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The relaxation of few-body quantum systems can strongly depend on the initial state when the
system’s semiclassical phase space is mixed; i.e., regions of chaotic motion coexist with regular islands.
In recent years, there has been much effort to understand the process of thermalization in strongly
interacting quantum systems that often lack an obvious semiclassical limit. The time-dependent variational
principle (TDVP) allows one to systematically derive an effective classical (nonlinear) dynamical
system by projecting unitary many-body dynamics onto a manifold of weakly entangled variational
states. We demonstrate that such dynamical systems generally possess mixed phase space. When TDVP
errors are small, the mixed phase space leaves a footprint on the exact dynamics of the quantum model.
For example, when the system is initialized in a state belonging to a stable periodic orbit or the surrounding
regular region, it exhibits persistent many-body quantum revivals. As a proof of principle, we
identify new types of “quantum many-body scars,” i.e., initial states that lead to long-time oscilla-
tions in a model of interacting Rydberg atoms in one and two dimensions. Intriguingly, the initial states
that give rise to most robust revivals are typically entangled states. On the other hand, even when TDVP
errors are large, as in the thermalizing tilted-field Ising model, initializing the system in a regular region
of phase space leads to a surprising slowdown of thermalization. Our work establishes TDVP as a method
for identifying interacting quantum systems with anomalous dynamics in arbitrary dimensions. Moreover,
the mixed phase space classical variational equations allow one to find slowly thermalizing initial
conditions in interacting models. Our results shed light on a link between classical and quantum
chaos, pointing toward possible extensions of the classical Kolmogorov-Arnold-Moser theorem to
quantum systems.
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I. INTRODUCTION

Technological advances in synthetic quantum systems [1,2]
have started an era where nonequilibrium dynamics of
isolated quantum matter can be experimentally probed.
The process of intrinsic thermalization that may occur in
isolated many-body systems results in featureless thermal
states and scrambling of quantum information. Systems
which avoid thermalization due to an extensive number
of integrals of motion, such as many-body localized
(MBL) [3] and Bethe-ansatz integrable systems [4],
may host nontrivial quantum-coherent states, which have
been fruitfully studied in recent years. However, these
systems require either the presence of quenched disorder

(MBL) or fine-tuning (Bethe-ansatz integrability). There-
fore, it is desirable to find other routes toward extending
quantum coherence in many-body systems.
Progress toward extending quantum coherence is tied with

developing a more complete understanding of quantum
many-body chaos and thermalization [5]. In this direction,
recent studies [6–8] consider a model of “typical” quantum
dynamics generated by applying random unitary operators in
a quantum circuit, which allow one to obtain results for the
dynamics of entanglement and other physical observables. In
such models, the thermalization rate should not depend
strongly on the initial state. Recent experiments, however,
reveal that the dynamics in physical many-body systemsmay
be significantlymore complex [9,10]. In particular, for certain
initial states, the chain of interacting Rydberg atoms [10] is
found to exhibit much slower thermalization or even its
absence on the experimentally accessible timescales. The
dynamics following fromsuch initial states features persistent
periodic revivals of local observables, such as the density of
domain walls in the initial state as a function of time.
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Theobservedperiodic revivals are explainedby “quantum
many-body scars” [11–13]—a subset of anomalous eigen-
states with strongly nonthermal properties [11]. Many-body
scarring is a generalization of the well-known phenomenon
of quantum scars in stadium billiards, where anomalous
eigenstates exhibit an increased concentration of probability
density around unstable classical periodic orbits [14].
Atypical eigenstates had previously been constructed
analytically in the Afflect-Kennedy-Lieb-Tasaki spin
chain [15,16], and it has been suggested that some of these
nonthermalizing states may be closely related to the ones in
the Rydberg atom chain [17,18]. Additionally, various types
ofnonthermalizingbehaviorshavebeenreported inanumber
of other models [17,19–26].
In the context of few-body quantum chaos [27], the strong

dependence of the quantum relaxation rate on the initial state
more often emerges not from unstable periodic orbits (as in
quantum scars) but from the phenomenon of mixed phase
space [28,29]. According to the Kolmogorov-Arnold-Moser
(KAM) theorem [30], weak deformations of an integrable
classical system destroy the regular structure of its phase
space only in some regions, leading to a coexistence of
regular islands with regions of chaotic motion [31]. The
semiclassical limit allows one to introduce a notion of regular
and chaotic eigenstates that are dominated by the corre-
sponding regions of phase space [28,29]. The regular
eigenstates strongly affect the dynamics. When a quantum
system is initialized in awave packet residing predominantly
in the mixed region of the phase space, it exhibits much
slower relaxation compared to the case when the quantum
evolution begins in the chaotic region of the phase space [27].
In contrast to few-body quantum systems, in the many-

body case one expects that conditions for the KAM
theorem become very stringent, potentially leading to a
quick disappearance of regular regions of phase space
already at very small integrability-breaking perturbations.
Thus, one may naively expect that quantum many-body
systems should display “typical” relaxation, irrespective of
the initial conditions. In this work, we demonstrate that this
intuition is incomplete. A mixed classical phase space
leaves an imprint on quantum dynamics in interacting
many-body systems, giving rise to slow, atypical thermal-
ization for certain initial conditions. Our starting point is
the time-dependent variational principle (TDVP) [32],
which we use to project quantum dynamics onto a classical
nonlinear dynamical system. In what follows, we consider
both 1D systems, where we choose the variational manifold
to consist of translation-invariant matrix-product states
(MPSs) [33] with a fixed number of degrees of freedom
(d.o.f.) [10,13], as well as higher-dimensional systems
where we use the infinite tensor tree states (TTSs) [34].
We demonstrate that the resulting dynamical systems
generally have mixed phase space.
Regular regions of phase space are governed by stable

periodic trajectories, such as the one in Fig. 2 below.

These periodic orbits have a vanishing Lyapunov exponent
but may be classified according to their “quantum leak-
age,” i.e., a measure of discrepancy between TDVP and
exact quantum dynamics, which intuitively corresponds to
the irreversible entanglement growth. On the one hand,
short periodic trajectories, with low quantum leakage,
generate many-body revivals in quantum dynamics. As a
proof of principle, we identify a trajectory with a three-site
unit cell that gives rise to robust revivals and also
generalize the notion of scars to a 2D square lattice of
Rydberg atoms. On the other hand, even the trajectories
with high leakage out of the variational manifold leave a
measurable signature on the quantum system: Initializing
the quantum system in the vicinity of these trajectories
significantly slows down thermalization compared to
generic initial conditions. We independently confirm these
findings by numerical simulations based on exact diago-
nalization and infinite-time evolving block decimation
(iTEBD) [35].
Similar to the known examples of few-body systems [29],

we expect that regular regions ofmixed phase space give rise
to nonthermal eigenstates in the many-body quantum
system. Thus, mixed phase space provides a more general
mechanism for slow thermalization compared to quantum
scars. We establish TDVP as a practical method for finding
models with nonergodic quantum dynamics in arbitrary
spatial dimensions, which complements its recent applica-
tions to quantum thermalization [36,37]. Our approach
provides a potential direction to generalize the results on
few-body chaos to many-body systems and for approaching
the KAM theorem in quantum systems by utilizing the
classical KAM for the TDVP equations of motion. This
approach is distinct from other approaches that rely on
broken Bethe-ansatz integrability [38] or the absence of
quantum resonances in the MBL phase [39–41].
The rest of the paper is organized as follows. In the

remainder of this section, we briefly introduce the TDVP
and the tensor network states of interest. In Sec. II, we show
how mixed phase space emerges in the TDVP equations
that describe the dynamics of Rydberg atom chains,
recently realized experimentally [10,42,43]. We demon-
strate that TDVP allows one to identify a stable trajectory
that gives rise to new quantum revivals beyond those that
were probed in recent experiments [10]. In Sec. III, we
show that higher-dimensional bipartite lattices of Rydberg
atoms also display mixed phase space and the associated
quantum revivals. In Sec. IV, we show that quantum
leakage can be used to distinguish trajectories that lead
to quantum revivals and to find deformations of the model
that improve the revivals originating from a given periodic
orbit. In Sec. V, we study the transverse-field Ising model
(TFIM) in a longitudinal field, which is a typical example
of a thermalizing system. In this case, we show that mixed
phase space does not give rise to many-body revivals but
leads to a state-dependent thermalization rate. Finally, we
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conclude with the discussion of open directions and out-
look in Sec. VI.

A. A brief overview of TDVP

TDVP equations of motion are obtained by extremizing
the action [44],

S ¼
Z

dtL; L ¼ i
2
ðhψ j _ψi − h _ψ jψiÞ − hψ jHjψi: ð1Þ

Such action yields a set of nonlinear classical equations of
motion [44],

X
a

_xaImh∂xbψ j∂xaψi ¼ −
1

2
∂xbhψ jHjψi; ð2Þ

where the variational parameters are real valued, xi ∈ R.
The equations of motion can also be obtained by minimiz-
ing the discrepancy between exact quantum dynamics and

its projection onto the variational manifold; see the
Appendix A for a detailed derivation.
TDVP has been successfully applied to the cases where

the variational manifold is spanned by MPS [33,45] as
well as finite TTSs [46]. Below, we introduce the basics of
MPS parametrization, which is used to describe the
dynamics of the Rydberg atom model in Sec. II and
the Ising model in Sec. V. In addition, we discuss TTS
parametrization that is used in Sec. III to capture the
dynamics of the Rydberg model generalized to higher
dimensions.

B. Matrix product states and tensor tree states

The simplest tensor network state is the matrix product
state. The manifold of translationally invariant MPS for a
system of size Lwith a unit cell of fixed sizeK is defined as
follows [see Fig. 1(a)]:

jψðfxigÞi ¼
X
fσg

�
VL

YL=K−1
m¼0

½Aσ1þmKðx1ÞAσ2þmKðx2Þ…AσKþmKðxKÞ�VR

�
jσ1ijσ2i…jσLi; ð3Þ

where AσðxÞ is χ × χ matrix (χ is the bond dimension) that
depends on N real on-site variational parameters,
x ¼ ðx1;…; xNÞ. The physical indices σ label the basis
of on-site Hilbert space, which we take to be a spin-1=2
d.o.f. with σ ¼ ↑;↓. The index m ¼ 1;…; L=K labels the
unit cells, and in what follows we take the thermodynamic
limit L → ∞. The state in Eq. (3) is assumed to be
normalized, and VL;R denote some boundary vectors, the
choice of which is not important for our purposes.
The MPS state (3) has N parameters for each of the K

sites within its unit cell. Hence, one needs to specify overall
NK real parameters, xa with a ¼ 1;…; NK, to fully fix the
state. Below, we use the MPS Ansatz restricted to a unit cell
of small size and with a small number of variational
parameters. These restrictions allow us to obtain analytical
equations of motion, making the analysis more transparent.
For a larger number of parameters, a similar analysis could
be performed numerically.

As another extension, a close relative of the MPS Ansatz
are the TTSs with higher connectivity—see Fig. 1(b). On
the one hand, TTSs allow one to mimic the topology of
two-dimensional and higher-dimensional lattices. On the
other hand, the absence of loops still allows for an
analytical derivation of equations of motion. In this work,
we restrict ourselves to TTSs which approximate bipartite
lattices with a natural choice of a two-site unit cell. The
manifold of TTSs with two inequivalent sites, for a system
of size L and connectivity C, is defined by generalizing
Eq. (3) to the case where AσðxÞ is a rank-C tensor, with
bond dimension χ. The product of matrices in Eq. (3) is
extended to contraction of indices on all bonds connecting
tensors according to Fig. 1(b). While TTSs with a fixed
bond dimension cannot capture the loop effects of higher-
dimensional lattices, they can still describe the local
physics of weakly entangled states. In Sec. III, we find
the TTS Ansatz to be very accurate in capturing the

(a) (b)

FIG. 1. (a) The state of a quantum system that is short-range entangled and translationally invariant with a unit cell of size K can be
described by anMPS with the same size of unit cell. (b) The wave function of the square lattice is approximated by a TTS in the form of a
Cayley tree with connectivity C ¼ 4. The state with K ¼ 2 unit cell is described by a tree where two different tensors alternate.
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quantum dynamics of certain initial states in dimen-
sions d > 1.

II. MIXED PHASE SPACE IN TDVP DYNAMICS
IN ONE DIMENSION

In this section, we investigate the phase portrait of the
classical nonlinear TDVP equations for an MPS manifold
of low bond dimension. Below, we introduce the model and
variational state and then demonstrate the mixed nature of
phase space and its effects on quantum dynamics.

A. PXP model

In this section, we focus on the PXP model [10],
describing a 1D chain of Rydberg atoms defined by the
Hamiltonian

HPXP ¼
XL
i¼1

Pi−1σ
x
i Piþ1; ð4Þ

where σx is the standard Pauli matrix and operator Pj ¼
ð1 − σzjÞ=2 projects to the ↓ state on site j. The projectors
encode the kinetic constraint due to the Rydberg blockade:
Two neighboring atoms are not allowed to be simulta-
neously excited. Unless explicitly stated otherwise, we
work in the thermodynamic limit, L → ∞, and restrict the
Hilbert space to spin configurations without two adjacent
up spins, j…↑↑…i. This space is the largest connected
component of the full Hilbert space for the Hamiltonian in
Eq. (4). The PXP model is interacting and nonintegr-
able [11], yet its relaxation strongly depends on the initial
conditions [10]. For instance, there is fast thermalization
when the system is prepared in a down-polarized state,
j↓↓…i, while other initial states, such as the jZ2i ¼
j↑↓↑↓…i state, exhibit revivals of local observables [10],
entanglement entropy [11], and even the many-body wave
function [12].
Below, we apply the Ansatz in Eq. (3) with K ¼ 3 to the

PXP model. We parametrize the matrices Aσ by two angles,
xi ¼ ðθi;ϕiÞ:

A↑ðθi;ϕiÞ ¼
�
0 ie−iϕi

0 0

�
;

A↓ðθi;ϕiÞ ¼
�
cos θi 0

sin θi 0

�
: ð5Þ

The matrix A↑ ∝ σþ satisfies the condition
A↑ðθ;ϕÞA↑ðθ0;ϕ0Þ ¼ 0, thus effectively imposing the con-
straint that no two adjacent spins are in j↑i state.
The Hamiltonian in Eq. (4) has particle-hole symmetry

in the spectrum: E → −E, since it anticommutes with
C ¼ Q

i σ
z
i . In this case, the system’s equations of motion

have a class of solutions with phase angles being stationary,
ϕi ¼ 0, which corresponds to dynamics restricted to a

flow-invariant subspace in the language of dynamical
systems. This subspace arises from the presence of particle-
hole symmetry and time-reversal invariance of the PXP
Hamiltonian in Eq. (4); see Appendix A. Note that hHi ¼ 0
vanishes identically when ϕi ¼ 0, thus imposing no addi-
tional constraint. Restricting to ϕi ¼ 0 subspace for a
K ¼ 2 unit cell, Ref. [13] finds an unstable periodic
trajectory in a two-dimensional flow-invariant subspace.
This trajectory is intimately connected with the revivals
from the initial Neél state jZ2i ¼ j↓↑↓↑…i.
However, a two-dimensional phase space is nongeneric

and does not allow for chaos: In two dimensions, any
periodic trajectory fragments the phase space into dynami-
cally isolated regions. Thus, we focus on Ansätzewith three
or more parameters, which have regular and chaotic regions
coexisting in phase space. We show below that such
behavior, known as “mixed phase space,” is robust and
persists for various deformations of the PXP model. We
then investigate the implications for quantum dynamics,
finding new initial states that exhibit revivals and slow
thermalization.

