved. Pattern
separation is thought to be particularly important in the dentate
gyrus, where conversion of overlapping synaptic input patterns
into non-overlapping action potential (AP) output patterns8–12

may facilitate reliable storage of information in the downstream
CA3 network9,13,14. Previous studies suggested a model of pattern
separation based on a winner-takes-all mechanism mediated by
feedback inhibition15–19. Such a model has received experimental
support in the olfactory system20–22. While some studies sug-
gested that similar mechanisms may operate in the dentate
gyrus23,24, it is not clear whether the rules of PN–IN connectivity
are adequate to support such a model. Specifically, two forms of
feedback inhibition need to be distinguished: recurrent inhibition,
in which an active PN inhibits itself via reciprocal PN–IN con-
nections, and lateral inhibition, in which an active PN inhibits
neighboring PNs but not itself25,26. A winner-takes-all mechan-
ism likely requires lateral inhibition; recurrent inhibition may be
counter-productive, because it could suppress potential
winners17,26,27. However, in both neocortex and brain areas
directly connected to the hippocampus, recurrent inhibition and
lateral inhibition are equally abundant3–7 (Supplementary
Table 1). Such a circuit design would seem incompatible with
efficient pattern separation.

To resolve this apparent contradiction, we examined the
functional connectivity rules in PN–IN networks in the dentate
gyrus, using simultaneous recordings from up to seven granule
cells (GCs) and up to four GABAergic interneurons. Our
experiments reveal a uniquely high abundance of lateral inhibi-
tion mediated by PV+ interneurons.

Results
Octuple recordings from neurons in the dentate gyrus. To
determine the functional connectivity rules between PNs and INs
in the dentate gyrus, we performed simultaneous whole-cell
recordings from up to eight neurons (up to seven GCs and up to
four INs) in vitro (Fig. 1a, b). PV+ interneurons, somatostatin-
positive (SST+), and cholecystokinin-positive (CCK+) inter-
neurons were identified in genetically modified mice, obtained by
crossing Cre or Flp recombinase-expressing lines with tdTomato
or EGFP reporter lines. PV+ interneurons showed the char-
acteristic fast-spiking AP phenotype during sustained current
injection, whereas both SST+ and CCK+ interneurons generated
APs with lower frequency, corroborating the reliability of the
genetic labeling (Supplementary Figure 1).

To probe synaptic connectivity, we stimulated presynaptic
neurons under current-clamp conditions, and recorded excitatory
postsynaptic currents (EPSCs) or inhibitory postsynaptic currents
(IPSCs) in postsynaptic neurons in the voltage-clamp

configuration (Fig. 1c–e, Fig. 2). In total, we tested 9098 possible
connections in 50 octuples, 72 septuples, 68 sextuples, 48
quintuples, 17 quadruples, 10 triples, and 5 pairs in 270 slices.
Interestingly, PV+ interneurons showed a much higher con-
nectivity than both SST+ and CCK+ interneurons. For GC–PV+

interneuron pairs with intersomatic distance ≤ 100 µm, the mean
connection probability was 11.0% for excitatory GC–PV+

interneuron and 28.8% for inhibitory PV+ interneuron–GC
connectivity (Fig. 2g). In contrast, for both SST+ interneurons
and CCK+ interneurons, the mean connection probability was
substantially lower (1.4 and 2.8% for SST+ interneurons, 1.2 and
12.1% for CCK+ interneurons; Fig. 2g). Excitatory interactions
between GCs were completely absent, and disynaptic inhibitory
interactions between GCs28,29 were extremely sparse (0.124%).
These results indicate that in the dentate gyrus PV+ interneurons
show a markedly higher connectivity than SST+ and CCK+

interneurons, extending previous observations in the neocortex30.

Connectivity rules for excitatory input of PV+ interneurons.
As PV+ interneurons showed the highest input and output
connectivity, we focused our functional connectivity analysis on
this interneuron subtype. We first examined the rules of excita-
tory synaptic connectivity between GCs and PV+ interneurons by
measuring EPSCs (Fig. 3a–c). We found that PV+ interneurons
were highly and locally connected to GCs. The connection
probability showed a peak of 11.3%, and steeply declined as a
function of intersomatic distance, with a space constant of 144
µm (Fig. 3b). In contrast, the EPSC peak amplitude showed no
significant distance dependence (Fig. 3c). To determine the effi-
cacy of unitary GC–PV+ interneuron connections, we measured
unitary excitatory postsynaptic potentials (EPSPs). Unitary EPSPs
had a mean peak amplitude of 1.79 ± 0.36 mV (range: 0.30–7.16
mV; Supplementary Figure 2a, b)28,31,32. To assess the efficacy of
these events in triggering spikes in the presence of ongoing
synaptic activity from multiple sources, we performed in vivo
whole-cell recordings from fast-spiking interneurons in the
dentate gyrus in awake mice running on a linear treadmill
(Supplementary Figure 2c–g). Under in vivo conditions, the dif-
ference between baseline membrane potential and threshold was
10.3 ± 1.8 mV (three in vivo recordings from fast-spiking inter-
neurons in dentate gyrus). Thus, although the largest unitary
EPSPs were close to the threshold of AP initiation, they were
insufficient to trigger a spike. However, the high focal GC–PV+

interneuron connectivity (Fig. 3b) may enable activation of PV+

interneurons by spatial summation.

