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SUMMARY

The extent to which behavior is shaped by experi-
ence varies between individuals. Genetic differences
contribute to this variation, but the neural mecha-
nisms are not understood. Here, we dissect natural
variation in the behavioral flexibility of two Caeno-
rhabditis elegans wild strains. In one strain, a mem-
ory of exposure to 21% O2 suppresses CO2-evoked
locomotory arousal; in the other, CO2 evokes arousal
regardless of previous O2 experience. We map
that variation to a polymorphic dendritic scaffold
protein, ARCP-1, expressed in sensory neurons.
ARCP-1 binds the Ca2+-dependent phosphodies-
terase PDE-1 and co-localizes PDE-1 with molecular
sensors for CO2 at dendritic ends. Reducing ARCP-1
or PDE-1 activity promotes CO2 escape by altering
neuropeptide expression in the BAG CO2 sensors.
Variation in ARCP-1 alters behavioral plasticity in
multiple paradigms. Our findings are reminiscent of
genetic accommodation, an evolutionary process
by which phenotypic flexibility in response to envi-
ronmental variation is reset by genetic change.

INTRODUCTION

Animals reconfigure their behavior and physiology in response to

experience, and many studies highlight mechanisms underlying

such plasticity (Bargmann, 2012; Owen and Brenner, 2012).

While plasticity is presumed crucial for evolutionary success, it

has costs and often varies across species and between individ-

uals (Coppens et al., 2010; Dewitt et al., 1998; Mery, 2013;

Niemel€a et al., 2013). Variation in behavioral flexibility is thought

to underlie inter-individual differences in cognitive ability and ca-

pacity to cope with environmental challenges (Coppens et al.,

2010; Niemel€a et al., 2013). The genetic and cellular basis of in-

ter-individual variation in experience-dependent plasticity is,

however, poorly understood.
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Genetic accommodation and assimilation are concepts used

to describe variation in plasticity on an evolutionary timescale.

Waddington and Schmalhausen suggested genetic assimilation

occurs when a phenotype initially responsive to the environment

becomes fixed in a specific state (Renn and Schumer, 2013;

Schmalhausen, 1949; Waddington, 1942, 1953). This loss of

plasticity may reflect genetic drift or selection against the costs

of expressing adaptive behaviors (Niemel€a et al., 2013). Studies

of genetic assimilation led to the broader concept of genetic

accommodation, referring to evolutionary genetic variation lead-

ing to any change in the environmental regulation of a phenotype

(Crispo, 2007; West-Eberhard, 2005). Many studies in insects,

fish, rodents, and primates highlight inter-individual variation in

behavioral plasticity; in some cases this has been shown to be

heritable (Dingemanse and Wolf, 2013; Izquierdo et al., 2007;

Mery et al., 2007), but the mechanisms responsible for these dif-

ferences remain enigmatic.

Many animals use gradients of respiratory gases to help locate

prey, mates, or predators and have evolved sophisticated

behavioral responses to environmental changes in oxygen (O2)

and carbon dioxide (CO2) levels (Carrillo and Hallem, 2015; Cum-

mins et al., 2014; Guerenstein and Hildebrand, 2008; Prabhakar

and Semenza, 2015). Where studied, behavioral responses to

CO2 have been shown to depend on environmental context,

past experience, and life stage (Carrillo et al., 2013; Fenk and

de Bono, 2017; Guillermin et al., 2017; Hallem and Sternberg,

2008; Sachse et al., 2007; Vulesevic et al., 2006). This flexibility

makes CO2-sensing an attractive paradigm to study natural

variation in behavioral plasticity.

CO2 responses in Caenorhabditis elegans are sculpted by

previous O2 experience (Carrillo et al., 2013; Fenk and de Bono,

2017; Kodama-Namba et al., 2013). Acclimation to surface O2

levels (i.e., 21%) generates a memory that suppresses aversion

of high CO2. The O2 memory is written over hours by O2 sensors,

called URX, AQR, and PQR, whose activity is tonically stimulated

by 21%O2 (Busch et al., 2012; Fenk and deBono, 2017). 21%O2

is itself aversive to C. elegans, most likely because it signals sur-

face exposure (Gray et al., 2004; Persson et al., 2009). By sup-

pressing CO2 aversiveness, C. elegans acclimated to 21% O2

may increase their chance of escaping the surface into buried en-

vironments with elevated CO2 (Fenk and de Bono, 2017).
of Molecular Biology. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Here, we show that the impact of O2 experience on CO2 aver-

sion varies across Caenorhabditis species and between wild

C. elegans isolates. By characterizing differences between

C. elegans isolates, we identify a polymorphism in a dendritic

ankyrin-repeat scaffold protein, ARCP-1, that alters plasticity in

one strain. ARCP-1 biochemically interacts with the conserved

cyclic nucleotide phosphodiesterase PDE-1 and localizes it

with molecular sensors for CO2 to the dendritic ends of BAG

sensory neurons. Disrupting ARCP-1 resets CO2 sensitivity and

experience-dependent plasticity of CO2 escape, in part by

altering neuropeptide expression and conferring strong aversion

to CO2.

RESULTS

Natural Variation in Experience-Dependent Plasticity in
Caenorhabditis

InC. elegans, amemory of recent O2 levels reprograms aversive

responses to CO2 (Fenk and de Bono, 2017). We hypothesized

this experience-dependent plasticity is evolutionarily variable.

To investigate this, we compared the CO2 responses of

different Caenorhabditis species grown at 21% or 7% O2

(Figure S1A). Animals were transferred to a thin bacterial lawn

in a microfluidic chamber kept at 7% O2, stimulated with 3%

CO2, and their behavioral responses quantified. We used a

background level of 7% O2 in all assays because C. elegans

dwell locally at this O2 concentration, making locomotory

arousal by CO2 prominent. By contrast, 21% O2 evokes sus-

tained rapid movement, making CO2 responses above this

high baseline proportionally small. As a representative

C. elegans strain, we used LSJ1, a wild-type (N2-like) laboratory

strain bearing natural alleles of the neuropeptide receptor npr-

1(215F) and the neuroglobin glb-5(Haw). We did not use the

standard N2 strain, because it has acquired mutations in

npr-1 and glb-5 that confer gas-sensing defects (McGrath

et al., 2009; Persson et al., 2009). As expected, C. elegans

was aroused more strongly by CO2 when acclimated to 7%

O2 (Figure S1B). By contrast, O2 experience did not alter the

absolute speed of representative strains of C. latens and

C. angaria at 3% CO2 (Figure S1B). Because C. angaria was

not aroused by 3% CO2, we tested its response to 5% and
Figure 1. Natural Variation in the Regulation of CO2 Escape by Previou

(A) A C. elegans reference strain is more strongly aroused by CO2 when acclimate

this, and all subsequent figures, the background O2 level in the assay is 7%.

(B) Natural variation in the CO2 response ofC. eleganswild isolates acclimated to

0% to 3%. The CO2-evoked speed increase is significantly different (p < 0.05) be

test; n = 6 assays.

(C) The effect of O2 memory on CO2 responses in wild C. elegans isolates. Bars s

ANOVA with �Sidák test; n = 6 assays.

(D) JU1249 and MY16 are more strongly aroused by CO2, regardless of previous

assays.

(E and F) CO2 responses of MY16 (E) and JU1249 (F) animals acclimated to 21%

(G) Acclimation to 21% O2 in JU1249, unlike the reference strain LSJ1, enhance

n = 30–61 animals for npr-1; glb-5, n = 59–66 animals for JU1249. Mann-Whitne

(H) CO2 arousal is increasedmore strongly in JU1249 animals acclimated to 21% r

way ANOVA with �Sidák test. n = 4 assays.

For (A), (E), and (F), solid lines plot mean and shaded areas show SEM. Black b

animals were assayed in at least 4 trials for each condition. *p < 0.05; **p < 0.01

See also Figures S1 and S2.
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10% CO2. These levels evoked locomotory arousal that, as in

C. elegans, was stronger in animals acclimated to 7% O2 (Fig-

ure S1C). Thus, C. angaria is less sensitive to CO2 than

C. elegans, but its arousal by CO2 remains dependent on O2

experience. By contrast, CO2 responses of C. latenswere unaf-

fected by previous O2 experience at any concentration tested

(Figure S1D). Unexpectedly, acclimation to 7% O2 suppressed

rather than enhanced the locomotory response of C. nigoni to

CO2 (Figure S1B). Thus, the effect of O2 memory on CO2-

evoked behavioral responses is evolutionarily variable.

Effect of O2 Memory on CO2 Responses Varies between
C. elegans Wild Isolates
Our findings prompted us to seek intra-species variation in how

O2 experience influences CO2 responses, by studying a geneti-

cally diverse collection of wild C. elegans isolates (Figure S2A).

Most strains responded like the reference strain (Figures 1A–

1C and S2A). However, two isolates, the French JU1249 and

German MY16 strains, responded more strongly than other iso-

lates to a rise in CO2 regardless of O2 experience (Figures 1B and

1D). For MY16 CO2 aversion was stronger when animals were

acclimated to 7% O2, recapitulating the cross-modulation of

CO2 responses observed in most strains (Figures 1C and 1E).

By contrast, JU1249 animals acclimated to 21% O2 further

enhanced rather than suppressed CO2 escape (Figures 1C and

1F). To probe further if the O2-dependent plasticity of CO2

escape had changed in JU1249, we quantified escape re-

sponses at different CO2 concentrations. npr-1; glb-5 control an-

imals always responded more strongly to CO2 when acclimated

to 7% O2, but this was not the case for JU1249 at any CO2 con-

centration tested (Figure 1G). CO-evoked arousal was stronger

in JU1249 animals acclimated to 21% O2 than in those accli-

mated to 7% O2 (Figure 1H), suggesting that JU1249 fails

to suppress CO2 escape at 21% O2.

The increased locomotory arousal of JU1249 and MY16 in

response to CO2 could reflect reduced inhibitory input from

the neural circuit signaling 21% O2. To probe this, we asked if

these isolates show altered behavioral responses to 21% O2.

All isolates we tested responded similarly when we switched

O2 from 7% to 21% (Figure S2B), suggesting they retained a

functional O2-sensing circuit.
s O2 Experience

d to 7% rather than 21%O2. Two-way ANOVA with �Sidák test; n = 6 assays. In

21%O2. Bars represent average increase in speed ± SEMwhen CO2 rises from

tween isolates labeled with different letters (a–d). One-way ANOVA with Tukey

how mean ± SEM for time intervals indicated in (A) and Figure S2A. Two-way

O2 experience. Bars plot mean ± SEM. Two-way ANOVA with Tukey test; n = 6

or 7% O2. Two-way ANOVA with �Sidák test; n = 6 assays.

s rather than suppresses locomotory arousal at different CO2 concentrations.

y U test.

ather than 7%O2. Bars plot mean ± SEM for time intervals indicated in (G). Two-

ars indicate time intervals used for statistical comparisons. For (A)–(H), 20–30

; ***p < 0.001; ****p < 0.0001; ns, not significant.
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In our assays, we exposed animals acclimated to 21%O2 to a

downshift to 7% O2 3 min before the CO2 stimulus. To ask if this

drop in O2, rather than O2 experience, altered the CO2 response

in JU1249, we extended the time animals spent at 7%O2 prior to

receiving the CO2 stimulus to 24 min. JU1249 was still more

strongly aroused by CO2 when acclimated to 21% rather than

7% O2; as expected, O2 experience had the opposite effect on

plasticity in npr-1; glb-5 controls (Figure S2C). We also

compared the behavioral responses of JU1249 and npr-1;

glb-5 animals to a 21% to 7% O2 stimulus and found no signifi-

cant differences (Figure S2D). Thus, the ability of an O2 memory

to modify CO2 escape appears to be altered in JU1249, recapit-

ulating the phenotype observed in C. nigoni.