B. Revivals in a three-site unit cell

Higher-dimensional variational phase space naturally
arises when the unit-cell size is increased, while particle-
hole symmetry is kept intact. This space describes the
dynamics of initial states that are periodic in space, with
period K ¼ 3 (or more) lattice sites. An experimentally
relevant example of such initial states is jZ3i ¼ j↑↓↓…i,
which can be experimentally prepared in a Rydberg
system with a larger blockade radius [10]. The resulting
equations of motion for θi, i ¼ 1, 2, 3, obtained from the
TDVP projection of the PXP model can be found in
Appendix A 2 c.
In order to analyze the dynamical flow, we consider its

Poincaré section. The flow generates a discrete mapping
known as the Poincaré map [47] that maps a given point
ðθ1; θ�2; θ3Þ on the chosen hyperplane θ2 ¼ θ�2 to a position
ðθ01; θ�2; θ03Þ where the trajectory intersects this plane
again. Periodic trajectories correspond to stationary
points of the Poincaré map, while in the case of chaotic
behavior the system returns to the same plane at a location
that is generally far away from the previous encounter.
Successively iterating the Poincaré map for many different
initial conditions yields the Poincaré section, shown in
Fig. 2(a).
Figure 2(a) reveals the phase portrait characteristic of

dynamical systems with mixed phase space. Cross sections
of at least four large stable KAM tori are evident,
surrounded by a number of smaller tori and chaotic regions.
The analysis of periodic orbits reveals a stable shortest-
period orbit denoted by a star in Fig. 2(a) and located at
ðθ1; θ2; θ3Þ ¼ ð0.8356π; 0; 0.1923πÞ. Other large tori sur-
round the orbits related to this particular orbit via symmetry
transformations.
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Next, we analyze the local observables and entanglement
entropy of the star periodic orbit from Fig. 2(a). Figure 2(b)
shows the time evolution of the entanglement entropy for
the variational solution, which indicates that the dynamics
on this orbit never passes through a product state. To see
this result, note that, when the entanglement for one cut,
say, S12, vanishes, the entanglement for a different cut is
nonzero, e.g., S23 > 0. Interestingly, this short-range entan-
glement improves the fidelity of revivals in the correspond-
ing quantum system. Indeed, the closest product state to
this trajectory is jZ3i ¼ j↓↑↓…i. However, preparing the
quantum system in a slightly entangled state positioned on
the periodic TDVP orbit gives rise to more robust revivals.
The improvement of revivals is illustrated in Fig. 2(c). In
the top, we show the negative logarithm of fidelity

FðtÞ ¼ jhψ0j expð−iHtÞjψ0ij2; ð6Þ

normalized by the system size −ðlnFÞ=L that quantifies the
fidelity decay per spin. The minima in this quantity
correspond to the best fidelity revivals of all finite-size
subsystems. These minima display a regular pattern, with
smaller values (corresponding to a higher return amplitude)
when the system is initialized on the TDVP trajectory
compared to the jZ3i product state. The bottom in Fig. 2(c)
shows that the growth of entanglement is notably slower for
the initial state positioned on the TDVP orbit, consistent
with better fidelity revivals.

C. Effect of regular regions of phase space

Above, we consider the dynamics of a quantum
system initialized on the periodic orbit. However, any such

classically stable orbit is surrounded by a regular region of
phase space where TDVP dynamics is constrained to a
torus. In order to investigate the effect of this region on
quantum dynamics, we consider a family of initial states
jψðcÞi, where the parameter c ∈ ½0; 1� interpolates along
the dashed line in Fig. 2(a) between the periodic orbit and
the point θ1 ¼ 0; θ3 ¼ π.
Launching classical dynamics for different initial con-

ditions, we clearly see the termination of the regular region
in the Fourier spectrum of local observables [Fig. 3(a)].
Inside the regular region, the Fourier spectrum is strongly
peaked. In contrast, upon entering the chaotic sea when
c ≈ 0.42, one observes a rapid drop in the amplitude of the
maximal Fourier harmonic component that signals a
transition to chaotic dynamics with the continuous
Fourier spectrum. For the same set of initial conditions,
quantum dynamics shows a crossover between nonergodic
behavior, with slow entanglement growth, and thermalizing
dynamics, as witnessed by the behavior of entanglement
entropy; see Fig. 3(b). The changes in the behavior of the
quantum system are much more smooth: Intuitively, one
may think of a quantum system initialized in a finite region
of the phase space, with the size of this region being
determined by quantum fluctuations. This determination
smoothens out any abrupt transition between the non-
ergodic and thermalizing behaviors. Nevertheless, Fig. 3(c)
shows that the maximal sensitivity of quantum dynamics to
a change in initial conditions is achieved near the border of
the regular region.
In addition to entanglement entropy, we observed similar

behavior of inverse participation ratios (IPRs) of local
density matrices, measured at the time when the dynamics

(b) (c)(a)

FIG. 2. (a) Poincaré sections at θ2 ¼ 0 for a three-site unit cell reveal mixed phase space with large regular regions. A stable periodic
orbit that gives rise to robust revivals is denoted by star, while diamond denotes a longer orbit that does not give rise to revivals in exact
dynamics. The dashed line represents a particular cut through the regular region, discussed in Sec. II C. (b) Variational TDVP prediction
for the local density of the Rydberg excitation (top) and the entanglement entropy (bottom) for the shortest-period trajectory labeled by
star on the Poincaré section in (a). The inset shows the unit-cell choice and entanglement cuts. (c) Quantum dynamics for jZ3i initial
state and two entangled initial states marked in (a) obtained from iTEBD with χ ¼ 900. Top: The decay of fidelity per spin has regular
minima that correspond to revivals of fidelity in a finite-size system. Bottom: Entanglement entropy. The stable “star” trajectory features
a better fidelity revival, as well as strongly suppressed entanglement growth. The growth of entanglement limits the iTEBD simulation to
shorter times for jZ3i, diamond states.
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has saturated (not shown). The IPRs are found to be low in
the regular region, consistent with the expectation that the
system does not explore the full configuration space when
launched there. In contrast, the participation ratios rapidly
increase near the border of the regular region and attain
thermal values outside of it.
The classical dynamical system also has many longer

orbits surrounded by “thinner” tori—for example, see the
orbit marked by the blue diamond in Fig. 2(a). We observe
that these orbits do not give rise to long-lived oscillations in
exact dynamics of the PXP model, and they are charac-
terized by rapid entanglement growth—see the dashed line
in the bottom in Fig. 2(c). Since numerous stable orbits
appear in the Poincaré sections, we need to understand
which of these orbits give rise to strong quantum revivals in
exact quantum dynamics. We return to the question of how
to distinguish orbits in Sec. IV, after first considering the
dynamics and mixed phase space on higher-dimensional
lattices in the next section.

III. REVIVALS AND MIXED PHASE SPACE
IN HIGHER DIMENSIONS

In this section, we introduce the PXP model in higher
dimensions and apply theTTSAnsatz to capture its dynamics.
We focus on a 2D square lattice and compare the predictions
of the TTS dynamics against exact diagonalization. We also
discuss generalizations of these results to any bipartite lattice
in an arbitrary number of spatial dimensions.

A. PXP model in higher dimensions

We start by introducing a constrained model on the
square lattice, inspired by the 1D PXP model:

HPXP ¼
X
i;j

Pi−1;jPi;j−1σ
x
i;jPiþ1;jPi;jþ1 þ μzni;j; ð7Þ

where the pair of indices i, j is used to label lattice sites. In
addition to the PXP term, we also include a possible
perturbation in terms of chemical potential μz, which
couples to the Rydberg excitation density operator
n ¼ ð1þ σzÞ=2. The presence of four projectors allows a
given atom to get excited only if all neighboring atoms are
in the ground state. Similarly to the PXP model in 1D, we
restrict our attention to the largest connected subspace of
the Hilbert space, where no adjacent atoms are excited.
After generalizing the quantum model to the 2D case, we

turn to the variational state that can capture the quantum
dynamics. Inspired by the Ansätze considered above for the
1D lattice, we introduce tree tensors Aσ

i1;…;i4
, which forbid

excitations on adjacent sites. Relegating the detailed dis-
cussion to Appendix B, here we list only the nonzero
elements of the tensor Aσ that is parametrized by two angles
(θ;ϕ):

A↓
i1;i2;i3;0

¼ cosIθsin3−Iθ;

A↑
0;0;0;1 ¼ ie−iϕ ð8Þ

where i1;…;4 are virtual indices and I ¼ P
3
j¼1 ij counts the

number of “excitations” on the three legs of the tensor. The
fourth leg of the tensor produces an “output 1-bit” on the
last virtual index i4 if the corresponding site is excited and 0
if it is in the ground state. In Appendix B, we give the form
of the Ansatz for general connectivity C of the tree. When
C ¼ 2, which corresponds to the 1D limit, this Ansatz
reproduces Eq. (5).
Projection of quantum dynamics generated by Eq. (7)

onto the TTS manifold with a two-site unit cell results in
the dynamical system of four variables that come in two
canonically conjugate pairs, ðθ1;ϕ1Þ and ðθ2;ϕ2Þ. The
general form of equations of motion reads

_θ1 ¼ − sin θ1cosCθ1 cosϕ1 tan θ2 − cosC−1θ2 cosϕ2; ð9aÞ

_ϕ1 ¼ μz − C tan θ1cosC−1θ2 sinϕ2

þ 1

2
cosC−1θ1 cot 2θ2 sinϕ1½3þ C − ðC − 1Þ cos 2θ1�

− ðC − 1ÞcosC−1θ1sin2θ1 sinϕ1sin−12θ2; ð9bÞ

where the square lattice case (ignoring loops) corresponds
to C ¼ 4. The equations for _θ2; _ϕ2 can be obtained by
substitution 1 ↔ 2. In addition, the energy density

(a)

(b)

(c)

FIG. 3. (a) A rapid drop in the largest component of the Fourier
spectrum of a local observable, n1ðtÞ, signals the onset of chaotic
behavior. (b) The entropy of a region of size L at fixed time
t0 ¼ 15 remains low when the quantum dynamics is launched
near the center of the regular region (we use the iTEBD algorithm
to simulate quantum dynamics). When the border of the regular
region is approached, the value of entanglement rapidly increases
with changing the initial state, defined by the value of c. When c
approaches one, the dynamics becomes insensitive to the changes
in the initial state due to rapid thermalization. (c) The derivative
of entropy along the trajectory is most sensitive around the
boundary of the regular region.
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hHi
L

¼ μz sin2 θ2 þ cosC−1 θ1 sin 2θ2 sinϕ1

2þ 2 cos2 θ2 tan2 θ1
þ 1 ↔ 2 ð10Þ

is a conserved quantity, provided the system satisfies the
equations of motion [Eqs. (9)]. The existence of a con-
served quantity effectively reduces the dimensionality of
the phase space to three dimensions, as dynamics is
restricted to constant energy surfaces.

B. Generalizing scars to arbitrary bipartite lattices

When μz ¼ 0 and one restricts to a flow-invariant sub-
space ϕ1;2 ¼ 0, Eqs. (9) reduce to a two-dimensional flow.
This flow has an isolated periodic trajectory that general-
izes the trajectory found in Ref. [13] to an arbitrary bipartite
lattice. This trajectory is responsible for the revivals of a
state in which all atoms on the first sublattice are in the
Rydberg state ↑1 and all atoms on the second sublattice are
in the ground state ↓2. In Fig. 4(a), we show that quantum
dynamics of a local observable hσzi on the 4 × 4 square
lattice agrees well with TDVP dynamics based on C ¼ 4
TTS. Moreover, we compare the TDVP dynamics of a wave
function satisfying the kinetic constraints and having the
same weights as the tree parametrization [see Eq. (B4) in
Appendix B 1] to the tree dynamics and find perfect
agreement (not shown). The fact that TDVP dynamics that
takes into account loops agrees with TTS TDVP demon-
strates that the presence of loops is not important for local
observables.
As connectivity increases, the isolated periodic orbit of

the TTS manifold is expected to become more accurate and
effectively exact at C → ∞. In this limit, the sites that are in
their ground state cannot flip unless all their neighbors are
also in their ground state. The periodic trajectory can be
understood by studying the C → ∞ limit of Eq. (9). At the
first quarter of the period, the excited sites on the first
sublattice relax ↑1 → ↓1, while their neighbors remain in
the ground state due to infinite connectivity. At the second
quarter of the period, the second sublattice undergoes the
transition ↓2 → ↑2. The half period over which two

sublattices exchange their state is given by π in our
notations, so the total period of the orbit is TC→∞ ¼ 2π.
Figure 4(b) shows that period of the orbit approaches its
C → ∞ limit approximately as TC ¼ 2π − 2.4=

ffiffiffiffi
C

p
.

