
Determinacy in Discrete-Bidding Infinite-Duration
Games
Milad Aghajohari
Sharif University of Technology, Iran
mi.aghajohari@gmail.com

Guy Avni
IST Austria, Klosterneuburg, Austria
guy.avni@ist.ac.at

Thomas A. Henzinger
IST Austria, Klosterneuburg, Austria
tah@ist.ac.at

Abstract
In two-player games on graphs, the players move a token through a graph to produce an infinite
path, which determines the winner of the game. Such games are central in formal methods since
they model the interaction between a non-terminating system and its environment. In bidding
games the players bid for the right to move the token: in each round, the players simultaneously
submit bids, and the higher bidder moves the token and pays the other player. Bidding games are
known to have a clean and elegant mathematical structure that relies on the ability of the players to
submit arbitrarily small bids. Many applications, however, require a fixed granularity for the bids,
which can represent, for example, the monetary value expressed in cents. We study, for the first
time, the combination of discrete-bidding and infinite-duration games. Our most important result
proves that these games form a large determined subclass of concurrent games, where determinacy
is the strong property that there always exists exactly one player who can guarantee winning the
game. In particular, we show that, in contrast to non-discrete bidding games, the mechanism with
which tied bids are resolved plays an important role in discrete-bidding games. We study several
natural tie-breaking mechanisms and show that, while some do not admit determinacy, most natural
mechanisms imply determinacy for every pair of initial budgets.
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1 Introduction

Two-player infinite-duration games on graphs are a central class of games in formal verification
[4] and have deep connections to foundations of logic [36]. They are used to model the
interaction between a system and its environment, and the problem of synthesizing a correct
system then reduces to finding a winning strategy in a graph game [35]. A graph game
proceeds by placing a token on a vertex in the graph, which the players move throughout
the graph to produce an infinite path (“play”) π. The winner of the game is determined
according to π.
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20:2 Determinacy in Discrete-Bidding Infinite-Duration Games

Two ways to classify graph games are according to the type of objectives of the players,
and according to the mode of moving the token. For example, in reachability games, the
objective of Player 1 is to reach a designated vertex t, and the objective of Player 2 is to
avoid t. An infinite play π is winning for Player 1 iff it visits t. The simplest mode of moving
is turn based: the vertices are partitioned between the two players and whenever the token
reaches a vertex that is controlled by a player, he decides how to move the token.

In bidding games, in each turn, a bidding takes place to determine which player moves the
token. Bidding games were introduced in [25, 26], where the main focus was on a concrete
bidding rule, called Richman rule (named after David Richman), which is as follows: Each
player has a budget, and before each move, the players simultaneously submit bids, where a
bid is legal if it does not exceed the available budget. The player who bids higher wins the
bidding, pays the bid to other player, and moves the token.

Bidding games exhibit a clean and elegant theory. The central problem that was previously
studied concerned the existence of a necessary and sufficient threshold budget, which allows
a player to achieve his objective. Assuming the sum of budgets is 1, the threshold budget
at a vertex v, denoted Thresh(v), is such that if Player 1’s budget exceeds Thresh(v), he
can win the game, and if Player 2’s budget exceeds 1 − Thresh(v), he can win the game.
Threshold budgets are known to exist in bidding reachability games [25, 26], as well as
infinite-duration bidding games with Richman bidding [7], poorman bidding [8], which are
similar to Richman bidding except that the winner of a bidding pays the “bank” rather
than the other player, and taxman bidding [10], which span the spectrum between Richman
and poorman bidding. In addition, bidding games exhibit a rich mathematical structure
in the form of a connection with random-turn based games, which are a special case of
stochastic games [19] in which in each turn, the player who moves is chosen according to a
probability distribution. Random-turn based games have been extensively studied since the
seminal paper [34].

These theoretical properties of bidding games highly depend on the ability of the players
to submit arbitrarily small bids. Indeed, in poorman games, the bids tend to 0 as the
game proceeds. Even in Richman reachability games, when the budget of Player 1 at v
is Thresh(v) + ε, a winning strategy bids so that the budget always exceeds the threshold
budget and, either the game is won or Player 1’s surplus, namely the difference between
his budget and the threshold budget, strictly increases. This strategy uses bids that are
exponentially smaller than ε.

For practical applications, however, allowing arbitrary granularity of bids is unreasonable.
For example, in formal methods, graph games are used to reason about multi-process systems,
and bidding naturally models “scrip” systems, which use internal currency in order to
prioritize processes. Car-control systems are one example, where different components might
send conflicting actions to the engine, e.g., the cruise control component can send the action
“accelerate” while the traffic-light recognizer can send “stop”. Bidding then specifies the level
of criticality of the actions, yet for this mechanism to be practical, the number of levels
of criticality (bids) must stay small. Bidding games can be used in settings in which bids
represent the monetary value of choosing an action. Such settings typically have a finite
granularity, e.g., cents. One such setting is Blockchain technology [15, 5], where players
represent agents that are using the service, and their bids represent transaction fees to the
miners. A second such setting is reasoning about ongoing auctions like the ones used in
the internet for advertisement allocation [32]. Bidding games can be used to devise bidding
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strategies in such auctions. Motivation for bidding games also comes from recreational games,
e.g., bidding chess [12] or tic-tac-toe1, where it is unreasonable for a human player to keep
track of arbitrarily small and possibly irrational numbers.

In this work, we study discrete-bidding games in which the granularity of the bids is
restricted to be natural numbers. A key difference from the continuous-bidding model is that
there, the issue of how to break ties was largely ignored, by only considering cases where the
initial budget does not equal Thresh(v). In discrete-bidding, however, ties are a central part
of the game. A discrete-bidding game is characterized explicitly by a tie-breaking mechanism
in addition to the standard components, i.e., an arena, the players’ budgets, and an objective.
We investigate several tie-breaking mechanisms and show how they affect the properties of
the game. Discrete-bidding games with reachability objectives were first studied in [20]. The
focus in that paper was on extending the Richman theory to the discrete domain, and we
elaborate on their results later in this section.

