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Abstract

Knowledge distillation, i.e. one classifier being
trained on the outputs of another classifier, is an
empirically very successful technique for knowl-
edge transfer between classifiers. It has even been
observed that classifiers learn much faster and
more reliably if trained with the outputs of another
classifier as soft labels, instead of from ground
truth data. So far, however, there is no satisfactory
theoretical explanation of this phenomenon. In
this work, we provide the first insights into the
working mechanisms of distillation by studying
the special case of linear and deep linear clas-
sifiers. Specifically, we prove a generalization
bound that establishes fast convergence of the ex-
pected risk of a distillation-trained linear classifier.
From the bound and its proof we extract three key
factors that determine the success of distillation:
data geometry – geometric properties of the data
distribution, in particular class separation, has an
immediate influence on the convergence speed
of the risk; optimization bias – gradient descent
optimization finds a very favorable minimum of
the distillation objective; and strong monotonicity
– the expected risk of the student classifier always
decreases when the size of the training set grows.

1. Introduction
In 2014, Hinton et al. (2014) made a surprising observa-
tion: they found it easier to train classifier using the real-
valued outputs of another classifier as target values than
using actual ground-truth labels. Calling the procedure
knowledge distillation, or distillation for short, they noticed
the positive effect to occur even when the existing classifier
(called teacher) was trained on the same data as it used
afterwards for the distillation-training of the new classifier
(called students). Since that time, the positive properties of
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distillation-based training has been confirmed several times:
the optimization step is generally more well-behaved than
the optimization step in label-based training, and it needs
less if any regularization or specific optimization tricks.
Consequently, in several fields, distillation has become a
standard technique for transfering the information between
classifiers with different architectures, such as from deep to
shallow neural networks or from ensembles of classifiers to
individual ones.

While the practical benefits of distillation are beyond doubt,
its theoretical justification remains almost completely un-
clear. Existing explanations rarely go beyond qualitative
statements, e.g. claiming that learning from soft labels
should be easier than learning from hard labels, or that in a
multi-class setting the teacher’s output provides information
about how similar different classes are to each other.

In this work, we follow a different approach. Instead of
studying distillation in full generality, we restrict our at-
tention to a simplified, analytically tractable, setting: bi-
nary classification with linear teacher and linear student
(either shallow or deep linear networks). For this situa-
tion, we achieve the first quantitative results about the ef-
fectiveness of distillation-based training. Specifically, our
main results are: 1) We prove a generalization bound
that establishes extremely fast convergence of the risk
of distillation-trained classifiers. In fact, it can reach zero
risk from finite training sets. 2) We identify three key
factors that explain the success of distillation: data ge-
ometry – geometric properties of the data distribution, in
particular class separation, directly influence the conver-
gence speed of the student’s risk; optimization bias – even
though the distillation objective can have many optima, gra-
dient descent optimization is guaranteed to find a particu-
larly favorable one; and strong monotonicity – increasing
the training set always decreases the risk of the student
classifier.

2. Related Work
Ideas underpinning distillation have a long history dating
back to the work of Ba & Caruana (2014); Bucilua et al.
(2006); Craven & Shavlik (1996); Li et al. (2014); Liang
et al. (2008). In its current and most widely known form,
it was introduced by Hinton et al. (2014) in the context of
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neural network compression.

Since then, distillation has quickly gained popularity among
practitioners and established its place in deep learning folk-
lore. It has been found to work well across a wide range of
applications, including e.g. transferring from one architec-
ture to another (Geras et al., 2016), compression (Howard
et al., 2017; Polino et al., 2018), integration with first-order
logic (Hu et al., 2016) or other prior knowledge (Yu et al.,
2017), learning from noisy labels (Li et al., 2017), defending
against adversarial attacks (Papernot et al., 2016), training
stabilization (Romero et al., 2015; Tang et al., 2016), dis-
tributed learning (Polino et al., 2018), reinforcement learn-
ing (Rusu et al., 2016) and data privacy (Celik et al., 2017).

In contrast to the empirical success, the mathematical prin-
ciples underlying distillation’s effectiveness have largely
remained a mystery. To our knowledge, (Lopez-Paz et al.,
2016) is the only work that examines distillation from a theo-
retical perspective. It casts distillation as a form of learning
using privileged information (LUPI, Vapnik & Izmailov
2015), a learning setting in which additional per-instance
information is available at training time but not at test time.
However, even the LUPI view conceptually falls short of
explaining the effectiveness of distillation. In particular, it
concentrates on the aspect that the teacher’s supervision to
the student is noise-free. However, this argument does not
suffice to explain, e.g., the success of distillation even when
the original problem is noise-free to start with.