C. Phase space and revivals in higher dimensions

When detuning μz ≠ 0, the dynamics generated by
Eq. (9) takes place on constant energy surfaces in four-
dimensional space. In order to visualize such dynamics, we
fix θ1 variable and show the resulting Poincaré sections in
Fig. 5(a) [the precise value of θ1 is not important, and we
choose ðθ�1 ¼ 1.25π; _θ1 < 0Þ]. Energy conservation results
in complicated surfaces in the space ðϕ1; θ2;ϕ2Þ that cannot
be globally projected. Therefore, we show a small part of
the Poincaré section that can be projected onto the ðϕ1; θ2Þ
plane. We find that the point ðϕ1; θ2Þ ≈ ð2.921; 2.981Þ is a
stationary point of the Poincaré map that corresponds to a
stable periodic trajectory. We observe that this periodic
trajectory is surrounded by circle-shaped contours, which
are the intersections of KAM tori by our section plane.
A key question concerns the correspondence between

regular variational dynamics and exact quantum dynamics.
Figure 5(b) shows this comparison for local observables
hσx;zi i, for the system initialized on the periodic trajectory
(indicated by ⋆ in Fig. 5). It demonstrates that the classical
periodic trajectory gives rise to pronounced quantum
revivals; moreover, the exact quantum dynamics agrees
with the TDVP predictions up to t≲ 10. We note that the
slight disagreement at t ¼ 0 is caused by the difference
between the structure of a TTS (that cuts loops and
introduces redundant d.o.f.) and the true many-body wave
function on a two-dimensional lattice (see Appendix B 2).
In order to visualize the variational (classical) dynamics,
Fig. 5(c) shows the evolution of the trajectory of an
individual spin ½hσx1ðtÞi; hσy1ðtÞi; hσz1ðtÞi� on the Bloch
sphere as perturbation μz ≠ 0 is turned on. The second
spin in the unit cell performs similar oscillations shifted in
phase by π.
For μz ¼ 0, the trajectory gives oscillations of the spin

between ↑ and ↓ states, and the expectation value hσxðtÞi is
zero at all times. In agreement with physical intuition, the
nonzero chemical potential acts as a “magnetic field” in the
z direction, tilting the plane in which the spin rotates.
Surprisingly, in addition to the tilt, the trajectory slightly
winds around the south pole of the Bloch sphere. This
winding reflects the fact that we are dealing with an
interacting system rather than with a precession of inde-
pendent spins, which shows that this orbit cannot be
obtained as a smooth deformation of the unstable periodic
orbit found in the case of μ ¼ 0.
In the entire range of μz ∈ ð0; 0.65�, the regular regions

remain pronounced in the phase space of the system in
Eqs. (9), thus demonstrating the persistence of mixed phase
space. The deformation of the trajectory away from the
poles upon increasing μz suggests that the most stable

FIG. 4. (a) TDVP dynamics on a tree (solid lines) compares
favorably with exact dynamics on a 4 × 4 lattice (dashed lines).
Different colors denote different sites in the unit cell. (b) Scaling
of the period of the isolated periodic orbit as a function of the
connectivity of the TTS. Stars indicate exact results for chain,
honeycomb, and square lattices.
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revivals occur for initial states that are different from the
Neél product state Z2 by having some amount of
entanglement.

IV. CHARACTERIZING TRAJECTORIES
BY LEAKAGE

Variational dynamics of the PXP model and its defor-
mations, studied above, reveal mixed phase space with
multiple stable orbits. The Lyapunov exponent, which is
often used to quantify chaos in TDVP [37] and semi-
classical [48] dynamics, vanishes for all these orbits and,
thus, cannot be used to distinguish them. In this section, we
show that quantum leakage can be used instead as a
heuristic for distinguishing trajectories that give rise to
revivals in exact quantum dynamics.

A. Rate of leaving the variational manifold

The TDVP approach accurately approximates short-time
quantum evolution of initial states in the chosen MPS
manifold, but at long times the errors grow, because exact
quantum dynamics generally brings the system out of the
variational manifold. Intuitively, the TDVP error for a given
initial state is linked to the rate of entanglement growth for
that state, since MPS with a low bond dimension can
represent only weakly entangled states. When the entan-
glement grows significantly, the state requires an MPS
description with a larger bond dimension that lies outside
the variational manifold. Making this connection math-
ematically precise is challenging and is beyond the scope of
this work. Instead, here we characterize the error by
quantum leakage defined as the instantaneous rate at which
the exact quantum wave function leaves the variational
manifold [13,33]:

γ2½fxag� ¼ lim
L→∞

1

L
kðiH þ _xb∂xbÞjψðfxagÞik2: ð11Þ

In Appendix C, we discuss the computation of this quantity
in the TDVP framework. This calculation involves the
square of the Hamiltonian operator; thus, effectively it
contains information that goes beyond the TDVP equations
of motion. The normalization factor is chosen such that γ
assumes a finite value in the thermodynamic limit.
In the previous section, we demonstrate that TDVP

equations of motion may have periodic trajectories, xaðtÞ ¼
xð0Þa ðtÞ, with a period T. If the quantum system were
following the TDVP dynamics exactly, that would imply
persistent oscillations in local observables and perfect
revivals of the many-body quantum fidelity, i.e.,
Fðt ¼ nTÞ ¼ 1 in Eq. (6), where the initial state can be
any MPS wave function that belongs to the periodic

trajectory, jΨi ¼ jψ ½xð0Þa ðtÞ�i. The disagreement between
quantum dynamics and TDVP generally precludes such
perfect revivals (except for models with perfect scars [49]).
However, we conjecture that one can obtain a lower bound
on the many-body fidelity revival using quantum leakage.
Assuming an extensive scaling of the fidelity, FðTÞ ¼

e−fTL at some fixed short time and L → ∞ limit, and using
the large system size limit of Eq. (11), we posit the
following upper bound on fT :

fT ≤ ΓT; with ΓT ¼
�Z

T

0

dtγ½fxð0Þa ðtÞg�
�
2

; ð12Þ

that translates to a lower bound on the fidelity. This bound
can be justified in the limit of small leakage for a finite-size
system; see Appendix C. However, its extension to the
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FIG. 5. (a) Poincaré section for μz ¼ 0.225 at ðθ�1 ¼ 1.25π; _θ1 < 0Þ and hHi ¼ 0 reveals mixed phase space with large regular regions.
The Poincaré section is obtained by initializing the system on a grid of points with the step δθ2 ¼ δϕ2 ¼ 8 × 10−3 and numerically
integrating the evolution up to a time t ¼ 3000 using the NDSolve routine in Mathematica. (b) Comparison between TDVP predictions
for the dynamics of local observables (μz ¼ 0.225) on the periodic trajectory (solid lines) and the exact dynamics of a 4 × 4 lattice with
periodic boundary conditions. (c) Bloch sphere visualization of the individual spin dynamics on the TDVP trajectory. The trajectory on
the big meridian corresponds to the case μz ¼ 0. Nonzero chemical potential μz ¼ 0.225, 0.65 causes a progressive tilting of the
trajectory and the development of a knot around the south pole.

A. A. MICHAILIDIS et al. PHYS. REV. X 10, 011055 (2020)

011055-8



thermodynamic limit is nontrivial, and at present it remains
a conjecture. Below, we present a specific example which
demonstrates the usefulness of quantum leakage and
provides a test of the bound.

B. Leakage and revivals criterion

We study the evolution of the Poincaré sections and
corresponding trajectory under the deformation of the PXP
model that makes it more thermalizing. Specifically, we
consider the following deformation:

Hμ3 ¼ μ3
X
i

Pi−2ðσþi−1σ−i σþiþ1 þ σ−i−1σ
þ
i σ

−
iþ1ÞPiþ2; ð13Þ

which is the lowest-order term that induces spin flips
(expected to facilitate thermalization) while maintaining
particle-hole symmetry.
The presence of particle-hole symmetry in H ¼ HPXP þ

Hμ3 allows us to use the same Ansatz as in Sec. II B with
three variational parameters θ1;2;3. The resulting TDVP
equations of motion are again cumbersome and can be
found in Appendix A 2 c. Analysis of these Poincaré
sections reveals a pronounced asymmetry between the
effect of this deformation for μ3 ¼ �0.3. The deformation
with μ3 < 0 increases the size of regular regions in the
phase space; see Fig. 10. In contrast, positive μ3 causes
the regular regions of the phase space to shrink in size, and
the phase portrait looks progressively more chaotic
(Fig. 11). Exact diagonalization shows a similar asymmetry
between positive and negative μ3: For μ3 > 0, thermal-
ization, diagnosed via level repulsion and average eigen-
state entanglement entropy, becomes more pronounced.
In order to quantify the effect of the deformation, we use

the expression from Appendix C for γ½fxag� to calculate the
integrated leakage ΓT , defined in Eqs. (11) and (12), along
the trajectory. Figure 6 shows that the leakage attains a
minimum at a small negative value μTDVP3 ≈ −0.11. For
larger negative values of μ3, the leakage starts to increase
again. Although the leakage overestimates the suppression
of the fidelity revivals, the exact diagonalization results for
fT ¼ − lnFðTÞ=L follow qualitatively the same trend as
ΓT . The fT obtained from exact quantum dynamics
achieves a minimum at μED3 ≈ −0.06, which corresponds
to the best fidelity revivals. The optimal value of the
deformation, μED3 , is approximately twice smaller compared
to the TDVP prediction μTDVP3 . Nevertheless, TDVP may be
used to find the best operators suitable for stabilizing
quantum many-body revivals [49]. Moreover, in contrast to
the revivals from the jZ2i state [13], our results show that
generally one must account for the effect of the deformation
on the initial state.
Eventually, for large absolute values of μ3, we observe

that the quantity fT is no longer well defined, since the data
for different system sizes do not collapse onto each other in
Fig. 6. We attribute this result to fast thermalization at such

deformation parameters. At these values, quantum dynam-
ics no longer exhibits many-body revivals, and simulta-
neously ΓT is on the order of unity. Thus, we propose

ΓT ∼ 1 ð14Þ

as a tentative criterion for when a periodic trajectory ceases
to result in revivals. This criterion was previously heuris-
tically conjectured in Ref. [13] in the context of dynamics
of the Z2 state. With this criterion, it is natural to test other
periodic trajectories visible in the Poincaré sections of the
TDVP dynamics. In Appendix C 3, we present such an
analysis for μ3 ¼ 0.3, which shows that the majority of
trajectories have leakage that is larger than one, thus not
giving rise to quantum revivals.

C. Floquet exponents and quantum leakage

We demonstrate the utility of quantum leakage in classi-
fying trajectories and predicting which trajectories give rise
to fidelity revivals. The leakage gives a particular measure
of instability of the dynamics with respect to external
d.o.f.—it quantifies how quickly quantum evolution leaves
the variational manifold. At the same time, the TDVP equa-
tions of motion can be classified by an internal measure of
instability of the TDVP dynamics. To that end, in the case
of chaotic motion, one uses the Lyapunov exponent,
whereas in the case of periodic orbits the Floquet expo-
nents provide a conceptually similar but reparametrization-
invariant measure [50]; see Appendix C 3 for details.
It is natural to ask if the Floquet exponent and quantum

leakage are directly related to each other. The answer is
negative: Figure 6 (inset) shows how a nonzero Floquet
exponent λ emerges for μ3 ≥ 0.255. However, the nonzero
value of λ does not have any influence on the leakage, and

FIG. 6. (a) TDVP quantum leakage presents an upper bound on
fT . Despite not being tight, this bound captures the qualitative
effect of the applied perturbation. The data illustrate that fT is
system size independent and therefore is well defined for
μ3 ∈ ½−0.6; 0.4�. The inset shows that the Floquet exponent λ
becomes nonzero only for μ3 > 0.255, suggesting that there is no
direct relation between λ and leakage. Finally, for μ3 ≥ 0.45, the
periodic trajectory disappears.
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this unstable trajectory still gives rise to fidelity revivals for
μ3 ∈ ð0.255; 0.4�. This example also suggests that mixed
phase space provides a more generic mechanism for weak
ergodicity breaking. The stable trajectory in the center of a
regular region of mixed phase space that gives rise to
“regular eigenstates” [28,29] may become unstable upon a
deformation of the Hamiltonian, leading to the appearance
of quantum scars [11,13], which are quantum eigenstates
affected by the unstable trajectories.

V. NONUNIVERSAL THERMALIZATION

Above, we focus on periodic trajectories that arise in
classical TDVP equations, with small quantum leakage.
These trajectories give rise to spectacular revivals of the
fidelity and slow thermalization (or even its absence, as is
the case for the deformed PXP model [49]). In this section,
we consider the opposite situation where quantum leakage
is strong. In this regime, TDVP fails to capture the
dynamics of local observables beyond times of the order
ofOð1Þ. Nevertheless, we show that mixed phase space still
leaves an imprint on quantum dynamics, leading to
nonuniversal thermalization.

A. Transverse-field Ising model

We study the quantum Ising model with transverse and
longitudinal fields (TFIM), a popular model for investigat-
ing eigenstate thermalization, defined by a Hamiltonian

HTFIM ¼
X
i

Jzσ
z
iσ

z
iþ1 þ hzσ

z
i þ hxσxi ; ð15Þ

with fixed values of parameters ðJz; hz; hxÞ ¼ ð1; 0.4; 1Þ.
Thermalization in this model is established for somewhat
different parameters ðJz; hz; hxÞ ¼ ð1; 0.8090; 0.9045Þ in
Ref. [51]; we choose a smaller value of hz to facilitate the
TDVP analysis. Very similar behavior is also observed for
other values of couplings, hx ¼ 0.9 and 1.1.
In order to capture the dynamics, we use the following

MPS Ansatz with bond dimension χ ¼ 2:

A↑ ¼
�
cos θ cos ξeiχ=2 cos θ sin ξe−iχ=2

0 0

�
; ð16aÞ

A↓ ¼
�

0 0

sin θ sin ξeiðϕ−χ=2Þ sin θ cos ξeiðχ=2þϕÞ

�
ð16bÞ

that depends on four parameters, ðθ;ϕ; ξ; χÞ, per spin. Such
a choice of the Ansatz is inspired by “trotterization” of the
evolution operator e−iHTFIMδt ≈ e−iH0δte−iH1δt, whereH0 and
H1 are the transverse-field term and remaining terms in
HTFIM, respectively. We restrict ourselves to translation-
invariant states, setting the unit-cell size K ¼ 1. We note
that such a choice of tensors does not result in a normalized
wave function. Hence, the derivation of the equations of

motion is more complicated, and we follow the general
procedure outlined in Appendix A 3. We perform the
numerical integration of the equations of motion and obtain
the phase portraits of the TDVP dynamics.