A central concept in game theory is a winning strategy: a strategy that a player can reveal
before the other player, and still win the game. A game is determined if exactly one of the
players can guarantee winning the game. The simplest example of a non-determined game is
a two-player game called matching pennies: Each player chooses 1 (“heads”) or 0 (“tails”),
and Player 1 wins iff the parity of the sum of the players’ choices is 0. Matching pennies is
not determined since if Player 1 reveals his choice first, Player 2 will choose opposite and
win the game, and dually for Player 2.

Discrete-bidding games are a subclass of concurrent graph games [2], in which in each
turn, the players simultaneously select actions, and the joint vector of actions determines the
next position. A bidding game G is equivalent to a concurrent game G′ that is played on the
“configuration graph” of G: each vertex of G′ is a tuple 〈v,B1, B2, s〉, where v is the vertex in
G on which the token is situated, the players’ budgets are B1 and B2, and s is the state of
the tie-breaking mechanism. An action in G′ corresponds to a bid and a vertex to move to
upon winning the bidding. Concurrent games are not in general determined since matching
pennies can be modelled as a concurrent game.

The central question we address in this work asks under which conditions bidding games
are determined. We show that determinacy in bidding games highly depends on the tie-
breaking mechanism under use. We study natural tie-breaking mechanisms, show that
some admit determinacy while others do not. The simplest tie-breaking rule we consider
alternates between the players: Player 1 starts with the advantage, when a tie occurs,
the player with the advantage wins, and the advantage switches to the other player. We
show that discrete-bidding games with alternating tie-breaking are not determined, as we
demonstrate below.

I Example 1. Consider the bidding reachability game that is depicted in Fig. 1. We depict
the player who has the advantage with a star. We claim that no player has a winning strategy
when the game starts from the configuration 〈v0, 1, 1∗〉, thus the token is placed on v0, both
budgets equal 1, and Player 2 has the tie-breaking advantage. We start by showing that
if Player 2 reveals his first bid before Player 1, then Player 1 can guarantee winning the
game. There are two cases. First, if Player 2 bids 0, Player 1 bids 1 and draws the game to
t. Second, if Player 2 bids 1, then Player 1 bids 0, and the game reaches the configuration
〈v1, 2, 0∗〉. Next, both players bid 0 and we reach 〈v2, 2∗, 0〉. Player 1 wins by bidding 1

1 http://biddingttt.herokuapp.com/
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v1 v2

v0t

Figure 1 A bidding game that is not determined with alternating tie-breaking, when the initial
configuration is 〈v0, 1, 1∗〉.

twice; indeed, the next two configurations are 〈v0, 1∗, 1〉 and either 〈t, 0, 2∗〉, if Player 2 bids
1, or 〈t, 0∗, 2〉, if he bids 0. The proof that Player 1 loses when he reveals his first bid before
Player 2 can be found in Theorem 10. y

We generalize the alternating tie-breaking mechanism as follows. A transducer is similar
to an automaton only that the states are labeled by output letters. In transducer-based tie
breaking, a transducer is run in parallel to the game. The transducer reads information
regarding the biddings and outputs which player wins in case of a tie. Alternating tie-breaking
is a special case of transducer tie-breaking in which the transducer is a two-state transducer,
where the alphabet consists of the letters > (“tie”) and ⊥ (“no-tie”) and the transducer
changes its state only when the first letter is read.

I Example 2. We describe another simpler game that is not determined. In a Büchi game,
Player 1 wins a play iff it visits an accepting state infinitely often. We claim that the Büchi
bidding game that is depicted on the left of Fig. 2 is not determined when the tie-breaking
uses the transducer on the right of the figure and both of the players’ initial budgets are
positive. That is, if a tie occurs in the first bidding, Player 2 wins all ties for the rest of the
game, and otherwise Player 1 wins all ties. First note that, for i ∈ {1, 2}, no matter what
the budgets are, if Player i wins all ties, he wins the game. A winning strategy for Player i
always bids 0. Intuitively, the other player must invest a unit of budget for winning a bidding
and leaving vi, thus the game eventually stays in vi. So, the winner is determined according
to the outcome of the first bidding, and the players essentially play a matching-pennies game
in that round. y

v1 v2

1 21

s1 s0 s2

⊤,⊥ ⊤,⊥
⊤⊥

Figure 2 On top, a Büchi game that is not determined when tie-breaking is determined according
to the transducer on the bottom, where the letters > and ⊥ respectively represent “tie” and “no tie”.

We proceed to describe our positive results. For transducer-based tie-breaking, we identify
a necessary and sufficient condition for determinacy: when the transducer is un-aware of the
occurrence of ties, bidding games are determined. The second tie-breaking mechanism for
which we show determinacy is random tie-breaking: a tie is resolved by tossing a coin that
determines the winner of the bidding. Finally, a tie-breaking mechanism that was introduced
in [20] is advantage based, except that when a tie occurs, the player with the advantage can
choose between (1) winning the bidding and passing the advantage to the other player, or
(2) allowing the other player to win the bidding and keeping the advantage. Determinacy for
reachability games with this tie-breaking mechanism was shown in [20]. The technique that
is used there cannot be extended to the other tie-breaking mechanisms we study. We show
an alternative proof for advantage-based tie-breaking and extend the determinacy result for
richer objectives beyond reachability.
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We obtain our positive results by developing a unified proof technique to reason about
bidding games, which we call local determinacy. Intuitively, a concurrent game is locally
determined if from each vertex, there is a player who can reveal his action before the other
player. We show that locally-determined reachability games are determined and then extend
to Müller games, which are richer qualitative games. We expect our technique to extend to
show determinacy in other fragments of concurrent games unlike the technique in [20], which
is tailored for bidding games.

Determinacy has computational complexity implications; namely, finding the winner in a
bidding game with objective α when the budgets are given in unary is as hard as solving
a turn-based game with objective α, and we show a simple reduction in the other way for
bidding games. Finally, we establish results for strongly-connected discrete-bidding games.

Due to lack of space, some proofs appear in the full version.