A more distantly related topic is machine teaching (Zhu,
2015). In machine teaching, a machine learning system
is trained by a human teacher, whose goal is to hand-pick
as small a training set as possible, while ensuring that the
machine learns a desired hypothesis. Transferring knowl-
edge via machine teaching techniques is extremely effective:
perfect transfer is often possible from a small finite teaching
set (Zhu, 2013; Liu & Zhu, 2016). However, the price for
this radical reduction in sample complexity is the expensive
training set construction. Our work shows that, at least in
the linear setting, distillation achieves a similar effectiveness
with a more practical form of supervision.

3. Background: Linear Distillation
We formally introduce distillation in the context of binary
classification. Let X ⊆ Rd be the input space, Y = {0, 1}
the label space, and Px the probability distribution of inputs.
We assume Px has a density.

The teacher h∗ : X → Y is a fixed linear classifier, i.e.
h∗(x) = 1{wᵀ

∗x ≥ 0} for some w∗ ∈ Rd \ {0}, where
1{.} returns 1 if the argument is true and 0 otherwise. The
student also is a linear classifier, h(x) = 1{wᵀx ≥ 0}.

We allow the weight vector to be parameterised as a product

of matrices, wᵀ = WNWN−1 · · ·W1 for some N ≥ 1.
When N ≥ 2, this parameterisation is known as a deep
linear network. Although deep linear networks have no
additional capacity compared to directly parameterised lin-
ear classifiers (N = 1;wᵀ = W1), they induce different
gradient-descent dynamics, and are often studied as a first
step towards understanding deep nonlinear networks (Saxe
et al., 2014; Kawaguchi, 2016; Hardt & Ma, 2017).

Distillation proceeds as follows. First, we collect a transfer
set {(xi, yi)}ni=1 consisting of inputs xi sampled i.i.d. from
Px, and soft labels yi = σ(wᵀ

∗xi) provided by the teacher,
where σ is the sigmoid function, σ(x) = 1/(1 + exp(−x)).
The soft (real-valued) labels can be thought of as a more in-
formative version of the hard (0/1-valued) labels of the stan-
dard classification setting. We write X = [x1, . . . ,xn] ∈
Rd×n for the data matrix. Second, the student is trained by
minimizing the (normalized) cross-entropy loss,

L1(w) = − 1

n

n∑
i=1

[
yi log σ(wᵀxi)

+ (1− yi) log(1− σ(wᵀxi))
]
− L∗, (1)

where L∗ is a normalization constant, such that the mini-
mum of L1 is 0. It only serves the purpose of simplifying
notation and has no effect on the optimization.

The student observes the loss as a function of its parameters,
i.e. the individual weight matrices,

L(W1, . . . ,WN ) := L1((WNWN−1 · · ·W1)ᵀ), (2)

and optimizes it via gradient descent. For the theoretical
analysis, we avoid the complications of stepsize selection
and adopt the notion of infinitesimal step size1, which turns
the gradient descent procedure into a continuous gradient
flow. We write Wi(τ) for the value of the matrix Wi at
time τ ∈ [0,∞), with Wi(0) denoting the initial value, and
w(τ)ᵀ = WN (τ) · · ·W1(τ). Then, each Wi(τ), for i ∈
{1, . . . , N}, evolves according to the following differential
equation.

∂Wi(τ)

∂τ
= − ∂L

∂Wi
(W1(τ), . . . ,WN (τ)). (3)

The student is trained until convergence, i.e. τ → ∞. We
measure the transfer risk of the trained student, defined as
the probability that its prediction differs from that of the
teacher,

R(h) = P
x∼Px

[h(x) 6= h∗(x)]. (4)

In Section 4.2, we will derive a bound for the transfer risk
and establish how rapidly it decreases as a function of n.

1For readers who are unfamiliar with gradient flows, it suffices
to think of the stepsize as finite and ”sufficiently small”.
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4. Generalization Properties of Linear
Distillation

This section contains our main technical results. First, in
Section 4.1, we provide an explicit characterization of the
outcome of distillation-based training in the linear setting.
In other words, we identify what the student actually learns.
In particular, we prove that the student is able to perfectly
identify the teacher’s weight vector, if the number of training
examples (n) is equal to the dimensionality of the data (d)
or higher. If less data is available, under minor assumptions,
the student finds the best approximation of the teacher’s
weight vector that is possible within the subspace spanned
by the training data.