B. Dependence of dynamics on the initial state

We consider the TDVP and exact quantum dynamics for
initial states specified by the Ansatz in Eq. (16), with fixed
energy density hHi=L ¼ 0.19, which corresponds to initial
states at a high but finite temperature in the thermodynamic
limit. In this case, the TDVP dynamics reveals the presence
of mixed phase space (see Fig. 12 in Appendix D 1).
However, the integrated leakage for the shortest stable
trajectory with the period T ¼ 2.097 is close to one:
ΓT ¼ 0.57. Fully consistent with such values, the trajectory
does not result in oscillations of the fidelity, and all local
observables relax by the time of the order of t ∼ 2.
In order to study the effect of the periodic trajectory, we

consider an ensemble of initial states specified by the
Ansatz in Eq. (16), with the same energy density and a
small initial value of the entanglement entropy Sent ∈
½ð2=3ÞS0; ð4=3ÞS0�, where S0 ∼ 0.08 is the minimal value
of entanglement entropy of the given periodic orbit. Since
all these states have the same energy density and nearly the
same initial value of the entanglement and are translation-
ally invariant, we expect that, after a short time sufficient to
equilibrate local observables, the entanglement dynamics
should be independent of the initial state. Figure 7 shows
that these expectations are not correct, and the entangle-
ment at late times is still strongly influenced by the vicinity
to the periodic orbit. At the same time, all these initial
conditions result in the same saturation value of entangle-
ment for finite subsystems; see Fig. 13.

FIG. 7. Bipartite entanglement dynamics for different
MPS initial states shows a strong dependence of entanglement
growth on the initial state. The inset reveals that the amount of
entanglement at time tf ¼ 5 is correlated with the MPS leakage
averaged over TDVP dynamics, Γtf =t

2
f, where the periodic

trajectory is shown by star. Using initial conditions on the
periodic trajectory results in slow entanglement dynamics (thick
dashed line), but there are initial conditions that give even slower
entanglement growth. The data are obtained with iTEBD with a
maximum truncation error of approximately 10−10.
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Thus, we conclude that these initial conditions not only
have different short-time behavior of the entanglement,
but are also characterized by a different velocity of the
entanglement spreading. In Appendix D 1, we demonstrate
that, for the present choice of parameters, the eigenstates of
this model have properties fully consistent with eigenstate
thermalization hypothesis (ETH); hence, such dynamics
cannot be explained by the existence of anomalous eigen-
states. We note that a similar phenomenon is observed in a
Floquet version of TFIM with a somewhat weaker inte-
grability-breaking field [52].
The correlation between TDVP leakage integrated over a

short time and the entanglement spreading rate—see Fig. 7
(inset)—provides further support for the relevance of
TDVP dynamics for entanglement spreading even at late
times. The statistical analysis gives a correlation coefficient
of 0.53 with a p value of 0.0007, suggesting that corre-
lations are statistically significant. Appendix D 2 reveals
similar phenomenology in the case of a strongly deformed
PXP model, where the different velocity of entanglement
spreading and correlation between leakage and entangle-
ment is even more apparent. The existence of such a
correlation suggests that it may be possible to use the
leakage as an upper bound on the value of entanglement at
long times.
Finally, we note that different rates of entanglement

spreading observed in a thermalizing system arewell known
in the context of integrable models [53–55]. In the latter
case, the dependence of entanglement dynamics on the
initial state stems from the presence of multiple conserved
quantities. In the present case, we are dealing with a
nonintegrable TFIM; however, it is tempting to conjecture
the existence of one (or a few) approximately conserved
quantities related to regular regions of the phase space. Also,
a possible relation between such entanglement spreading
and the existence of slowly growing operators found in the
TFIM [56] remains an intriguing open question.

VI. DISCUSSION

In summary, we examine the relation between exact
quantum dynamics and an effective classical nonlinear
system, obtained by projecting quantum dynamics via
TDVP onto the restricted MPS manifold. This approach
is different from the time-dependent mean field (which can
be viewed as a particular case of χ ¼ 1 MPS) and semi-
classical treatments used in few-body quantum chaos in
that it incorporates short-range entanglement. We demon-
strate the relevance of mixed phase space, identified in the
TDVP dynamics, for the exact dynamics of quantummany-
body systems. We use quantum leakage to distinguish two
qualitatively different situations.

(i) In the small-leakage regime, stable periodic trajec-
tories lead to long-time revivals of the many-
body fidelity and oscillations of local observables.
This result provides a more general mechanism of

weak ergodicity breaking compared to quantum
many-body scars in an arbitrary number of spatial
dimensions.

(ii) In the strong-leakage regime, exact quantum dy-
namics does not follow the TDVP predictions, but
the mixed nature of phase space influences the rate
of entanglement growth.

In the weak-leakage case (i), we establish the TDVP
method as an indispensable tool in searching for new stable
periodic trajectories leading to fidelity revivals. This tool is
demonstrated in Secs. II and III by finding revivals in
one-dimensional PXP model and its higher-dimensional
generalizations. In addition to revivals, the entire regular
region of the phase space is shown to have an influence on
quantum dynamics. Moreover, this regular region is
expected to give rise to special regular eigenstates in
the many-body spectrum (we use the term “regular eigen-
states” to distinguish the atypical eigenstates that originate
from the regular regions in the phase space from “scars”
that come from unstable periodic trajectories). The detailed
investigation of these states is left to future work. Next, in
Sec. IV, we demonstrate that the revivals in the PXP model
are much more robust to deformations of the Hamiltonian
than was previously reported in the literature [11,12].
However, in the course of the deformation, one has to
follow the periodic trajectory that is influenced by the
deformation, which can be inferred from TDVP.
In the case of strong leakage (ii), considered in Sec. V,

the thermalizing TFIM is also shown to have mixed phase
space. Initializing the system in the regular region of the
phase space near the stable periodic trajectory yields a
slower rate of entanglement growth compared to other
states with the same energy density. These results show that
the low bond dimension TDVP, despite its failure to capture
rapid entanglement growth, can be useful in searching
for slowly thermalizing initial conditions in interacting
quantum systems.
It is important to keep in mind that TDVP, in general,

gives a multitude of possible ways to map a quantummany-
body system onto a classical dynamical system; see Fig. 1.
While some TDVP Ansätze may find unstable trajectories,
thus motivating the term quantum scars [13], more generic
embeddings may result in mixed phase space. Hence, it
remains an open question which of the atypical eigenstates
observed in different models [11–13,15,16,22–26,57–59]
correspond to many-body scars and which to regular
eigenstates.
In addition to establishing the methodological utility of

low bond dimension TDVP as a diagnostic of anomalous
thermalization, our results pose questions related to the
consequences of mixed phase space for the spectrum, level
statistics, and other indicators of thermalization in quantum
many-body systems. As we mention in the introduction,
mixed phase space is known to influence the semiclassical
limit of few-body quantum systems [29]. In this case, an

SLOW QUANTUM THERMALIZATION AND MANY-BODY … PHYS. REV. X 10, 011055 (2020)

011055-11



intermediate spectral statistics is known to arise [60,61],
and the system has an increased stability with respect
to noise when it is prepared in the regular region of
phase space [27]. Our work suggests that TDVP can be
used to generalize these results to the case of quantum
many-body chaos. However, we note that this generaliza-
tion may be highly nontrivial, as quantum many-body
eigenstates in the zero momentum sector may see imprints
from mixed phase space in TDVP Ansätze with different
unit-cell choices, as in Fig. 1. These studies are of practical
importance, as they can result in ways of delaying thermal-
ization and increasing the stability of a quantum many-
body system to noise. Thus, it is interesting to explore
different mechanisms that can lead to low-leakage trajec-
tories. Two prospective directions include weakly perturbed
mean-field models (e.g., TFIM with small J ≪ hx; hz)
and models with constrained Hilbert spaces. In addition,
it is interesting to check for the effect of mixed phase space
in other methods used to treat interacting systems, such
as Gutzwiller projected dynamics [62] and MPS-based
dynamical mean-field theory [63].
In a complementary direction, TDVP was recently

proposed as a method to capture thermalization. In par-
ticular, Ref. [36] demonstrates that physical properties
saturate in the case of TFIM when bond dimension
χ > 2. In addition, Ref. [37] studies the spectrum of
Lyapunov exponents in the case of high bond dimension
TDVP. Our work shows that, in the case of low bond
dimension, one may encounter nonchaotic behavior in the
TDVP dynamics, limiting the utility of the Lyapunov
exponent. On the one hand, one may expect that mixed
phase space does not persist for large bond dimensions, as
increasing χ increases the dimension of the phase space
where the TDVP dynamics occurs, making it more sus-
ceptible to chaos. On the other hand, for local
Hamiltonians, the Lieb-Robinson bound [64] suggests that
a small bond dimension is sufficient to capture quantum
dynamics at early times. Thus, it is important to understand
how the mixed phase space evolves upon including addi-
tional MPS parameters that describe longer-range entan-
glement. Specifically, one can embed one of the small-χ
MPS Ansätze considered here into an MPS with a larger
bond dimension and track the behavior of the variational
parameters that correspond to longer-range entanglement.
At the more phenomenological level, recent works

establish numerous examples of anomalous thermaliza-
tion. In particular, these include slow thermalization
emerging from confinement [19,20], the existence of
“slow operators” in thermalizing models [56], dynamical
phase transitions [65], dependence of dynamics on the
initial state in Floquet systems [52], mixed phase space in
quantum maps [66], etc. It would be interesting to
understand if all or some of these phenomena can be
interpreted using the framework developed here and its
straightforward extension to Floquet systems.

Finally, TDVP formulated in the MPS basis could
provide a novel pathway to a quantum-mechanical analog
of the KAM theorem. The robustness of quasilocal inte-
grals of motion in MBL phases [39–41] provides an
established particular case of the quantum KAM [3]. In
a different setting, Ref. [38] demonstrates the existence of
quasiconserved quantities in Bethe-ansatz integrable sys-
tems deformed by an integrability-breaking perturbation.
These works argue for a quantum KAM without making
reference to its classical counterpart. By contrast, our
results suggest that one may use classical KAM as a route
toward its quantum counterpart. Indeed, recent work [49]
conjectures that a weak deformation of the PXP model may
lead to perfect many-body revivals in the thermodynamic
limit. It remains an open question if such a deformation of
the PXP Hamiltonian can allow quantum dynamics to
exactly follow the TDVP trajectory. More broadly, search-
ing for deformations of quantum models that reduce
quantum leakage in the TDVP dynamics or yield integrable
TDVP dynamics may provide a specific route to quantum
KAM that is expressed in terms of the KAM for the
corresponding classical system.
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APPENDIX A: VARIATIONAL ANSÄTZE,
EQUATIONS OF MOTION, AND LEAKAGE

In this Appendix, we provide details on the derivation of
TDVP equations of motion used in the main text. We begin
by setting up the general framework that gives an efficient
way of obtaining the equations of motion. Next, we apply
this framework to derive equations of motion for the
(deformed) PXP model and TFIM which are analyzed in
the main text.

1. General framework

a. Notations

In what follows, we use TDVP formulated for a wave
function that is represented in MPS form. We note that this
formulation also includes dynamical mean-field theory as a
particular case if one restricts to the product-state form for
the variational wave function. While the general theory of
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TDVP in MPS manifolds is obtained in Ref. [33], here we
aim to provide a simpler recipe which can be used to obtain
the analytical form of equations of motion for states with a
small number of variational parameters.
We consider translationally invariant MPS Ansatz for the

wave function, with the size of the unit cell being fixed at
K; see Eq. (3) and Fig. 1. Tensor Aσ

αβðxÞ has one physical
index, σ ¼ ↑;↓ for spin-1=2 d.o.f., and two virtual indices
α; β ¼ 1;…; χ, where χ is the (fixed) bond dimension. This
tensor depends on a set of N real variational parameters,
x ∈ RN . While our Hamiltonian is translationally invariant,
we consider initial states that break translational symmetry.
More specifically, we allow for initial states with a unit cell
of size K. Thus, the complete set of variational parameters
consists of a set fxig with i ¼ 1;…; K, where i labels sites
within the unit cell. In order to simplify the notations, in the
remainder of this Appendix we suppress the dependence of
A on xi, Ai ≡ AðxiÞ.
In order for the state jψi [Eq. (3)] to have a system-size-

independent norm, its unit-cell transfer matrix must be
nondegenerate with the largest eigenvalue λmax ¼ 1. The
unit-cell transfer matrix is obtained from a product of
individual one-site transfer matrices:

ðA1Þ

over the entire unit cell:

TTu:c:
¼ T1 · T2 · � � � · TK: ðA2Þ

In the above notations, all transfer matrices operate in the
χ2-dimensional “double” virtual space labeled by a pair of
indices [e.g., αγ in Eq. (A1)]. In what follows, vectors in the
physical Hilbert space are denoted as j�i and vectors of the
double virtual space by j�Þ. The dominant left and right
eigenvectors of the unit-cell transfer matrix Tu:c: that
correspond to an eigenvalue with maximal norm, λmax ¼
1 are labeled as jLÞ and jRÞ, respectively. The boundary
tensors VL and VR respectively in Eq. (3) do not affect the
calculations in the thermodynamic limit as long as
(ðVLÞ†VLjR) ≠ 0 and (LjVRðVRÞ†) ≠ 0.