2 Preliminaries

2.1 Concurrent and turn-based games
A concurrent game is a two-player game that is played by placing a token on a graph. In
each turn, both players simultaneously select actions, and the next vertex the token moves
to is determined according to their choices. The players thus produce an infinite path π in
the graph. A game is accompanied by an objective for Player 1, who wins iff π meets his
objective. We specify standard objectives in games later in the section. For i ∈ {1, 2}, we
use −i to refer to the other player, namely −i = 3− i

Formally, a concurrent game is played on an arena 〈A, V, λ, δ〉, where A is a finite set of
actions, V is a finite set of vertices, the function λ : V × {1, 2} → 2A \ ∅ specifies the allowed
actions for Player i in vertex v, and δ : V ×A×A→ V specifies, given the current vertex
and a choice of actions for the two players, the next vertex the token moves to. We call
u ∈ V a neighbor of v ∈ V if there is a1, a2 ∈ A with u = δ(v, a1, a2). We say that Player i
controls a vertex v ∈ V if his actions uniquely determine where the token proceeds to from
v. That is, for every a ∈ λ(v, i) there is a vertex u such that, for every allowed action a′ of
Player −i, we have δ(v, a, a′) = u. A turn-based game is a special case of a concurrent game
in which each vertex is controlled by one of the players.

2.2 Bidding games
A (discrete) bidding game is a special case of a concurrent game. The game is played on a
graph and both players have budgets. In each turn, a bidding takes place to determine which
player gets to move the token. Formally, a bidding game is played on an arena 〈V,E,N,M〉,
where V is a set of vertices, E ⊆ (V × V ) is a set of edges, N ∈ IN represents the total
budget, and the tie-breaking mechanism isM on which we elaborate below.

We formalize the semantics of a bidding game 〈V,E,N,M〉 by means of a concurrent game
〈A, V ′, λ, δ〉. Let B1, B2 ∈ {0, . . . , N} with B1 +B2 = N and v ∈ V . A configuration vertex
of the form 〈v,B1, B2, s〉, represents a configuration of the bidding game in which the token
is placed on v, Player 1’s budget is B1, Player 2’s budget is B2, and s represents the state
of the tie-breaking mechanism. The allowed actions in a configuration vertex 〈v,B1, B2, s〉
are {0, . . . , B1} for Player 1 and {0, . . . , B2} for Player 2. For bids b1, b2 ∈ {0, . . . , N}, the
neighbor of a configuration vertex c = 〈v,B1, B2, s〉 is an intermediate vertex 〈c, b1, b2〉. If
b1 > b2, then Player 1 wins the bidding and chooses the next vertex the token proceeds to. In
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20:6 Determinacy in Discrete-Bidding Infinite-Duration Games

this case, Player 1 controls 〈c, b1, b2〉 and its neighbors are configuration vertices of the form
〈v′, B1 − b1, B2 + b1, s

′〉, where v′ ∈ V with 〈v, v′〉 ∈ E and s′ is the updated tie-breaking
state. The case where Player 2 wins the bidding, i.e., b1 < b2, is dual.

We proceed to the case of ties and describe three types of tie-breaking mechanisms.
Transducer-based: A transducer is T = 〈Σ, Q, q0,∆,Γ〉, where Σ is a set of letters, Q
is a set of states, q0 ∈ Q is an initial state, ∆ : Q× Σ→ Q is a deterministic transition
function, and Γ : Q→ {1, 2} is a labeling of the states. Intuitively, T is run in parallel
to the bidding game and its state is updated according to the outcomes of the biddings.
Whenever a tie occurs and T is in state s ∈ Q, the winner of the bidding is Γ(s). The
information according to which tie-breaking is determined is represented by the alphabet
of T . In general, the information can include the vertex on which the token is located
and the result of the previous bidding, i.e., the winner, whether or not a tie occurred,
and the winning bid, thus Σ = V × {1, 2} × {⊥,>} × IN.
Random-based: A tie is resolved by choosing the winner uniformly at random.
Advantage-based: Exactly one player holds the advantage. Suppose Player i holds the
advantage and a tie occurs. Then Player i chooses who wins the bidding. If he calls the
other player the winner, Player i keeps the advantage, and if he calls himself the winner,
the advantage switches to the other player.

Formally, consider a configuration c = 〈v,B1, B2, s〉 and an intermediate vertex 〈c, b1, b2〉.
In the transducer-based mechanism, the state s is a state in the transducer T . If b1 6= b2, the
player who controls 〈v, b1, b2〉 is determined as in the above. In case b1 = b2, then Player Γ(s)
controls the vertex. In both cases, we update the state of the tie-breaking mechanism by
feeding it the information on the last bidding; who won, whether a tie occurred, and what
vertex the winner chose, thus we set s′ = ∆(s, σ), where σ = 〈v′, i,⊥, bi〉 in case Player i wins
the bidding with his bid of bi, moves to v′, and no tie occurs. The other cases are similar.

In random-based tie-breaking, the mechanism has no state, thus we can completely
omit s. Consider an intermediate vertex 〈c, b1, b2〉. The case of b1 6= b2 is as in the above.
Suppose both players bid b. The intermediate vertex 〈c, b, b〉 is controlled by “Nature”. It
has two probabilistic outgoing transitions; one transition leads to the intermediate vertex
〈c, b, b − 1〉, which represents Player 1 winning the bidding with a bid of b, and the other
to the intermediate vertex 〈c, b− 1, b〉, which represents Player 2 winning the bidding with
a bid of b. We elaborate on the semantics of concurrent games with probabilistic edges
in Section 5.

Finally, in advantage-based tie-breaking, the state of the mechanism represents which
player has the advantage, thus s ∈ {1, 2}. Consider an intermediate vertex 〈c, b1, b2〉. When
a tie does not occur, there is no need to update s. When b1 = b2, then Player s controls
〈c, b1, b2〉 and the possibility to choose who wins the bidding. Choosing to lose the bidding
is modelled by no update to s and moving to an intermediate vertex that is controlled by
Player −s from which he chooses a successor vertex and the budgets are updated accordingly.
When Player s chooses to win the bidding we proceed directly to the next configuration
vertex, update the budgets, and the mechanism’s state to 3− s.