In Section 4.2 we use these results to study the generaliza-
tion properties of the student classifier, i.e. we characerize
how fast the student learns. Specifically, we prove a gener-
alization bound with much more appealing properties than
what is possible in the classic situation of learning from
hard labels. As soon as enough training data is available
(n ≥ d), the student’s risk is simply 0. Otherwise, the risk
can be bounded explicitly in a distribution-dependent way
that, in particular, allows us to identify three key factors that
explain the success of distillation, and to understand when
distillation-based transfer is most effective.

4.1. What Does the Student Learn?

In this section, we derive in closed form the asymptotic solu-
tion to the gradient flow (3) undergone by the student when
trained by distillation. We state the results separately for
directly parameterized linear classifiers (N = 1) and deep
linear networks (N ≥ 2), as the settings require slightly
different ways of initializing parameters. Namely, in the
former case, initializing w(0) = 0 is valid, while in the
latter case, this would lead to vanishing gradients, and we
have to initialize with small (typically random) values.

Theorem 1. Assume the student is a directly parameterised
linear classifier (N = 1) with weight vector initialised at
zero, w(0) = 0. Then, the student’s weight vector fulfills
almost surely

w(t)→ ŵ, (5)

for t→∞, with

ŵ =

{
w∗, n ≥ d,

X(XᵀX)−1Xᵀw∗, n < d.
(6)

Theorem 1 shows a remarkable property of distillation-based
training for linear systems: if sufficiently many (at least d)
data points are available, the student exactly recovers the
teacher’s weight vector, w∗. This is a strong justification
for distillation as a method of knowledge transfer between
linear classifiers and the theorem establishes that the effect
occurs not just in the infinite data limit (n → ∞), as one

might have expected, but already in the finite sample regime
(n ≥ d).

When few data points are available (n < d), the weight
vector learned by the student is simply the projection of the
teacher’s weight vector onto the data span (the subspace
spanned by the columns of X). In a sense, this is the best
the student can do: the gradient descent update direction
∂w(τ)
∂τ always lies in the data span, so there is no way for the

student to learn anything outside of it. The projection is the
best subspace-constrained approximation of w∗ with respect
to the Euclidean norm. The extent to which Euclidean close-
ness implies closeness in predictions is a separate matter,
and the subject of Section 4.2.

Proof sketch of Theorem 1. First, notice that ŵ is a global
minimiser of L1. Moreover, when n ≥ d, it is (almost surely
wrt. X ∼ Pnx ) unique, and when n < d, it is (almost surely)
the only one lying in the span of X and thus potentially
reachable by gradient descent.

The proof consists of two parts. We prove that a) the gradient
flow (3) drives the objective value towards the optimum,
L1(w(t)) → 0 as t → ∞, and b) the distance between
w(t) and the claimed asymptote ŵ is upper-bounded by the
objective gap,

‖w(t)− ŵ‖2 ≤ cL1(w(t)) (7)

for some constant c > 0 and all t ∈ [0,∞).

For part a), observe that L1 is convex. For any τ ∈ [0,∞),
the time-derivative of L1(w(τ)) is negative unless we are
at a global minimum,

d

dτ
L1(w(τ)) = ∇L1(w(τ))ᵀ

(
∂w(τ)

∂τ

)
= −

∥∥∇L1(w(τ))
∥∥2
,

(8)

implying that the objective value L1(w(τ)) decreases
monotonically in τ . Hence, if we denote by W ={
w : L1(w) ≤ L1(0)

}
the L1(0)-sublevel set of the objec-

tive, we know that w(τ) ∈W for all τ ∈ [0,∞). One can
show that on this set, L1 satisfies strong convexity, but only
along certain directions: for some µ > 0 and all w,v ∈W

such that v −w ∈ span(X),

L1(v) ≥ L1(w)+∇L1(w)ᵀ(v−w)+
µ

2
‖v −w‖2. (9)

This allows us (via a technical derivation that we omit here)
to relate the objective gap to the gradient norm: it can be
shown that there exists c′ > 0, such that

c′L1(w) ≤ 1

2

∥∥∇L1(w)
∥∥2
. (10)

Applying the above to w(τ) in (8), we are able to bound
the amount of reduction in the objective in terms of the
objective itself, ultimately proving linear convergence.
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For part b), invoke (9) with v = w(τ) and w = ŵ; this
gives L1(w(τ)) ≥ µ

2 ‖w(τ)− ŵ‖2.