b. Action and gauge choice

The TDVP equations are obtained by extremizing the
action (1) [33]. This symmetric choice of the Lagrangian is
invariant under time-dependent unitary transformation
jψ̃i ¼ Ujψi, where U ¼ eiaðtÞ is a pure phase. Such a
phase is fixed by requiring the system to satisfy the “mean”
Schrödinger equation

hψ̃ j _̃ψi ¼ −ihψ̃ jHjψ̃i

⇒
da
dt

¼ −hψ jHjψi þ ihψ j _ψi; ðA3Þ

where the phase aðtÞ is real, since the norm of the wave
function is time independent. In what follows, we show that
this choice of global phase effectively removes all dis-
connected correlations—see Eq. (C2)—from both the
equations of motion and the error [Eqs. (2) and (C1)].
In the case when the MPS is sparsely parametrized and

satisfies the normalization condition, it is often possible to
calculate analytically hψ j _ψi and hψ jHjψi. In such cases,
the calculation of equations of motion is greatly simplified
compared to Ref. [33]. Below, we concentrate on such a
case and derive the general form of equations of motion.

c. Hamilton’s equations of motion

In the case when the MPS manifold is parametrized by
complex parameters, the complex conjugate pairs zi and z̄i
can be interpreted as momenta and coordinates. Since we
use an explicitly real parametrization, we also separate the
NK parameters fxig into NK=2 coordinate variables fθig
and NK=2 phase variables fϕig, where N is the number of
real on-site parameters that are assumed to be even. The
amplitude variables satisfy the condition of vanishing
overlap between the wave function and tangential vector
in any of θ direction:

hψ j∂θκψi ¼ 0; ∀ κ ∈ 1;…;
NK
2

: ðA4Þ

In contrast, the phase variables have a nonvanishing overlap

−ihψ j∂ϕκ
ψi ¼ fκðfθigÞ; ðA5Þ

characterized by the set of real functions fκðfθigÞ that
depend solely on amplitudes. It is convenient to define the
matrix

ηκκ0 ¼ ∂θκ0fκ ¼ 2Imh∂θκ0ψ j∂ϕκ
ψi; ðA6Þ

which can be understood as the imaginary part of the
manifold metric gij ¼ h∂xiψ j∂xjψi.
Extremizing the action [Eq. (A3)] over phase variables

fϕiðtÞg gives equations of motion for fθg:X
κ0
ηκκ0 _θκ0 ¼ ∂ϕκ

hψ jHjψi; ðA7Þ

while extremizing the action over amplitude variables
yields equations of motion for fϕg:

X
κ0
ηTκκ0

_ϕκ0 ¼ −∂θκhψ jHjψi: ðA8Þ

Equations (A7) and (A8) are Hamilton’s equations in a
manifold with the Poisson bracket:
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fg; ρg ¼ ∂θgη̂−1∂ϕρ − ∂ϕρη̂
−1∂θg; ðA9Þ

thus making apparent their symplectic structure.
The equations of motion (EOMs) obtained above are

determined by the expectation value of the Hamiltonian and
the set of functions fκðfθigÞ. Below, we discuss the
calculation of these ingredients in the specific case of
PXP and TFIM.

2. TDVP for the PXP model

The MPS Ansatz used for the PXP model [Eq. (5)] has a
left-canonical form, since the matrix A satisfies the con-
dition

P
σ A

σ†
i Aσ

i ¼ 1 for any values of ðθi;ϕiÞ. In such a
case, all single-site transfer matrices Ti have largest
eigenvalue λmax ¼ 1, with dominant left eigenvector
ðLij ¼ ð1; 0; 0; 1Þ. On the other hand, the right dominant
eigenvector depends on the size of the unit cell. It should be
noted that the left-canonical form of the MPS Ansatz is not
crucial for the calculation, but it greatly simplifies the
analytical expressions.

a. EOMs for PXP with K = 2 Ansatz

For the two-site MPS Ansatz, we get the following
transfer matrix:

T ¼

0
BBBBB@

cos2 θ1 cos2 θ2 þ sin2 θ2 0 0 cos2 θ1
cos θ1 cos2 θ2 sin θ1 0 0 cos θ1 sin θ1
cos θ1 cos2 θ2 sin θ1 0 0 cos θ1 sin θ1

cos2 θ2 sin2 θ1 0 0 sin2 θ1

1
CCCCCA
;

ðA10Þ

and the corresponding right dominant eigenvector:

jRÞ ¼ cos2 θ2 tan θ1ðcos−2 θ2 tan−1 θ1; 1; 1; tan θ1Þ: ðA11Þ

Using the expression for the left dominant eigenvector, we
calculate their overlap:

ðLjRÞ ¼ 1þ ðcos θ2 tan θ1Þ2 ðA12Þ

that enters as a normalization factor in all expressions.
The functions f1;2ðfθgÞ are calculated as follows. We

explicitly use translational invariance of the MPS state to
obtain

ðA13Þ

where the tensor ∂ϕ1
A1 ≡ ∂ϕ1

Aσðθ1;ϕ1Þ can be obtained
from Eq. (5). Replacing the environments by the dominant
left and right vectors, we get the following expression:

f1 ¼ −i
L
2

ðLjT∂ϕ1
1 T2jRÞ
ðLjRÞ ; ðA14Þ

where we define the matrix T∂ϕ1 as

ðA15Þ

Using the explicit form of the matrix T∂ϕ1 , we obtain the
following expression for f1:

f1 ¼ −
L
2

sin2 θ2
1þ ðcos θ2 tan θ1Þ2

: ðA16Þ

Repeating the calculation for f2 gives us

f2 ¼ −
L
2

cos2 θ2
cos2 θ2 þ cot2 θ1

: ðA17Þ

The expectation value of the PXP Hamiltonian has two
different contributions, depending on which sites the
Hamiltonian acts. First, we calculate the contraction of
the local Hamiltonian term with the immediate environ-
ment. This calculation results in matrices operating in the
double virtual space:

ðA18Þ

The matrix H2;1;2
PXP where the operator σx acts on the A2 site

can be obtained from Eq. (A18) by replacing θ1 ↔ θ2 and
ϕ1 ↔ ϕ2. The case of the chemical potential can be treated
in a similar way, but the resulting matrices H1;2

μz are
independent of variational parameters:
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ðA19Þ

Now, by contracting these expressions with the left and
right dominant vectors and taking into account the nor-
malization, we obtain the expectation value of the respec-
tive terms in the Hamiltonian:

hψ jHPXPjψi¼
L
2

ðLmaxjH1;2;1
PXP T2þT1H

2;1;2
PXP jRmaxÞ

ðLmaxjRmaxÞ

¼L
2

�
2cos3θ2 sinϕ2 tanθ1
1þcos2θ2tan2θ1

þ1↔2

�
; ðA20Þ

hψ jHμz jψi ¼
L
2

ðLmaxjH1
μT2 þ T1H2

μjRmaxÞ
ðLmaxjRmaxÞ

¼ L
2
μz

�
sin2θ2

1þ cos2θ2tan2θ1
þ 1 ↔ 2

�
: ðA21Þ

Summing these expressions, we obtain Eq. (10) in the main
text. For C ¼ 2, the resulting equations of motion are
obtained by substituting the specific form of the functions
f1;2 and the Hamiltonian density into Eqs. (A7) and (A8).
We note that the system size L enters both the functions fi
and the expectation value of the Hamiltonian. Hence, it gets
canceled in the equations of motion. The equations are the
same as Eq. (9) for C ¼ 2.

b. Flow-invariant subspace

As we note in the main text, Eqs. (9) possess an
additional symmetry when μz ¼ 0. Namely, hψ jHPXPjψi
in Eq. (A20) vanishes for any values of θ1;2 when ϕ1;2 ¼ 0.
This vanishing leads to the emergence of a flow-invariant
subspace: If we start the dynamics from any point with
ϕ1;2 ¼ 0, the phase variables remain zero throughout the
flow. In other words, the hyperplane ϕ1;2 ¼ 0 is preserved
under the flow generated by equations of motion (9) with
μz ¼ 0, since the time derivative _ϕ1;2 ¼ 0 when ϕ1;2 ¼ 0,
for any values of θ1;2.
The emergence of the flow-invariant subspaceϕ1;2 ¼ 0 is

not restricted to the K ¼ 2 unit cell. In facts, it is a generic
feature of theMPSAnsatz (5)with anyunit cell, provided the
Hamiltonian is invariant under particle-hole and time-
reversal symmetries (by time-reversal symmetry, we mean
the invariance of H under complex conjugation or, equiv-
alently, the absence of any terms with an odd number of σy

matrices in the Hamiltonian). Indeed, particle-hole sym-
metry requires that the operator C ¼ Q

σzi anticommutes
withH, or in other words CHC ¼ −H. In addition, if we use
the fact that theHamiltonian does not change under complex
conjugation, we may write hψ jHjψi ¼ −hψ jCHCjψi� ¼
−ðhψ jCÞ�HðCjψiÞ�. Now we notice that ðCjψiÞ� is

equivalent to the MPS state jψi with ϕi → −ϕi. Hence,
when ϕi ¼ 0 we obtain hψ jHjψi ¼ −hψ jHjψi ¼ 0 for any
values of θi. This result is sufficient to give a flow-invariant
subspace _ϕi ¼ 0 when ϕi ¼ 0 according to Eq. (A8).
The above conditions of particle-hole symmetry and

time reversal are met not only by the pure Hamiltonian of
the PXP model, HPXP, but also by any Hamiltonian which
contains an odd number of σx matrices. This result
motivates the choice of the deformation Hμ3 considered
below and also in the main text for the K ¼ 3 unit cell. In
passing, we note that all terms in the quasilocal deformation
conjectured by Ref. [49] to give perfect quantum scars
satisfy both of these symmetries, thus leaving the flow-
invariant subspace intact.
Finally, we note that, despite the angles ϕi being

redundant when one restricts to the flow-invariant sub-
space, as we do in the next section, their presence is crucial
for deriving the equations of motion (afterward, they can be
set to zero). Indeed, if one sets the phases ϕi to zero before
taking the derivatives in Eq. (A7), one cannot obtain the
equations of motion for amplitude variables. One possible
route to the equations of motion, if one wants to set the
phase variables to zero from the very start, would be to
directly minimize the quantum leakage [see Eq. (C1)
below] with respect to θ1;2.

c. EOMs for PXP with K = 3 Ansatz

In this section, we derive the equations of motion for the
three-site MPS Ansatz with three variational parameters
ðθ1; θ2; θ3Þ. As we discuss above, such a derivation is more
conveniently done with the help of conjugate variables
ðϕ1;ϕ2;ϕ3Þ. Hence, in what follows, we keep the phase
variables and set them to zero at the end of the calculation.
All calculations are done analogously to the previous

case of the K ¼ 2 site unit cell. Hence, we omit the details
of the calculations, listing the resulting expressions. The
right dominant vector is calculated to be

jRÞ ¼ rð1=r;− cos θ1 sin θ1;− cos θ1 sin θ1;−sin2θ1Þ;

where r ¼ cos2θ2cos2θ3 þ sin2θ3
cos2θ2sin2θ1 − 1

:

Using the form of the right dominant vector, we calculate
the normalization factor

ðLmaxjRmaxÞ ¼ 1 −
cos2 θ2 cos2 θ3 þ sin2 θ3
cos2 θ2 − 1= sin2 θ1

: ðA22Þ

The functions fi read

f1 ¼ −
L
3

sin2 θ2ðcos2 θ3 þ sin2 θ1 sin2 θ3Þ
1þ sin2 θ1 sin2 θ2 sin2 θ3

; ðA23Þ
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f2 ¼
L
3

sin2 θ3ðsin2 θ1 cos2 θ2 − 1Þ
sin2 θ1 sin2 θ2 sin2 θ3 þ 1

; ðA24Þ

f3 ¼ −
L
12

3 − 2 sin2 θ2 cosð2θ3Þ þ cosð2θ2Þ
sin2 θ2 sin2 θ3 þ sin−2 θ1

: ðA25Þ

The local terms from the PXP Hamiltonian and defor-
mation Hμ3 [Eq. (13)], contracted with the environment,
result in the following matrices:

Hi;iþ1;iþ2
PXP ¼NPXP

0
BBB@

cos2θi sinð2θiþ2Þ 0 0 0

2sinθicosθi sinθiþ2cosθiþ2 0 0 0

2sinθicosθi sinθiþ2cosθiþ2 0 0 0

sin2θi sinð2θiþ2Þ 0 0 0

1
CCCA;

Hi;…;iþ5
μ3 ¼Nμ3

0
BBB@

cos2θi 0 0 0

sinθicosθi 0 0 0

sinθicosθi 0 0 0

sin2θi 0 0 0

1
CCCA; ðA26Þ

where the indices i are understood to be mod 3 and we use
the following shorthand notations:

NPXP ¼ −ðcos θiþ1 sinϕiþ1Þ−1;
Nμ3 ¼ −2μ3=ðsin θi sin θiþ1 sin θiþ2 sinΩcos2θiþ1Þ;
Ω ¼ ϕi þ ϕiþ1 − ϕiþ2: ðA27Þ

Substituting these matrices in an expression analogous to
Eq. (A20), one can obtain the expectation value of the
Hamiltonian. It has a cumbersome form and we do not need
it here, since it vanishes when ϕi ¼ 0. Plugging
hψ jHPXP þHμ3 jψi and expressions for fi into Eq. (A7),
we obtain the equations of motion for variables θi. Since we
are interested in the flow-invariant subspace, we set ϕi ¼ 0,
resulting in the following equations of motion:

M1
_θ1 ¼ sin θ2fμ3 cos θ1 sin θ3½6sin2θ1 cosð2θ2Þ þ 3 cosð2θ1Þ − 19� þ 4 sin θ2½μ3sin2θ1 cos θ1 sin θ2 sinð3θ3Þ þ cosð3θ3Þ�g

þ 2 sin θ1 sinð2θ2Þ½−2cos2θ1 cosð2θ3Þ þ cosð2θ1Þ − 3� − 2½3 cosð2θ2Þ þ 5� cos θ3; ðA28aÞ

M2
_θ2 ¼ 16μ3sin3θ1 cosð3θ2Þsin3θ3 þ μ3 cos θ2½4sin3θ1 sinð3θ3Þ − 73 sin θ1 sin θ3 þ 3 sinð3θ1Þ sin θ3�

− 4 sinð2θ3Þf½cosð2θ1Þ þ 7� sin θ2 − 2sin2θ1 sinð3θ2Þg − 8 cos θ1½4cos2θ1 cosð2θ3Þ þ 5� þ 8 cosð3θ1Þ; ðA28bÞ