Connectivity rules for inhibitory output of PV+ interneurons.
Next, we examined the rules of inhibitory synaptic connectivity
between GCs and PV+ interneurons by measuring IPSCs
(Fig. 3d–f). Similar to excitatory GC–PV+ interneuron con-
nectivity, inhibitory PV+ interneuron–GC connectivity was
distance-dependent (Fig. 3e). However, maximal connection
probability was higher (28.9%) and the range of connectivity was
wider (215 µm) than that of excitation. Bootstrap analysis
revealed that both maximal connectivity and space constant were
significantly shorter for excitatory GC–PV+ interneuron synapses
than for inhibitory PV+ interneuron–GC synapses (P < 0.0001
and P= 0.0042, respectively; Fig. 3g). Thus, different connectivity
rules apply for excitatory and inhibitory GC –PV+ interneuron
connections (focal excitation versus broad inhibition).

To compare the connectivity rules in the dentate gyrus with
those in other brain regions, we quantified the ratio of excitatory
to inhibitory connection probability. We found that inhibition
was much more abundant than excitation, with a connection
probability ratio of 3.83, substantially higher than in other brain
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areas (Supplementary Table 1). Furthermore, we quantified the
abundance of lateral and recurrent motifs in pairs of neurons. In
our total sample of 1301 GC–PV+ interneuron pairs, we found
296 unidirectional inhibitory connections, but only 32 bidirec-
tional connections (Fig. 3h). Thus, the ratio of lateral inhibition to
recurrent inhibition was 9.25, substantially higher than in other
circuits (Supplementary Table 1). These results indicate that
connectivity rules of PV+ interneurons in the dentate gyrus are
unique in comparison to other previously examined circuits.

Connectivity rules for mutual inhibition of PV+ interneurons.
Finally, we analyzed the functional connectivity rules for synapses
between interneurons (Fig. 4). Chemical inhibitory synapses
between PV+ interneurons showed a connectivity pattern that was
more focal than that of inhibitory PV+ interneuron–GC synapses
(Fig. 4a, b). Likewise, electrical synapses between PV+ inter-
neurons33–35 showed a focal connectivity pattern (Fig. 4c, d).
Bootstrap analysis revealed that the maximal connectivity was sig-
nificantly higher, while the space constant was significantly shorter

for inhibitory PV+–PV+ interneuron synapses than for PV+

interneuron–GC synapses (P= 0.0001 and P= 0.0036, respec-
tively). Furthermore, recordings from GCs and multiple PV+

interneurons provided direct evidence for the suggestion33 that
EPSPs propagate through gap junctions, although the peak ampli-
tude is markedly attenuated (Supplementary Figure 3). Taken
together, these results indicate that connectivity rules in PN–IN
microcircuits are synapse-specific. Different connectivity rules apply
to excitatory and inhibitory synapses between PNs and INs
(GC–PV+ versus PV+–GC), and to inhibitory synapses terminating
on different postsynaptic target cells (PV+–GC versus PV+–PV+

synapses).