The full proof is given in the Supplementary Material.

The next results is the analog of Theorem 1 for deep lin-
ear networks. Here, some technical conditions are needed
because the parameters cannot all be initialized at 0.

Theorem 2. Let ŵ be defined as in Theorem 1. Assume the
student is a deep linear network, initialized such that for
some ε > 0,

‖w(0)‖ < min
{
‖ŵ‖, εN

(
ε2‖ŵ‖−

2
N + ‖ŵ‖2−

2
N

)−N
2
}
,

(11)

L1(w(0)) < L1(0), (12)
Wj+1(0)ᵀWj+1(0) = Wj(0)Wj(0)ᵀ (13)

for j = 1, . . . , N − 1. Then, for n ≥ d, student’s weight
vector fulfills almost surely

w(t)→ ŵ, (14)

and for n < d,
‖w(t)− ŵ‖ ≤ ε, (15)

for all t large enough.

The interpretation of the theorem is analogous to Theorem 1.
Given enough data (n ≥ d), the student learns to perfectly
mimic the teacher. Otherwise, it learns an approximation at
least ε-close to the projection of the teacher’s weight vector
onto the data span.

The conditions (11)–(13) appear for technical reasons and
a closer look at them shows that they do not pose prob-
lems in practice. Condition (11) states that the network’s
weights should be initialised with sufficiently small values.
Consequently, this assumption is easy to satisfy in practice.
Condition (12) requires that the initial loss is smaller than
the loss at w = 0. This condition guarantees that the gra-
dient flow does not hit the point w = 0, where all gradient
vanish and the optimization would stop prematurely. In
practice, when the step size is finite, the condition is not
needed. Nevertheless, it is also not hard to satisfy: for any
near-zero initialisation, w(0) = w0, either w0 or −w0 will
satisfy (12), so at most one has to flip the sign on one of the
Wi(0) matrices. Finally, condition (13) is called balanced-
ness (Arora et al., 2018) and discussed in-depth in (Arora
et al., 2019)). It simplifies the analysis of matrix products
and makes it possible to explicitly analyze the evolution of
w induced by gradient flow in the Wi’s. Assuming near-
zero initialization, the condition is automatically satisfied
approximately and there is some evidence (Arora et al.,
2019) suggesting that approximate balancedness may suf-
fice for convergence results of the kind we are interested

in. Otherwise, the condition can also simply be enforced
numerically.

Proof sketch of Theorem 2. First, we establish convergence
in the objective, L1(w(t))→ 0 as t→∞, similarly to the
case N = 1. Unlike that case, however, the evolution of
the end-to-end weight vector w(τ) is governed by complex
mechanics induced by gradient flow in Wi’s. A key tool
for analyzing this induced flow was recently established
in (Arora et al., 2018): the authors show that the induced
flow behaves similarly to gradient flow with momentum
applied directly to w. Making use of this result, one can
proceed analogously as in the case of N = 1 to show con-
vergence in the objective.

Second, to show convergence in parameter space, we de-
compose w(t) into its projection onto the span of X, and an
orthogonal component. The X-component converges to ŵ,
by strong convexity arguments as in the case N = 1. It re-
mains to show that the orthogonal component is small. Now,
recall that in the case N = 1, we initialise at w(0) = 0
and move within the span, so the orthogonal component is
always zero. When N ≥ 2, the situation is different: a)
we initialise with a potentially non-zero orthogonal compo-
nent (because we need to avoid the spurious stationary point
w = 0), and b) the momentum term causes the orthogonal
component to grow during optimisation. Luckily, the rate
of growth can be precisely characterised and controlled by
the initialisation norm ‖w(0)‖, so depending on how close
to zero we initialise, we can upper-bound the size of the
orthogonal component. This yields a bound on the distance
‖w(t)− ŵ‖.

For the formal proof, we refer the reader to the Supplemental
Material.

4.2. How Fast Does the Student Learn?

In this section, we present our main quantitative result, a
bound for the expected transfer risk in linear distillation.