M3
_θ3 ¼ μ3 sin θ1 sin θ2 cos θ3½2sin2θ1 cosð2θ2Þ þ cosð2θ1Þ − 17� − 2sin2θ2½2μ3sin3θ1 sin θ2 cosð3θ3Þ

þ sinð2θ1Þ sinð3θ3Þ� þ sinð2θ1Þ½cosð2θ2Þ þ 7� sin θ3 þ 8 cosð2θ1Þcos3θ2 þ 10 cos θ2 − 2 cosð3θ2Þ; ðA28cÞ

where the factors that multiply the derivatives read

M1 ¼ −4½3þ cosð2θ2Þ − 2 cosð2θ3Þsin2θ3�;
M2 ¼ −64ðcos2θ3 þ sin2θ1sin2θ3Þ;
M3 ¼ 16ð1 − cos2θ2sin2θ1Þ: ðA29Þ

3. TDVP for TFIM

We begin by motivating the form of the TDVP
Ansatz used in the Ising model [Eq. (16)]. Its form can
be obtained by considering the approximate trotterized
unitary evolution

e−iHTFIMδt ≈
Y
i

e−iðJσ
z
i σ

z
iþ1

þhzσ
z
i Þδt

Y
i

e−ihxσ
x
i δt; ðA30Þ

where the approximation works for small values of δt. The
operator on the right-hand side can be written as a

translationally invariant matrix product operator (MPO)
[67] with bond dimension χ ¼ 2. This MPO has two
physical indices, σ1, σ2 ¼ ↑;↓, and can be written as

M↑↑ ¼
�
cos θ̃e−iðχ̃=2þϕ̃Þ cos θ̃e−ið−χ̃=2þϕ̃Þ

0 0

�
;

M↑↓ ¼
�
−i sin θ̃e−iðχ̃=2þϕ̃Þ −i sin θ̃e−ið−χ̃=2þϕ̃Þ

0 0

�
;

M↓↑ ¼
�

0 0

−i sin θ̃eiðχ̃=2þϕ̃Þ −i sin θ̃eið−χ̃=2þϕ̃Þ

�
;

M↓↓ ¼
�

0 0

cos θ̃eiðχ̃=2þϕ̃Þ cos θ̃eið−χ̃=2þϕ̃Þ

�
: ðA31Þ

Values of the angles are found to be ðθ̃; ϕ̃; χ̃Þ ¼
ðhxδt; hzδt; 2JδtÞ.

A. A. MICHAILIDIS et al. PHYS. REV. X 10, 011055 (2020)

011055-16



We can obtain an MPS from this MPO by applying it to a
reference state. For convenience, we choose the reference
state to be the j↑↑…i state. This choice results in the MPS
with χ ¼ 2 that is specified by matrices:

A↑ ¼ M↑↑; A↓ ¼ M↓↑: ðA32Þ

Now we allow the angles to be independent parameters,
obtaining an MPS Ansatz with three variational parameters.
Two of these parameters are phase variables ðϕ̃; χ̃Þ, and one
is an amplitude variable θ̃. Hence, it is natural to extend this
Ansatz by adding yet another amplitude variable ξ that is
conjugate to χ̃. This extension can be done by replacing
e−iχ̃=2 → cos ξ̃e−iχ̃=2 and eiχ̃=2 → sin ξ̃eiχ̃=2. After such an
extension, supplemented by a multiplication with the phase
eiϕ̃ and a shift in parameters

χ ¼ −χ̃; ϕ ¼ 2ϕ̃ −
π

2
; ðA33Þ

Eq. (A32) turns into the MPS Ansatz (16) used in the
main text.
The MPS Ansatz (16) is obtained as the twist of a product

state by a χ ¼ 2 MPO operator that approximates the
unitary evolution with the Hamiltonian of transverse-field
Ising model. Thus, this state can be understood as the
generalization of the product-state mean-field Ansatz that
incorporates short-range entanglement generated by unitary
evolution with HTFIM. Indeed, one can explicitly check that
by restricting the angles to values ðχ; ξÞ ¼ ð0; π=4Þ we
obtain a generic translationally invariant product state
parametrized by (θ;ϕ).
After justifying the form of the Ansatz, we discuss its

equations of motion. The unit cell consists of the K ¼ 1
site; thus, the transfer matrix can be obtained straightfor-
wardly. Its largest eigenvalue reads

λmax ¼
1

8
ð2þ 2 cos 2ξþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 2 cos 4ξþ 8 cos 2ξ cos 4θ

p
Þ:

ðA34Þ

This eigenvalue is doubly degenerate when the expression
under the square root vanishes. In what follows, we ignore
the degenerate surface and assume that the density matrix is
nondegenerate. Crucially, the largest eigenvalue is gener-
ally different from one, λmax ≠ 1. Hence, this Ansatz does
not result in the normalized wave function, and we have to
modify the derivation of our equations of motion.
Even though TDVP can be reformulated to apply to non-

normalized states [44], we prefer to normalize each tensor
in the numerical implementations Ã → A=

ffiffiffiffiffiffiffiffiffi
λmax

p
, so that

λ̃max ¼ 1. The rest of the calculation is similar to the
previous section. The main difference is that, due to the
increased complexity of the tensors and the presence of
normalization in tensors, analytical calculations are more

complicated even if the method is exactly the same as in the
PXP model. The simplest way to avoid the complexity is to
evaluate all expressions including the derivatives numeri-
cally; however, this evaluation may result in instabilities in
the integration of the EOMs. In our implementation, we
evaluate all derivatives analytically but substitute numeric
values for the variables for which no more derivatives are to
be taken. We find that using such approach is computa-
tionally efficient while providing numerically stable time
integration. Resulting dynamical system can be found
in Ref. [68].

APPENDIX B: TDVP FOR TREE TENSOR
STATES

In this section, we introduce the TTS Ansatz for trees of
arbitrary connectivity. Afterward, we discuss how to reduce
the calculation of local correlation functions of a TTS
to a calculation for an effective one-dimensional tensor
network. This reduction allows one to use the method
described in Appendix A 2 for calculating equations of
motion. In Fig. 8, we give a graphical illustration of the
algebraic calculations presented in this section. Finally, we
discuss the relation between the TTS Ansatz and the
projected entangled pair states (PEPS) Ansatz [69].

1. Tensor tree state Ansatz

The basic building block of the TTS Ansatz is the tensor
Aσz
i1;…;iC

with C virtual indices i1;…;C and one physical index

σz; see Fig. 8(a). Out of C ¼ 3 virtual indices shown in
Fig. 8(a), one is designated as an “output leg” with an
outgoing arrow; the other indices are input legs. In order to
obtain the normalized wave function that obeys the
Rydberg blockade constraint, one may choose the follow-
ing form of tensors:

A↓
i1;…;iC−1;0

¼ cosIθsinC−1−Iθ;

A↑
0;…;0;1 ¼ ie−iϕ; ðB1Þ

with all other elements of A being zero. These expres-
sions generalize Eq. (8) for arbitrary connectivity C. Such
parametrization produces an “output” 1-bit, iC ¼ 1, when
the corresponding site is excited and 0-bit, iC ¼ 0, when
the given site is in the ground state, σz ¼ ↓. In turn, the
quantity I ¼ P

C−1
j¼1 ij in Eq. (B1) counts the number of

“excitations” onC − 1 adjacent sites. Only in the case when
all of these C − 1 adjacent sites do not have an excitation,
i1 ¼ � � � ¼ iC−1 ¼ 0, can the given site be in the excited
state, thus implementing the constraint of no adjacent ↑
states.
We select out one of the virtual indices by designating it

as output. However, the particular choice of this leg is not
important, and the TTS Ansatz of Eq. (B1) is invariant
under permutations of all remaining input legs:
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Ai1;…;iC−1;iC ¼ APði1;…;iC−1Þ;iC ; ðB2Þ

where P ∈ SC−1 and SC−1 denotes the symmetric group of
C − 1 symbols. This property allows us to swap input legs
at will, and it also holds for TTS with two alternating
tensors that we use to imitate states with K ¼ 2 sites unit
cell on a lattice.
As we discussed, the TTS Ansatz with tensors in

Eq. (B1) respects the Rydberg blockade constraints. This
constraint imposes restrictions on the nonzero elements of
the tensor A. The particular form of these elements in
Eq. (B1) is dictated by the normalization condition. For the
bipartite tree, one can check that this Ansatz generates a
wave function

jψi¼N
X

cL=2−n1↓1
cn1↑1

cL=2−n2↓2
cn2↑2

jfn1;↑1gfn2;↑2gi; ðB3Þ

where the sum runs over all product states that obey the
constraint and N ensures the normalization in the thermo-
dynamic limit and is calculated in Eq. (B9). Numbers n1;2
count the number of ↑ states in the corresponding sub-
lattice, which are assigned the following weights:

c↓1
¼ cos θ1; c↑1

¼ ie−iϕ1 tan θ2; ðB4aÞ

c↓2
¼ cos θ2; c↑2

¼ ie−iϕ2 tan θ1: ðB4bÞ

Note that the weights are the same for all connectivities.
This property is reminiscent of the mean-field product
state Ansatz where the weights would be c↓i

¼ cos θi
and c↑i

¼ −ie−iϕi sin θi. However, in the presence of a

constraint, these mean-field weights lead to a wave function
with the norm vanishing as kjψik ∝ e−aL in the thermo-
dynamic limit.
In addition to being normalized, one can check that the

tensorA obeys a generalized canonical gauge [see Fig. 8(b)]:

X
i1;…;iC−1;σz

Aσz
i1;…;iC−1;iC

ðAσz
i1;…;iC−1;i0C

Þ� ¼ δiC;i0C ; ðB5Þ

for arbitrary values of θ;ϕ. This condition is enough to allow
for normalization in the thermodynamic limit. Moreover, it
greatly simplifies the calculation of expectation values, as
we discuss below.

2. Mapping the tensor tree to a one-dimensional lattice

As explained in Appendix A 1 c, the main ingredient of
TDVP are one-point correlation functions of the form
hψ j∂xk jψi (or similar expressions inwhich the local operator
is the Hamiltonian density), where k denotes the site of the
lattice. For clarity, we work with a one-site unit cell K ¼ 1;
however, the results also hold for K ¼ 2. We define the
generalized transfer matrix [see Fig. 8(c)] as

T ði1i01Þ;ðiCi0CÞ ¼
X

i2;…;iC−1;n

An
i1;…;iC−1;iC

ðAn
i0
1
;i2;…;iC−1;i0C

Þ�; ðB6Þ

where the indices inside parentheses are vectorized. For
C ¼ 2, T is the same as the single-site transfermatrix defined
in Eq. (A2). We note that tracing any set of C − 2 input
indices is equivalent due to the permutation symmetry of the
input legs [Eq. (B2)]. Because of the canonical gauge of
Eq. (B5), the left eigenvector of the transfer matrix is just the

(a) (b)

(e) (f)

(c) (d)

FIG. 8. Illustration of the calculation of the one-point correlation function for C ¼ 3. The gray colored bonds denote a vectorization of
the bonds pointing toward the same direction when the contractions are performed. Graphical definitions of (a) the local tensor A; (b) the
gauge symmetry [Eq. (B5)], where a hatched circle is introduced as a shorthand notation for a Kronecker delta in virtual index space;
(c) the local transfer matrix [Eq. (B6)]; (d) the contraction of the local operator Ok by the local tensor; and (e) the right dominant
eigenvalue of the transfer matrix. (f) illustrates the calculation of Eq. (B8) in three steps. In the first step, we show a part of the tree which
includes the site k, where the local operator acts. The gray colored vertices imply contracted tensors in those sites. In the second step, the
gauge symmetry (b) is used, and the whole tree is reduced to a semi-infinite one-dimensional tensor network (the green line is a guide to
the eye). In the final step, the infinite product of local transfer matrices is replaced by the right dominant eigenvector of the matrix; see
Eq. (B8).
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identity ðLja;b ¼ δa;b.We also define the generalized transfer
matrix that includes the local operator [see Fig. 8(d)]:

TðOkÞ ¼
X
n0;n

On0;nAn
i1;…;iC−1;iC

ðAn0
i0
1
;i0
2
;…;i0C−1;i

0
C
Þ�: ðB7Þ

Using the canonical gauge [Fig. 8(b)] and property of the
right eigenvector [Fig. 8(e)], we write the one-point corre-
lation functions in Fig. 8(f) as

hψ jOkjψi ¼ lim
q→∞

ðL1L2…LC−1jTðOiÞTq
CjRÞ

¼ ðL1L2…LC−1jTðOiÞjRÞ; ðB8Þ

where ðLlLmj≡ ðLlj ⊗ ðLmj. The subscript indicateswhich
input bonds are traced by the corresponding vector, while the
transfer matrix TC is applied to the output bonds (iC, i0C); see
Fig. 8(d). Equation (B8) has the remarkable feature of being
able to trace the whole (infinite) lattice by the repeated
application of a transfer matrix of system-size-independent
dimensions. Such a feature is reminiscent of the one-point
function calculation using MPS [see Eq. (A13)] and reflects
the loop-free structure of TTS. The calculation of one-point
functions of local operatorswhich are supported inmore than
a single site is a straightforward generalization of Eq. (B8).
The normalization factor N of Eq. (B3) is derived by

calculating hψ jψi, which is a trivial modification of
Eq. (B8) and corresponds to

N ¼ ðLjRÞ−1=2 ¼ ð1þ cos2 θ1 tan2 θ2Þ−1=2: ðB9Þ

3. Comparing variational wave function
on a lattice and TTS

In the previous section, we explain the main steps in the
analytical calculation of the TDVP equations of motion on
a TTS. However, our goal is to approximate the dynamics
on higher-dimensional lattices of the same connectivity but
different topology, e.g., square lattice. The true variational
wave function for the square lattice is also the form of
Eq. (B3) but with a different normalization factor. Such a
wave function is a tensor network which has the same
geometry as the underlying lattice, so for the lattices of
interest it belongs to the PEPS family [69].
The calculation of one-point correlation functions

hψ jOkjψi in PEPS is known to be a sharp P-hard problem
for generic PEPS states [70] and is associated with the
presence of loops in the lattice. To circumvent this problem,
numerical algorithms typically employ some form of
truncation in the calculation of correlation functions.
However, the analytical calculation of the equations of
motion is practically impossible for an infinite PEPS. In the
main text, we mention the comparison of the dynamics on
the true variational wave function for the lattice (PEPS) and
the TTS. We perform the comparison by parametrizing the
PEPS Ansatz as Eq. (B3). We use a finite system with

periodic boundaries (4 × 4 lattice), in order to be able to
calculate the correlation functions analytically. The TDVP
equations of motion are calculated for the unnormalized
state (not including the factor N), to avoid dealing with the
complicated normalization factor.