Disynaptic connectivity motifs. Previous studies demonstrated
that recurrent PN–PV+ interneuron connectivity motifs are
enriched above the chance level expected for a random network
in several cortical microcircuits3–7,36. To test this hypothesis, we
analyzed the abundance of all 25 possible disynaptic connectivity
motifs in our sample (Fig. 5)37. To probe whether connectivity
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Fig. 1 Octuple recording from GCs and PV+ interneurons in the dentate gyrus. a Octuple recording from five GCs and two PV+ interneurons (seven cells
successfully recorded). Infrared differential interference contrast video micrograph of the dentate gyrus in a 300-µm slice preparation, with eight recording
pipettes. Shaded areas represent the 2D projections of cell bodies (blue, GCs; red and yellow, PV+ interneurons). Blue dashed lines, boundaries of GC layer.
b Partial reconstruction of one GC and two PV+ interneurons in the same recording as shown in (a). Cells were filled with biocytin during recording and
visualized using 3,3′-diaminobenzidine as chromogen. For clarity, only the somatodendritic domains were drawn for the PV+ interneurons. Insets, biocytin-
labeled putative synaptic contacts, corresponding to boxes in main figure. c Connectivity matrix of an octuple recording (all eight cells successfully
recorded). Subpanels on the diagonal (AP traces) represent the presynaptic cells, subpanels outside the diagonal (EPSC or IPSC traces) indicate
postsynaptic cells. In this example, 56 connections were tested; 7 excitatory GC–PV+ interneuron connections, 7 inhibitory PV+ interneuron–GC
connections, and 42 connections between GCs. Brief transients in a subset of traces represent capacitive coupling artifacts, as shown in previous
publications5, 14. d Expanded view of presynaptic APs and postsynaptic currents, corresponding to the boxed areas in (c). In this octuple recording, an
inhibitory synaptic connection was identified between the PV+ interneuron (red) and GC 5 (blue) and an excitatory synaptic connection was found
between GC 1 (blue) and the PV+ interneuron (red). The presence of a unidirectional excitatory GC–PV+ interneuron connection and a unidirectional
inhibitory PV+ interneuron–GC connection documents the existence of lateral inhibition in this recording. e Coexistence of different synapses in an octuple
recording. In this recording, an excitatory GC–PV+ interneuron connection, an inhibitory PV+ interneuron–GC connection, a chemical inhibitory connection
between the PV+ interneurons, and an electrical connection between the PV+ interneurons were found (from left to right). Same recording as in (a) and
(b)
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molecular layer (red arrows) suggest that the cell was a HIPP or TML interneuron68, 69. GCL, granule cell layer. b Light micrograph of a CCK+ interneuron
filled with biocytin. Cells were identified by genetic labeling in CCK-Cre;DLX 5/6-Flp mice. Axon branches in the inner molecular layer (red arrows) suggest
that the cell was a HICAP interneuron68–70. c, d Excitatory and inhibitory connectivity of SST+ interneurons. GC–SST+ interneuron unitary EPSCs are
shown in (c), SST+ interneuron–GC IPSCs are illustrated in (d). Individual synaptic responses (gray) and average trace (magenta or blue, 15 traces) are
shown overlaid. Note the facilitation of EPSCs during train stimulation in (c). e, f Excitatory and inhibitory connectivity of CCK+ interneurons. GC–CCK+

interneuron EPSCs are shown in (e), CCK+ interneuron–GC IPSCs are illustrated in (f). Note the asynchronous release during and after train stimulation in
(f), which is highly characteristic of CCK+ interneuron output synapses70. g Comparison of average connection probability for pairs with an intersomatic
distance of≤ 100 µm. Whereas PV+ interneurons were highly connected, SST+ and CCK+ interneurons showed a markedly lower excitatory and inhibitory
connectivity (number of tested connections 767, 71, and 165). Error bars represent 95%-confidence intervals estimated from a binomial distribution
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was random38 or nonrandom14,39–42, we compared motif num-
bers in our experimental data to a simulated data set assuming
random connectivity with experimentally determined distance-
dependent connection probabilities (Fig. 5a, b).

Among the 25 possible disynaptic motifs, four types of motifs
were significantly enriched above the chance level: (1) Gap
junction connections between PV+ interneurons, (2) mutual
inhibition motifs (PV+ interneuron–PV+ interneuron connec-
tions) combined with gap junction connections43, (3) conver-
gence motifs (connections of multiple GCs on a single PV+

interneuron), and (4) divergence motifs (connections of one PV+

interneuron onto multiple GCs; Fig. 5b; P < 0.05 after correction
for multiple comparisons). Surprisingly, reciprocal GC–PV+

interneuron motifs were not significantly enriched.
Previous studies further demonstrated that the amplitude of

unitary IPSCs is higher in bidirectionally than in unidirectionally
connected PN–IN pairs4,6. In contrast, in the dentate gyrus
neither the amplitude of EPSCs nor that of IPSCs was
significantly different between bidirectionally and unidirectionally
connected GC–PV+ interneuron pairs (Fig. 5c). However, the
amplitude of IPSCs was significantly larger in PV+

interneuron–PV+ interneuron pairs coupled by reciprocal
inhibitory synapses (Fig. 5d). Taken together, these results
indicate that in the dentate gyrus, like in other cortical areas,
synaptic connectivity of PV+ interneurons is nonrandom.
However, both the types of enriched motifs and the rules setting
synaptic strength differ from those in other circuits3,4.