Natural Variation in the Ankyrin Repeat Protein ARCP-1
Alters Plasticity of CO2 Responses
We sought the genetic changes conferring altered plasticity of

CO2 responses in JU1249. Besides altering this phenotype,

JU1249 exhibited reduced aggregation and bordering behavior

on an E. coli food lawn compared to other C. elegans wild iso-

lates (Figures 2A and 2B). We speculated JU1249 aggregated

poorly because increased avoidance of CO2 shifted the balance

between attraction and repulsion as aerobic animals come

together. In this model, the aggregation phenotype, which is

easy to score, is linked to altered JU1249 CO2 responses.

Before testing this hypothesis, we ruled out the possibility that

JU1249 is genetically contaminated by the non-aggregating N2

lab strain, by genotyping the npr-1, glb-5, and nath-10 loci,

which have acquired polymorphisms during N2 domestication

(Duveau and Félix, 2012; McGrath et al., 2009; Persson et al.,

2009; Weber et al., 2010). JU1249 exhibited the natural alleles

found in other wild isolates at all three loci (Figure S3).

To map the JU1249 aggregation defect, we used a selection-

based quantitative trait locus (QTL) mapping approach in which

we crossed JU1249 to the aggregating C. elegans wild isolate

JU2825 (Figure 2A). To find conditions for selection-based QTL

mapping, we first defined two treatments that differentially

selected for aggregating and solitary animals and performed
Figure 2. Natural Variation in ARCP-1 Alters CO2 Responses

(A and B) Individuals of JU2825, like most C. elegans wild isolates, aggregate at

the lawn (B).

(C) Selection-based QTL mapping approach to establish the genetic basis of so

(D) Line plots showing differences in JU1249 allele frequencies between treatme

polymorphisms (SNPs) wide and a step size of one SNP. Replicates are indicated

frequencies in the two treatments, whereas chromosome III shows a strong enri

(E) Read-count frequency differences between treatment A and B analyzed for con

chromosome III is shown. p values are shown as –log10 (p value) adjusted by the

(F) Gene structure of arcp-1 (F34D10.6). Boxes represent exons and lines indic

frameshift. The db1082 allele, isolated in a genetic screen for aggregation-defec

(G) Wild-type arcp-1b rescues bordering and aggregation phenotypes of JU124

bacterial lawn and behaviors were scored after 6 h. One-way ANOVA with Tukey

(H) arcp-1(db1082) animals, like JU1249, fail to suppress CO2 responses when a

(I) Expressing wild-type arcp-1 restores the O2-dependent modulation of CO2 re

(J) An arcp-1b transgene, but not arcp-1a, rescues the enhanced locomotory arous

for all genotypes. One-way ANOVA with Tukey test.

(K) An arcp-1b transgene rescues the enhanced CO2 response of JU1249 anima

For (H)–(K), each genotype was tested in at least 4 assays with 20–30 animals p

indicate time intervals for statistical comparisons; vertical bars plot mean ± SEM

See also Figures S3, S4, and S5 and Data S1 and S2.
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competition tests between JU1249 and JU2825 under these

treatments. Starting with a 50:50% mix of each strain, JU1249

(solitary) outcompeted JU2825 (aggregating) when the popula-

tions were transferred by liquid harvest and aliquot (Figure S4A,

treatment A), indicating that JU1249 has higher fitness in these

conditions than JU2825. When cultivated by transferring an

agar chunk from the border of the food lawn, where aggregating

animals accumulate (Figure S4A, treatment B), JU2825 outcom-

peted JU1249, which indicates the aggregation trait in

C. elegans is selectable. We used treatments A and B as selec-

tion regimes on populations of cross-progenies of JU1249 and

JU2825 (Figure 2C), sequenced their genomes, and compared

allele frequencies of paired replicate populations under the

two treatments (Data S1; STAR Methods). Populations selected

for aggregation (treatment B) were expected to have higher

frequencies of JU2825 alleles at the QTL that affect the variation

in aggregation behavior compared to the paired populations

(treatment A). Our analysis showed large variation in allele fre-

quencies among replicates, suggesting founder effects due to

the moderate population sizes in the first crosses (Figures 2D

and S4B). We used two criteria to identify candidate QTL regions

associated with the aggregation phenotype. First, we identified

regions that show consistent differences in allele frequencies

among all replicate pairs for the two treatments (Figures S4B

and S4C). Second, we narrowed down these regions by exam-

ining replicates for the position of the closest recombination

event that was selected (Figure S4D). Based on these criteria,

we identified a genomic interval on chromosome III (3361869–

4086899 bp) as a candidate region, showing a highly significant

difference in allele frequencies among the eight population pairs

(Figures 2E and S4C).

The 725 kb QTL region in JU1249 contained 3 polymorphisms

in protein-coding genes compared to N2 and JU2825 (Data S1J).

An 8 bp deletion (mfP22) in the open reading frame of the gene

F34D10.6, whichwe named arcp-1 (for ankyrin repeat containing

protein, see below), stood out as a promising candidate for two

reasons. First, mfP22 is the only polymorphism predicted to

abolish protein function (Data S1J and S1K), introducing a
the border of an E. coli lawn (A). By contrast, JU1249 animals disperse across

litary behavior in JU1249.

nt A and B for each replicate pair, using a sliding window 5 single-nucleotide

by different colors. Chromosome I shows little consistent deviations from equal
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frameshift and premature stop codon in both transcripts of the

arcp-1 gene (Figures 2F and S5A). Second, we independently

found several alleles of arcp-1 in a collection of sequenced mu-

tants that suppress aggregation behavior of npr-1(null) animals,

including two that introduced premature stop codons. The num-

ber and kind of these alleles made it likely that disrupting arcp-1

caused an aggregation defect. Consistent with this hypothesis,

the aggregation defect of one strain (db1082 allele) mapped to

a 1 Mb interval on chromosome III, centered on arcp-1 (Figures

2F and S5A). Two mutants from the million mutation project

(Thompson et al., 2013), harboring arcp-1 alleles (gk856856

and gk863317) that introduce premature stop codons, were

also defective in aggregation and bordering (Figures S5B and

S5C). To show conclusively that mutations in arcp-1 disrupt

aggregation, we performed transgenic rescue experiments. Ex-

pressing wild-type arcp-1 in JU1249 or in arcp-1(db1082); npr-

1(null) mutants restored aggregation and bordering behavior

(Figure 2G).

To gain insight into the distribution of the arcp-1(mfP22) poly-

morphism in C. elegans, we examined other wild isolates. Our

analysis suggests mfP22 is a rare allele, because we did not

find it in a set of 151 worldwide C. elegans isolates, including

MY16 (Data S2).

Does disrupting arcp-1 alter responses to CO2? arcp-

1(db1082); npr-1(null) animals behaved like JU1249: they

showed no overt defect in their response to a 21%-to-7% O2

downshift (Figure S5D) but failed to suppress escape from

different CO2 concentrations when acclimated to 21% O2 (Fig-

ures 2H, S5E, and S5F). A wild-type arcp-1 transgene rescued

this CO2 plasticity defect (Figure 2I). arcp-1 is thus required for

animals acclimated to 21% O2 to suppress escape from high

CO2 environments.

Gene predictions and cDNA cloning revealed arcp-1a and

arcp-1b transcripts that overlap at their 30 end (Figure 2F; Worm-

base WS265). The db1082 and mfP22 alleles affect both arcp-1

transcripts (Figure 2F). Expressing arcp-1b fully rescued

the heightened CO2 response of these animals, whereas a

transgene for the longer arcp-1a transcript did not (Figures 2J

and 2K). A mutation that only disrupted arcp-1a also failed to

recapitulate the enhanced CO2 response and aggregation

phenotype of mutants defective in both arcp-1 transcripts (Fig-

ures S5C and S5G). Thus arcp-1, andmore specifically the prod-

uct of its b transcript, is required for animals to suppress CO2

escape following acclimation to 21% O2.

ARCP-1 Acts in BAG Sensory Neurons to Suppress CO2

Escape Behavior
arcp-1 encodes an ankyrin repeat protein (Figure 3A) homolo-

gous to C. elegans ankyrin UNC-44 and vertebrate ankyrins

(Otsuka et al., 1995). These proteins are important for the subcel-

lular localization of neural signaling complexes (e.g., anchoring

components of the axon initial segment and allowing cyclic

nucleotide-gated channels to accumulate in photoreceptor cilia)

(Kizhatil et al., 2009; Leterrier et al., 2017; Maniar et al., 2011).

Besides ankyrin repeats, ARCP-1 contains a DPY-30 domain

(Figure 3A). Both domains are common protein interactionmotifs

that regulate the function and spatial organization of diverse

signaling complexes (Gopal et al., 2012; Jones and Svitkina,
2016; Monteiro and Feng, 2017; Sivadas et al., 2012). ARCP-

1’s domain structure suggests it serves a similar role trafficking

or localizing signaling proteins in the nervous system.

A fosmid-based bicistronic transgene that co-expressed

arcp-1 and free GFPwas expressed in themain CO2 and O2 sen-

sors: the URX, AQR, PQR, and BAG neurons (Figures 3B and

3C). We also observed expression in a subset of other sensory

neurons (i.e., AFD, ASE, AWC, and AWB) (Figure 3C). This raised

the possibility that disrupting arcp-1 modifies plasticity in multi-

ple paradigms. To test this, we assayed arcp-1mutants in a salt-

based associative learning paradigm (Figure S6A; Beets et al.,

2012; Hukema et al., 2008). arcp-1 mutants were defective

in gustatory plasticity: although mock-conditioned animals

showed normal attraction to NaCl, upon salt conditioning they

failed to downregulate salt chemotaxis behavior (Figure S6B).

To gain insight into arcp-1 function, we focused on the failure

of arcp-1 mutants to suppress CO2 escape when acclimated to

21% O2. Because arcp-1 is expressed in the BAG CO2 sensors,

we asked if it acts in these neurons to suppress CO2 escape.

Cell-specific expression of wild-type arcp-1 in BAG using the

flp-17 promoter (Kim and Li, 2004) rescued the increased

locomotory activity of arcp-1 mutants at 3% CO2 (Figure 3D).

We also tested if arcp-1 can act in URX, AQR, and PQR neurons,

which sense 21% O2, to suppress CO2 escape. Expressing

arcp-1 in these neurons, using the gcy-32 promoter (Yu et al.,

1997), did not rescue the CO2 phenotype of arcp-1mutants (Fig-

ure 3D). By contrast, the arcp-1 aggregation defect could be

rescued by expressing arcp-1 either in BAG or in URX, AQR,

and PQR (Figures S5H and S5I). Together, these data show

that arcp-1 functions in gas-sensing neurons and cell-autono-

mously suppresses CO2 escape in the BAG CO2 sensors.

BAG Responses to CO2 Are Tuned by ARCP-1
We investigated if the increased behavioral response of arcp-1

animals to CO2 was associated with increased CO2-evoked

Ca2+ responses in BAG neurons. Using the ratiometric sensor

YC3.60, we quantified fluorescence changes at the cell body

of BAG in response to CO2. Animals acclimated to 21% O2

were transferred to a microfluidic chamber kept at 7% O2 and

stimulated with different CO2 concentrations. BAG Ca2+ re-

sponses evoked by 1% and 3% CO2 were significantly higher

in arcp-1 mutants compared to controls (Figure 4A). Unlike for

CO2 escape, expressing arcp-1 either in BAG or in URX, AQR,

and PQR rescued the CO2 Ca
2+ phenotype in BAG (Figure 4B).