APPENDIX C: CLASSIFYING TRAJECTORIES
BY QUANTUM LEAKAGE

In this Appendix, we provide additional details on how
to calculate the rate at which the quantum system is leaving
the MPS variational manifold—which we call quantum
leakage. We start with the general framework and provide a
detailed justification of the fidelity bound. Afterward, we
apply quantum leakage to characterize the different peri-
odic trajectories observed in the deformed PXP model.

1. General framework: Quantum leakage

If one initializes the quantum state in the form of Eq. (3),
at t ¼ 0 the values of all local observables and their time
derivative are captured by TDVP equations of motion. At
later times, the TDVP evolution begins to disagree with the
exact unitary dynamics; see Fig. 9. Intuitively, this dis-
agreement is visualized by “leakage” of the exact quantum
wave function from the variational manifold. The instanta-
neous leakage rate is given by the disagreement between
quantum evolution and TDVP dynamics:

Λ2ðfxigÞ ¼ kj _ψi þ iHjψik2 ¼ hψ jH2jψi
− 2

X
i

_xaImðh∂xaψ jHjψiÞ

þ
X
a;b

_xaReðh∂xaψ j∂xbψiÞ _xb: ðC1Þ

We note that this quantity goes beyond TDVP equations of
motion, as it contains the square of the Hamiltonian
operator H2, which depends on quantum commutation
rules and operator algebra. While wewere able to obtain the
equations of motion [Eq. (2)] without the explicit calcu-
lation of two-body correlators, it is not possible in the

FIG. 9. We derive the general bound on the norm of the vector
jφðtÞi that represents the mismatch between the exact wave
function and its TDVP “image” after the TDVP evolution returns
to its initial state. We note that the projection of the exact
evolution onto the TDVP manifold does not coincide with the
TDVP trajectory at finite times.
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present case. Nevertheless, the use of the gauge of Eq. (A3)
allows one to cancel all disconnected correlators. This
cancellation can be accounted by replacing h�i → h�ic in
Eq. (C1), where the connected correlators are defined as

h∂xiψ j∂xj
ψic ¼ h∂xiψ j∂xjψi − h∂xiψ jψihψ j∂xjψi; ðC2Þ

h∂xiψ jHjψic ¼h∂xiψ jHjψi − h∂xiψ jψihψ jHjψi; ðC3Þ

hψ jH2jψic ¼hψ jH2jψi − hψ jHjψi2: ðC4Þ

Upon substitution of the connected correlators, the error
scales as Λ2 ∝ L. As we show in the next section, the
disconnected component that is proportional to L2

vanishes. In the thermodynamic limit, the quantity of
interest is the error density γ2 ¼ Λ2=L, as shown below.
In contrast to EOMs, the error calculation is more

complicated, because it involves two-point correlators.
We briefly describe the method presented in Ref. [33]
on how to resum two-point correlators in the thermody-
namic limit and present an analytical recipe used to
calculate the leakage in this work. We note that a similar
calculation is performed in Ref. [13] for the flow-invariant
subspace (ϕi ¼ 0, hHi ¼ 0) of the PXP model.
We are interested in calculating the correlators defined in

Eq. (C2). We show how to perform the resummation of
two-point correlators of a uniform MPS, initially displayed
in Ref. [33]. Extensions to larger unit cells follow straight-
forwardly by using the transfer matrix of the corresponding
unit cell. For two parameters a and b, we get

ðC5Þ

where n and m are lattice site labels and in the second line
we replace the summation over n and m by a sum over n
and q ¼ jn −m − 1j. From such expressions, it is evident
that one has to resum geometric series of the formP

q½Tu:c:�q, which is possible if the operator has spectral
radius ρðTTu:c:

Þ < 1. Since the transfer matrix has a single
largest unit eigenvalue, the dominant subspace has to be
projected out and resummed separately:

X
q¼0

½Tu:c:�q ¼
X
q¼0

ðQTTu:c:
Qþ PÞq

¼
X
q¼0

P þQ
�
1þ

X
q¼1

½QTu:c:Q�q
�
Q

¼ T −1 þ
X
q¼0

P; ðC6Þ

where we define the projector onto the dominant subspace
P ¼ jRÞðLj=ðLjRÞ, its complement Q ¼ 1 − P, and intro-
duce the matrix T as

T −1 ¼ Qð1 −QTu:c:QÞ−1Q: ðC7Þ

Note that the same resummation formula holds for any size
of the unit cell. Substituting Eq. (C6) into Eq. (C5), we get

h∂bψ j∂aψi¼LðL−1ÞðLjT∂bAPT∂aAjRÞ
ðLjRÞ

þL
ðLjT∂aA∂bAþT∂bAT −1T∂aAþT∂aAT −1T∂bAjRÞ

ðLjRÞ :

ðC8Þ

The first line contains the resummation of disconnected
correlator, and these terms are canceled by the proper gauge
choice. The terms in the second line correspond to cases
when both derivatives are taken in the same unit cell and
long-range resummations of correlations for cases when
n > m and m < n.
The expressions for hψ jH2jψi and h∂bψ jHjψi are also

calculated using Eq. (C6). For the Hamiltonian which can
be written as a sum of local operators H ¼ P

i hi, with hi
having support on an finite number of sites, chosen to be
two for simplicity, we find

h∂bψ jHjψi¼LðL−2ÞðLjHPT∂bAjRÞ
ðLjRÞ

þL
ðLjH∂kbAþHT −1T∂bAþT∂bAT −1HjRÞ

ðLjRÞ ;

ðC9Þ

hψ jH2jψi ¼ LðL − 5Þ ðLjHPHjRÞ
ðLjRÞ

þ L
ðLjHð2Þ þ 2HT −1HjRÞ

ðLjRÞ ; ðC10Þ

whereH is the contraction of the local Hamiltonian density
with the environment, and the matrices H∂bA and Hð2Þ are
defined as
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ðC11Þ

ðC12Þ

These definitions are valid under the assumption that the
Hamiltonian has only two-site terms, but generalization to
longer-range terms in the Hamiltonian is straightforward.
The disconnected correlators in Eqs. (C2)–(C4) are

calculated as

h∂bψ jψihψ j∂aψi ¼
L2

ðLjRÞ ðLjT∂bAPT∂aAjRÞ; ðC13Þ

hψ jHjψih∂bψ jψi ¼
L2

ðLjRÞ ðLjHPT∂bAjRÞ; ðC14Þ

hψ jHjψi2 ¼ L2

ðLjRÞ ðLjHPHjRÞ: ðC15Þ

Collecting together these expressions with Eqs. (C8)–
(C10), we observe that terms in the connected correlators
that scale as L2 vanish. Thus, the instantaneous error scales
linearly with the system size, Λ2 ∝ L.

2. Fidelity bound

At long times, a generic quantum many-body system is
eventually expected to develop entanglement that cannot be
captured by the MPS Ansatz in Eq. (3). At this point, the
TDVP dynamics jψ ½fxaðtÞg�i and exact unitary evolution
e−iHtjψ ½fxað0Þg�i are expected to strongly disagree.
However, as we demonstrate in the main text, the TDVP
equations of motion are generically expected to have short
periodic trajectories; see the blue line in Fig. 9. If the
quantum system were following the TDVP dynamics
exactly, that would imply persistent oscillations in local
observables and revivals of the many-body quantum
fidelity to unity. Because of nonzero leakage, the quantum
and TDVP evolution would disagree after a single period.
In what follows, we obtain a lower bound on the many-
body fidelity [Eq. (6)] after the time T, i.e., the period of the
trajectory.
To obtain the bound, we represent the exact wave

function jΨi that follows the exact evolution according
to the Schrödinger equation i∂tjΨðtÞi ¼ HjΨðtÞi as a sum
of two terms:

jΨðtÞi ¼ jψ ½fxaðtÞg�i þ jφðtÞi; ðC16Þ

where jψ ½fxaðtÞg�i belongs to the variational manifold and
is obtained from the TDVP equations of motion, while
jφðtÞi is the error vector defined as the difference between
these two wave functions; see Fig. 9.
Expressing the error vector via jΨðtÞi and the TDVP

wave function, we obtain the following equation of motion:

∂tjφðtÞi¼−iHjΨðtÞi− j _ψ ½fxaðtÞg�i
¼−iHfjψ ½fxaðtÞg�iþjφðtÞig− _xbðtÞj∂bψ ½fxaðtÞg�i
¼−iHjφðtÞi− ½j _ψ ½fxaðtÞg�iþiHjψ ½fxaðtÞg�i�;

ðC17Þ

where we explicitly use the Schrödinger equation for
jΨðtÞi. The first term in the last line transports the error
forward in time and does not change the norm of jφðtÞi.
The second term describes the change of the error due to
mismatch between exact evolution jΨðtÞi and its TDVP
projection jψ ½fxaðtÞg�i, and its norm coincides with the
quantum leakage defined in Eq. (C1). Calculating the
change in the norm of vector jφi from Eq. (C17), we obtain

∂thφjφi ¼ −hφjð∂t þ iHÞjψ ½fxaðtÞg�i þ H:c:; ðC18Þ

where we omit time dependence of φ to simplify notations.
Using the triangle and Cauchy-Schwartz inequalities, we
bound the growth of the norm of the error vector as

j∂thφjφij ≤ 2jhφjð∂t þ iHÞjψ ½fxaðtÞg�ij
≤ 2kφkkð∂t þ iHÞjψ ½fxaðtÞg�ik; ðC19Þ

where kφk ¼ ffiffiffiffiffiffiffiffiffiffiffihφjφip
is the norm of the error vector. Using

this notation, we obtain an upper bound on the rate of
increase of the norm of jφi:

j∂tkφkj ≤ ΛðtÞ ¼ kð∂t þ iHÞjψ ½fxaðtÞg�ik; ðC20Þ

where the quantity ΛðtÞ is the instantaneous geometric
error that was already defined in Eq. (C1). Now, the triangle
inequality can be used to bound the norm of the error
vector accumulated during evolution over the finite period
of time t:

kφðtÞk ≤
Z

t

0

dτΛðτÞ ¼ It ðC21Þ

by the integrated geometric error It.
The Fubini-Study metric or quantum angle can be

defined as

γða; bÞ ¼ arccos
jhajbij
kakkbk : ðC22Þ
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It is a natural metric on projective space, where pure states
are represented by lines through the origin of Hilbert space,
reflecting the fact that global phases are not physically
meaningful. It is a quotient of the standard Euclidean metric
restricted to the unit sphere. The distance γ can be
visualized as an angle between the two lines.
The three vectors jΨðtÞi, jψ ½fxaðtÞg�i, and jφðtÞi form

sides of a triangle with the angle between the exact
quantum wave function and its TDVP approximation equal
to the Fubini-Study distance between those two states.
Using the law of cosines,

γðψ ½fxaðtÞg�;ΨÞ ≤
� π

2
if It >

ffiffiffi
2

p
;

arccos ð1 − I2t =2Þ otherwise:

ðC23Þ

Assuming that we initialize the system on the periodic
TDVP trajectory, and taking the time t ¼ T to be the period
of this trajectory, we arrive at the following bound on
fidelity:

ffiffiffiffiffiffi
FΨ

p
≥ 1 −

I2T
2
; ðC24Þ

where FΨ ¼ jhψ ½fxaðTÞg�jΨðtÞij2 ¼ jhΨje−iHT jΨij2 and
we use the fact that the quantum system is initialized on
the TDVP periodic trajectory, jΨð0Þi ¼ jψ ½fxað0Þg�i ¼
jψ ½fxaðTÞg�i.
Until now, we did not discuss the scaling of fidelity and

error with the system size. Naïvely, if we take the
thermodynamic limit in Eq. (C24), this bound would
appear useless, since I2t ∝ L increases linearly with the
system size and eventually becomes larger than one.
However, assuming that the entanglement growth is not
too fast (the weak-leakage case), one may find an inter-
mediate system size such that I2t ≪ 1 and the bound is still
effective. In such a case, assuming the scaling form of the
fidelity FΨ ¼ e−fTL, with fT ≪ 1, we can expand

ffiffiffiffiffiffi
FΨ

p ¼
1 − fTL=2. Plugging this expansion into Eq. (C24) along
with the definition of ΓT ¼ ½R T

0 dtγðtÞ�2 ¼ I2t =L, we obtain

1 −
fTL
2

≥ 1 −
ΓTL
2

; ðC25Þ

recovering the upper bound on fT that governs the fidelity
decay; see Eq. (12) in the main text.
We note that the above argument cannot be regarded

as a rigorous proof of the fidelity bound in the many-body
case. However, using the limited velocity of entanglement
growth from the initial weakly entangled state jψ ½fxaðTÞg�i,
we can limit the system sizeL needed to be effectively in the
thermodynamic limit, thus justifying the expansion used in
deriving Eq. (C25). It is an interesting open question if a
similar bound can be rigorously proven under some

assumptions limiting the entanglement growth and if a
tighter bound could be obtained.