We first introduce some geometric concepts. For any u,v ∈
Rd \ {0}, denote by ᾱ(u,v) ∈ [0, π/2] the unsigned angle
between the vectors u and v

ᾱ(u,v) = cos−1

(
|uᵀv|
‖u‖ · ‖v‖

)
. (16)

A key quantity for us is the angle between w∗ and a ran-
domly chosen x, for x ∼ Px. For a given transfer task
(Px,w∗), we denote by p the reverse cdf of ᾱ(w∗,x),

p(θ) = P
x∼Px

[ᾱ(w∗,x) ≥ θ] for θ ∈ [0, π/2]. (17)

By construction, p(θ) is monotonically decreasing, starting
with p(0) = 1 and approaches 0 for θ → π/2. Figure 1
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Figure 1. Schematic illustration of p(θ) for three different transfer
tasks. In Task A, the angular alignment between the data and the
teacher’s weight vector is high, so p(θ) is fast descreasing. In Task
B, it is also high, and in additional the classes are separated by a
margin, so p(θ) reaches 0 before β = π/2. In Task C, the angular
alignment is low, so p(θ) decreases rather slowly.

illustrates this behavior for three exemplary data distribu-
tions as Tasks A,B and C. In Task A, the probability mass
is well aligned with the direction of the teacher’s weight
vector. The probability that a randomly chosen data point
x ∼ Px has a large angle with w∗ is small. Therefore, the
value of p(θ) quickly drops with growing angle θ. In Task B,
the data also aligns well with w∗, but in addition, the data
region remains bounded away from the decision boundary.
Therefore, certain large angles can never occur, i.e. there
exists a value θ0 < π/2, such that p(θ) = 0 for θ ≥ θ0. In
Task C, the situation is different: the data distribution is con-
centrated along the decision boundary and the probability
of a angle between w∗ and a randomly chosen data point
x ∼ Px is large. As a consequence, p(θ) drops more slowly
with growing angle than in the previous two settings.

We are now ready to state the main result. For improved
readability, we phrase it for a student with infinitesimally
small initialization, i.e. ε→ 0. The general formulation can
be found in the supplemental material.

Theorem 3 (Transfer risk bound for linear distillation). For
any training set X ∈ Rd×n, let ĥX(x) = 1{ŵᵀx ≥ 0} be
the linear classifier learned by distillation from a teacher
with weight vector w∗. Then, when n ≥ d, it holds that

E
X∼P⊗n

x

[
R
(
ĥX
)]

= 0. (18)

For n < d, it holds for any β ∈ [0, π/2] that

E
X∼P⊗n

x

[
R
(
ĥX
)]
≤ p(β) + p(π/2− β)n (19)

w ¤
Margin, ¯= 5¼=12

w ¤
Polynomial, ∙= 1:0

w ¤
Polynomial, ∙= 2:0

Figure 2. Examples of 2D distributions that fulfill the large-margin
condition (left) and the polynomial condition with different param-
eters (center, right).

Equation (18) is unsurprising, of course, because in Sec-
tion 4.1 we already established that for n ≥ d the student is
able to perfectly mimic the teacher.

Inequality (19), however, is –to our knowledge– the first
quantitative characterization how well a student can learn
via distillation.

Before we provide the proof sketch, we present two in-
stantiations of the bound for specific classes of tasks that
provide insight how fast the right hand side of (19) actually
decreases.

The margin case. The first class of tasks we consider are
tasks in which the classes are separated by an angular mar-
gin, illustrated in Figure 2 (left). These tasks are char-
acterized by a ‘wedge’ of zero probability mass near the
boundary2. For these tasks, we obtain from Theorem 3 that
the expected risk decays exponentially in n, up to n = d−1.

Corollary 1 (Transfer risk of large-margin distributions).
If there exists β ∈ [0, π/2] such that p(β) = 0 and γ :=
p(π/2− β) < 1, then

E
X∼Pn

x

[
R
(
ĥX
)]
≤ γn. (20)

The polynomial case. The second class are tasks for which
we can upper-bound p by a κ-order polynomial. This can
be done trivially for any task by setting κ = 0.0, but that
choice would yield a vacuous bound. Higher values of κ
correspond to stronger assumptions on the distribution but
enable better rates. Figure 2 (center, right) shows examples
of polynomial distributions for κ ∈ {1.0, 2.0}. The special
case κ = 1.0 corresponds to a uniform angle distribution,
while distribution with κ = 2.0 have low probability mass
near the decision boundary, while not necessarily exhibiting
a margin.

The following corollary establishes that for tasks with poly-
nomial behavior of p(θ), the expected risk decays essentially
at a rate of (log n/n)κ or faster.

