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Abstract
In this paper, we establish convergence to equilibrium for a drift–diffusion–recombi-
nation system modelling the charge transport within certain semiconductor devices. 
More precisely, we consider a two-level system for electrons and holes which is aug-
mented by an intermediate energy level for electrons in so-called trapped states. The 
recombination dynamics use the mass action principle by taking into account this 
additional trap level. The main part of the paper is concerned with the derivation of 
an entropy–entropy production inequality, which entails exponential convergence to 
the equilibrium via the so-called entropy method. The novelty of our approach lies 
in the fact that the entropy method is applied uniformly in a fast-reaction parameter 
which governs the lifetime of electrons on the trap level. Thus, the resulting decay 
estimate for the densities of electrons and holes extends to the corresponding quasi-
steady-state approximation.
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1  Introduction and main results

The formulation and mathematical analysis of drift–diffusion type semiconductor 
models reach back to the middle of the last century, see e.g. [18, 20, 24] and the 
references therein; yet these models still form a highly relevant workhorse in the 
simulation of semiconductor devices and batteries.

Physically, drift–diffusion models describe the transport of charge carriers via 
diffusion and convection governed by electric fields. In semiconductors, charge 
carriers are electrons and holes (positively charged quasi-particles, which repre-
sent the absence of an electron). Pairs of electrons and holes can be “generated” 
and “destroyed” by recombination processes. Generation of an electron-hole pair 
occurs when an electron is lifted from a low-energy valence band to a high-energy 
conduction band, where electrons are mobile—leaving behind an equally mobile 
hole in the valence band. A pivotal generation–recombination model was formu-
lated by Shockley, Read and Hall [16, 21]. Mathematically, Shockley–Read–Hall 
recombination introduces quadratic non-linear reaction terms into the drift–diffu-
sion dynamics.

A derivation of the Shockley–Read–Hall model considers a generation–recom-
bination process as sketched in Fig. 1. It assumes that appropriately distributed 
foreign atoms in the crystal lattice of the semiconductor material facilitate the 
generation of electron-hole pairs by providing in-between energy levels, requiring 
smaller amounts of energy for each step. Since electrons are immobile at these 
in-between energy levels, they are called trapped states. Also their maximal den-
sity is limited. The Shockley–Read–Hall model of electron-hole recombination is 
obtained as a quasi-steady-state approximation of the trapped-state dynamics as 
detailed in the following.

We denote the charge densities of electrons, holes and trapped states by n, p 
and ntr and consider the following PDE–ODE drift–diffusion–recombination 
system:

with the drift–diffusion fluxes and reaction terms

(1)

⎧⎪⎨⎪⎩

�tn = ∇ ⋅ Jn(n) + Rn(n, ntr),

�tp = ∇ ⋅ Jp(p) + Rp(p, ntr),

� �tntr = Rp(p, ntr) − Rn(n, ntr),

Fig. 1  A schematic picture illus-
trating the allowed transitions 
of electrons between the various 
energy levels

Energy

valence band

trap level

conduction band
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The constants n0, p0, 𝜏n, 𝜏p > 0 are positive recombination parameters and � ∈ (0, �0] 
for arbitrary 𝜀0 > 0 is a positive relaxation parameter. Vn and Vp represent external 
time-independent potentials.

The reaction term Rn models transitions of electrons from the trap level to the 
conduction band (proportional to ntr ) and vice versa (proportional to −n(1 − ntr) ), 
where the maximum capacity of the trap level is normalised to one. The analogue 
processes with respect to the valence band are described by Rp . Note that the rate of 
hole generation is equivalent to the rate of electrons moving from the valence band 
to the trap level, which is proportional to ( 1 − ntr ). Similarly, the annihilation of a 
hole corresponds to an electron that jumps from the trap level to the valence band, 
which yields a reaction rate proportional to −pntr . Moreover, n0, p0 > 0 represent 
reference levels for the charge concentrations n and p, while 𝜏n, 𝜏p > 0 are inverse 
reaction parameter. Note that the concentration of trapped states satisfies ntr ∈ [0, 1] 
provided this holds true for their initial concentration (cf. Theorem 1.1).