At 3% CO2, animals with arcp-1 rescued in URX, AQR, and

PQR even showed a smaller increase in Ca2+ activity compared

to npr-1 controls, which may be due to an overexpression

effect of the gcy-32p::arcp-1b transgene (Figure 4B). Because

BAG neurons exhibit a phasic-tonic response to CO2, we also

measured Ca2+ responses during prolonged CO2 stimulation.

BAG tonic responses to 3% CO2 were reduced in arcp-1 mu-

tants, although the effect was small (Figure S6C).

BAG neurons respond not only to a rise in CO2, but also to a

fall in O2 (Zimmer et al., 2009). We asked if the CO2 phenotypes

of arcp-1 animals could be indirectly linked to changes in

BAG’s ability to respond to O2. BAG Ca2+ activity at 7% O2,

measured by YC2.60, was similar for arcp-1 mutants and npr-1

controls, although arcp-1 animals displayed higher Ca2+ at
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Figure 3. ARCP-1B Acts in BAG Sensors to Suppress CO2 Escape Behavior

(A) Protein domain architecture of ARCP-1B.

(B) Schematic model of the core neural circuits for O2 and CO2 responses inC. elegans (Fenk and de Bono, 2017; Guillermin et al., 2017; Laurent et al., 2015). O2-

sensing neurons URX, AQR, and PQR tonically signal 21% O2. CO2 stimuli and O2 downshifts are detected by BAG and other neurons. The O2 sensors cross-

modulate the neural circuit underlying CO2 escape. The role of RIA, RIG, AIA, and AIZ in the CO2 circuit is hypothesized based on their function in CO2 aerotaxis

(Guillermin et al., 2017).

(C) A fosmid reporter transgene for arcp-1 is expressed in all major O2 and CO2 sensors, and other sensory neurons. Scale bar, 10 mm; A, anterior; V, ventral.

(D) Cell-specific expression of arcp-1b in BAG, using the flp-17 promoter (BAGp), rescues locomotory arousal by CO2, whereas expression in URX, AQR, and

PQR, using the gcy-32 promoter (URX-AQR-PQRp), does not. One-way ANOVAwith Tukey test. nR 5 assays with 20–30 animals per trial. *p < 0.05; ***p < 0.001;

****p < 0.0001; ns, not significant.

See also Figures S5 and S6.
21%O2 (Figure S6D). Ca2+ responses in URX to a 7% to 21%O2

stimulus were unaffected in arcp-1 animals (Figure S6E).

BAG O2 responses are mediated by the guanylate cyclases

GCY-31/GCY-33 and are abolished in mutants of these genes

(Zimmer et al., 2009). Animals lacking gcy-33 and gcy-31, like

arcp-1mutants, were aroused more strongly by CO2, but the ef-

fects on CO2 escape were additive in an arcp-1; gcy-33; gcy-31;

npr-1 quadruple mutant (Figure S6F). Moreover, in gcy-33; gcy-

31 mutants, CO2 arousal was suppressed when animals were

acclimated to 21% O2—unlike in arcp-1 animals (Figure S6G).

These results indicate that arcp-1 can act in a separate genetic

pathway from gcy-33 and gcy-31 to regulate CO2 escape.

Together with our rescue and Ca2+ imaging data, these findings

are consistent with arcp-1 suppressing CO2 escape by inhibiting

BAG responses to CO2.

ARCP-1 Inhibits BAG-Mediated Turning Downstream of
the CO2 Receptor GCY-9
C. elegans respond to a rise in CO2 not only by becoming

aroused andmoving faster but also by re-orienting their direction

of travel and increasing the frequency of sharp (omega) turns.

This behavior is also mediated by BAG (Fenk and de Bono,

2015; Hallem and Sternberg, 2008). Because ARCP-1 acts in

BAG to suppress CO2-evoked Ca2+ responses and locomotory

arousal, we asked if it also inhibits CO2-evoked turning. Both
112 Neuron 105, 106–121, January 8, 2020
arcp-1 mutants and JU1249 showed increased turning in

response to a rise in CO2 compared to controls (Figures 4C

and 4D). This phenotype was rescued by expressing arcp-1

in BAG, but not by expressing it in URX, AQR, and PQR

(Figure 4D).

To gain insight into the molecular functions of arcp-1, we

examined its effect on CO2-evoked turns further. This part of

the locomotory response to CO2 is driven by cGMP signaling

from the guanylyl cyclase receptor GCY-9 in BAG neurons

(Fenk and de Bono, 2015; Hallem et al., 2011). GCY-9 is a

molecular receptor for CO2 and appears to be specifically ex-

pressed in BAG (Hallem et al., 2011; Smith et al., 2013). To

examine if arcp-1 regulates turning downstream of GCY-9,

we measured CO2-evoked turns in a gcy-9; arcp-1 mutant.

Disrupting gcy-9 abolished turning evoked by 3% CO2 in both

npr-1 and arcp-1; npr-1 animals (Figure 4E), which implies that

the mutant’s turning phenotype depends on GCY-9, and

ARCP-1 antagonizes GCY-9 signaling in BAG.

ARCP-1 Localizes Phosphodiesterase PDE-1 to
BAG Cilia
The ankyrin repeats and DPY-30 motif of ARCP-1 suggest it

serves as an interaction partner or scaffold for other proteins.

To identify its molecular partners, we took a biochemical

approach (Figure 5A). We first made a transgenic strain that
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Figure 4. ARCP-1 Suppresses BAG Responses to CO2

(A and B) Mean traces of BAG Ca2+ activity in npr-1 and arcp-1; npr-1 animals in response to different CO2 concentrations. Mutants for arcp-1 show increased

Ca2+ activity at 1% and 3% CO2 (A), which is rescued by expressing arcp-1 either in BAG (flp-17p) or URX, AQR, and PQR (gcy-32p) (B). n = number of animals.

Two-way ANOVA with �Sidák test in (A). One-way ANOVA with Holm-�Sidák test in (B).

(C–E) CO2-evoked turning behavior. (C) Rising CO2 levels stimulate stronger turning behavior in JU1249 (n = 85 animals) than in npr-1(215F) animals (n = 81).

Mann-Whitney U test. (D) CO2-evoked turning is also increased in arcp-1(db1082); npr-1(ad609) animals. BAG-specific expression of a flp-17p::arcp-1b

transgene rescues this phenotype, whereas expression of arcp-1b in URX, AQR, and PQR (gcy-32p) does not. One-way ANOVA with Tukey test. n R 5 assays

with 20–30 animals per trial. (E) The increased turning of arcp-1; npr-1 animals in response to CO2 requires the GCY-9 CO2 receptor. One-way ANOVAwith Tukey

test. n = 9 assays with 20–30 animals per trial.

For (A)–(E), solid lines plot mean; shaded areas show SEM; black bars indicate time intervals for statistical comparisons; bar graphs plot mean ± SEM for these

intervals. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.

See also Figure S6.
expressed GFP-ARCP-1B and showed that it rescued the

enhanced CO2 response of the arcp-1 mutant (Figure S7A). We

then used anti-GFP nanobodies to pull down GFP-ARCP-1B

fusion proteins from C. elegans lysates and identified putative

interacting proteins by mass spectrometry (Figure 5A; Data

S3). As a negative control, we immunoprecipitated other GFP-

tagged cytoplasmic proteins in parallel. Across two independent

experiments, we identified phosphodiesterase 1 (PDE-1) as the

top specific hit (i.e., the protein having the highest number of

spectral counts in ARCP-1B immunoprecipitates [IPs] while

having none in control IPs) (Figure 5B; Data S3).

PDE-1 is a Ca2+-activated cyclic guanosine monophosphate

(cGMP)/cyclic AMP (cAMP) phosphodiesterase orthologous to

mammalian Ca2+/calmodulin-dependent PDE1 and is expressed

inmany neurons, including BAG (Couto et al., 2013; Hallem et al.,

2011). As expected from our biochemical data, PDE-1 and

ARCP-1 localize to similar compartments in BAG. GFP-tagged

ARCP-1B was enriched at sensory endings (Figure 5C), similar

to what we observe and what has been reported for PDE-1

(Martı́nez-Velázquez and Ringstad, 2018; Figure 5D).

The biochemical interaction of ARCP-1 and PDE-1, and their

co-localization at dendritic endings, led us to hypothesize that
ARCP-1 regulates PDE-1 localization. To test this, we

compared enrichment of PDE-1 at BAG cilia in arcp-1 and con-

trol animals. Overall, PDE-1 expression was slightly higher in

arcp-1 mutants, but enrichment of PDE-1 at the cilia was

reduced by more than half in these animals (Figure 5E). To

extend this observation, we investigated the subcellular locali-

zation of other signaling components of the gas-sensing neu-

rons in arcp-1 mutants. We observed a reduction of GCY-9

levels in BAG cilia, as well as reduced levels of the O2-sensing

guanylate cyclase GCY-35 at the sensory endings of URX (Fig-

ures S7B and S7C). These phenotypes were not due to a gen-

eral defect in dendritic localization, because arcp-1 mutants

showed normal levels of the cGMP-gated channel subunit

TAX-4 and the O2-sensing guanylate cyclase GCY-33 in BAG

cilia (Figures S7D and S7E). arcp-1 mutants did not exhibit

overt defects in dendritic morphology, based on expression

of a flp-17p::gfp transgene and DiI filling of amphid sensory

neurons (Figures S7F and S7G). Together, our data suggest

that ARCP-1 acts as a scaffold that helps co-localize signal

transduction components at sensory endings of some neurons.

Our behavioral, Ca2+ imaging and cell biological results led

us to speculate that ARCP-1 promotes a Ca2+-dependent
Neuron 105, 106–121, January 8, 2020 113
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(C and D) GFP-tagged ARCP-1B and PDE-1B proteins are both enriched at the sensory endings of BAG. Scale bar, 10 mm; A, anterior; V, ventral.

(E) Disrupting arcp-1 reduces enrichment of PDE-1, expressed from the flp-17p, at BAG cilia. Bars plot mean ± SEM n (in bars) = number of animals. Mann-

Whitney U test.
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See also Figure S7 and Data S3.
feedback mechanism mediated by PDE-1, which keeps BAG

CO2 responses in check by degrading cGMP following activation

of the CO2 receptor GCY-9. If this is correct, disrupting pde-1

should phenocopy arcp-1 and increase the frequency of CO2-

evoked turns. Moreover, the arcp-1 and pde-1 phenotypes

should not be additive. As predicted, pde-1 mutants turned

more in response to 3% CO2 than controls and even arcp-1mu-

tants, likely because pde-1 is more widely expressed and serves

broader functions than arcp-1. The turning phenotype was com-

parable forpde-1, arcp-1, and pde-1; arcp-1mutants (Figure 5F).