3. Trajectories in the deformed PXP model
with K = 3 Ansatz

a. Calculation of leakage

In what follows, we use the leakage function calculated
for the case of the Hamiltonian given by Eqs. (4) and (13).
To calculate the leakage, we use Mathematica to perform
the required contractions and substitute them into
Eqs. (C8)–(C10). While in the case of the nondeformed
PXP model one can obtain simple analytical expressions
for the leakage, for the deformed PXP model these
expressions become too lengthy to be presented here [68].

b. Calculation of Floquet exponent

In order to characterize the periodic orbits observed in
the TDVP dynamics, we use the integrated leakage that is
discussed above. In addition, we study the stability of
periodic orbits by calculating the Floquet exponent. The
Floquet exponent characterizes the stability of a given
periodic orbit, in a manner similar to the Lyapunov
exponent. However, despite qualitative similarities, the
Floquet exponent quantitatively differs from the
Lyapunov exponent [50]. The latter quantity is used to
characterize chaotic dynamical flow in the case of large
bond dimension TDVP [37]. In contrast, here we are
dealing with periodic orbits. In this case, the Floquet
exponent allows one to quantify the orbit stability in a
way that is invariant under all local smooth nonlinear
coordinate transformations. Thus, the Floquet exponent is
an intrinsic characteristic of the periodic orbit.
Since we do not use the Lyapunov exponent in this work,

we keep the notation λ for the Floquet exponent. It is
defined as

λ ¼ 1

T
ln jΛmaxj; ðC26Þ

where Λmax is the largest-norm Floquet multiplier of the

orbit in the space of TDVP parameters, xð0Þa ðtÞ, and
t ∈ ½0; T�, where T is the orbit period. Intuitively, Λmax
characterizes how the unit volume, chosen at some initial
point on the periodic orbit, transforms after one traversal of
the orbit. More specifically, Λmax is the largest-norm
eigenvalue of the orbit Floquet matrix, ½JT �ab ¼ ∂xaðTÞ=∂xbð0Þ, that quantifies the effect of small perturbation at
time t ¼ 0 after one period of the orbit, T. The orbit Floquet
matrix is calculated as the time-ordered integral of the
instantaneous Jacobian matrix along the periodic orbit [50]:

½JT �ab ¼ T exp

�Z
T

0

dt
∂vaðxÞ
∂xb

����
x→xð0ÞðtÞ

�
; ðC27Þ
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where we assume that vaðxÞ is the vector of velocities that
generates the flow [in other words, the equations of motion
are written as _xa ¼ vaðxÞ].
Numerically, the time-ordered integral in Eq. (C27)

is calculated by solving a system of nonautonomous
first-order differential equations. Since we have three
variational parameters θ1;2;3, JT is 3 × 3 matrix. As
expected, we find that the spectrum of JT always has an
eigenvalue Λ ¼ 1 [50], and the remaining two eigenvalues
satisfy jΛmaxΛminj ¼ 1, reflecting the symplectic (volume-
preserving) nature of the flow.
If an orbit is stable and surrounded by a KAM torus, we

find that all eigenvalues of the Floquet matrix have jΛj ¼ 1.
Thus, the Floquet exponent vanishes, λ ¼ 0, signaling the
stability of the orbit to small deformations. In contrast, for
unstable periodic orbits, we have jΛmaxj > 1 and
jΛminj < 1. This result implies that a unit volume after

one period is elongated in one direction and compresses in
a different direction.

c. Trajectory analysis

With the expressions for quantum leakage and Floquet
exponent at hand, we turn to the analysis of different
trajectories in the deformed PXP model. First, we consider
the deformation with a large negative value of μ3 ¼ −0.3.
Figure 10 shows that this deformation leads to a drastic
increase of the size of regular islands compared to Fig. 2(a),
which shows the Poincaré section for μ3 ¼ 0. Nevertheless,
despite an increase in the size of the regular regions, the
fidelity revivals are degraded by the deformation with large
negative values of μ3; see Fig. 6. The leakage follows the
same trend, as is apparent from the same figure. However,
the orbit remains stable; hence, its Floquet exponent λ ¼ 0
throughout the entire range of negative values of μ3.
Next, we turn to the case of μ3 ¼ 0.3. The Poincaré

section in Fig. 11(a) shows that the deformation with μ3 >
0 decreases the size of regular regions and makes the TDVP
dynamics more chaotic. Different symbols in Fig. 11(a)
show the location of several periodic orbits with short
periods that we are able to find using Newton’s search
method [47,50] (we show only a subset of short orbits and
omit those which are symmetry related).
Figure 11(b) visualizes the TDVP dynamics of local

observables in these different orbits and also shows the
integrated leakage ΓP and the Floquet exponent. In par-
ticular, star shows the location of an orbit related by
symmetry to the one studied in the main text. We observe
that this orbit is not surrounded by a torus any more,
consistent with a finite value of λ. However, there are still
many stable orbits present in the Poincaré section (e.g., the
ones denoted by circle and square). These orbits have much
stronger leakage, despite the vanishing Floquet exponent λ.
This result confirms our conclusion that the Floquet

FIG. 10. The Poincaré section ðθ2 ¼ 0; _θ2 < 0Þ for the de-
formed PXP model with μ3 ¼ −0.3 shows an overall increase of
the regular islands.

(a) (b)

FIG. 11. TDVP analysis of trajectories in the deformed PXP model with μ3 ¼ 0.3. (a) The Poincaré section ðθ2 ¼ 0; _θ2 < 0Þ reveals a
smaller size of regular islands in phase space. Black symbols star, diamond, up-pointing triangle, circle, square, and down-pointing
triangle show the locations of some periodic orbits. For each of the orbits, in (b) we show the value of the Floquet exponent, quantum
leakage ΓP, and the dynamics of local observables n1;2;3. The physical period P is defined as the time after which the local observables
return to their initial values and can be smaller than the period of the orbit for the MPS parameters.
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exponent is not obviously associated with quantum
leakage.
On the other hand, the diamond orbit in Fig. 11(b) has a

slightly smaller leakage compared to the star orbit. By
comparing quantum dynamics, we indeed find that these
two orbits have similar behavior of the fidelity revivals.
However, due to relatively large leakage, the fidelity
revivals and oscillations of local observables are damped.
Hence, while the orbit diamond in principle represents
another type of oscillations, it remains an open question if
the quality of these oscillations can be improved, e.g., if
they can be stabilized by a deformation of the Hamiltonian.

APPENDIX D: THERMALIZATION IN THE
STRONG-LEAKAGE REGIME

In this Appendix, we present additional results for the
cases when the system has no low-leakage trajectories.
We start with additional data for the TFIM. In addition,
we consider a strongly deformed PXP model with
broken particle-hole symmetry and demonstrate that it still
has entanglement dynamics that depends on the initial
conditions.

1. Entanglement dynamics and ETH
indicators in TFIM

We begin with illustrating the periodic orbit found in the
TDVP dynamics of a TFIM using Newton’s search algo-
rithm. Figure 12 illustrates the Poincaré section defined by
ðξ ¼ 0.9; _ξ < 0Þ. The periodic orbit with period T ¼ 2.09
crosses this plane at the point ðχ; ξ;ϕ; θÞ ¼ ð0.2607; 0.9;
4.888; 0.4308Þ, shown by “star” in Fig. 12. This orbit is
stable surrounded by a small KAM torus, but nevertheless it
does not give rise to many-body fidelity revivals. This result
may be attributed to large leakage, ΓT ¼ 0.57.
In the main text, we illustrate the strong influence of

initial conditions on entanglement growth. Here, we com-
pare the initial states with slowest and fastest entanglement
dynamics. These states are defined by the MPS in Eq. (16),

FIG. 12. The projection of the Poincaré section onto the (θ;ϕ)
plane in the vicinity of the periodic orbit reveals a regular region
of phase space.

0 2 4 6 8
0

1

2

3

4

5

FIG. 13. Dynamics of entanglement of subsystems of size l at
one boundary, Sl ¼ SðlÞ=2, in TFIM for “fast” (solid lines) and
“slow” (dashed lines) initial states defined in the text. Different
colors correspond to different subsystem sizes that range from
l ¼ 1 (magenta) to l ¼ 9 (red). Black lines correspond to the
entanglement entropy of a half-infinite subsystem. The data are
obtained with iTEBD with truncation error ϵ < 10−5. The inset
shows the same data for l ¼ 5;…; 9 with rescaled axes, high-
lighting that the difference in entanglement spreading cannot be
explained by the constant time shift and persists for largest
subsystems.

(a)

(b)

FIG. 14. (a) Comparing the expectation values of magneti-
zation per spin between different system sizes suggests the
applicability of ETH. The inset confirms that the fluctua-
tions of magnetization between adjacent eigenstates in the
energy window 0.19Lþ ½−1; 1� are suppressed, in accordance
with the ETH prediction, as 1=

ffiffiffiffi
D

p
, where D is the Hilbert

space dimension. (b) Bipartite entanglement entropy of the
eigenstates for L ¼ 20 shows no outliers near the middle of
the spectrum. All data are obtained for the zero-momentum
inversion-symmetric sector of TFIM with periodic boundary
conditions using exact diagonalization.
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with parameters ðχ; ξ;ϕ; θÞslow ¼ ð0.1; 0.9; 1.17; 3.86Þ and
ðχ; ξ;ϕ; θÞfast ¼ ð−0.32; 0.9; 1.6; 4.28Þ. These states can
also be identified by local expectation values ðσx; σy;
σzÞslow ¼ ð0.38; 0.85; 0.072Þ and ðσx; σy; σzÞfast ¼ ð0.27;
0.74;−0.49Þ. Figure 13 shows the dynamics of entangle-
ment of small subsystems for slow and fast initial states.
Both states reach identical values of the saturated entan-
glement entropy for all subsystems. This result is expected,
since both initial states have the same energy density per
site. As energy is the only conserved quantity, these states
are expected to have the same entanglement saturation
value. However, the time when the entanglement saturates
is different, proving that these two initial states have
different entanglement velocity.
Finally, Fig. 14 shows a test of ETH. For the TFIM for

the considered values of parameters, i.e., ðJz; hz; hxÞ ¼
ð1; 0.4; 1Þ, Fig. 14(a) illustrates the expectation values of
local observables and confirms that average differences of
local magnetization between adjacent eigenstates at energy
density E=L ¼ 0.19 decay with system size according to
the ETH prediction. In Fig. 14(b), we observe that the
entanglement of eigenstates essentially has no outliers near
the middle of the spectrum.

2. Entanglement dynamics and ETH indicators
in the deformed PXP model

We consider the following deformation of the PXP
model, δH ¼ Hμz þHμ2 where

Hμ2 ¼ μ2
X
i

ðPi−2σ
þ
i−1Piσ

þ
iþ1Piþ2 þ H:c:Þ; ðD1Þ

and values of the couplings are fixed to μ2 ¼ 0.24 and
μz ¼ 0.4. This deformation is chosen in such a way that
both terms in δH break the particle-hole symmetry of the
model. In addition, the correlated spin-flip term is expected
to enhance thermalization.
Indeed, the entanglement entropy of many-body

eigenstates of the Hamiltonian HPXP þ δH shown in
Fig. 15 shows that there are no “outliers,” i.e., states with
anomalously low entanglement. Likewise, the level
statistics indicator r ¼ minðδi; δiþ1Þ=maxðδi; δiþ1Þ yields
hri ¼ 0.528, a value that is close to the Gaussian orthogo-
nal ensemble prediction 0.5307 [71] (averaging is done
over the middle 1=3 of the full many-body spectrum).
The TDVP equations of motion for K ¼ 2 MPS Ansatz

in the presence of this deformation can be obtained using
the framework laid out in Appendix A. Using the expect-
ation value of Hμ2 that is given by

hHμ2i ¼ −
L
2

�
cos2 θ2 cosð2ϕ2Þ sin2ð2θ1Þ

2þ 2 cos2 θ2 tan2 θ1
þ 1 ↔ 2

�
;

ðD2Þ

we obtain additional terms that have to be added to the
equations of motion (9) with C ¼ 2:

δ _θ1 ¼ μ2½2cos3θ1 sin θ1sin2θ2 sinð2ϕ1Þ
þ cos2θ2 sinð2θ1Þ sinð2ϕ2Þ�;

δ _ϕ1 ¼ μ2

�
½−3þ cosð2θ1Þ�cos2θ2sin2θ1 cosð2ϕ2Þ

−
1

2
cos2θ1 cosð2ϕ1Þf½cosð2θ1Þ − 5� cosð2θ2Þ

þ 2sin2θ1g
�
: ðD3Þ

The EOMs for δ _θ2 and δ _ϕ2 are obtained by swapping the
subscripts 1 ↔ 2.
Similarly to the case of TFIM discussed in the main text,

we study the dependence of entanglement dynamics on the
initial condition within the MPS manifold. Initially, we find
a periodic trajectory at zero energy density. The trajectory is
found by starting from the Z2 trajectory of the PXP model
in a similar fashion to the trajectory with the chemical
potential discussed in the main text. In this case, we start
from the periodic trajectory at μz ¼ 0.4 and slowly ramp up
μ2 at fixed energy density hHi=L ¼ 0. In practice, we can
choose the initial state to be any phase space point of the
periodic trajectory. We observe that, even though the
entropy of states in this periodic trajectory fluctuates, it
does not considerably affect the long-time entropy growth
in the exact quench dynamics. Therefore, we fix the initial
point to be ðθ01;ϕ0

1; θ
0
2;ϕ

0
2Þ ¼ ð3.926; 0.289; 2.987; 0.121Þ.

This state has bipartite entanglement entropy S ≈ 0.036. In
the chosen MPS Ansatz, the bipartite entanglement entropy
Sðθ1; θ2Þ is independent of the phases. Thus, we can easily
pick different initial states with exactly the same entropy by
varying ϕ2 while ϕ1 is fixed by the energy density
constraint. The initial states in Fig. 16 are generated by

FIG. 15. The deformation μ2 ¼ 0.24 and μz ¼ 0.4 effectively
destroys the eigenstates with low bipartite entanglement entropy
in the pure PXP model. The data are obtained for the L ¼ 28
chain with periodic boundary conditions in the zero-momentum
inversion-symmetric sector.
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splitting the domain ½ϕ0
2 − π=4;ϕ0

2 þ π=4� to 200 points
and then discarding the points for which the energy density
constraint cannot be satisfied for any value of ϕ1. The
number of remaining states are 15, including the periodic
trajectory.
In Fig. 16, we observe that the entropy growth of a state

is closely related to the leakage of the state out of the MPS
manifold. Compared to the case of TFIM studied in the
main text, the PXP model features stronger correlations
between leakage and entanglement with the correlation
coefficient being 0.95 (compared to 0.53 for TFIM). In this
case, there are two sets of states which have different
velocities of entropy growth, and all the states in the slow
set have considerably smaller leakage than any of the states
in the fast set. The periodic trajectory belongs to the set of
slow states, but it is not the slowest one.
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