The dynamical equation for ntr in (1) is an ODE in time and pointwise in space 
with a right hand side depending on n, p and ntr via Rn and Rp . We stress that there 
is no drift–diffusion term for ntr since trapped electrons are immobile. This is due to 
the correlation between foreign atoms and the corresponding trap levels which are 
locally bound near these crystal impurities.

The parameter 𝜀 > 0 models the lifetime of trapped states, where lifetime refers 
to the expected time until an electron in a trapped state moves either to the valence 
or the conduction band. The Shockley–Read–Hall recombination model is obtained 
in the (formal) limit � → 0 , where the concentration of trapped states is determined 
from the algebraic relation 0 = Rp(p, ntr) − Rn(n, ntr):

In this quasi-steady-state approximation, the density of trapped states ntr and its evo-
lution are eliminated from system (1), while the evolutions of the charge carriers n 
and p are subject to the Shockley–Read–Hall recombination terms

Jn ∶= ∇n + n∇Vn = �n∇

(
n

�n

)
, �n ∶= e−Vn ,

Jp ∶= ∇p + p∇Vp = �p∇

(
p

�p

)
, �p ∶= e−Vp ,

Rn ∶=
1

�n

(
ntr −

n

n0�n

(1 − ntr)

)
,

Rp ∶=
1

�p

(
1 − ntr −

p

p0�p

ntr

)
.

n
qssa

tr =
�n + �p

n

n0�n

�n + �p + �n
p

p0�p

+ �p
n

n0�n

.
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A rigorous proof of this quasi-steady-state approximation has been performed in 
[15], even for more general models. See also [18] for semiconductor models with 
reaction terms of Shockley–Read–Hall-type.

We complete the mathematical description by considering system (1) on a bounded 
domain Ω ⊂ ℝ

m , m ≥ 1 , with sufficiently smooth boundary �Ω . Without loss of gen-
erality, we suppose that the volume of Ω is normalised, i.e. |Ω| = 1 , which can be 
achieved by an appropriate scaling of the spatial variables.

We impose no-flux boundary conditions for Jn and Jp,

where n̂ denotes the outer unit normal vector on �Ω , and we prescribe non-negative 
and bounded initial data nI , pI , ntr,I ∈ L∞(Ω) together with ‖ntr,I‖L∞(Ω) ≤ 1 . As a 
consequence, the following charge conservation law holds:

with M ∈ ℝ . Finally, the potentials Vn and Vp are assumed to satisfy

where the last condition means that the potentials are confining.
The main goal of this paper is to prove exponential convergence to equilibrium of 

system (1)–(4) with explicit bounds on rates and constants, which are independent of 
the relaxation time � . We therefore consider � ∈ (0, �0] for arbitrary but fixed 𝜀0 > 0 . 
Our study also includes the limiting case � = 0.

The main tool in quantifying the large-time behaviour of global solutions to system 
(1) is the entropy functional

For n and p, we encounter contributions of the Boltzmann-entropy form 
a ln a − (a − 1) ≥ 0 , whereas ntr enters the entropy functional via a non-negative 
integral term. Note that the integral ∫ ntr

1∕2
ln
(

s

1−s

)
ds is non-negative and well-defined 

for all ntr(x) ∈ [0, 1] . By introducing the entropy production functional

Rn

(
n, n

qssa

tr

)
= Rp

(
p, n

qssa

tr

)
=

1 −
np

n0p0�n�p

�n

(
1 +

p

p0�p

)
+ �p

(
1 +

n

n0�n

) .