2.3 Strategies, plays, and objectives
A strategy is, intuitively, a recipe that dictates the actions that a player chooses in a game.
Formally, a finite history of a concurrent game is a sequence 〈v0, a

1
0, a

2
0〉, . . . , 〈vn−1, a

1
n−1,

a2
n−1〉, vn ∈ (V ×A×A)∗ · V such that, for each 0 ≤ i < n, we have vi+1 = δ(vi, a1

i , a
2
i ). A

strategy is a function from (V ×A×A)∗ ·V to A. We restrict attention to legal strategies that
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assign only allowed actions, thus for every history π ∈ (V ×A×A)∗ ·V that ends in v ∈ V , a
legal strategy σi for Player i has σi(π) ∈ λ(v, i). Two strategies σ1 and σ2 for the two players
and an initial vertex v0, determine a unique play, denoted play(v0, σ1, σ2) ∈ (V ×A×A)ω,
which is defined as follows. The first element of play(v0, σ1, σ2) is 〈v0, σ1(v0), σ2(v0)〉. For
i ≥ 1, let πi denote the prefix of length i of play(v0, σ1, σ2) and suppose its last element is
〈vi, a1

i , a
2
i 〉. We define vi+1 = δ(vi, ai1, ai2), ai+1

1 = σ1(πi · vi+1), and ai+1
2 = σ2(πi · vi+1). The

path that corresponds to play(v0, σ1, σ2) is v0, v1, . . ..
An objective for Player 1 is a subset on infinite paths α ⊆ V ω. We say that Player 1 wins

play(v0, σ1, σ2) iff the path π that corresponds to play(v0, σ1, σ2) satisfies the objective, i.e.,
π ∈ α. Let inf(π) ⊆ V be the subset of vertices that π visits infinitely often. We consider
the following objectives.

Reachability: A game is equipped with a target set T ⊆ V . A play π is winning for
Player 1, the reachability player, iff it visits T .
Büchi: A game is equipped with a set T ⊆ V of accepting vertices. A play π is winning
for Player 1 iff it visits T infinitely often.
Parity: A game is equipped with a function p : V → {1, . . . , d}, for d ∈ IN. A play π is
winning for Player 1 iff maxv∈inf(π) p(v) is odd.
Müller: A game is equipped with a set T ⊆ 2V . A play π is winning for Player 1 iff
inf(π) ∈ T .

3 A Framework for Proving Determinacy

3.1 Determinacy
Determinacy is a strong property of games, which intuitively says that exactly one player has
a winning strategy. That is, the winner can reveal his strategy before the other player, and the
loser, knowing how the winner plays, still loses. Formally, a strategy σi is a winning strategy
for Player i at vertex v iff for every strategy σ−i for Player −i, Player i wins play(v, σ1, σ2).
We say that a game 〈V,E, α〉 is determined if from every vertex v ∈ V either Player 1 has a
winning strategy from v or Player 2 has a winning strategy from v.

While concurrent games are not determined (e.g., “matching pennies”), turn-based games
are largely determined.

I Theorem 3 ([28]). Turn-based games with objectives that are Borel sets are determined.
In particular, turn-based Müller games are determined.

We describe an alternative definition for determinacy in concurrent games. Consider a
concurrent game G = 〈A, V, λ, δ, α〉. Recall that in G, in each turn, the players simultaneously
select an action, and their joint actions determine where the token moves to. For i ∈ {1, 2},
let Gi be the turn-based game that, assuming the token is placed on a vertex v, Player i
selects an action first, then Player −i selects an action, and the token proceeds from v as in G
given the two actions. Formally, the game G1 is a turn-based game 〈A, V ∪ (V ×A), λ′, δ′, α′〉,
and the definition for G2 is dual. The vertices that are controlled by Player 1 are V1 = V and
V2 = V ×A. For v ∈ V , we have λ′(v, 1) = λ(v, 1) and since Player 1 controls v, we arbitrarily
fix λ′(v, 2) = A. For a1 ∈ λ(v, 1) and a2 ∈ A, we define δ(v, a1, a2) = 〈v, a1〉. Similarly, we
define λ′(〈v, a1〉, 1) = A and λ′(〈v, a1〉, 2) = λ(v, 2). For a′1 ∈ A and a2 ∈ λ(v, 2), we define
δ′(〈v, a1〉, a′1, a2) = δ(v, a1, a2). Finally, an infinite play v1, 〈v1, a1〉, v2, 〈v2, a2〉, . . . , is in α′
iff v1, v2, . . . is in α. Recall that in bidding games, intermediate vertices are controlled by
one player and the only concurrent moves occur when revealing bids. Thus, when G is a
bidding game, in Gi, Player i always reveals his bids before Player −i.

CONCUR 2019



20:8 Determinacy in Discrete-Bidding Infinite-Duration Games

I Proposition 4. A strategy σi is winning for Player i in G at vertex v iff it is winning in
Gi from v. Then, G is determined at v iff either Player 1 wins in G1 from v or Player 2 wins
in G2 from v.

3.2 Local and global determinacy
We define local determinacy in a fragment of concurrent games, which slightly generalizes
bidding games. Consider a transducer R = 〈A×A,Q, q0,∆,Γ〉, where ∆ : Q×A×A→ Q

is a partial function. We assume that for each state q ∈ Q and i ∈ {1, 2}, there is a set of
allowed actions for each player, given by λR : Q× {1, 2} → 2A \ {∅}. For each a1 ∈ λR(q, 1)
and a2 ∈ λR(q, 2) we require that ∆(q, a1, a2) is defined. Recall that Γ : Q→ {1, 2}.