2In bounded domains this condition is, in particular, fulfilled in
the classical margin situation (Schölkopf & Smola, 2002), when
the classes are separated by a positive distance from each other.
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Corollary 2 (Transfer risk of polynomial distributions). If
there exists a κ ≥ 0 be such that p(θ) ≤ c · (1− (2/π)θ)κ

for all θ ∈ [0, π/2], then

E
X∼Pn

x

[
R
(
ĥX)

]
≤ c · 1 + (log n)κ

nκ
(21)

Proof. We apply Theorem 3 and insert the polynomial upper
bound for p. For the case n < d, we get

E
X∼Pn

x

[
R
(
ĥX
)]

≤ (1− (2/π)β)κ + (1− (2/π)(π/2− β))nκ. (22)

Setting β = (π/2) · n−1/n and simplifying the resulting
expressions yields

≤
(
1− e−

log n
n

)κ
+ n−κ. (23)

Finally, we use the inequality ex ≥ 1 + x and the claim
follows.

Note that, in contrast to many results in statistical learning
theory, the bounds are far from vacuous, even when only
little data is available. This can best be seen in Corollary 1,
where γ < 1 and hence γn is an informative upper bound
for the classification error. These observations suggest that
distillation operates in a very different regime from classical
hard-target learning. Standard bounds usually have little to
say when n < d and only start to be useful when n� d. In
contrast, (linear) distillation ensures perfect transfer when
n ≥ d and non-vacuous bounds are possible even when
n < d.

4.3. Proof of Theorem 3

The case n ≥ d follows trivially from the result of Theorem
1 and 2. For the case n < d, the following property turns
out to be crucial for obtaining a transfer rate of the form that
we do.

Lemma 1 (Strong monotonicity). Let ŵ(X) denote the
distillation solution ŵ as a function of the training data
X. Then, for any full-rank datasets X− ∈ Rd×n− and
X+ ∈ Rd×n+ such that X− is contained in X+,

ᾱ(w∗, ŵ(X+)) ≤ ᾱ(w∗, ŵ(X−)). (24)

Proof. If n+ ≥ d, then the left-hand side of (24) is zero
and the claim follows. Otherwise, assume wlog that the first
n− columns of X− and X+ coincide. Let Q+R+ = X+

be the QR factorisation of X+ with Q+ ∈ Rd×n+ and
R+ ∈ Rn+×n+ , and similarly for X−. Then ŵ(X+) =

Q+Q
ᵀ
+w∗ and

cos(ᾱ(w∗, ŵ(X+))) =
wᵀ
∗Q+Q

ᵀ
+w∗

‖w∗‖ ·
∥∥Q+Q

ᵀ
+w∗

∥∥ (25)

=

∥∥Qᵀ
+w∗

∥∥
‖w∗‖

, (26)

and an analogous statement holds for X−. Now, because
the first n− columns of Q+ coincide with Q−, we have∥∥Qᵀ

+w∗
∥∥ ≥ ∥∥Qᵀ

−w∗
∥∥ and

cos(ᾱ(w∗, ŵ(X+))) ≥ cos(ᾱ(w∗, ŵ(X−))). (27)

Taking cos−1 on both sides (and remembering that cos−1 is
decreasing) yields the claim.

For the moment, think of ᾱ(w∗, ŵ) as a proxy for the trans-
fer risk, i.e. the closer the trained student ŵ is to the teacher
w∗ in terms of angles, the lower the transfer risk. A direct
consequence of Lemma 1, and the reason we call it ‘strong
mononoticity’, is that including additional data in the trans-
fer set can never harm the transfer risk, only improve it.
This property is specific to distillation; it does not hold in
hard-target learning.

Proof of Theorem 3 (n < d). For nonzero vectors u,v ∈
Rd, we define α(u,v) ∈ [0, π] as a variant of ᾱ (Equa-
tion 16) that takes the sign of uᵀv into account,

α(u,v) = cos−1

(
uᵀv

‖u‖ · ‖v‖

)
. (28)

We decompose the expected risk as follows:

E
X∼Pn

x

[
R
(
ĥX
)]

= P
X∼Pn

x
x∼Px

[wᵀ
∗x · ŵᵀx < 0]

=

∫
x:ᾱ(w∗,x)≥β

P
X∼Pn

x

[wᵀ
∗x · ŵᵀx < 0|x] dPx

+

∫
x:ᾱ(w∗,x)<β,wᵀ

∗x>0

P
X∼Pn

x

[ŵᵀx < 0|x] dPx

+

∫
x:ᾱ(w∗,x)<β,wᵀ

∗x<0

P
X∼Pn

x

[ŵᵀx > 0|x] dPx.