(2)n̂ ⋅ Jn = n̂ ⋅ Jp = 0 on 𝜕Ω,

(3)∫Ω

(n − p + � ntr) dx = ∫Ω

(nI − pI + � ntr,I) dx =∶ M

(4)Vn,Vp ∈ W2,∞(Ω) and n̂ ⋅ ∇Vn, n̂ ⋅ ∇Vp ≥ 0 on 𝜕Ω,

(5)

E(n, p, ntr) =∫Ω

(
n ln

n

n0�n

− (n − n0�n) + p ln
p

p0�p

− (p − p0�p)

+�∫
ntr

1∕2

ln

(
s

1 − s

)
ds

)
dx.

(6)P ∶= −
d

dt
E,
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it holds (formally) true along solution trajectories of system (1), (2) that

The entropy production functional consists of two non-negative flux terms and two 
equally non-negative reaction terms of the form (a − 1) ln a ≥ 0 . Thus, the entropy 
E and its production P are non-negative functionals, which formally implies the 
entropy E to be monotonically decreasing in time.

In a rigorous proof of the entropy decay, one has to control the two reaction 
terms in (7), which are unbounded for ntr(t, x) → 0, 1 or n(t, x), p(t, x) → 0 . Hence 
the entropy production is potentially unbounded even for smooth solutions.

The following Theorem  1.1 comprises sufficient existence and regularity 
results for solutions to satisfy the weak version of (6). We shall call a global weak 
solution to system (1)–(4) a triple (n, p, ntr) ∶ [0,∞) → H1(Ω)2 × L∞(Ω) such that, 
first,

for all T ∈ (0,∞) and, second, (n, p, ntr) solves (1) where n and p satisfy their 
dynamic equations and the boundary conditions (2) in the weak sense. From PDE-
theory (see e.g. [3]), we further obtain the embedding W2(0, T) ↪ C([0, T],L2(Ω)).

Theorem 1.1 (Time-dependent system) Let n0, p0, �n, �p and � be positive constants. 
Assume that Vn and Vp satisfy (4) and that Ω ⊂ ℝ

m , m ≥ 1 , is a bounded, sufficiently 
smooth domain.

Then, for any non-negative initial datum (nI , pI , ntr,I) ∈ L∞(Ω)3 satisfying 
‖ntr,I‖L∞(Ω) ≤ 1 , there exists a unique non-negative global weak solution (n, p, ntr) 
of system (1) with boundary conditions (2). More precisely, we find that for all 
T ∈ (0,∞)

and

Moreover, there exist positive constants Cn(‖nI‖L∞(Ω),Vn) , Cp(‖pI‖L∞(Ω),Vp) and 
Kn(Vn) , Kp(Vp) independent of � such that

(7)
P(n, p, ntr) = �Ω

(
|Jn|2
n

+
|Jp|2
p

+ Rn ln

(
ntrn0�n

n(1 − ntr)

)

+Rp ln

(
(1 − ntr)p0�p

pntr

))
dx ≥ 0.

(8)n, p ∈ W2(0, T)∶=
{
f ∈ L2((0, T),H1(Ω)) | �tf ∈ L2((0, T),H1(Ω)∗)

}

(9)n, p ∈ W2(0, T) ∩ L∞((0, T), L∞(Ω)),

(10)ntr ∈ C([0, T], L∞(Ω)), �tntr ∈ C([0, T], L2(Ω)).

(11)‖n(t, ⋅)‖L∞(Ω) ≤ Cn + Knt, ‖p(t, ⋅)‖L∞(Ω) ≤ Cp + Kpt, for all t ≥ 0.
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In addition, the concentration ntr(t, x) is bounded away from zero and one in the 
sense that for all times 𝜏 > 0 there exist positive constants � = �(�0, �, �n, �p) , 
� = �(Cn,Cp,Kn,Kp) and a sufficiently small constant 𝛾(𝜏,Cn,Cp,Kn,Kp) > 0 such 
that

where �� =
�

1+��
 such that the linear and the inverse linear bound intersect at time � . 