These results are consistent with pde-1 and arcp-1 acting in the

same genetic pathway to keep CO2 responses in check.
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PDE-1 and ARCP-1 Inhibit Expression of FLP-19
Neuropeptides
To investigate further how disrupting arcp-1 alters BAG func-

tion, we specifically labeled these neurons with GFP, used

fluorescence-activated cell sorting (FACS) to isolate the fluo-

rescent cells from acutely dissociated arcp-1;npr-1 and

npr-1 control animals, and profiled their gene expression

using RNA sequencing (RNA-seq) (see STAR Methods). Genes

that are hallmarks of BAG, such as those involved in CO2

signaling (gcy-9, pde-1, flp-17) and BAG cell fate determina-

tion (ets-5) (Guillermin et al., 2011; Hallem et al., 2011), were

among the top enriched genes in our dataset (Data S4).
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Figure 6. PDE-1 and ARCP-1 Inhibit BAG Expression of FLP-19 Neuropeptides that Potentiate Behavioral Responses to CO2

(A) Mean fluorescence ± SEM of a flp-19 neuropeptide reporter (flp-19p::gfp) in BAG, indicating that PDE-1 and ARCP-1 inhibit flp-19 expression. BAG-specific

expression of arcp-1b, using the flp-17 promoter (BAGp), rescues this phenotype, whereas expression in URX, AQR and PQR, using the gcy-32 promoter (URX-

AQR-PQRp), does not. n (in bars) = number of animals. One-way ANOVA with Tukey test.

(B) Mean fluorescence ± SEM of flp-19 neuropeptide reporter in BAG neurons of JU1249 and JU2825. Increased expression of flp-19 in JU1249 is rescued by

expressing arcp-1b from the BAG-specific flp-17 promoter (BAGp). n (in bars) = number of animals. Kruskal-Wallis with Dunn test.

(C) Disrupting flp-19 suppresses the potentiated turning phenotype of arcp-1; npr-1 animals in response to 3%CO2. One-way ANOVAwith Holm �Sidák test. n = 9

assays.

(D) CO2-evoked turning of arcp-1; npr-1mutants following cell-specific knock down of flp-19 expression in BAG. Knock down of flp-19 in the mutant background

suppresses turning at 3% CO2, whereas knock down of gfp does not. One-way ANOVA with Dunnett’s test. n R 7 assays.

(E) Knock down of flp-19 expression in BAG partially rescues the increased arousal phenotype of arcp-1; npr-1 animals at 3% CO2. One-way ANOVA with

Dunnett’s test. n R 7 assays with 20–30 animals per trial.

(F) BAG-specific knock down of flp-19 in npr-1 animals does not affect the plasticity of CO2 escape in response to previous O2 experience. Two-way ANOVAwith
�Sidák test. n = 7–8 assays.

(G) Animals overexpressing flp-19 in BAGmove significantly faster at 3%CO2 compared to npr-1 controls, although their response is still lower than npr-1 animals

grown at 7% O2 and arcp-1 mutants. n R 3 assays. One-way ANOVA with Tukey test.

For (C)–(G), 20–30 animals were tested per assay. Solid lines plot mean; shaded areas show SEM; black bars indicate time intervals for statistical comparisons;

bars plot mean ± SEM for these intervals. *p < 0.05; ***p < 0.001; ****p < 0.0001; ns, not significant.

See also Figure S7 and Data S4.
arcp-1 itself was among the 100 most highly expressed genes

in BAG. The BAG profiles highlighted significant gene expres-

sion differences between arcp-1 mutants and controls,

notably changes in the abundance of mRNAs encoding neuro-

peptides, genes involved in ciliary intraflagellar transport, ion

channels, and gap junction subunits (see Discussion; Data

S4D). These data suggest that loss of ARCP-1 leads to altered

gene expression.
One of the most abundant transcripts expressed in BAG

whose expression was significantly altered by defects in

arcp-1 was the neuropeptide flp-19. flp-19 expression was

upregulated 2.4-fold in arcp-1 animals, which would be consis-

tent with increased BAG signaling. Previous work has shown

that GCY-9, PDE-1, and the cGMP-gated Ca2+ channel TAX-4

control flp-19 expression in BAG (Romanos et al., 2017), making

it an interesting candidate for altering CO2 responses in the
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arcp-1 mutant. To confirm that defects in arcp-1 increased

expression of flp-19, we introduced a flp-19p::gfp reporter

transgene (Kim and Li, 2004) into arcp-1 mutants and quantified

fluorescence in BAG neurons. Disrupting arcp-1 significantly

increased BAG expression of the neuropeptide reporter (Fig-

ure 6A). This phenotype was rescued by expressing wild-

type arcp-1 in BAG, but not in the O2 sensors URX, AQR, and

PQR (Figure 6A). Thus, arcp-1 controls flp-19 expression cell-

autonomously in BAG.We observed a similar increase in expres-

sion of the flp-19 reporter when pde-1 was mutated (Figure 6A).

BAG expression of flp-19 in mutants lacking both arcp-1 and

pde-1 was similar to that of the single mutants (Figure S7H).

These data suggest that ARCP-1 and PDE-1 together reduce

BAG signaling by lowering the expression of some neuropep-

tides. However, disrupting arcp-1 does not generally increase

BAG neuropeptide expression as judged from our BAG profiling

experiments (Data S4) and analysis of a flp-17 neuropeptide re-

porter in BAG (Figure S7I).

To ask if flp-19 expression was elevated in JU1249, we back-

crossed the flp-19p::gfp transgene ten times to this isolate. We

did the same for JU2825 that, unlike JU1249, suppressed CO2

escape when acclimated to 21% O2 (Figure S2A). BAG expres-

sion of flp-19 was low in JU2825 and high in JU1249 (Figure 6B).

Restoring arcp-1 in BAG significantly reduced flp-19 expression

(Figure 6B). Thus, disrupting arcp-1 also increases flp-19

expression in JU1249.

FLP-19 Neuropeptide Signaling from BAG Potentiates
Behavioral Responses to CO2

Does increased BAG expression of flp-19 in arcp-1 mutants

enhance the behavioral responses of these animals to CO2?

If increased flp-19 expression heightened aversion to CO2

in arcp-1 animals, then disrupting flp-19 should reverse this

phenotype. Consistent with this hypothesis, deleting flp-19

restored turning at 3% CO2 in the arcp-1 mutant, while it had

no effect on this behavior in npr-1 animals (Figure 6C).

To confirm that FLP-19 release from BAG potentiates CO2

responses, we knocked down flp-19 expression specifically in

these neurons by expressing RNAi sense and antisense se-

quences of flp-19 from a BAG-specific gcy-33 promoter (Hallem

et al., 2011; Yu et al., 1997). As a negative control, we expressed

sense and antisense sequences for gfp under the same pro-

moter and found it had no effect on CO2 responses (Figures

6D and 6E). By contrast, BAG-specific knockdown of flp-19 in

arcp-1 mutants restored the frequency of CO2-evoked turns

(Figure 6D) and reduced CO2-evoked locomotory arousal in

animals acclimated to 21% O2 (Figure 6E). These data suggest

increased flp-19 expression in BAG contributes to the enhanced

behavioral responses to CO2 in arcp-1 mutants.

The neuropeptide gene flp-19 is also expressed in URX. How-

ever, knock down of flp-19 in these neurons, using the gcy-32

promoter, enhanced rather than reduced locomotory arousal at

3% CO2 in arcp-1 animals and increased baseline locomotion

in the absence of CO2 (Figure S7K). This result is consistent

with previous reports (Carrillo et al., 2013) and suggests that

the RNAi effect in BAG is specific to these neurons. We

wondered if altered expression of flp-19 from URX contributes

to the enhanced CO2 aversion in arcp-1 animals as well. If this
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is the case, flp-19 expression in URX should be reduced in

arcp-1 mutants. Indeed, disrupting arcp-1 decreased expres-

sion of the flp-19 reporter in URX. This phenotype was rescued

by expressing arcp-1 either in URX or BAG neurons (Figure S7L),

suggesting that BAG signaling indirectly influences flp-19

expression in URX.

Does FLP-19 release from BAG promote escape from CO2

in animals that retain functional arcp-1? In npr-1 animals, BAG-

specific knock down of flp-19 did not compromise CO2 escape

in animals acclimated to 21% O2 or 7% O2 (Figure 6F). Thus,

flp-19 is not required for the O2-dependent modulation of CO2

responses. Consistent with this finding, we observed similar

expression of the flp-19 reporter in npr-1 animals acclimated

to 21% or 7% O2, suggesting that flp-19 expression is not regu-

lated by O2 experience (Figure S7J).

We next asked if increased flp-19 expression in BAG is suffi-

cient to boost C. elegans’ locomotory arousal by CO2. To test

this, we overexpressed flp-19 specifically in the BAG neurons

of npr-1 animals, acclimated these transgenic animals to 21%

O2, and quantified their speed at 3% CO2. Animals overex-

pressing flp-19 in BAG moved significantly faster at 3% CO2

than npr-1 controls, although their locomotory arousal was

weaker than that of arcp-1 animals or of npr-1 animals grown

at 7% O2 (Figure 6G). Thus, acclimation to 7% O2 or disrupting

arcp-1 alters other signals besides flp-19 to heighten CO2

responses. However, in both scenarios—disruption of arcp-1

or O2 acclimation—increasing flp-19 expression in BAG can

potentiate behavioral responses to CO2, leading to increased

CO2 aversion.

DISCUSSION

Individuals differ in how they respond to altered circumstances

in their environment. This is generally ascribed to a combination

of genetic variation and different life experiences. How neural

circuits encoding behavioral plasticity vary across individuals

is, however, poorly understood. Here, we show that Caenorhab-

ditis species and wild isolates of C. elegans can differ in how

past O2 experience influences CO2 escape behavior. We un-

cover a genetic variant and neuronal mechanism responsible

for this variation in behavioral flexibility in one natural

C. elegans isolate.

The behavioral phenotypes that we observe are reminiscent

of genetic accommodation, when the reaction norm of a flexible

phenotype responsive to the environment is altered by genetic

change (Figure 7A). Underlying this behavioral change, we find

that disrupting ARCP-1 both increases CO2 sensitivity and

alters the effect of previous O2 experience on CO2 escape. Ani-

mals lacking this dendritic scaffold protein become strongly

aroused by CO2 regardless of previous O2 experience, and accli-

mation to 21% O2 further enhances, rather than suppresses,

escape from this aversive cue. We show that loss of arcp-1 me-

diates these phenotypes by directly altering CO2 responses,

rather than by affecting the ability to respond to O2.

We identify the BAG CO2 sensors as the main site where

ARCP-1 suppresses CO2 escape in animals acclimated to

21%O2. Together with previous work (Couto et al., 2013; Roma-

nos et al., 2017), our results suggest a model (Figure 7B) in which
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Figure 7. A Model for How Genetic Variation in arcp-1 Affects CO2 Escape Behavior

(A) Effect of the natural arcp-1 allele on experience-dependent plasticity, shown as behavioral reaction norms.C. eleganswild isolates acclimated to a high (21%)

O2 environment suppress their aversion to CO2 (left panel). A shift to a low (7%) O2 environment results in a heightened CO2 response. A mutation in arcp-1 alters

experience-dependent plasticity and genetically fixes a strong aversive response to CO2 in part by increasing flp-19 neuropeptide expression in BAG CO2

sensors (right panel).