(29)

Let us fix some x for which ᾱ(w∗,x) < β and wᵀ
∗x > 0

(i.e. an ‘easy’ positive test example); for this x we have
α(w∗,x) = ᾱ(w∗,x). Consider the situation where
ᾱ(w∗,xi) < π/2 − β for some i (i.e. there is at least one
good teaching point). Then, Lemma 1 with X+ = X and
X− = xi yields ᾱ(w∗, ŵ) ≤ ᾱ(w∗,xi) < π/2− β. Com-
bined with the triangle inequality, we obtain

α(ŵ,x) ≤ α(w∗, ŵ) + α(w∗,x) (30)
≤ ᾱ(w∗,xi) + ᾱ(w∗,x) < π/2, (31)
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which implies ŵᵀx > 0, i.e. a correct prediction (same
as the teacher’s). Conversely, an error can occur only if
ᾱ(w∗,xi) ≥ π/2−β for all i. Because xi are independent,
we have

P
X∼Pn

x

[ŵᵀx < 0|x : ᾱ(w∗,x) < β, wᵀ
∗x > 0]

≤ P
X∼Pn

x

[∀i : ᾱ(w∗,xi) ≥ π/2− β]

= p(π/2− β)n.

(32)

By a symmetric argument, one can show that

P
X∼Pn

x

[ŵᵀx > 0|x : ᾱ(w∗,x) < β, wᵀ
∗x < 0]

≤ p(π/2− β)n. (33)

Combining (29), (32) and (33) yields the result:

P
X∼Pn

x
x∼Px

[wᵀ
∗x · ŵᵀx < 0] ≤

≤ P
x
[ᾱ(w∗,x) ≥ β] + P

x
[ᾱ(w∗,x) < β] · p(π/2− β)n

= p(β) + (1− p(β)) · p(π/2− β)n.

5. Why Does Distillation Work?
From the formal analysis in the previous section, three con-
cepts emerge as key factors for the success of distillation:
data geometry, optimization bias, and strong monotonicity.
In this section, we discuss these factors and provide some
empirical confirmation how they affect or explain variations
in the transfer risk.

5.1. Data Geometry

From Theorem 3 we know that the data geometry, in particu-
lar the angular alignment between the data distribution and
the teacher, crucially impact how fast the student can learn.
Formally, this is reflected in p(θ): the faster it decreases, the
easier it should be for the student to learn the task.

To experimentally test the effect of data geometry on the
effectiveness of distillation, we adopt the setting of Corol-
lary 2. We consider a series of tasks of varying angular
alignment, as measured by the degree, κ, of the polynomial
by which p(θ) is upper bounded.

Specifically, for any κ, the task (Pκx ,w
κ
∗ ) is defined by the

following sampling procedure. First, an angle a is sampled
from the κ-polynomial distribution, i.e. P [a ≥ θ] = (1 −
(2/π)θ)κ for θ ∈ [0, π/2]. Then, a direction z is uniformly
sampled from all unit-length vectors that are at angle a with
the teacher’s weight vector, ᾱ(w∗, z) = a. Finally, x = νz
is returned for a random ν, distributed as a one-dimensional
standard Gaussian.
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Figure 3. Transfer risk of linear distillation on tasks of varying
angular alignment.

We use an input space dimension of d = 1000 and a transfer
set size n = 20. Then, we train a linear student by distil-
lation on each of the tasks and evaluate its transfer risk on
held-out data. Figure 3 shows the results. The plot shows
a clearly decreasing trend: on tasks with more favorable
data geometry (higher κ), transfer via distillation is more
effective and the student achieves lower risk.

5.2. Optimization Bias

A second key factor for the success of distillation is a spe-
cific optimization bias. For n < d, the distillation training
objective (1) has many minima of identical function value
but potentially different generalization properties. There-
fore, the optimization method used could have a large impact
on the transfer risk. As Theorems 1 and 2 show, gradient
descent has a particularly favorable bias for distillation.

To verify this observation experimentally, we consider learn-
ers that are guided by an optimisation bias to different de-
grees: at one end of the spectrum is the gradient-descent
learner we have studied in previous sections, while at the
other end is a learner that treats all minimizers of the dis-
tillation training loss equally, i.e. that has no bias toward
any of the solutions. Specifically, consider learners with
weights of the form wδ = ŵ + δ ‖ŵ‖‖q‖ q, where ŵ is the
gradient-descent distillation solution and q is a Gaussian
random vector in the subspace orthogonal to the data span,
i.e. if X is the data matrix, then Xᵀq = 0. All learners
of this form globally minimize the distillation training loss,
and depending on δ, they are more or less guided by the
gradient-descent bias: δ = 0 and |δ| → ∞ represent the
two extremes mentioned above.