As a consequence of (12), there exist positive constants � , Γ > 0 (depending on � , � , 
� , � , Vn , Vp ) such that

where � �2

2
=

Γ

1+��
 such that the quadratic and the inverse linear bound intersect at 

the same time �.

Remark 1.2 (Proof of Theorem  1.1) The existence theory of Theorem  1.1 for the 
coupled ODE-PDE problem (1) applies standard parabolic methods and pointwise 
ODE estimates. It relates to previous results like [15] in assuming L∞ initial data 
and proving L∞-bounds in order to control non-linear terms. The proof is therefore 
postponed to the Appendix.

Our first main result proves exponential convergence of solutions to (1)–(4) to 
a unique positive equilibrium state (n∞(x), p∞(x), ntr,∞) , which is stated in detail 
in Theorem 2.1.

Theorem  1.3 (Exponential convergence to equilibrium) Let (n, p, ntr) be a global 
weak solution of system (1)–(4) as given in Theorem 1.1 above corresponding to the 
non-negative initial data (nI , pI , ntr,I) ∈ L∞(Ω)3 satisfying ‖ntr,I‖L∞(Ω) ≤ 1 . Then, this 
solution satisfies the weak entropy production law

for all 0 < t0 ≤ t1 < ∞ and the following versions of the exponential decay towards 
the equilibrium:

where EI and E∞ denote the initial entropy and the equilibrium entropy of the sys-
tem, respectively, and the equilibrium (n∞, p∞, ntr,∞) is given in Theorem  2.1. 
Moreover,

(12)
ntr(t, x) ∈

[
min

{
�t,

�

1 + �t

}
, max

{
1 − �t, 1 −

�

1 + �t

}]
for all t ≥ 0 and a.e. x ∈ Ω,

(13)n(t, x), p(t, x) ≥ min

{
�
t2

2
,

Γ

1 + �t

}
for all t ≥ 0 and a.e. x ∈ Ω

(14)E(n, p, ntr)(t1) + ∫
t1

t0

P(n, p, ntr)(s) ds = E(n, p, ntr)(t0)

E(n, p, ntr)(t) − E∞ ≤ (EI − E∞)e
−Kt,
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where C ∶= C−1
CKP

 and K ∶= C−1
EEP

 (see Theorem 1.5 and Proposition 6.1 for the defi-
nition of CEEP and CCKP , respectively) are explicitly computable constants independ-
ent of � ∈ (0, �0] for arbitrary but fixed 𝜀0 > 0.

Remark 1.4 (Theorem 1.1 proves the weak entropy production law (14)) The regu-
larity of n and p of Theorem 1.1 as well as the lower and upper bounds (12) for ntr 
and the lower bounds (13) for n and p allow to prove that any solution of Theo-
rem 1.1 satisfies the weak entropy production law (14).

The proof of Theorem 1.3 applies the so-called entropy method, which derives a 
functional inequality of the form

where n, p and ntr are non-negative functions satisfying the same conservation law 
as solutions to (1)–(4), see below. The proof provides an explicit estimate of the 
constant C > 0 . Applying this entropy–entropy production (EEP) inequality to the 
entropy production law (14) entails exponential decay of the relative entropy via a 
general Gronwall-argument. A Csiszár–Kullback–Pinsker-type inequality yields 
then exponential convergence in L1 as stated in (15).

The key step of the entropy method is to prove (as second main result) a suit-
able EEP functional inequality independently from solutions to (1)–(4) and indepen-
dently from �.

Theorem 1.5 (Entropy–Entropy Production Inequality) Let �0 , �n , �p , n0 , p0 be posi-
tive constants and M ∈ ℝ . Let (n∞, p∞, ntr,∞) be the corresponding equilibrium as in 
Theorem 2.1. Consider an arbitrarily large positive constant M1 > 0 and non-neg-
ative functions (n, p, ntr) ∈ L1(Ω)3 satisfying the L1-bound n, p ≤ M1 , the L∞-bound 
‖ntr‖L∞(Ω) ≤ 1 , and the conservation law

where f ∶= ∫
Ω
f (x) dx (recall |Ω| = 1).