We say that a concurrent game G = 〈A, V, λ, δ〉 with objective α is R-concurrent if (1)
the set of vertices V are partitioned into configuration vertices C and intermediate vertices
I, (2) intermediate vertices do not contribute to the objective, thus for two plays π and π′
that differ only in their intermediate vertices, we have π ∈ α iff π′ ∈ α, (3) the neighbors
of configuration vertices are intermediate vertices and the transition function restricted to
configuration vertices is one-to-one, i.e., for every configuration vertex c and two pairs of
actions 〈a1, a2〉 6= 〈a′1, a′2〉, we have δ(c, a1, a2) 6= δ(c, a′1, a′2), (4) each intermediate vertex is
controlled by one player and its neighbors can either be all intermediate or all configuration
vertices, (5) for v, v′ ∈ V such that N(v), N(v′) ⊆ I, we have N(v) ∩ N(v′) = ∅, (6) each
vertex in V is associated with a state in R with the following restrictions. Suppose c ∈ C
is associated with q ∈ Q. Then, λ(v, i) = λR(q, i), for i ∈ {1, 2}. The transducer updates
its state after concurrent moves in configuration vertices; namely, for a configuration vertex
c and two actions a1, a2 ∈ A, let u = δ(c, a1, a2) be an intermediate vertex. Then, the
state that is associated with u is q′ = ∆(q, a1, a2) and u is controlled by Player Γ(q′). The
transducer also updates its state between intermediate states; namely, if u′ ∈ I is a neighbor
of u and assume Player 1 controls u and chooses action a1 to proceed from u to u′, then
u′ is associated with ∆(q′, a1, a2), for all a2 ∈ A, and similarly for Player 2. Finally, the
transducer does not update its state when proceeding from an intermediate vertex to a
configuration one; namely, if c′ ∈ C is a neighbor of u ∈ I and u is associated with q ∈ Q,
then c′ is associated with q.

Each bidding game with transducer- and advantage-based tie-breaking is R-concurrent.
Indeed, suppose the sum of budgets is N ∈ IN in the bidding game. Then, the states of the
transducer model the players’ budget and the state of the tie-breaking mechanism. Thus,
each state of the transducer is a triple 〈B1, B2, s〉 such that B1 +B2 = N . The set of allowed
actions in a state 〈B1, B2, s〉 are the allowed bids, thus λR(〈B1, B2, s〉, i) = {0, . . . , Bi}, for
i ∈ {1, 2}. Following a bidding in a configuration vertex, the intermediate vertex is obtained
similarly to bidding games; namely, the budgets are updated by reducing the winning bid
from the winner’s budget and adding it to the loser’s budget, and the state of the tie-breaking
mechanism is updated. With transducer-based tie-breaking, we need only one intermediate
vertex between two configuration vertices since we use the information from the bidding
to update the state of the tie-breaking transducer. In advantage-based tie-breaking, when
no tie occurs, a single intermediate vertex is needed since there is no update to the state
of the tie-breaking mechanism. In case of a tie, however, a second intermediate vertex is
needed in order to allow the player who holds the advantage, the chance to decide whether
or not to use it.

We describe the intuition for local determinacy. Consider a concurrent game G and a
vertex v. Recall that it is generally not the case that G is determined. That is, it is possible
that neither Player 1 nor Player 2 have a winning strategy from v. Suppose Player 1 has no
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winning strategy. We say that a transducer admits local determinacy if in every vertex v
that is not winning for Player 1, there is a Player 2 action that he can reveal before Player 1
and stay in a non-losing vertex. Formally, we have the following.

I Definition 5 (Local determinacy). We say that a transducer R admits local determinacy if
every concurrent game G with Borel objective that is R-concurrent has the following property.
Consider the turn-based game G1 in which Player 1 reveals his action first in each position.
Since α is Borel, it is a determined game and there is a partition of the vertices to losing and
winning vertices for Player 1. Then, for every vertex v ∈ V that is losing for Player 1 in G1,
there is a Player 2 action a2 such that, for every Player 1 action a1, the vertex δ(v, a1, a2) is
losing for Player 1 in G1.

We show that locally-determined games are determined by starting with reachability
objectives and working our way up to Müller objectives.

I Lemma 6. If a reachability game G is R-concurrent for a locally-determined transducer
R, then G is determined.

Proof. Consider a concurrent reachability game G = 〈A, V, λ, δ, α〉 and a vertex v ∈ V from
which Player 1 does not have a winning strategy. That is, v is losing for Player 1 in G1.
We describe a winning strategy for Player 2 from v in G. Player 2’s strategy maintains the
invariant that the set of vertices S that are visited along the play in G, are losing for Player 1
in G1. Recall that since we assume intermediate vertices do not contribute to the objective,
the target of Player 1 is a configuration vertex. The invariant implies that Player 2 wins
since there is no intersection between S and Player 1’s target, and thus the target is never
reached. Initially, the invariant holds by the assumption that v is losing for Player 1 in G1.
Suppose the token is placed on a vertex u in G. Local determinacy implies that Player 2 can
choose an action a2 that guarantees that no matter how Player 1 chooses, the game reaches
a losing vertex for Player 1 in G1. Thus, the invariant is maintained, and we are done. J

Next, we show determinacy in parity games by reducing them to reachability games. The
reduction relies on a well-known concept that is called cycle-forming game (see for example
[3]) in which we terminate the parity game once a cycle is formed. Given a parity game P
and a vertex v in P , for i ∈ {1, 2}, by definition, Player i wins in P from v iff he wins from v

in Pi, in which he reveals his bids first. Memoryless determinacy of turn-based parity games
[21] implies that Player 1 wins from v in Pi iff he wins from v in the cycle-forming game
CFG(Pi, v). By applying the cycle-forming game construction directly to an R-concurrent
game P , we obtain a reachability game CFG(P, v) that is R-concurrent, which, by Lemma 6
is determined. It is technical to show that Player i wins from v in CFG(Pi, v) iff he wins
from v in CFG(P, v)i. Thus, if Player 1 does not win from v in P, Player 2 wins from v.
The details of the proof of the following lemma can be found in the full version.

I Lemma 7. If a parity game P is R-concurrent for a locally-determined transducer R, then
P is determined.

The proof for Müller objectives is similar only that we replace the cycle-forming game
reduction with a reduction from Müller games to parity games [23, Chapter 2].