(B) CO2 is detected by the receptor guanylate cyclase GCY-9, expressed in BAG cilia. The ankyrin-repeat scaffold protein ARCP-1 is also enriched at dendritic

sensory endings, interacts with PDE-1, and localizes this phosphodiesterase to the cilia of BAG CO2-sensory neurons. PDE-1 and ARCP-1 inhibit CO2-evoked

Ca2+ activity and expression of FLP-19 neuropeptide messengers in BAG. In the absence of ARCP-1, less GCY-9 and PDE-1 localize to BAG cilia, and flp-19 is

more strongly expressed. Increased FLP-19 expression in BAG contributes to resetting a strong aversive response to CO2 in arcp-1; npr-1 animals regardless of

previous O2 experience.
ARCP-1 binds and co-localizes the Ca2+-activated phosphodi-

esterase PDE-1 with guanylyl cyclase receptors for CO2 at the

BAGcilia. ARCP-1 andPDE-1 keep signaling from these neurons

in check by suppressing CO2-evoked Ca2+ responses and neu-

ropeptide expression. Natural genetic variation has been found

to directly alter sensory systems in other animals (McGrath,

2013; Prieto-Godino et al., 2017). We identify BAG as a major

cellular focus for variation in CO2 responses, but the possibility

remains that loss of arcp-1 disrupts plasticity in other sensory

circuits, which may indirectly promote CO2 aversion as well.

Some evidence points to changes in URX, but these are not suf-

ficient to explain the heightened CO2 escape behavior in arcp-1

mutants.

Mounting evidence suggests that natural variation in behav-

ioral flexibility is genetically determined (Izquierdo et al., 2007;

Mery, 2013; Mery et al., 2007). One well-established example

is the natural variation seen at the foraging gene in Drosophila

melanogaster. This polymorphism causes individual variation in

learning and memory, among other phenotypes, by altering the

activity of cGMP-dependent protein kinase G (Mery et al.,

2007). It is notable that, both in flies and worms, genetic variation

affecting cGMP signaling underlies inter-individual variation

in experience-dependent plasticity. Besides gas sensors,
ARCP-1 is expressed in olfactory, gustatory, and thermosensory

neurons that all signal using cGMP, and arcp-1 mutants show

reduced plasticity in a gustatory paradigm. Correlated differ-

ences in the plasticity of different sensory modalities have

been described as coping styles or behavioral syndromes in

other animal models (Coppens et al., 2010) and may also reflect

a common genetic or molecular basis. Identifying how loss of

arcp-1 compromises plasticity in other sensory circuits should

provide a better understanding of such correlated changes in

behavioral flexibility.

We have shown that the absence of ARCP-1 alters expression

of a range of genes in BAG. One way this influences CO2 aver-

sion is by altering the expression of neuropeptide messengers.

Neuropeptides are a diverse group of neuromodulators that,

both in vertebrates and invertebrates, are involved in circuit

plasticity (Jékely et al., 2018; Taghert and Nitabach, 2012). Nat-

ural genetic variation in neuropeptide pathways has been linked

to individual differences in aging and social behaviors (Donald-

son and Young, 2008; Yin et al., 2017). Our results suggest

that they also contribute to heritable differences in behavioral

plasticity between individuals. In humans and other primates,

natural polymorphisms in serotonergic and dopaminergic

systems have been associated with individual differences in
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memory and cognitive ability (Izquierdo et al., 2007; Zhang et al.,

2007). Changing the neuromodulatory tone of circuits likely rep-

resents a general mechanism by which genetic variation sculpts

individual behavioral plasticity.

Disrupting ARCP-1 increases expression of FLP-19 neuro-

peptides in BAG. This potentiates or disinhibits both CO2-

evoked turning and locomotory arousal in animals acclimated

to 21% O2. A FLP-19 receptor is currently unknown; the

C. elegans genome encodes �150 predicted neuropeptide re-

ceptors but none have been reported to bind FLP-19 (Peymen

et al., 2014). FLP-19 neuropeptides belong to the ancient and

conserved family of RFamide neuropeptides (Peymen et al.,

2014). Previous work suggested that CO2-evoked cGMP and

Ca2+ signaling promote flp-19 expression in BAG, and this

effect is counterbalanced by PDE-1 (Romanos et al., 2017).

In arcp-1 mutants, the GCY-9 CO2 receptor and PDE-1 are

less enriched at BAG cilia. Although gcy-9 expression is

slightly reduced, disrupting ARCP-1 increases BAG Ca2+ ac-

tivity in response to CO2. This is consistent with proper ciliary

localization of PDE-1 keeping BAG Ca2+ signaling in check

and could explain the increased flp-19 expression. ARCP-1

and PDE-1 may also orchestrate microdomains of cGMP

that can regulate gene expression (Arora et al., 2013; O’Hal-

loran et al., 2012). In vertebrate neurons, nanodomains of

the ankyrin G protein, a homolog of ARCP-1, localize to the

dendritic spines and the axon initial segment and contribute

to neural plasticity (Grubb and Burrone, 2010; Smith et al.,

2014). Likewise, mammalian PDE1 has been implicated in

the experience-dependent adaptation of sensory responses.

In mouse olfactory neurons, PDE1 is specifically enriched at

the cilia, although a molecular anchor that localizes the protein

to this compartment has not yet been identified (Cygnar and

Zhao, 2009).

The molecular mechanism by which ARCP-1 controls flp-19

expression, and whether this relates to its ciliary function, re-

mains to be understood. Interestingly, our transcriptional

profiling of BAG neurons revealed a suite of genes involved in

intraflagellar transport, including the axonemal dynein che-3,

that show �2-fold increased expression in arcp-1 animals,

although we did not observe obvious defects in cilia

morphology. This suggests a feedback mechanism exists by

which signaling at the cilium regulates expression of genes

involved in ciliary transport. Identifying the molecular factors

involved is the next step forward toward understanding this

transcriptional regulation.

The mechanisms through which natural genetic variation in

arcp-1, acting on an evolutionary timescale, and O2 experience,

acting over an animal’s lifetime, sculpt CO2 responsiveness

seem to be at least partly distinct. However, in both sce-

narios—disruption of arcp-1 or acclimation to different O2 envi-

ronments—release of FLP-19 neuropeptides from BAG can

boost the animal’s response to this aversive cue, and through

alterations in neuropeptide expression, a strong aversive

response may become fixed.

CO2 responses vary between Caenorhabditis species (Car-

rillo and Hallem, 2015; Pline and Dusenbery, 1987; Viglierchio,

1990). Our results show this variation is at least in part due to

differences in O2-dependent modulation, suggesting it is an
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adaptive trait. We speculate that the influence of O2 memory

on other sensory responses enables animals to reconfigure

their behavioral priorities according to past experience (Fenk

and de Bono, 2017). Animals at the surface may prioritize

escape from 21% O2 and gradually suppress their CO2 aver-

sion to facilitate migration to buried environments with less

aeration and elevated CO2 levels. Natural variation in the O2-

dependent modulation of CO2 escape may result in animals

occupying different ecological niches. Alternatively, there could

be selection against the costs to maintain sensory systems for

behavioral plasticity (Dewitt et al., 1998), which may account

for the reduced plasticity of CO2 responses in some nematode

species. We do not know the O2 and CO2 conditions in which

the arcp-1 deletion may have been selected and can therefore

only speculate about its potential fitness benefits. The arcp-1

mutation was not found in any other wild isolate so is likely

recent. However, our data indicate substantial variation among

both Caenorhabditis species and C. elegans isolates in the

response to CO2 (Figures 1 and S2). These findings are consis-

tent with what has been found for other traits (Frézal et al.,

2018), where the phenotypic variation for the strain chosen

for study is caused by a rare allele found only in that strain,

yet phenotypic variation itself is not restricted to that strain. Un-

derstanding evolutionary mechanisms that might select for

altered plasticity requires more in-depth knowledge on the

ecology of these species. The behavioral phenotypes that we

observe are consistent with genetic accommodation for a

cross-modal gene-environment interaction (Pigliucci et al.,

2006). In summary, our study illustrates how natural genetic

variation, by altering the neuromodulatory control of aversive

behavior, contributes to individual differences in behavioral

flexibility.
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This paper AX7023
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lin-44p::gfp]

This paper AX7095
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1(ad609) X

This paper AX7179
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C. elegans: Strain AX6969: malt-1(db1194) II; npr-

1(ad609) X; dbIs16 [rab-3p::malt-1::gfp; unc-122p::rfp]
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1(ad609) X; dbIs19 [rab-3p::eif-3.L::gfp; unc-122p::rfp]

This paper AX7082

C. elegans: Strain AX7419: npr-1(ad609) X dbEx1075

[flp-17p::pde-1b::gfp; unc-122p::rfp]

This paper AX7419

C. elegans: Strain AX7422: arcp-1(db1082) III; npr-

1(ad609) X; dbEx1075 [flp-17p::pde-1b::gfp; unc-

122p::rfp]

This paper AX7422

C. elegans: Strain AX2272: pde-1(ok2924) I; npr-

1(ad609) X

de Bono lab; Couto et al., 2013 AX2272

C. elegans: Strain AX7453: pde-1(ok2924) I; arcp-

1(db1082) III; npr-1(ad609) X

This paper AX7453

C. elegans: Strain AX6881: npr-1(ad609) X dbEx [flp-

17p::YC3.60]

This paper AX6881

C. elegans: Strain AX6893: arcp-1(db1082) III; npr-

1(ad609) X; dbEx [flp-17p::YC3.60]

This paper AX6893

C. elegans: Strain AX7842: arcp-1(db1082) III; npr-

1(ad609) X; dbEx [flp-17p::YC3.60]; dbEx1035 [gcy-

32p::arcp-1b::sl2::mKate; lin-44::gfp]

This paper AX7842

C. elegans: Strain AX7845: arcp-1(db1082) III; npr-

1(ad609) X; dbEx [flp-17p::YC3.60] dbEx1172 [gcy-

33p::arcp-1b::sl2::mKate; unc-122p::gfp]

This paper AX7845

C. elegans: Strain AX3516: npr-1(ad609) X; dbEx614

[gcy-37p::YC2.60; unc-122p::rfp]

de Bono lab; Fenk and de

Bono, 2017

AX3516

C. elegans: Strain AX6877: arcp-1(db1082) III; npr-

1(ad609) X; dbEx614 [gcy-37p::YC2.60; unc-122p::rfp]

This paper AX6877

C. elegans: Strain AX3432: npr-1(ad609) X; dbEx623

[flp-17p::YC2.60; F15E11.1::mCherry]

de Bono lab; Gross et al., 2014 AX3432

C. elegans: Strain AX7182: arcp-1(db1082) III; npr-

1(ad609) X; dbEx623 [flp-17p::YC2.60;

F15E11.1::mCherry]

This paper AX7182

C. elegans: Strain AX7656: gcy-33(ok232) V; gcy-

31(ok296) npr-1(ad609) X

This paper AX7656

C. elegans: Strain AX7657: arcp-1(db1082) III; gcy-

33(ok232) V; gcy-31(ok296) npr-1(ad609) X

This paper AX7657

C. elegans: Strain AX7362: npr-1(ad609) X; wzIs132

[gcy-9p::gcy-9::dsRed]

This paper AX7362

C. elegans: Strain AX7361: arcp-1(db1082) III; npr-

1(ad609) X; wzIs132 [gcy-9p::gcy-9::dsRed]

This paper AX7361

C. elegans: Strain AX7366: npr-1(ad609) X; wzEx156

[gcy-9p::tax-4::gfp]

This paper AX7366

C. elegans: Strain AX7365: arcp-1(db1082) III; npr-

1(ad609) X; wzEx156 [gcy-9p::tax-4::gfp]

This paper AX7365

C. elegans: Strain AX2997: gcy-33(ok232) V; npr-

1(ad609) X; dbEx [flp-17p::gcy-33::gfp; unc-122p::rfp]

de Bono lab; Gross et al., 2014 AX2997

C. elegans: Strain AX7315: arcp-1(db1082) III; gcy-

33(ok232) V; npr-1(ad609) X; dbEx [flp-17p::gcy-

33::gfp; unc-122p::rfp]