Then, there exists an explicitly computable constant CEEP > 0 such that for all 
� ∈ (0, �0] the following functional inequality, called entropy–entropy production 
inequality, holds true:

Remark 1.6 We point out that Theorem  1.5 derives a general functional inequal-
ity for admissible functions (n, p, ntr) , which only share few natural properties like 
the L1-integrability, boundedness of the trapped states and the conservation law 
with solutions to (1)–(4). It is a nice robustness feature of the entropy method to be 
based on functional inequalities which can be reused in related contexts, rather than 

(15)‖n − n∞‖2L1(Ω) + ‖p − p∞‖2L1(Ω) + �‖ntr − ntr,∞‖2L2(Ω) ≤ C(EI − E∞)e
−Kt

E(n, p, ntr) − E(n∞, p∞, ntr,∞) ≤ CP(n, p, ntr),

n − p + �ntr = M

(16)E(n, p, ntr) − E(n∞, p∞, ntr,∞) ≤ CEEPP(n, p, ntr).
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deriving solution-specific estimates. The constant CEEP is independent of � ∈ (0, �0] . 
It only depends on the upper bound 𝜀0 > 0 , which can be chosen arbitrarily.

Remark 1.7 We emphasise that the EEP inequality (16) does not depend on the 
lower and upper solution bounds (11)–(13). These bounds are only needed to prove 
that solutions to (1)–(4) satisfy the weak entropy production law (14), which is 
neither directly obvious nor part of the existence theory. Therefore, (14) implies 
that solutions to Theorem  1.1 may only feature singularities of P at time zero 
due to a lacking regularity of the initial data or due to initial data ntr,I(x) ∈ [0, 1] , 
nI(x), pI(x) ∈ [0,∞).

The proof of the EEP-inequality of Theorem 1.5 captures in a certain sense the 
entire non-linear and global dynamics of system (1)–(4). Hence, its derivation is 
ought to be an involved task. A key step is the proof of a functional EEP-inequality 
for the special cases of spatially homogeneous concentrations, which fulfil the con-
servation law (3) and the L1-bounds (cf. Proposition 5.3). This core estimate is then 
extended to the case of arbitrary concentrations satisfying the same assumptions in 
Proposition 5.5. This extension also forces one to bound 

√
n −

√
n , 
√
p −

√
p , and √

ntr −
√
ntr in L2(Ω) by the entropy production. Due to the diffusive part in the 

dynamical equations for n and p, this is easily achieved for the expressions involv-
ing n and p by applying Poincaré’s inequality (see the Proof of Theorem  1.5 in 
Sect. 6). However, this is not possible for ntr as no diffusion is acting on ntr . On the 
other hand, ntr is subject to indirect diffusive effects, which allow for a control on 
√
ntr −

√
ntr in terms of a suitable functional inequality. Indirect diffusive effects 

occur when a reversible reaction transfers diffusive behaviour from a diffusive spe-
cies to a non-diffusive species. A first functional inequality which quantifies an 
indirect diffusion effect was proven in [4] with significant generalisations to reac-
tion–diffusion systems in [8, 12], volume–surface reaction–diffusion systems [11] 
and reaction–diffusion systems with non-linear diffusion [13]. Here, the correspond-
ing estimate is proven in Proposition 5.6 and might also be of independent interest.

Our two last results on system (1)–(4) combine the exponential convergence to 
equilibrium as proven in Theorem  1.3 with the solution bounds of Theorem  1.1. 
This entails uniform-in-time solution bounds for n and p as well as exponential con-
vergence to equilibrium in L∞(Ω) for n, p, and ntr . As opposed to (15), the conver-
gence result for ntr in Corollary 1.9 holds true without the coefficient �.