We train the learners wδ for δ ∈ {0, 10, . . . , 90} on the
digits 0 and 1 of the MNIST dataset, where inputs are treated
as vectors in R784 and the teacher w∗ is a logistic regression
trained to classify 0s and 1s on an independent training set.
We set the transfer set size to n = 100 and evaluate the risk
on the test set.

Figure 4 shows the result. There is a clear trend in favor
of learners that are more strongly guided by the gradient-
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Figure 4. Transfer risk of linear distillation variants with different
degrees of optimization bias, on the digits 0 and 1 of MNIST.

descent bias (small δ); these learners generally achieve
lower transfer risk. This result supports the idea of opti-
mization bias as a key component of distillation’s success.

5.3. Strong Monotonicity

The third key factor we identify is strong monotonicity,
as established in Lemma 1: training the student on more
data always leads to a better approximation of the teacher’s
weight vector.

Compared to data geometry and optimisation bias, strong
monotonicity is less amenable to experimental study be-
cause it is a downstream property that cannot directly be
manipulated. We therefore take an indirect approach. We
consider a set of learners including the gradient-descent dis-
tillation learner, the hard-target learner, and several learners
with reduced optimisation bias (as in Section 5.2), and train
them on the same task. For each learner, we note its ex-
pected risk calculated on a held-out set, and its monotonicity
index, defined as the probability that an additional training
example reduces the angle between the student’s and the
teacher’s weight vectors rather than increasing it, i.e.

m(w) = P
X∼Pn

x
x∼Px

[ᾱ(w∗,w([X,x])) < ᾱ(w∗,w(X))],

(34)
where the student’s weight vector w is now treated as a
function of the training set. Thus, we can relate a learner’s
risk and its monotonicity.

We train the learners on the polynomial-angle task (Pκx ,w
κ
∗ )

from Section 5.1, with κ = 1, d = 100 and n = 5. The ex-
pected risk as well as the monotonicity index are estimated
as averages over 1000 transfer sets.

The results are shown in Figure 5. There is a negative
correlation between monotonicity and transfer risk, which
supports the intuition of monotonicity as a desirable property
and a possible explanation of distillation’s success.

However, a few reservations are in order. First, as mentioned
above, monotonicity cannot easily be manipulated, so its
effect on transfer risk remains unknown. We can only mea-
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Figure 5. Expected transfer risk vs. monotonicity of different learn-
ers: gradient-descent based distillation (blue), hard-target learner
(orange), and a series of distillation learners with reduced optimi-
sation bias (green): wδ for δ ∈ {1/16, 1/8, 1/4, 1/2, 1}, listed
in order from left to right.

sure correlation. Second, monotonicity is of binary nature;
it only captures whether an extra data point helps or not. Yet
for a quantitative characterization of risk, one would have
to capture by how much an extra data point helps. We leave
more refined definitions of monotonicity for future work.

6. Conclusion
In this work, we have formulated and studied a linear model
of knowledge distillation. Within this model, we have de-
rived a) a characterization of the solution learned by the
student, b) a bound on the transfer risk, meaningful even in
the low-data regime, and c) three key factors that explain the
success of distillation. In doing so, we hope to have enriched
both the current intuitive and theoretical understanding of
distillation, both of which have only been weakly developed.

Our work paints a picture of distillation as an extremely ef-
fective method for knowledge transfer that derives its power
from an optimization bias of gradient-based methods initial-
ized near the origin, which in particular has the effect that
any additionally included training point can only improve
the student’s approximation of the teacher. Distillation fur-
ther benefits strongly from a favorable data geometry, in
particular a margin between classes.

While we have supported this picture by theory and em-
pirical work only in the linear case, we hypothesize that
similar properties also govern the behavior of distillation in
the nonlinear setting. If this hypothesis turns out to be true,
it would have implications for the design of transfer sets (a
large teacher model being stored along with only the mini-
mal dataset necessary for future transfer) or active learning
(which samples are most informative to have labeled by the
teacher). Potentially, strong monotonicity could serve as a
leading design principle for new sample-efficient algorithms.
We thus consider the extension to nonlinear models the main
direction for future work.
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