I Theorem 8. If a Müller game G is R-concurrent for a locally-determined transducer R,
then G is determined.
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3.3 The bidding matrix
Consider a bidding game G = 〈V,E,N,M, α〉. Recall that G is R-concurrent, where a
configuration vertex is of the form c = 〈v,B1, B2, s〉. The set of allowed actions in c for
Player i is {0, . . . , Bi}, for i ∈ {1, 2}. In particular, there is a natural order on the actions. We
think of the possible pairs of actions available in c as a matrix Mc, which we call the bidding
matrix. Rows in Mc correspond to Player 1 bids and columns corresponds to Player 2 bids.
The diagonal that starts in the top-left corner of Mc and follows entries of the form 〈j, j〉, for
0 ≤ j ≤ min{B1, B2}, corresponds to biddings that resolve in a tie. Entries above and below
it correspond to biddings that are winning for Player 2 and Player 1, respectively. Consider
the turn-based game G1 in which Player 1 reveals his bid first. We consider objectives for
which turn-based games are determined, thus in G1, the vertex 〈c, b1, b2〉 is either winning for
Player 1 or Player 2. The entries inMc are in {1, 2}, whereMc(b1, b2) = 1 iff the intermediate
vertex 〈c, b1, b2〉 is winning for Player 1 in G1.

For i ∈ {1, 2}, we call a row or column in Mc an i-row or i-column, respectively, if all
its entries are i. We rephrase local determinacy in bidding games in terms of the bidding
matrix, and it is not hard to show that the following definition implies Definition 5.

I Definition 9. Consider a bidding game G = 〈V,E,N,M, α〉. We say that G is locally
determined if for every configuration vertex c, the bidding matrix either has a 2-column or a
1-row.

4 Transducer-based tie-breaking

The determinacy of bidding games with transducer-based tie-breaking depends on the
information that is available to the transducer. We start with a negative result.

I Theorem 10. Reachability bidding games with alternate tie-breaking are not determined.

Proof. Consider the bidding reachability game that is depicted in Fig. 1. We show that no
player has a winning strategy when the game starts from the configuration 〈v0, 1, 1∗〉, thus
the token is placed on v0, both budgets equal 1, and Player 2 has the tie-breaking advantage.
The proof that Player 2 has no winning strategy is shown in Example 1. We show that
Player 1 has no winning strategy, thus if he reveals his first bid before Player 2, then Player 2
wins the game. In Fig. 3, we depict most of the relevant configurations in the game with
Player 2’s strategy in place, and it is not hard to verify that Player 2 can force the game to
avoid t. J

v1, 1
∗
, 1 v2, 1, 1

∗

0, 0

0, 0

v1, 2
∗
, 0 v2, 2, 0

∗

0, 0

0, 0

v1, 0
∗
, 2 v2, 0, 2

∗

0, 0

0, 0

v0, 1, 1
∗

0, 0

1, 1

1, 0

v0, 0, 2
∗

0, 0
1, 0

v2, 1
∗
, 1

1, 0

Figure 3 Configurations in the game that is depicted in Fig. 1.

We proceed to prove our positive results, namely that bidding games are determined
when the information according to which tie-breaking is determined does not include the
occurrence of ties. Formally, we define a subclass of tie-breaking transducers.
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I Definition 11. A transducer is un-aware of ties when its alphabet is V ×{1, 2}× IN, where
a letter 〈v, i, b〉 ∈ V × {1, 2} × IN means that the token is placed on v and Player i wins the
bidding with his bid of b.

We start with the following lemma, whose proof can be found in the full version, that
applies to any tie-breaking mechanism. Recall that rows represent Player 1 bids, columns
represent Player 2 bids, entries on the top-left to bottom-right diagonal represent ties in the
bidding, entries above it represent Player 2 wins, and entries below represent Player 1 wins.

I Lemma 12. Consider a bidding game G with some tie-breaking mechanism T and consider
a configuration c = 〈v,B1, B2, s〉. Entries in Mc in a column above the diagonal are all equal,
thus for bids b2 > b1, b

′
1, the entries 〈b1, b2〉 and 〈b′1, b2〉 in Mc are equal. Also, the entries in

a row to the left of the diagonal are equal, thus for bids b1 > b2, b
′
2, the entries 〈b1, b2〉 and

〈b1, b
′
2〉 in Mc are equal.

The next lemma, whose proof can be found in the full version, relates an entry on the
diagonal with its neighbors.

I Lemma 13. Consider a bidding game G, where tie-breaking is resolved according to a
transducer T that is un-aware of ties. Consider a configuration c = 〈v,B1, B2, s〉. Let b ∈ IN.
If Γ(s) = 1, i.e., Player 1 wins ties in c, then the entries 〈b, b〉 and 〈b, b− 1〉 in Mc are equal.
Dually, if Γ(s) = 2, then the entries 〈b, b〉 and 〈b− 1, b〉 in Mc are equal.

We continue to prove our positive results.

I Theorem 14. Consider a tie-breaking transducer T that is un-aware of ties. Then, a
Müller bidding game that resolves ties using T is determined.

Proof. We show that transducers that are not aware of ties admit local determinacy, and
the theorem follows from Theorem 8. See a depiction of the proof in Figure 4.

Consider a bidding game 〈V,E, α,N, T 〉, where T is un-aware of ties, and consider a
configuration vertex c = 〈v,B1, B2, s〉. We show that Mc either has a 1-row or a 2-column.
We prove for Γ(s) = 1 and the proof for Γ(s) = 2 is similar. Let B = min{B1, B2}. When
B2 > B1, the matrix Mc is a rectangle. Still the diagonal of interest models biddings that
result in ties and it starts from the top right corner of Mc. The columns B+ 1, . . . , B2 do not
intersect this diagonal. By Lemma 12, the entries in each one of these columns are all equal.
We assume all the entries are 1 as otherwise we find a 2-column. Similarly, if B1 > B2, we
assume that the entries in the rows B + 1, . . . , B1 below the diagonal are all 2, otherwise we
find a 1-row.