Corollary 1.8 The solutions n and p of Theorem 1.1 are uniformly-in-time bounded 
in L∞ , i.e. there exists a constant Z > 0 independent of � ∈ (0, �0] such that

Moreover, the bounds (17) allow to improve the bounds (12), (13) and to obtain 
uniform-in-time bounds in the sense that for all 𝜏 > 0 , there exist sufficiently small 
and �-independent constants 𝜂, 𝛾 ,𝜇,Γ > 0 such that

(17)‖n(t, ⋅)‖L∞(Ω), ‖p(t, ⋅)‖L∞(Ω) ≤ Z for all t ≥ 0.
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and

for all t ≥ 0 and a.e. x ∈ Ω where �t and � as well as �t2∕2 and Γ intersect at time 
𝜏 > 0.

Corollary 1.9 Under the hypotheses of Theorem  1.3, there exist constants 
0 < C,K < ∞ independent of � ∈ (0, �0] such that

is valid for all t ≥ 0.

The final topic of this paper considers the limit � → 0 , which recovers the well-
known Shockley–Read–Hall drift–diffusion–recombination model (see [15, 18]):

where

Remarking that the entropy–entropy production inequality derived in Theorem 1.5 
holds uniformly in the fast-reaction parameter 0 < 𝜀 ≤ 𝜀0 , one intuitively expects the 
entropy method and the convergence result of Theorem 1.3 to extend to system (20). 
Here, we are interested to make this conjecture rigorous also in view of a better gen-
eral understanding of the equilibration of systems which are derived as fast-reaction 
limits or quasi-steady-state approximations. One technical point is how to bypass the 
�-dependency of the conservation law (3). The details of this singular limit are sub-
ject of the last Sect. 7. Altogether, we prove for system (20) the Theorems 7.3, 7.2 
and Corollary 7.5 as corresponding versions of Theorems 1.3, 1.5 and Corollary 1.8.

Up to our knowledge, this is a first result in performing the entropy method in 
a non-linear reaction–diffusion-type system uniformly in a fast-reaction limit. Note 
that our approach yields global convergence to equilibrium for all initial data rather 
than just exponential stability of equilibria as proven, for instance, in a related 1D 
Poisson–Nernst–Planck system uniformly in the permittivity entering Poisson’s 
equation [17].

(18)ntr(t, x) ∈
[
min

{
�t, �

}
, max

{
1 − �t, 1 − �

}]

(19)n(t, x), p(t, x) ≥ min

{
�
t2

2
,Γ

}

‖n − n∞‖L∞(Ω) + ‖p − p∞‖L∞(Ω) + ‖ntr − ntr,∞‖L∞(Ω) ≤ Ce−Kt

(20)
{

�tn = ∇ ⋅ Jn(n) + R(n, p), Jn = ∇n + n∇Vn,

�tp = ∇ ⋅ Jp(p) + R(n, p), Jp = ∇p + p∇Vp,

R(n, p) =

1 −
np

n0p0�n�p

�n

(
1 +

p

p0�p

)
+ �p

(
1 +

n

n0�n

) .
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The rest of the paper is organised in the following manner. Section 2 proves the 
existence of a unique equilibrium (Theorem 2.1) as well as uniform-in-� bounds of 
n∞ , p∞ and ntr,∞ . In Sect. 3, we collect a couple of technical lemmata, and within 
Sect. 4, we state a preliminary proposition which serves as a first result towards an 
EEP-inequality. An abstract version of the EEP-estimate is proven in Sect. 5, first 
for constant concentrations and based on that also for general concentrations. Sec-
tion  6 is concerned with the proofs of the EEP-inequality from Theorem  1.5, the 
announced exponential convergence from Theorem 1.3 and the uniform L∞-bounds 
from Corollary 1.8, whereas Sect. 7 is devoted to the same issues in the situation 
� → 0 . Finally, the proof of Theorem 1.1 is contained in the Appendix.