Discussion
Our results demonstrate that the rules of functional connectivity
in the PN–IN network of the dentate gyrus fundamentally differ
from those in other cortical circuits. In the dentate gyrus, uni-
directionally inhibitory connections are ~10-times more frequent
than reciprocal connections, demonstrating a massive prevalence
of lateral inhibition in this circuit (Supplementary Table 1). In
contrast, in neocortex, entorhinal cortex, and presubiculum,
reciprocal connections are equally or more abundant than uni-
directional connections, implying powerful recurrent inhibition3–
7 (Supplementary Table 1). Furthermore, in the dentate gyrus
mutual inhibition motifs, convergence motifs, and divergence
motifs are statistically overrepresented. In contrast, in the
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neocortex, interneuron connectivity has been suggested to be
largely random2. Collectively, these results suggest that the den-
tate gyrus network obeys unique connectivity rules.

The specific connectivity rules of the dentate circuit raise the
intriguing possibility that these rules represent an adaptation to
specific network functions implemented in this brain region. A
major function of the dentate gyrus is pattern separation8–12,
thought to be generated by a “winner-takes-all” mechanism15–19.
In an ideal pattern separation circuit, a small population of
activated “winner cells” must be able to efficiently and rapidly
inhibit a large population of “non-winner cells”. The dentate
gyrus connectivity rules are well suited for these functions. First,
powerful lateral inhibition efficiently suppresses non-winners,

whereas winners remain unaffected. Second, the combination of
local connectivity and rapid axonal signaling mechanisms of PV+

interneurons1,44 implements a high-speed suppression mechan-
ism, as required for efficient pattern separation. Previous mod-
eling work suggested that scale-free network organization and the
presence of hub neurons may enhance the robustness of network
computations45,46. Our results may support this view, since the
high abundance convergence and divergence motifs are con-
sistent with scale-free architectural properties.

Furthermore, the connectivity rules of the PN–IN network may
be important for the generation of network oscillations in dentate
gyrus47. In particular, the high chemical and electrical IN–IN
connectivity establishes an efficient gamma oscillator circuit. The
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dense and focal electrical–chemical connectivity may explain the
high power and frequency of gamma oscillations in the dentate
gyrus47–49. Previous modeling work suggested that the small-
world interneuron network architecture will support the emer-
gence of coherent gamma oscillations50,51. Our results support
this notion, since the high abundance of electrical–chemical
IN–IN motifs would be consistent with small-world architectural
properties52. The establishment of a robust gamma oscillation
circuit may, conversely, be important for the pattern separation
process. Proposed models of pattern separation imply that the
separation of patterns takes place in the time period during the
recovery from a preceding gamma cycle17. Whether and how the
pattern separation computation and the generation of gamma
oscillations can coexist in the same circuit remains to be
determined.

Our results suggest the possibility that the uniquely high
abundance of lateral inhibition in dentate gyrus may contribute to
pattern separation (Supplementary Table 1). What then is the
function of recurrent inhibition in all other brain areas, such as
the neocortical circuits? In the neocortex, PN activity is high,
which requires a mechanism to establish excitation–inhibition
balance; reciprocal PN–IN connectivity seems well suited for this
purpose7,20. In contrast, in the dentate gyrus PN activity is low,
and such a balancing function may not be required53–57. Addi-
tionally, reciprocal PN–IN connectivity could contribute to the
generation of slower network oscillations in these brain regions,
for example in the lower gamma or beta frequency range, which
are characteristic for the neocortex.

Our results are consistent with the idea that local connectivity
rules can shape diverse network computations across multiple
circuits. In the dentate gyrus, the unique PN–IN connectivity
rules may determine the properties of pattern separation, grid-to-
place code conversion, or processing of context information17,58.
In the neocortex, PN–IN connectivity may determine network
stability and excitation–inhibition balance7,20. In the hippo-
campal CA3 network, functional PN–PN connectivity rules shape
pattern completion14, whereas in the neocortex functional
PN–PN connectivity may shape response properties such as
orientation selectivity41. Thus, the present results contribute to
the emerging view that local connectivity rules are major deter-
minants of higher computations in neuronal networks. Future
work will be needed to test this hypothesis in both network
models and behavioral experiments.

Methods
Hippocampal slice preparation. Experiments on genetically modified mice were
performed in strict accordance with institutional, national, and European guide-
lines for animal experimentation and were approved by the Bundesministerium für
Wissenschaft, Forschung und Wirtschaft of Austria (A. Haslinger, Vienna;
BMWFW-66.018/0007-WF/II/3b/2014; BMWF-66.018/0010-WF/V/3b/2015;
BMWFW-66.018/0020-WF/V/3b/2016).