This paper AX7315

C. elegans: Strain AX6516: npr-1(ad609) X; dbEx1053

[gcy-37p::gcy-35::HA::gfp::sl2::mCherry]

This paper AX6516

C. elegans: Strain AX7278: arcp-1(db1082) III; npr-

1(ad609) X; dbEx1053 [gcy-37p::gcy-

35::HA::gfp::sl2::mCherry]

This paper AX7278

C. elegans: Strain AX7019: arcp-1(db1082) III; npr-

1(ad609) X; dbEx1033 [flp-17p::gfp; unc-122p::rfp]

This paper AX7019

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

C. elegans: Strain AX7021: npr-1(ad609) X; dbEx1033

[flp-17p::gfp; unc-122p::rfp]

This paper AX7021

C. elegans: Strain AX7268: npr-1(ad609) X; ynIs34 [flp-

19p::gfp]

This paper AX7268

C. elegans: Strain AX7271: arcp-1(db1082) III; npr-

1(ad609) X; ynIs34 [flp-19p::gfp]

This paper AX7271

C. elegans: Strain AX7279: pde-1(ok2924) I; npr-

1(ad609) X; ynIs34 [flp-19p::gfp]

This paper AX7279

C. elegans: Strain AX7272: arcp-1(db1082) III; npr-

1(ad609) X; ynIs34 [flp-19p::gfp]; dbEx1063 [flp-

17p::arcp-1b::sl2::mKate; unc-122p::gfp]

This paper AX7272

C. elegans: Strain AX7273: arcp-1(db1082) III; npr-

1(ad609) X; ynIs34 [flp-19p::gfp] dbEx1035 [gcy-

32p::arcp-1b::sl2::mKate; lin-44::gfp]

This paper AX7273

C. elegans: Strain AX7550: pde-1(ok2924) I; arcp-

1(db1082) III; npr-1(ad609) X; ynIs34 [flp-19p::gfp]

This paper AX7550

C. elegans: Strain AX7722: ynIs34 [flp-19p::gfp]

backcrossed 10x in JU2825 background

This paper AX7722

C. elegans: Strain AX7724: ynIs34 [flp-19p::gfp]

backcrossed 10x in JU1249 background

This paper AX7724

C. elegans: Strain AX7726: dbEx1063 [flp-17p::arcp-

1b::sl2::mKate; unc-122p::gfp]; ynIs34 [flp-19p::gfp]

backcrossed 10x in JU1249 background

This paper AX7726

C. elegans: Strain AX7210: npr-1(ad609) X; ynIs64

[flp-17p::gfp]

This paper AX7210

C. elegans: Strain AX7208: arcp-1(db1082) III; npr-

1(ad609) X; ynIs64 [flp-17p::gfp]

This paper AX7208

C. elegans: Strain AX7321: flp-19(ok2460) npr-

1(ad609) X

This paper AX7321

C. elegans: Strain AX7322: arcp-1(db1082) III; flp-

19(ok2460) npr-1(ad609) X

This paper AX7322

C. elegans: Strain AX7754: arcp-1(db1082) III; npr-

1(ad609) X; dbEx1171 [gcy-33p::gfp (sas); unc-

122p::rfp]

This paper AX7754

C. elegans: Strain AX7760: arcp-1(db1082) III; npr-

1(ad609) X; dbEx1173 [gcy-33p::flp-19 (sas); unc-

122p::rfp]

This paper AX7760

C. elegans: Strain AX7788: arcp-1(db1082) III; npr-

1(ad609) X; dbEx1178 [gcy-32p::gfp (sas); unc-

122p::rfp]

This paper AX7788

C. elegans: Strain AX7678: arcp-1(db1082) III; npr-

1(ad609) X; dbEx1153 [gcy-32p::flp-19 (sas); unc-

122p::gfp]

This paper AX7678

C. elegans: Strain AX7793: npr-1(ad609) X; dbEx1173

[gcy-33p::flp-19 (sas); unc-122p::rfp]

This paper AX7793

C. elegans: Strain AX7437: npr-1(ad609) X; dbEx1077

[flp-17p::flp-19::sl2::mKate; unc-122p::gfp]

This paper AX7437

Oligonucleotides

Primers used in this study This paper Table S2

Software and Algorithms

FlyCapture Point Grey Research https://www.flir.com/products/

flycapture-sdk

Zentracker Laurent et al., 2015 https://github.com/wormtracker/zentracker

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Neuron Analyzer Laurent et al., 2015 https://github.com/neuronanalyser/

neuronanalyser

RStudio 0.99.903 R Development Core

Team, 2015

https://www.R-project.org

Pindel Ye et al., 2009 http://gmt.genome.wustl.edu/

packages/pindel/

Variant Effect Predictor (VEP) McLaren et al., 2016 www.ensembl.org/info/docs/tools/

vep/index.html

Tablet 1.16.09.06 Milne et al., 2013 https://ics.hutton.ac.uk/tablet/

BWA 0.7.8-R455 Li and Durbin, 2009 http://bio-bwa.sourceforge.net/bwa.shtml

Samtools 1.2 Li et al., 2009 http://samtools.sourceforge.net/

Picard 1.114 Broad Institute http://broadinstitute.github.io/picard/

GATK 3.2-2 Van der Auwera

et al., 2013

https://software.broadinstitute.org/gatk/

Bowtie2 0.11.0 Langmead and

Salzberg, 2012

http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

rRNA remover code This paper https://github.com/lmb-seq/RNA-

Seq_utilities

Code for concatenating FASTQ files This paper https://github.com/lmb-seq/RNA-

Seq_utilities

PRAGUI RNA-Seq analysis pipeline This paper https://github.com/lmb-seq/PRAGUI

Mascot Matrix Science http://www.matrixscience.com/

Scaffold Proteome Software Inc http://www.proteomesoftware.com/

products/scaffold/

Prism 7.0 GraphPad Software https://www.graphpad.com

MATLAB R2014b 8.4 Mathworks https://www.mathworks.com/products/

matlab.html

Metamorph Molecular Devices https://www.moleculardevices.com/

products/cellular-imaging-systems/

acquisition-and-analysis-software/

metamorph-microscopy#gref

Fiji (ImageJ) Schindelin et al., 2012 https://imagej.net/Fiji

Imaris Bitplane https://imaris.oxinst.com/

Other

Certified gas mixes BOC N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mario de

Bono (debono@mrc-lmb.cam.ac.uk, mdebono@ist.ac.at).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
C. elegans and otherCaenorhabditis species weremaintained under standard conditions (Stiernagle, 2006) on nematode growthme-

dium (NGM) plates seeded with E. coli OP50. Young adult hermaphrodites were used in all experiments. For gonochoristic Caeno-

rhabditis species, young adult females were used. For a list of strains and transgene details, see Table S1 and the Key Re-

sources Table.

The mutations in arcp-1 alleles obtained by forward genetics, and in the JU1249 wild isolate, are shown in Figure S5A. The

C. elegans strain JU1249 was isolated from a rotten apple collected in 2007 in Santeuil, France (Zhang et al., 2016). A detailed

description of the forward genetic screen that isolated the db1082 allele will be described elsewhere. Causal variants in aggrega-

tion-defective mutants from this screen were identified by SNP-based mapping in combination with WGS (Minevich et al., 2012).
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Microbe strains
The Escherichia coli OP50 strain was used as a food source for C. elegans and other Caenorhabditis species.

METHOD DETAILS

Molecular biology
Transgeneswere cloned using theMultisite Gateway Three-Fragment cloning system (12537-023, Invitrogen) into pDESTR4R3 II. For

transgenic lines, the promoter lengths were: arcp-1p (1.2 kb for arcp-1a and 2 kb for arcp-1b), flp-17p (3.3 kb), gcy-32p (0.6 kb), and

gcy-33p (1.0 kb). For rescue experiments, cDNA of arcp-1 isoforms was amplified and cloned into pDONR221, using primers listed in

Table S2.

For immunoprecipitation and subcellular localization of ARCP-1, a functional arcp-1p::gfp::arcp-1b transgene wasmade by fusing

GFP coding sequences upstream of the arcp-1b cDNA sequence. To investigate the subcellular localization of PDE-1 in BAG neu-

rons, the pde-1b cDNA sequence was cloned into pDONR221 using primers listed in Table S2. This plasmid was used to generate a

flp-17p::pde-1b::gfp transgene, by cloning the GFP reporter sequence in frame and downstream of the pde-1b cDNA sequence. De-

tails of strains and transgenes used to study the subcellular localization of gcy-9, tax-4, gcy-33 and gcy-35 are provided in Table S1.

The gcy-9p::gcy-9::mCherry and gcy-9p::tax-4::gfp strains were a kind gift from Dr. Niels Ringstad (New York University School of

Medicine, USA).

For flp-19 RNAi, 469 bp of flp-19 cDNA starting from the sequence GCTTTTCCTGTTAA was cloned in both the sense and anti-

sense orientations. For cell-specific RNAi experiments, we expressed these fragments in BAG using the gcy-33p (1.0 kb) and in

URX neurons using gcy-32p (0.6 kb). To overexpress flp-19 in BAG, we amplified flp-19 cDNA using primers listed in Table S2,

and fused this sequence to the flp-17 (3.3 kb) promoter.

To characterize the expression pattern of arcp-1, we made a fluorescent reporter transgene by fosmid recombineering. pBALU9

was used to amplify a reporter cassette, containing the gpd-2 intergenic SL2 sequence and a GFP coding sequence, which was in-

serted downstream of the arcp-1 stop codon in the WRM0633bA06 fosmid as described (Tursun et al., 2009). The reporter strain for

flp-19 neuropeptide expression (flp-19p::gfp) was a kind gift from Dr. Roger Pocock (Monash University, Australia).

Genotyping of natural polymorphisms
Polymorphisms of npr-1, glb-5, nath-10 and arcp-1 genes inC. eleganswild isolates were genotyped by PCR. Primers used are listed

in Table S2.

Behavioral assays
All experiments used young adult hermaphrodite animals, therefore sample stratification was not required within each genotype/con-

dition. For most experiments, measurements were scored using an automated algorithm so blind scoring was not undertaken: see

each subsection for details. For details of statistical tests, see the relevant Figure legend for each experiment and also the subsection

‘‘Quantification and Statistical Analysis.’’ All recordings that passed the automated analysis pipeline were included in the final data-

set. For rescue and RNAi experiments, behavioral responses and phenotypes were confirmed by testing at least two independent

transgenic strains.

Locomotory responses to CO2 and O2

Behavioral responses to gas stimuli were assayed as described (Fenk and de Bono, 2017; Laurent et al., 2015). Animals were accli-

mated to different O2 levels by growing them for one generation at 21%O2 (room air) or in a gas-controlled incubator kept at 7% O2.