2  Properties of the equilibrium

We prove the existence of a unique positive equilibrium (n∞, p∞, ntr,∞) of system 
(1)–(3) in a suitable (and natural) function space. Note that uniqueness is only satis-
fied once the total charge M in (3) is fixed. This equilibrium can either be seen as the 
unique solution of the below stationary system (21) or as the unique state for which 
the entropy production (7) vanishes.

Theorem  2.1 (Stationary system and uniformly bounded equilibrium) Let M ∈ ℝ , 
� ∈ (0, �0] for arbitrary 𝜀0 > 0 and (n∞, p∞, ntr,∞) ∈ X where X is defined via

Then, the following statements are equivalent. 

1. (n∞, p∞, ntr,∞) ∈ X is a solution of the stationary system 

2. P(n∞, p∞, ntr,∞) = 0.
3. Jn(n∞) = Jp(p∞) = Rn(n∞, ntr,∞) = Rp(p∞, ntr,∞) = 0 a.e. in Ω.
4. The state (n∞, p∞, ntr,∞) satisfies 

 where the positive constants n∗, p∗ > 0 are uniquely determined by the condition 

X ∶=
{
(n, p, ntr) ∈ H1(Ω)2 × L∞(Ω) || n − p + 𝜀ntr = M

∧ (∃ 𝛾 > 0) n, p ≥ 𝛾 a.e. ∧ ntr ∈ [𝛾 , 1 − 𝛾] a.e.
}
.

(21a)∇ ⋅ Jn(n∞) + Rn(n∞, ntr,∞) = 0,

(21b)∇ ⋅ Jp(p∞) + Rp(p∞, ntr,∞) = 0,

(21c)Rp(p∞, ntr,∞) − Rn(n∞, ntr,∞) = 0.

(22)n∞ = n∗e
−Vn , p∞ = p∗e

−Vp , ntr,∞ =
n∗

n∗ + n0
=

p0

p∗ + p0
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 and the conservation law 

Consequently, the unique positive equilibrium (n∞, p∞, ntr,∞) ∈ X is given by 
(22)–(24), and

Finally, for all M ∈ ℝ and for � ∈ (0, �0] , there exist two constants � ∈ (0, 1∕2) and 
Γ ∈ (1∕2,∞) depending only on �0 , n0 , p0 , M, V ∶= max(‖Vn‖L∞(Ω), ‖Vp‖L∞(Ω)) such 
that

Proof of Theorem 2.1 We shall prove the equivalence of the statements in the theo-
rem by a circular reasoning. Assume that (n∞, p∞, ntr,∞) ∈ X is a solution of the sta-
tionary system (21). In this case,

We test Eq. (21a) with ln(n∞∕(n0�n)) . Due to n∞ ∈ H1(Ω) and n∞ ≥ � a.e. in Ω , the 
test function ln(n∞∕(n0�n)) belongs to H1(Ω) . We find

In the same way, we test Eq. (21b) with ln(p∞∕(p0�p)) ∈ H1(Ω) . This yields

Moreover, we multiply (21c) with ln(ntr,∞∕(1 − ntr,∞)) ∈ L2(Ω) , integrate over Ω 
and obtain

Taking the sum of the three expressions above, we arrive at

(23)n∗p∗ = n0p0

(24)n∗�n − p∗�p + � ntr,∞ = M.

(25)ntr,∞ =
n∗

n0
(1 − ntr,∞), 1 − ntr,∞ =

p∗

p0
ntr,∞.

(26)
n∞(x), p∞(x) ∈ [� ,Γ] for a.e. x ∈ Ω and

n∗, p∗ ∈ [� ,Γ], ntr,∞ ∈ [� , 1 − �].

Jn(n∞), Jp(p∞), Rn(n∞, ntr,∞), Rp(p∞, ntr,∞) ∈ L2(Ω).

0 = ∫Ω

(|Jn(n∞)|2
n∞

− Rn(n∞, ntr,∞) ln

(
n∞

n0�n

))
dx.

0 = ∫Ω

(|Jp(p∞)|2
p∞

− Rp(p∞, ntr,∞) ln

(
p∞

p0�p

))
dx.