To genetically label PV+ interneurons, C57BL/6 J PV-Cre knockin mice (http://
jaxmice.jax.org/strain/008069) crossed with Ai14 loxP-flanked red fluorescent
protein tdTomato reporter mice (https://www.jax.org/strain/007914) were used. To
identify SST+ interneurons, somatostatin-ires-Cre mice (C-SSTtm1Npa, kindly
provided by H. van der Putten; Novartis Pharma; MTD37295, Basel, Switzerland)
were crossed with Ai14 tdTomato reporter mice. Finally, to label CCK+

interneurons, CCK-ires-Cre;DLX 5/6-Flp mice (https://www.jax.org/strain/012706
and https://www.jax.org/strain/010815) were crossed with dual reporter mice
expressing either EGFP or tdTomato (RCE= R26R CAG boosted EGFP mice,
https://www.jax.org/strain/010812; Ai65, https://www.jax.org/strain/021875)59.
Mice (20- to 44-days-old; mostly postnatal day 20–25) of either sex were lightly
anesthetized with isoflurane (Forane, AbbVie, Vienna). For animals up to postnatal
day 30, mice were sacrificed by decapitation. For animals older than 30 days,
transcardial perfusion was performed with ice-cold sucrose-artificial cerebrospinal
fluid (sucrose-ACSF) solution. Animals were deeply anesthetized with isoflurane
followed by the intraperitoneal injection of a mixture of xylazine (0.5 ml, 2%),
ketamine (1 ml, 10%), acepromazine (0.3 ml, 1.4%), and physiological NaCl
solution (1.5 ml, 0.9%). Anesthetics were applied at a dose of 0.033 ml/10 g body

weight. The depth of the anesthesia was verified by the absence of toe pinch
reflexes.

For preparing slices, the brain was rapidly removed and immersed in ice-cold
sucrose-ACSF solution during dissection. A block of tissue containing the
hippocampus was transferred to a vibratome (VT 1200, Leica) and transverse slices
of 300-µm thickness were cut with blade oscillation amplitude of 1.25 mm and
blade forward movement velocity of 0.03 mm s−160. Finally, slices were incubated
at ~35 °C in standard artificial cerebrospinal fluid (ACSF) for 30 minutes and
subsequently maintained at ~22 °C for maximally 5 h before transfer into the
recording chamber.

Solutions and chemicals. The ACSF used for in vitro recordings contained 125
mM NaCl, 25 mM NaHCO3, 25 mM glucose, 2.5 mM KCl, 1.25 mM NaH2PO4, 2
mM CaCl2, and 1 mM MgCl2. The sucrose-ACSF used for dissection contained 64
mM NaCl, 25 mM NaHCO3, 10 mM glucose, 120 mM sucrose, 2.5 mM KCl, 1.25
mM NaH2PO4, 0.5 mM CaCl2, and 7 mM MgCl2. The osmolarity of the solutions
was 290–315 mOsm and the pH was maintained at ~7.3 when equilibrated with a
95% O2/5% CO2 gas mixture. The intracelluar solution for in vitro recordings
contained 120 mM K-gluconate, 40 mM KCl, 2 mM MgCl2, 2 mM Na2ATP, 10
mM HEPES, 0.1 mM EGTA, and 0.3% biocytin, pH adjusted to 7.28 with
KOH. Chemicals were purchased from Merck or Sigma-Aldrich.

Multi-cell recordings. Glass micropipettes were fabricated from thick-walled
borosilicate tubing (2 mm outer diameter, 1 mm inner diameter) and had open-tip
resistances of 3–8 MΩ. They were manually positioned with eight LN mini 25
micromanipulators (Luigs and Neumann) under visual control14 provided by a
modified Olympus BX51 microscope equipped with a 60x water-immersion
objective (LUMPlan FI/IR, NA= 0.90, Olympus, 2.05 mm working distance) and
infrared differential interference contrast video microscopy and epifluorescence. To
preserve connectivity, cell bodies ~30–120 μm below the surface of the slice were
targeted for recording. Interneurons were identified on the basis of tdTomato or
EGFP fluorescence in epifluorescence illumination and the AP phenotype upon 1-s
current pulses (>50 Hz in a series of pulses of 100–1,200 pA for PV+ interneurons).
Mature GCs were identified on the basis of morphological appearance in the
infrared image and on the basis of passive and active membrane properties. Cells
with input resistance > 500MΩ, potentially representing newborn GCs61, were not
included in the analysis. Cells with resting potentials more positive than −55 mV
were immediately discarded. In total, the number of successfully recorded cells per
recording varied between eight and two. Recording temperature was ~22 °C (range:
20–24 °C, room temperature).

Electrical signals were acquired with four two-channel Multiclamp 700B
amplifiers (Molecular Devices), low-pass filtered at 6–10 kHz, and digitized at 20
kHz with a Cambridge Electronic Design 1401 mkII AD/DA converter using
custom-made stimulation-acquisition scripts running under Signal 6.0 software
(CED). For current-clamp recordings, pipette capacitance was ~80% compensated
and series resistance was balanced by the bridge circuit of the amplifier; settings
were readjusted throughout the experiment when necessary. For voltage-clamp
recordings, series resistance was not compensated, but repeatedly monitored using
2-mV hyperpolarizing pulses.