For each assay, 20-30 young adult hermaphrodites were transferred onto NGM plates seeded 16–20 h earlier with 20 mL of E. coli

OP50. To control gas levels experienced by C. elegans, animals were placed under a 200 mm deep square polydimethylsiloxane

(PDMS) chamber with inlets connected to a PHD 2000 Infusion syringe pump (Harvard apparatus). Humidified gas mixtures were

delivered at a flow rate of 3.0 ml/min. Behavioral responses to changes in O2 levels weremeasured by exposing animals to a stimulus

train of 7% O2 - 21% O2 - 7% O2 (upshift) or 21% O2 - 7% O2 - 21% O2 (downshift), in which each stimulus comprised a 3 min time

interval. Locomotory responses to CO2weremeasured by exposing animals to a series of 0%CO2 (3min) - X%CO2 (3min) - 0%CO2

(3 min), with X corresponding to 1%, 3%, 5% or 10%CO2 depending on the experiment. In all CO2 assays, a background level of 7%

O2 was used. Movies were recorded during the stimulus train using FlyCapture (Point Grey Research) on a Leica MZ6 dissecting

microscope with a Point Grey Grasshopper camera running at 2 frames/s. Video recording was started 2 min after animals were

placed under the PDMS chamber to ensure that the initial environment was in a steady state. In assayswhere we prolonged the expo-

sure to 7%O2 before CO2 stimulation, video recording was started 21 min after animals were placed under the PDMS chamber kept

at 7% O2, and animals were stimulated with 3% CO2 at t = 24 min. Videos were analyzed in Zentracker, a custom-written MATLAB

software (https://github.com/wormtracker/zentracker). All worms in the field of viewwere analyzed except those in contact with other

animals. Speedwas calculated as instantaneous centroid displacement between successive frames. Omega turns were identified as

described (Laurent et al., 2015). In total 2-4 assay plates with 20-30 animals per plate were tested per day, and each genotype or

condition was assayed in at least two independent experiments. As locomotion measurements were conducted using an automated

algorithm, genotypes were not blinded prior to analysis.
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Aggregation and bordering behavior

L4 animals were picked to a fresh plate 24 h before the assay. Sixty animals were then repicked to the assay plate (an NGM plate

seeded 2 days earlier with 100 mL of E. coliOP50), and bordering and aggregation was scored 2 and 6 h later. The scorer was blind to

genotype. Behavior was always scored on 2-4 assay plates (each containing 60 animals) per day and tested in at least two indepen-

dent experiments.

Salt-based associative learning

Gustatory plasticity was tested as described (Beets et al., 2012; Hukema et al., 2008), in a climate-controlled room set at 20�C and

40% relative humidity. Synchronized young adult hermaphrodites were grown at 25�C on culture plates seeded with E. coli OP50.

Animals were collected and washed three times over a period of 15 min with chemotaxis buffer (CTX, 5 mM KH2PO4/K2HPO4 pH

6.6, 1mMMgSO4, and 1mMCaCl2). Mock-conditioned animals werewashed in CTX buffer without NaCl, whereas NaCl-conditioned

animals werewashed in CTX containing 100mMNaCl for salt conditioning. Salt chemotaxis behavior of mock- andNaCl-conditioned

animals was then tested on four-quadrant plates (Falcon X plate, Becton Dickinson Labware) filled with buffered agar (2%agar, 5mM

KH2PO4/K2HPO4 pH 6.6, 1 mM MgSO4, and 1 mM CaCl2) of which two opposing pairs have been supplemented with 25 mM NaCl.

Assay plates were always prepared fresh and left open to solidify and dry for 60 min. Plates were then closed and used on the same

day. After the washes, 50 - 150 animals were pipetted on the intersection of the four quadrants and allowed to crawl for 10 min on the

quadrant plate. A chemotaxis index was calculated as (n(A) – n(C)) / (n(A) + n(C)) where n(A) is the number of worms within the quad-

rants containing NaCl and n(C) is the number of worms within the control quadrants without NaCl. The scorer was blind to genotype.

Selection-based QTL mapping
Competition assays

TheC. elegans strains JU1249 and JU2825 were competed for several generations using different transfer methods. At the start of

the assay, ten JU1249 and JU2825 L4 larvae were put together on a 10 cm NGM plate seeded with E. coliOP50. Five biological rep-

licates were maintained at 23�C. Before the cultures starved, a small fraction of the population (200 to 400 animals) was used to seed

a fresh culture plate. In Treatment A, the worms were harvested with M9 buffer and 2 mL of worm pellet was transferred to the next

plate. In Treatment B, an agar cube (chunk) was cut at the edge of the bacterial lawn and deposited onto the next plate. After each

transfer, the remaining animals were stored in M9 buffer at �80�C to quantify the relative proportions of JU1249 and JU2825 alleles.

The genomes of JU1249 and JU2825 were sequenced on an Illumina Hiseq4000 at 20x coverage with paired-end 150 bp reads.

For each genome, the raw data were aligned to the reference genome (C. elegans WS243 masked from http://wormbase.org) and

analyzed using BWA, SAMtools, Picard and Genome Analysis Toolkit (GATK) (Li and Durbin, 2009; Li et al., 2009; Van der Auwera

et al., 2013). The accession number for the genomic sequence data of JU1249 and JU2825 is NCBI: PRJNA514933 (https://www.

ncbi.nlm.nih.gov/genome/?term=PRJNA514933).

From the output BAM files, homozygous SNPs between the two strains were called and filtered with a raw read depth threshold of

10-300. Allele quantification for the III_663310 polymorphismwas performed using pyrosequencing as previously described (Duveau

and Félix, 2012). Primers for pyrosequencing are listed in Table S2. In brief, C. elegans samples harvested after each transfer were

centrifuged at 3,000 rpm for 2min. Lysates of 2 mL of thewormpellets were used as PCR templates and allele frequencies were quan-

tified with a pyrosequencer (PyroMark Q96 ID; Biotage). The accuracy of this quantification method was estimated by measuring the

allele frequencies of PCR products that were amplified using C. elegans lysates of known proportions of JU1249 and JU2825 indi-

vidual L4 larvae. On average, a 2% difference was measured between expected and observed allele frequencies.

Selection-based QTL mapping experiment

Segregating populations were generated by crossing the parental JU1249 and JU2825 C. elegans wild isolates in both directions,

using ten males and two self-sperm exhausted hermaphrodites in each cross. From the F1 progeny, eight biological replicates were

set up to generate F2 by crossing again ten males and two self-sperm exhausted hermaphrodites. From each F2 replicate, six males

and two L4 stage hermaphrodites were crossed to have plenty of F3 progeny. In the F3 generation, two paired founding populations

of 200 L4 larvae (100 from each initial cross direction) were set up per replicate and submitted to contrasted selection regimes. Treat-

ment A transferredworms through liquid harvest and Treatment B by chunking, as described for the competition assay above. In both

Treatments, 200-400 animals were transferred before starvation. Males weremaintained in the population during each of the first five

transfers by picking 50 males. In total 19-20 transfers were done for populations under Treatment A and 17-19 transfers for popu-

lations with Treatment B. Genomic DNA of each population (about 105 individuals) was extracted as a pool and sequenced as

described above.

The reads of each pool were aligned to the N2 reference genome as described above. The BAM files were filtered for allele infor-

mation on the positions of homozygous SNPs between the two parents. Allele frequencies were analyzed in each pool. A Cochran-

Mantel-Haenszel (CMH) test was used to analyze the consistency of the allele frequency difference between populations with

different treatments among the eight replicates, except in the genomic positions 4396879-16406352 onChromosome IV, where repli-

cate 3 was excluded because one parental genomewas fixed in this region in both treatments (McDonald, 2009). The null hypothesis

for this CMH test is an equal distribution of sequence reads between the two treatments, and does not consider noise due to allelic

drift in the populations, thus inflating the -log(p value). Drift could not be simulated because, for experimental simplicity, population
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sizes and generations were not controlled during the transfers. We note that, although population size in the experiment was low, the

mapping had a relatively good resolution due to the number of populations (16 in total), which yielded independent recombination

events.

RStudio (v 0.99.903) and packages (ggplot2, plyr, evobiR) were used for statistical analysis, plots of allele frequencies and CMH

tests. Pindel (Ye et al., 2009) was used to detect homozygous indels in the candidate region between JU1249 and JU2825, but no

additional polymorphismwas found. High quality homozygous variants of the parental strains in the candidate region were annotated

using VEP (http://www.ensembl.org//useast.ensembl.org/info/docs/tools/vep/index.html?redirectsrc=//www.ensembl.org%2Finfo

%2Fdocs%2Ftools%2Fvep%2Findex.html) (McLaren et al., 2016). ThemfP22 deletion was verified by PCR and Sanger sequencing,

using primers listed in Table S2. The accession number for the genomic sequence data of the replicate populations is NCBI:

PRJNA515248 (https://www.ncbi.nlm.nih.gov/genome/?term=PRJNA515248).

Distribution of mfP22 allele in wild isolates
To examine the distribution of themfP22 deletion inC. eleganswild isolates, wemonitored the presence of the deletion visually, using

Tablet 1.16.09.06 (Milne et al., 2013), for 151 isotypes with whole genome sequences in the CeNDR database (Cook et al., 2016). The

mfP22 allele was only found in JU1249 (Data S2).

Confocal microscopy and image analysis
Confocal images were acquired using a Zeiss LSM 710 microscope or a Nikon Eclipse Ti inverted setup coupled to an Andor Ixon

EMCCD camera and a spinning disk confocal unit. Projections of z stacks were generated using Fiji (ImageJ).

Expression of arcp-1 in URX, AQR and PQR was confirmed by co-expression with a gcy-32p::mCherry transgene. Expression in

BAG and AWB neurons was verified by crossing arcp-1 reporter strains with flp-17p::mCherry and str-1p::mCherry marker strains,

respectively. Expression in AWC and ASE was confirmed by co-expression with ceh-36p::RFP and odr-1p::RFP transgenes. For DiI

staining, animals were incubated in DiI solution (0.01 mg/ml) for 3 h and washed with M9 buffer before mounting for confocal

microscopy.

To quantify the fluorescence of reporter-tagged proteins in cilia and neuron cell bodies, z stack images were taken on a spinning

disk confocal microscope using a 60x lens and 100 ms exposure time. Z-projections of image stacks were generated with Fiji (Im-

ageJ). Regions of interest (ROIs) were selected by centering a 50-pixel by 50-pixel square region over the distal dendrite or soma of

the BAG neurons, respectively. All measurements were background-corrected by subtracting the mean values of a 50-pixel by 50-

pixel square region drawn outside of the neuron.

To quantify the expression of neuropeptide reporters in BAG soma, z stack images were taken on a spinning disk confocal micro-

scope using a 60x lens and 100ms exposure time. 3D images were reconstituted using the IMARIS software package (Bitplane). GFP

pixel intensities brighter than a threshold value (1000 for flp-19 and 3000 for flp-17 reporters) were cropped by creating a surface with

0.25 mm details. The mean pixel intensities inside the surface were calculated after background subtraction.

Calcium imaging
L4 animals expressing a ratiometric yellow cameleon sensor were picked 24 h before imaging. Animals were glued to agarose pads

(2% agarose in M9 buffer, 1 mMCaCl2) using Dermabond tissue adhesive (Ethicon) with the nose immersed in amix of bacterial food

(E. coliOP50) andM9 buffer. To deliver gas stimuli, glued animals were placed under a microfluidic chamber with inlets connected to

a PHD 2000 Infusion syringe pump (Harvard Apparatus) running at a flow rate of 2.5 ml/min. An electronic valve system placed be-

tween the syringes and themicrofluidic chamber allowed switching between two different gasmixtures in a controlledmanner at pre-

specified time intervals. Imaging data were analyzed using Neuron Analyzer, a customwritten MATLAB program (code available at

https://github.com/neuronanalyser/neuronanalyser). As measurements were conducted using an automated algorithm, genotypes

were not blinded prior to analysis.