We restrict attention to the B ×B top-left sub-matrix of Mc. Consider the B-th row in
Mc. By Lemma 12, entries in this row that are below the diagonal are all equal, and, since
Γ(s) = 1, they also equal the entry on the diagonal. If all entries equal 1, then together with
the assumption above that entries to the right of the diagonal are all 1, we find a 1-row.
Thus, we assume all entries below and on the diagonal in the B-th row all equal 2. Now,
consider the B-th column. By Lemma 12, the entries above the diagonal are all equal. If
they all equal 2, together with the entry 〈B,B〉 on the diagonal and the entries below it,
which we assume are all 2, we find a 2-column. Thus, we assume the entries in the B-th
column above the diagonal are all 1. Next, consider the (B − 1)-row. Similarly, the elements
on and to the left of the diagonal are all equal, and if they equal 1, we find a 1-row, thus we
assume they are all 2. We continue in a similar manner until the entry 〈1, 1〉. If it is 1, we
find a 1-column and if it is 2, we find a 2-row, and we are done. J
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We conclude this section by relating the computational complexity of bidding games with
turn-based games. Let TBα be the class of turn-based games with a qualitative objective
α. Let BIDα,trans be the class of bidding games with transducer-based tie-breaking and
objective α. The problem TB-WINα gets a game G ∈ TBα and a vertex v in G, and the goal
is to decide whether Player 1 can win from v. Similarly, the problem BID-WINα,trans gets
as input a game G ∈ BIDα,trans with budgets expressed in unary and a configuration c in
G, and the goal is to decide whether Player 1 can win from c. The proof of the following
theorem can be found in the full version.

I Theorem 15. For a qualitative objective α, the complexity of TB-WINα and BID-
WINα,trans coincide.

5 Random-Based Tie Breaking

In this section we show that bidding games with random-based tie-breaking are determined.
A stochastic concurrent game is G = 〈A, V, λ, δ, α〉 is the same as a concurrent game only
that the transition function is stochastic, thus given v ∈ V and a1, a2 ∈ A, the transition
function δ(v, a1, a2) is a probability distribution over V . Two strategies σ1 and σ2 give rise
to a probability distribution D(σ1, σ2) over infinite plays.

Traditionally, determinacy in stochastic concurrent games states that each vertex is
associated with a value, which is the probability that Player 1 wins under optimal play [27].
The value is obtained, however, when the players are allowed to use probabilistic strategies.
We show a stronger form of determinacy in bidding games; namely, we show that the value
exists even when the players are restricted to use deterministic strategies.

I Definition 16 (Determinacy in stochastic games). Consider a stochastic concurrent game
G and a vertex v ∈ V . Let P1 and P2 denote the set of pure strategies for Players 1
and 2, respectively. For i ∈ {1, 2}, the value for Player i, denoted vali(G, v), is intuit-
ively obtained when he reveals his strategy before the other player. We define val1(G, v) =
supσ1∈P1 infσ2∈P2 Prπ∼D(σ1,σ2)[π ∈ α] and val2(G, v) = infσ2∈P2 supσ1∈P1 Prπ∼D(σ1,σ2)[π ∈
α]. We say that G is determined in v if val1(G, v) = val2(G, v) in which case we denote the
value by val(G, v). We say that G is determined if it is determined in all vertices.

The key idea in the proof shows determinacy for reachability games that are played on
directed acyclic graphs (DAGs, for short). The following lemma, whose proof can be found
in the full version, shows that the proof for DAGs implies the general case by formalizing a
standard “unwinding” argument (see for example Theorem 3.7 in [20]).

I Lemma 17. Determinacy of reachability bidding games that are played on DAGs implies
determinacy of general reachability bidding games.

We continue to show determinacy in bidding games on DAGs.

I Lemma 18. Reachability bidding games with random-based tie-breaking that are played on
DAGs are determined.

Proof. Consider a reachability game G that is played on a DAG with two distinguished
vertices t1 and t2, which are sinks. There are no other cycles in G, thus all plays end either in
t1 or t2, and, for i ∈ {1, 2}, Player i wins iff the game ends in ti. The height of G is the length
of the longest path from some vertex to either t1 or t2. We prove that G is determined by
induction on its height. For a height of 0, the claim clearly holds since for every B1, B2 ∈ IN,
the value in t1 is 1 and the value in t2 is 0. Suppose the claim holds for games of heights of
at most n− 1 and we prove for games of height n.
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Consider a configuration vertex c = 〈v,B1, B2〉 of height n. Let c′ be a configuration
vertex that, skipping intermediate vertices, is a neighbor of c. Then, the height of c′ is less
than n and by the induction hypothesis, its value is well defined. It follows that the value
of the intermediate vertices following c are also well-defined: if the intermediate vertex is
controlled by Player 1 or Player 2, the value is respectively the maximum or minimum of its
neighbors, and if it is controlled by Nature, the value is the average of its two neighbors.

We claim that G is determined in c by showing that one of the players has a (weakly)
dominant bid from c, where a bid b1 dominates a bid b′1 if, intuitively, Player 1 always prefers
bidding b1 over b′1. It is convenient to consider a variant of the bidding matrix Mc of c, which
is a (B1 + 1)× (B2 + 1) matrix with entries in [0, 1], where an entry Mc(b1, b2) represents
the value of the intermediate vertex 〈c, b1, b2〉. Note that Player 1, the reachability player,
aims to maximize the value while Player 2 aims to minimize it. Some properties of Mc are
depicted in Fig. 5 and are formalized in the full version.

Consider the bids 0 and 1 for the two players. We claim that there is a player for which
either 0 weakly dominates 1 or vice versa. Assume towards contradiction that this is not the
case. Consider the 2×2 top-left sub-matrix ofMc and denote its values v0,0, v0,1, v1,0, and v1,1.
Since v1,1 is the average of v0,1 and v1,0, we either have v0,1 ≤ v1,1 ≤ v1,0 or v0,1 ≥ v1,1 ≥ v1,0.
Suppose w.l.o.g. that the first holds, thus v0,1 ≤ v1,0. Note that v0,0 < v0,1, since otherwise
the bid 1 dominates 0 for Player 2. Also, we have v0,0 > v1,0, since otherwise 0 dominates 1
for Player 1. Combining, we have that v0,1 > v1,0, and we reach a contradiction.

In the full version, we show that (1) if row 0 dominates row 1, it dominates every other
row, in which case we can find optimal pure strategies in c, and (2) if row 1 dominates row
0, then column 1 dominates column 0, in which case we can delete the first row and first
column and reason about a smaller game. Two dual properties hold for columns. J

Combining the two theorems above, we obtain the following.

I Theorem 19. Reachability bidding games with random-based tie breaking are determined.