To test for synaptic connections, a presynaptic neuron was stimulated with a
train of five or ten current pulses (2 ms, 1–2 nA) at frequencies of 20 or 50 Hz,
while all other neurons were voltage-clamped at −70 mV (Fig. 1c). A connection
was defined as monosynaptic if synaptic currents had latencies ≤ 4.0 ms and peak
amplitudes were larger than 2.5 times the standard deviation of the baseline of the
average trace (computed from 15–30 individual traces). Events with latencies > 4.0
ms were considered polysynaptic. For distal SST+–GC synapses, connectivity may
be underestimated, because of substantial attenuation of synaptic signals by cable
filtering.

Data analysis. Recordings were analyzed using Stimfit and Python-based scripts62.
Synaptic latency was measured from the peak of the presynaptic AP to the onset of
the postsynaptic potential or current. Kinetic analysis of EPSCs or IPSCs was
performed in pairs with series resistance of < 15 MΩ. Distance was measured from
soma center to soma center. Analysis of the axonal arbor of PV+ interneurons and
GCs revealed that the axonal length was 2.21 ± 0.20 and 1.59 ± 0.07 times larger
than the corresponding intersomatic distance (Supplementary Figure 4). Connec-
tion probability was calculated as number of connected pairs over total number of
tested pairs in each 50-µm distance interval. 95%-confidence intervals were
obtained according to binomial distributions. Distance dependence of connectivity
was fit with a sigmoidal function f(x)= A [1+ Exp[(x – B)/C]−1, where x is
absolute distance, and A, B, and C are fitted parameters. Throughout the text, the
maximal connection probability (cmax) was determined as f(0), and the space
constant (dhalf) was determined as the x’ value that specified the condition f(x’)/f(0)
= 0.5. To test whether connectivity differed between synapses, 10,000 bootstrap
replications of the inhibitory PV+ interneuron–GC data set were obtained, and the
mean values of the GC–PV+ interneuron and PV+ interneuron–PV+ interneuron
experimental data sets were compared against the simulated distribution63. Values
are given as mean ± standard error of the mean (S.E.M.). Box plots show lower
quartile (Q1), median (horizontal line), and upper quartile (Q3). The interquartile
range (IQR=Q3–Q1) is represented as the height of the box. Whiskers extend to
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the most extreme data point that is no more than 1.5 x IQR from the edge of the
box (Tukey style). Statistical comparisons were done either with a non-parametric
Mann–Whitney U two-sided test or by linear regression, testing whether the slope
was significantly different from 0.

To test whether disynaptic motifs64 occurred significantly more frequently
than expected by chance, we simulated the entire set of recording configurations
including PV+ interneurons (41 octuples, 62 septuples, 54 sextuples, 37
quintuples, 14 quadruples, 7 triples, and 3 pairs in 218 slices) 10,000 times,
assuming random connectivity14,38,64. The connection probabilities were set to
the experimentally determined distance-dependent values. For each simulated
data set, we counted the number of all 25 possible disynaptic motifs (Fig. 5a).
From the 10,000 bootstrap replications, mean, median, and confidence intervals
for these counts were determined. P values were calculated as the number of
replications in which the motif number was equal to or larger than the empirical
number, divided by the number of replications. If a motif was never encountered
in the 10,000 replications, P was assumed as < 0.0001. For assessing statistical
significance, correction for multiple testing was performed using a
Benjamini–Hochberg method that controls the false discovery rate65. P values for
m comparisons were sorted in increasing order (P1 ≤ P2 ≤… ≤ Pm), the first Pi
value that satisfied the condition Pi ≤ i / m 0.05 was identified (starting with Pm),
and the motifs corresponding to Pj values with 1 ≤ j ≤ i were considered
significant. For illustration purposes, P values were converted into z scores, using
the quantiles of a standard normal distribution.

Morphological analysis. Neurons that were filled with biocytin (0.3%) for >1 h
were processed for morphological analysis. After withdrawal of the pipettes,
resulting in the formation of outside-out patches at the pipette tips, slices were
fixed for 12–24 h at 4 °C in a 0.1 M phosphate buffer (PB) solution containing 2.5%
paraformaldehyde, 1.25% glutaraldehyde, and 15% (v/v) saturated picric acid
solution. After fixation, slices were treated with hydrogen peroxide (1%, 10 min) to
block endogenous peroxidases, and rinsed in PB several times. Membranes were
permeabilized with 1% Triton X100 in PB for 1 h. Slices were then transferred to a
PB solution containing 1% avidin-biotinylated horseradish peroxidase complex
(ABC, Vector Laboratories) and 1% Triton X100 for ~ 12 h. Excess ABC was
removed by several rinses in PB and the slices were developed with 0.05% 3,3′-
diaminobenzidine tetrahydrochloride (DAB) and subsequently hydrogen peroxide.
Finally, slices were embedded in Mowiol (Sigma-Aldrich).