CO2-evoked Ca2+ activity

Animals expressing a flp-17p::YC3.60 (yellow cameleon 3.60) transgene were used for ratiometric imaging of relative calcium con-

centration in BAG cell bodies (Bretscher et al., 2011). After immobilization, animals were placed under a microfluidic PDMS chamber

and exposed to a 0% CO2 (3 min) - X% CO2 (3 min) - 0% CO2 (3 min) stimulus train, with X corresponding to 1%, 3% or 5% CO2

depending on the experiment. To measure CO2-evoked tonic Ca2+ activity in BAG, the time interval for CO2 stimulation was pro-

longed from 3 min to 18 min. In all experiments, the background O2 level was 7% O2. Calcium imaging was done at 2 frames/s

on an AZ100 microscope (Nikon) bearing a TwinCam adaptor (Cairn Research) mounted with two ORCAFlash4.0 V2 digital cameras

(Hamamatsu) using an AZ Plan Fluor 2x lens with 2x zoom and an exposure time of 500 ms.

O2-evoked Ca2+ activity

We used animals expressing a gcy-37p::YC2.60 transgene to measure Ca2+ activity of URX neurons in response to O2 stimuli (Fenk

and de Bono, 2017). Tomeasure O2 responses in BAG, we used animals expressing a flp-17p::YC2.60 transgene (Gross et al., 2014).

After immobilization, animals were placed under a Y-shaped microfluidic chamber and exposed to an O2 upshift (7% - 21% - 7%O2)

in case of URX imaging, or an O2 downshift (21% - 7% - 21% O2) for BAG. Each stimulus comprised a 2 min time window. Images

were recorded at 2 frames/s with an exposure time of 100 ms for a total of 6 min, on a Zeiss Axiovert inverted microscope with an

EMCCD Evolve 512 Deltacamera (Photometrics) and a 40x C-Apochromat lens, using MetaMorph acquisition software (Molecular
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Devices). To reduce photobleaching an optical density filter 2.0 or 1.5 was used. Excitation light was passed through an excitation

filter for CFP (438/24-25, Semrock) and a dichroic filter for YFP (DiO2-25x36, Semrock). A beam splitter (Optical Insights) was used to

separate the cyan and yellow emission light using a dichroic filter for 483/32-25 nm (CFP) and 542/27-25 nm (YFP) (Semrock).

Immunoprecipitation from C. elegans

Two independent coIP experiments were performed to identify putative interactors of ARCP-1B. Samples for GFP-ARCP-1B were

always processed in parallel with control samples of other cytoplasmic GFP-tagged proteins (MALT-1-GFP and EIF-3.L-GFP),

providing negative controls. For coIP experiments, lysis buffer was prepared with 50 mM HEPES (pH 7.4), 1 mM EGTA, 1 mM

MgCl2, 100 mM KCl, 10% glycerol, 0.05% Tergitol type-NP40 (Sigma-Aldrich), 1mM DTT, 0.1M PMSF with 1 complete EDTA-free

proteinase inhibitor cocktail tablet (Roche Applied Science) per 12 ml. Worms were washed twice in ice-cold M9 and once in ice-

cold lysis buffer, and then snap-frozen in liquid nitrogen. Frozen worm pellets (�10 g) were pulverized using a Freezer/Mill (SPEX

SamplePrep). Crude extract was clarified at 4�C for 10 min at 20,000 g, and again for 20 min at 100,000 g with a TLA-100 rotor (Beck-

manCoulter). For immunoprecipitation, sampleswere incubatedwith GFP-Trap (ChromoTek) for 4 h at 4�C, thenwashed 3 timeswith

50 mM HEPES, 100 mM KCl. Purified complexes were eluted in SDS-sample buffer at 95�C and further fractionated by SDS-PAGE

prior to mass spectrometry analysis.

Proteins were identified by Orbitrap-mass spectrometry andMASCOT database searching. Gel samples were destainedwith 50%

v/v acetonitrile and 50 mM ammonium bicarbonate, reduced with 10 mM DTT, and alkylated with 55 mM iodoacetamide. Digestion

was with 6 ng/ml trypsin (Promega) overnight at 37�C, and peptides extracted in 2% v/v formic acid 2% v/v acetonitrile, and analyzed

by nano-scale capillary LC-MS/MS (Ultimate U3000 HPLC, Thermo Scientific Dionex) at a flow of �300 nL/min. A C18 Acclaim

PepMap100 5 mm, 100 mmx 20mm nanoViper (Thermo Scientific Dionex), trapped the peptides prior to separation on a C18 Acclaim

PepMap100 3 mm, 75 mm x 250 mm nanoViper. Peptides were eluted with an acetonitrile gradient. The analytical column outlet was

interfaced via a nano-flow electrospray ionisation source with a linear ion trapmass spectrometer (Orbitrap Velos, Thermo Scientific).

Data dependent analysis was performed using a resolution of 30,000 for the full MS spectrum, followed by ten MS/MS spectra in the

linear ion trap. MS spectra were collected over am/z range of 300–2000. MS/MS scans were collected using a threshold energy of 35

for collision-induced dissociation. LC-MS/MS data were searched against the UniProt KB database using Mascot (Matrix Science),

with a precursor tolerance of 10 ppm and a fragment ion mass tolerance of 0.8 Da. Twomissed enzyme cleavages and variable mod-

ifications for oxidisedmethionine, carbamidomethyl cysteine, pyroglutamic acid, phosphorylated serine, threonine and tyrosine were

included. MS/MS data were validated using the Scaffold program (Proteome Software Inc).

RNA-seq of sorted BAG neurons
Adult cell isolation

Synchronized young adult hermaphrodites with GFP-labeled BAG neurons (expressing a flp-17p::gfp transgene) were acutely disso-

ciated as described (Kaletsky et al., 2016). Synchronized adult worms were washed with M9 buffer to remove excess bacteria. The

pellet (�250 ml) was washed with 500 ml lysis buffer (200mMDTT, 0.25%SDS, 20mMHEPES pH 8.0, 3% sucrose) and resuspended

in 750 ml lysis buffer. Worms were incubated in lysis buffer for 6.5 min at room temperature. The pellet was washed 5 times with M9

and resuspended in 20 mg/ml pronase from Streptomyces griseus (Roche). Worms were pipetted up and down for 12 min at room

temperature; then ice-cold PBS buffer containing 2% fetal bovine serum (GIBCO) was added. Cell suspensions were passed over a

5 mm syringe filter (Millipore). The filtered cells were diluted in PBS and sorted using a Sony Biotechnology Synergy High Speed Cell

Sorter. Gates for detection were set by comparison to npr-1 cell suspensions prepared on the same day alongside the experimental

samples. Positive fluorescent events were sorted directly into Eppendorf tubes containing 10 mL of 0.2% (vol/vol) Triton X-100 and

2 U ml-1 RNase inhibitor. Six biological replicates were prepared for each genotype, i.e., npr-1(ad609) and arcp-1(db1082); npr-

1(ad609) animals. For each replicate sample, approximately 4,000 GFP positive events were collected.

RNA amplification and library preparation

RNA-seq was done using a Smart-seq2 protocol as described (Picelli et al., 2014). After neuron isolation by FACS, cDNA was pre-

pared from each sample by reverse transcription using SuperScript II reverse transcriptase (18064-014, Invitrogen), Oligo-dT30 and

Template-Switching Oligonucleotide (TSO) primers listed in Table S2. After the first strand reaction, the cDNA was amplified with the

KAPA Hifi HotStart kit (KK2601, KAPA Biosystems) and IS PCR primers listed in Table S2. cDNA was then purified using Ampure XP

beads (A 63881, Beckman Coulter), tagmented and 1 mg was used for preparing libraries with the Illumina Nextera XT DNA sample

preparation kit (FC-131-1096, Illumina), as per manufacturer suggested practices. Sequencing libraries were then submitted for

sequencing on the Illumina HiSeq 4000 platform.

RNA-seq data analysis

Prior to analysis the raw files were pre-processed using Bowtie2 version 0.11.0 to remove ribosomal RNA thatmapped to a ribosomal

RNA sequence library (Wormbase, WS255). Additionally, FASTQ files relating to the same sample but sequenced over multiple flow

cell lanes were concatenated to give a single file. Custom rRNA_remover and rna_seq_lane_merger scripts were used (available on

GitHub: https://github.com/lmb-seq/RNA-Seq_utilities). The files were then processed by PRAGUI - a Python3 pipeline for RNA-seq

data analysis. PRAGUI automates analysis by incorporating widely used RNA-seq processing packages including: Trim Galore,

FastQC, STAR, DESeq2, HTSeq, Cufflinks and MultiQC. PRAGUI can be found at: https://github.com/lmb-seq/PRAGUI.

The following parameters were used with PRAGUI: DESeq2 analysis (labeled as ‘‘DESeq’’), unstranded paired-end library, worm
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organism with C. elegans genome fasta file and canonical gene set gtf file (Wormbase, WS255), STAR arguments set to

‘‘–outSAMstrandFieldDESeq intronMotif–readFilesCommand zcat -c–outSAMtype BAM SortedByCoordinate,’’ mapq set to 20. All

other PRAGUI parameters were kept default. 5.5 � 17 million reads were obtained per sample and mapped to the C. elegans

genome. Sequences are deposited at GEO (GSE135687).

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of animals and replicates used per experiment is described in detail in the ‘‘Methods Details’’ subsection for each assay

and in the relevant Figure legends. Specifically, for themain behavioral assays: locomotory responses to CO2 and O2 were measured

in >4 trials per condition with 20-30 animals each; aggregation and bordering assays were conducted with >4 trials per genotype of

50 - 60 animals each.

Statistical analyses used GraphPad Prism 7.0 and Mathworks MATLAB R2014b (8.4). Exact tests used are indicated in figure leg-

ends. In general, where more than two groups tested with a single condition were compared, a one-way ANOVA with Tukey’s or
�Sidák’s multiple comparisons test was used. Where multiple groups tested with multiple conditions were compared, a two-way

ANOVA with Tukey’s or �Sidák’s post hoc test was used. Where appropriate, a D’Agostino & Pearson or Shapiro-Wilk normality

test was conducted to assess if the data fit a normal distribution. For locomotory assays where two groups were compared over

one time interval, we chose time intervals where we expected the locomotory changes to have plateaued and used a Mann-Whitney

u test for statistical comparisons as described (Laurent et al., 2015). For the intervals of interest, we determined independent

per-subject means derived from individuals flagged as continuously valid for at least 10 s during the interval. We considered all in-

dividuals in the field of view as valid except those in contact with other animals and those that were off the food lawn or less than half a

body-length from the border. Following these criteria, each individual was sampled at most once per interval.

DATA AND SOFTWARE AVAILABILITY

Datasets
The genome sequencing data of JU1249 and JU2825 is available on NCBI: PRJNA514933 (https://www.ncbi.nlm.nih.gov/genome/?

term=PRJNA514933). The genomic sequence data of the replicate populations for QTLmapping is available on NCBI: PRJNA515248

(https://www.ncbi.nlm.nih.gov/genome/?term=PRJNA515248). Sequence data from the RNA-Seq analysis of sorted BAGneurons is

deposited on GEO: GSE135687 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135687).

Codes
Locomotory assays

Videos of locomotory assays were analyzed in Zentracker, a custom-written MATLAB software available on https://github.com/

wormtracker/zentracker.

Calcium imaging

Recordings were analyzed using Neuron Analyzer, a customwritten MATLAB program available at https://github.com/

neuronanalyser/neuronanalyser.

RNA-seq analysis

Codes for removing rRNA sequences from datasets and for concatenating FASTQ files relating to the same sample but sequenced

over multiple flow cell lanes, are available on GitHub: https://github.com/lmb-seq/RNA-Seq_utilities. The git repository for PRAGUI

can be found at: https://github.com/lmb-seq/PRAGUI.
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