6 Advantage-Based Tie-Breaking

Recall that in advantage-based tie-breaking, one of the players holds the advantage, and
when a tie occurs, he can choose whether to win and pass the advantage to the other player,
or lose the bidding and keep the advantage. Advantage-based tie-breaking was introduced
and studied in [20], where determinacy for reachability games was obtained by showing that
each vertex v in the game has a threshold budget Thresh(v) ∈ (IN × {∗}) such that that
Player 1 wins from v iff his budget is at least Thresh(v), where n∗ ∈ (IN× {∗}) means that
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Lemma 21.

Player 1 wins when he starts with a budget of n as well as the advantage. We show that
advantage-based tie-breaking admits local determinacy, thus Müller bidding games with
advantage-based are determined.

Recall that the state of the advantage-based tie-breaking mechanism represents which
player has the advantage, thus it is in {1, 2}.

I Lemma 20 ([20]). Consider a reachability bidding game G with advantage-based tie-breaking.
Holding the advantage is advantageous: For i ∈ {1, 2}, if Player i wins from a configuration
vertex 〈v,B1, B2,−i〉, then he also wins from 〈v,B1, B2, i〉.
The advantage can be replaced by a unit of budget: Suppose Player 1 wins in 〈v,B1, B2, 1〉,
then he also wins in 〈v,B1 + 1, B2 − 1, 2〉. Suppose Player 2 wins in 〈v,B1, B2, 2〉, then
he also wins in 〈v,B1 − 1, B2 + 1, 1〉.

We need two more observation on the bidding matrix, which are depicted in Figs. 6 and 7,
stated in Lemma 21 below, and proven in the full version.

I Lemma 21. Consider a reachability bidding game G with advantage-based tie-breaking.
Consider a configuration c = 〈v,B1, B2, 1〉 in G, where Player 1 has the advantage, and
i ∈ {0, . . . , B1}. If Mc(i − 1, i) = Mc(i, i − 1) = 2, then Mc(i, i) = 2, and if Mc(i, i) = 2,
then Mc(i+ 1, i) = 2. Consider a configuration c = 〈v,B1, B2, 2〉 in G, where Player 2 has
the advantage, and i ∈ {0, . . . , B2}. If Mc(i− 1, i) = Mc(i, i− 1) = 1, then Mc(i, i) = 1, and
if Mc(i, i− 1) = 2, then Mc(i, i) = 2.

In the full version, we combine the lemmas above to show that advantage-based tie-
breaking gives rise to local determinacy and thus obtain the following theorem.

I Theorem 22. Müller bidding games with advantage-based tie-breaking are determined.

We turn to study computational complexity of bidding games. Let BIDα,adv be the class of
bidding games with advantage-based tie-breaking and objective α, and let BID-WINα,adv be
the respective decision problem. Recall that TB-WINα is the decision problem for turn-based
games. The upper bound in the following theorem is implied from determinacy and the lower
bound is similar to Theorem 15 and can be found in the full version.

I Theorem 23. For a qualitative objective α, the complexity of TB-WINα and BID-WINα,adv
coincide.

7 Strongly-Connected Games

Reasoning about strongly-connected games is key to the solution in continuous-bidding
infinite-duration games [7, 8, 10]. It is shown that in a strongly-connected continuous-bidding
game, with every initial positive budget, a player can force the game to visit every vertex
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v1 v2 v3

Figure 8 A strongly-connected Büchi game in which Player 1 loses with every initial budget.

infinitely often. It follows that in a strongly-connected Büchi game G with at least one
accepting state, Player 1 wins with every positive initial budget. We show a similar result in
discrete-bidding games in two cases, where the proof can be found in the full version.

I Theorem 24. Consider a strongly-connected bidding game G in which tie-breaking is either
resolved randomly or by a transducer that always prefers Player 1. Then, for every pair of
initial budgets, Player 1 can force visiting every vertex in G infinitely often with probability 1.

In [20], it is roughly stated that, with advantage-based tie-breaking, as the budgets
tend to infinity, the game “behaves” similarly to a continuous-bidding game. We show
that infinite-duration discrete-bidding games can be quite different from their continuous
counterparts; namely, we show a Büchi game G such that under continuous-bidding, Player 1
wins in G with every pair of initial budgets, and under discrete-bidding, Player 1 loses in G
with every pair of initial budgets.

I Theorem 25. There is a strongly-connected Büchi discrete-bidding game with advantage-
based tie-breaking such that Player 1 loses with every pair of initial budgets.

Proof. Suppose the game that is depicted in Fig. 8 starts at vertex v1 with initial budgets
B1 ∈ IN and B2 = 0. Player 2 always bids 0, uses the advantage when he has it, and, upon
winning, stays in v1 and moves from v2 to v1. Note that in order to visit v3, Player 1 needs
to win two biddings in a row; in v1 and v2. Thus, in order to visit v3, he must “invest” a
unit of budget, meaning that the number of visits to v3 is bounded by B1. J

8 Discussion and Future Work

We study discrete-bidding infinite-duration bidding games and identify large fragments of
bidding games that are determined. Bidding games are a subclass of concurrent games. We
are not aware of other subclasses of concurrent games that admit determinacy. We find it an
interesting future direction to extend the determinacy we show here beyond bidding games.
Weaker versions of determinacy in fragments of concurrent games have been previously
studied [37].

We focused on bidding games with “Richman” bidding and it is interesting to study other
bidding games with other bidding rules. Discrete-bidding has previously been studied in
combination with all-pay bidding [30] in which both players pay their bid to the other player.
In addition, it is interesting to study discrete-bidding games with quantitative objectives and
non-zero-sum games, which were previously studied only for continuous bidding [7, 8, 29].

This work belongs to a line of works that transfer concepts and ideas between the areas of
formal verification and algorithmic game theory [33]. Examples of works in the intersection of
the two fields include logics for specifying multi-agent systems [2, 17, 31], studies of equilibria
in games related to synthesis and repair problems [16, 14, 22, 1], non-zero-sum games in
formal verification [18, 13], and applying concepts from formal methods to resource allocation
games such as rich specifications [11], efficient reasoning about very large games [6, 24], and
a dynamic selection of resources [9].
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