In vivo recordings from dentate gyrus PV+ interneurons. Whole-cell patch-
clamp recordings in vivo were performed in male 35- to 63-day-old mice as
described previously53. Animals were in the head-fixed, fully awake configuration,
and were running on a linear belt treadmill66,67. The head-bar implantation and
craniotomy were performed under anesthesia by intraperitoneal injection of 80 mg/
kg ketamine (Intervet) and 8 mg/kg xylazine (Graeub), followed by local anesthesia
with lidocaine. A custom-made steel head-bar was attached to the skull using
superglue and dental cement. The day before recording, two small (~0.5 mm in
diameter) craniotomies, one for the patch electrode and one for a local field
potential (LFP) electrode, were drilled at the following coordinates: 2.0 mm caudal,
1.2 mm lateral for whole-cell recording; 2.5 mm caudal, 1.2 mm lateral for the LFP
recording. The dura was left intact, and craniotomies were covered with silicone
elastomer (Kwik-Cast, World Precision Instruments). Pipettes were fabricated from
borosilicate glass capillaries (1.75 mm outer diameter, 1.25 mm inner diameter).
Long-taper whole-cell patch electrodes (9–12 MΩ) were filled with a solution
containing: 130 mM K-gluconate, 2 mM KCl, 2 mM MgCl2, 2 mM Na2ATP, 0.3
mM NaGTP, 10 mM HEPES, 18 mM sucrose, 10 or 0.1 mM EGTA, and 0.3%
biocytin, pH adjusted to 7.28 with KOH. Whole-cell patch electrodes were
advanced through the cortex with 500–600 mbar of pressure to prevent the elec-
trode tip from clogging. After passing the hippocampus CA1 subfield, the pressure
was reduced to 20 mbar. After the blind whole-cell recording was obtained, series
resistance was calculated by applying a test pulse (+ 50 mV and −10 mV) under
voltage-clamp conditions. Recordings were immediately discarded if series resis-
tance exceeded 100MΩ. After the bridge balance was compensated, step currents
from −100 pA to 400 pA were injected to calculate input resistance and maximal
firing frequency of the recorded cells. All the recordings were done in current-
clamp experiment configuration without holding current injection using a Heka
EPC double amplifier. Signals were low-pass filtered at 10 kHz (Bessel) and sam-
pled at 25 kHz with Heka Patchmaster acquisition software. After recording, the
patch pipettes were slowly withdrawn to form an outside-out patch, verifying the
integrity of the seal. Data included were obtained from three fast-spiking cells in
the dentate gyrus, which generated APs during sustained current injection at a
frequency of >100 Hz. To determine the relative AP threshold, spontaneous action
potentials (sAPs) were detected, using either a single sAP or the first AP in a burst.
The membrane potential preceding the sAP was measured in a 10–20 ms time
window before the sAP. sAP absolute threshold was determined from a dV/dt–V
phase plot; the rising phase was fit with an exponential function including a shift
factor, and the intersection of the fit curve with the baseline was defined as
threshold.

Data availability
Original data, analysis programs, and computer code will be provided by the
corresponding author (P.J.) upon request.
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Supplementary Figures 

Supplementary Figure 1 | Action potential phenotype and membrane properties of 

different types of genetically identified interneurons in the dentate gyrus.  

  

(a) Functional properties of identified PV+ interneurons in the dentate gyrus. Left, voltage 

changes evoked by long depolarizing and hyperpolarizing current pulses (0.6, 0,  

and −0.1 nA) applied to the PV+ interneuron. Fast-spiking phenotype (> 100 Hz) and low 

input resistance (< 100 MΩ) are characteristic. Right, single AP waveform evoked by a 

depolarizing current ramp.  

(b) Box plots of resting membrane potential (mean, –66.9 mV), input resistance 

(70.2 MΩ), maximal evoked AP frequency (116 Hz), and evoked AP half-duration 

(0.45 ms; 173 cells). PV+ interneurons were identified in slices based on tdTomato 

labeling in PV-Cre;Ai14 mice.  

(c, d) Similar data as in (a, b), but for SST+ interneurons. SST-Cre mice were used for 

labeling.  
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(e, f) Similar data as in (a, b), but for CCK+ interneurons. CCK-Cre;DLX 5/6-Flp mice were 

used for labeling. In (c, e), voltage changes were evoked by long depolarizing and 

hyperpolarizing current pulses (0.3, 0, and −0.1 nA).  

