
Supplementary Information

Supplementary Note 1: Rectification in a multi-level system

A. Two level System

Consider a qubit coupled to two baths as shown in Supplementary Fig. 1. The transition rates are given by

Supplementary Figure 1: Transition between two thermal baths: (a) A two-level system coupled to two baths at temperatures
T1 and T2, together with the associated transition rates. (b) The same for a harmonic oscillator.

Γ
(1)
in = g1

ω0

eβ1!ω0 − 1
, Γ

(2)
in = g2

ω0

eβ2!ω0 − 1

Γ
(1)
out = g1

ω0

1− e−β1!ω0
, Γ

(2)
out = g2

ω0

1− e−β2!ω0
, (S.1)

where gi is the coupling to bath i = 1, 2, !ω0 denotes the energy level separation of the qubit, and βi = 1/kBTi is the
inverse temperature of each bath. In steady state the population of the excited state, ρe = 1− ρg reads
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Γin

Γin + Γout
, (S.2)

where Γin,out = Γ
(1)
in,out + Γ

(2)
in,out and ρg is the population of the ground state of the qubit. The expression for power

to bath i is then
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The thermal rectification by definition is given by
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i
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i

!!!! , (S.4)

where ± refers to the sign of the temperature bias. Consider case when one of the bath temperatures is much smaller
than the other with kBT = 1/β the higher temperature. In this case the rectification ratio is given by

R =
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Supplementary Figure 2: Rectification ratio. (a) R − 1 versus number of levels n. The parameters are: g1/g2 = 1/3, black
circles β1!ω0 = 0.4 and β2!ω0 = 4.8, blue circles β1!ω0 = 0.8 and β2!ω0 = 4.8, and green circles β1!ω0 = 1.6 and β2!ω0 = 4.8.
Stars at n = 2 are from Equation S5. (b) R− 1 versus asymmetry for n = 2. Blue circles are from the numerics and red ones
from Equation S5. The parameters are: β1!ω0 = 0.8 and β2!ω0 = 4.8 The inset replots this with the horizontal index instead
showing 1− (g1/g2).

For small asymmetry δ = 1− g1/g2, |δ| ≪ 1, one can expand the rectification ratio into

R− 1 = e−β!ω0δ. (S.6)

The inset of Supplementary Figure 2b shows this result by solid line for the corresponding temperature.

B. Multilevel system

Consider n-level system with constant energy spacing !ω0. In the limit of n → ∞ it represents a linear harmonic
oscillator as shown in Supplementary Figure 1b. The transition rates between levels k and k ± 1 are given by
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Here i = 1, 2 refers to the baths, Q̂ = i
"

!
2Z0

(â† − â) and Si(ω) = 2Ri
!ω

1−e−βi!ω are charge operator and voltage noise

when applied to a circuit, respectively. Here, Z0 is a characteristic impedance of the system, â (â†) is annihilation
(creation) operator of the ladder of the system, and Ri is the resistance of the bath. In this case only the transitions
between the nearest levels are allowed according to
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The steady state population of each level reads ρi = Si/S, where
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where 1 ≤ j ≤ n− 1 and Γk→k±1 = Γ
(1)
k→k±1 + Γ

(2)
k→k±1. The expression of power to bath i is then given by
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Supplementary Note 2: Introducing an effective qubit-reservoir coupling

We consider a situation as in the experiment, where a qubit with tunable frequency ω(Φ) ≈ ωq

%
| cos(πΦ/Φ0)| is

coupled to resonators with frequencies ω1 < ω2 and bare coupling constants g1 ≈ g2 ≪ ω1,ω2. The resonators interact
with heat baths (ohmic spectral densities) at temperatures T1 ≪ T2. For simplicity, we put T1 = 0 so that Eq. (2)
from the paper applies. The spectral density of bath i as seen from the qubit is that of a damped harmonic oscillator
with central frequency ωi. This provides an effective coupling between the qubit with reservoir i as (see also Motz et
al. NJP 20 (2018))
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ω4
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2
+ ω4

i /Q
2
i

(S.11)

where Qi is the quality factor of the corresponding resonator. With respect to the resonant behavior of the effective
resonator-reservoir couplings, the low frequency oscillator ω1 < ωq has maxima near Φ/Φ0 = ±(k+1/2), k = 0, 1, 2, . . ..
For the high frequency oscillator ω2 ≈ ωq the coupling is maximal near Φ/Φ0 = ±k, k = 0, 1, 2 . . .. Near a resonance
with respect to oscillator i one has geff,i = giQi while for the other one geff, j ≈ (gj/Qj)1/(1 − ω2

i /ω
2
j )

2. At
Φ/Φ0 = 1/2 (and for identical Q-factor and bare couplings g) both effective couplings coincide to give geff,1(π/2) =
geff,2(π/2) = gQ/(1 + Q2). Results are shown in Fig. 3; by way of example, we assume: ω1/ωq = 0.38,ω2/ωq =
0.98, Q1 ≈ Q2 ≈ 1, g1/ωq ≈ g2/ωq = 0.01, and ωq!β/2 = 0.4 (corresponding to T = 400K). Note that for the minimal
couplings we have geff,2(Φ ≈ Φ0/2) ≫ geff,1(Φ ≈ 0).

Supplementary Figure 3: Effective qubit-reservoir couplings geff,2(Φ) (green, high frequency oscillator) and geff,1(φ) (blue, low
frequency oscillator) according to Equation S.11 for parameters specified in the text.

Accordingly, the expression for the rectification coefficient derived from a two level system coupled directly to heat
reservoirs (see Nitzan paper) can be applied according to [see Eq. (2) in the paper]

R =
geff,1(Φ) + geff,2(Φ)coth[ω(Φ)!β/2]
geff,1(Φ)coth[ω(Φ)!β/2] + geff,2(Φ)

(S.12)

The flux dependence of the rectification coefficient is shown in Supplementary Figure 4. While the absolute value
of the rectification coefficient is much smaller in the experiment, qualitatively the above description provides the
observed behaviour. To find a better agreement one should account also for the finite temperature of reservoir 1.
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Supplementary Figure 4: Rectification coefficient |R(Φ) − R(0)| according to Equation S12 for θ = 0.4 corresponding to
Thot = 400mK [Tcold = 0K].

Supplementary Note 3: Energy levels of the experimental device

The Hamiltonian Ĥ is given by

Ĥ = !ωLâ
†
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†
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†
RâR + g(âqâ

†
L + â†qâL + âqâ

†
R + â†qâR) + g̃(âLâ

†
R + â†LâR). (S.13)

Here, !ωL, !ωq, and !ωR are the energies of the left resonator, qubit and the right resonator, respectively, g is the
common coupling constant of the qubit to the two resonators, and g̃ is the cross-coupling between the resonators. In
the eleven-level basis of |000〉, |100〉, |010〉, |001〉, |110〉, |101〉, |011〉, |111〉, |200〉, |210〉, |300〉, where the entries in each
state refer to the left resonator, the qubit, and the right resonator, respectively, the matrix form of the Hamiltonian
can be written
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where ω0 = ωR+ωL

2 , a = ωR−ωL

ω0
, γ = g

!ω0
, γ̃ = g̃

!ω0
, and r =

!ωq

!ω0
. Here ωL = 2π × 2.8 GHz and ωR = 2π × 6.5 GHz

are constant, and !ωq =
%
8EJEC | cos(πΦ/Φ0)|− EC like in the anharmonic Josephson potential.