Box plots in (b, d, and f) show lower quartile (Q1), median (horizontal red line), and upper 

quartile (Q3). The interquartile range (IQR = Q3–Q1) is represented as the height of the 

box. Whiskers extend to the most extreme data point that is no more than 1.5 x IQR from 

the edge of the box (Tukey style). Data from individual cells are plotted on top of the 

corresponding box.  
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Supplementary Figure 2 | Coactivation of converging inputs from granule cells is 

required to initiate APs in PV+ interneurons.  

 

(a) Unitary excitatory postsynaptic potentials (EPSPs), with individual synaptic responses 

(gray) and average trace (red, 15 traces) in a representative GC–PV+ interneuron pair. 

(b) Box plots of EPSP latency, 20–80% rise time, peak amplitude, and decay time 

constant.  

(c) AP properties of fast-spiking interneurons in the dentate gyrus in vivo in awake, 

behaving animals. Left, schematic illustration of recording configuration; CC, whole-cell 

current clamp; LFP, local field potential recording. Right, traces of membrane potential in 

response to depolarizing and hyperpolarizing current injections.  

(d, e) Compressed plot of five spontaneous APs (sAPs) aligned to the sAP peak (d) and 

expanded plot of a single AP (e). Light red area shows the time interval in which the 
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baseline membrane potential before the spike was determined. MPpreAP, membrane 

potential preceding AP.  

(f) Left, phase plot analysis of the AP shown in (e). Right, fit of the rising component of 

the phase plot by an exponential function including a shift factor (red curve). Red arrows 

indicate absolute threshold of sAP initiation determined from the shift.  

(g) Summary bar graph of baseline membrane potential (in time window 10–20 ms before 

the AP, left), absolute sAP threshold (center), and relative sAP threshold (relative 

threshold = absolute threshold – baseline membrane potential).  
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Supplementary Figure 3 | Propagation of evoked EPSPs in PV+ interneuron networks 

via gap junctions.  

 

(a) Simultaneous recording from a GC and two PV+ interneurons. APs in the GC led to 

monosynaptic EPSPs (current-clamp conditions) or EPSCs (voltage-clamp conditions) in 

the first PV+ interneuron.  

(b) The two recorded PV+ interneurons were coupled by gap junctions.  

(c) Propagation of EPSPs from PV+ interneuron 1 (red) to PV+ interneuron 2 (black). APs 

in the GC led to EPSCs with peak amplitude < 5 pA in the second PV+ interneuron. These 

excitatory synaptic events were apparently propagated via gap junctionsS1.  
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Supplementary Figure 4 | Relation between intersomatic distance and axon length. 

 

(a) Reconstructed fast-spiking PV+ interneuron in the dentate gyrus. Soma and dendrites 

are drawn in black, axon is color coded according to the length of the axonal path. Cell 

No 2 from the sample of dentate gyrus PV+ interneurons from Nörenberg et al.S2.  

(b) Plot of axon length (trajectorial distance) against intersomatic distance (Euclidian 

distance). Data points were analyzed by regression with linear function through origin (red 

line) or with offset (light blue line). Left, PV+ interneuron (cell No 2; Ref. S2); right, GC 

(cell No 9; Ref. S3). All distance values were measured relative to the center of the soma.  

(c) Slope of the axon length–intersomatic distance relation (fit with line through origin). 

Box plots show lower quartile (Q1), median (horizontal red line), and upper quartile (Q3). 

The interquartile range (IQR = Q3–Q1) is represented as the height of the box. Whiskers 

extend to the most extreme data point that is no more than 1.5 x IQR from the edge of 

the box (Tukey style). Data from individual cells are plotted on top of the corresponding 
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box. Data from six fast-spiking PV+ interneurons in the dentate gyrus and six dentate 

gyrus GCs (Cells No 9, 47, 52, 56, 58, and 61; Ref. S3).  
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Supplementary Table 1 | Abundance of lateral inhibition in different brain regions. 

Brain region pIE / pEI a nlateral / nrecurrent 
b Reference 

Visual and 

somatosensory cortex 
0.99 0.13 

Holmgren et al., 

2003 [S4] 

Visual cortex 2.5  2.0 
Yoshimura and 

Callaway, 2005 [S5] 

Entorhinal cortex  1.5 1.1  
Couey et al., 2013 

[S6] 

Presubiculum 

superficial 
1.04 1.3 

Peng et al., 2017 

[S7] 

Presubiculum deep 0.68 0.67 
Peng et al., 2017 

[S7] 

Dentate gyrus 3.83 c 9.25 This paper 

 

(a) pIE / pEI indicates ratio of mean inhibitory IN–PN to mean excitatory PN–IN 

connection probability.  

(b) nlateral / nrecurrent represents ratio of number of lateral inhibition motifs and recurrent 

inhibition motifs in all recorded PN–IN pairs. 

(c) Quantified from the integral under the connection probability–distance curves (Fig. 

3).  
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