0 = ∫Ω

((
Rn(n∞, ntr,∞) − Rp(p∞, ntr,∞)

)
ln

(
ntr,∞

1 − ntr,∞

))
dx.
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By the non-negativity of the terms in the last two lines, equality holds if and only 
if Rn(n∞, ntr,∞) = 0 = Rp(p∞, ntr,∞) . Hence, P(n∞, p∞, ntr,∞) = 0 readily implies 
Jn(n∞) = Jp(p∞) = Rn(n∞, ntr,∞) = Rp(p∞, ntr,∞) = 0 a.e. in Ω.

Because of Jn(n∞) = �n∇
( n∞

�n

)
= 0 = Jp(p∞) = �p∇

( p∞

�p

)
 , we know that

with constants n∗, p∗ . Moreover, Rn(n∞, ntr,∞) = Rp(p∞, ntr,∞) = 0 gives rise to

Consequently, n∗p∗ = n0p0 > 0 , which implies n∗, p∗ > 0 and

Moreover, for M fixed, the constants n∗ and p∗ are uniquely determined by the con-
servation law

where the uniqueness follows from the strict monotonicity of 
f (n∗)∶=n∗�n −

n0p0

n∗
�p + �

n∗

n∗+n0
 on (0,∞) and the asymptotics f (n∗) → −∞ for 

n∗ → 0+ and f (n∗) → ∞ for n∗ → ∞.
Finally, concluding the circular reasoning 1. → 2. → 3. → 4. → 1. , we observe 

that

obviously satisfies Jn(n∞) = Jp(p∞) = Rn(n∞, ntr,∞) = Rp(p∞, ntr,∞) = 0 a.e. in Ω 
which proves (n∞, p∞, ntr,∞) to be a solution of the stationary system.

In order to prove the bounds (26), we observe

P(n∞, p∞, ntr,∞) =�Ω

(|Jn(n∞)|2
n∞

+
|Jp(p∞)|2

p∞

− Rn(n∞, ntr,∞) ln

(
n∞(1 − ntr,∞)

n0�nntr,∞

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤0

− Rp(p∞, ntr,∞) ln

(
p∞ntr,∞

p0�p(1 − ntr,∞)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤0

)
dx = 0.

n∞(x) = n∗e
−Vn , p∞(x) = p∗e

−Vp

ntr,∞ =
n∗

n0
(1 − ntr,∞), 1 − ntr,∞ =

p∗

p0
ntr,∞.

ntr,∞ =
n∗

n∗ + n0
=

p0

p∗ + p0
∈ (0, 1).

n∗�n − p∗�p + � ntr,∞ = M,

n∞ = n∗e
−Vn , p∞ = p∗e

−Vp , ntr,∞ =
n∗

n∗ + n0
=

p0

p∗ + p0

n∗�n −
n0p0

n∗
�p = M − �ntr,∞ = M − �

n∗

n∗ + n0
,
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the left hand side is strictly monotone increasing from −∞ to +∞ as n∗ ∈ (0,∞) , 
while the right hand side is strictly monotone decreasing and bounded between 
(M,M − �0) as n∗ ∈ (0,∞) . Both monotonicity and unboundedness/boundedness 
imply uniform positive lower and upper bounds for n∗ as explicitly proven in the fol-
lowing: First, we derive that

for all � ∈ (0, �0] . Note that (27) is not an explicit representation of n∗ since ntr,∞ 
depends itself on n∗ . Because of ntr,∞ ∈ (0, 1) , we further observe that

where � = �(�0, n0, p0,M,V) . And as a result of the elementary inequality √
a + b ≥ √

a +
b

2
√
a+

√
b
 for a ≥ 0 and b > 0 , we also conclude that

where � = �(�0, n0, p0,M,V) . Similar arguments show that corresponding bounds � 
and � are also available for p∗ . Hence,

Due to n∞ = n∗e
−Vn , p∞ = p∗e

−Vp and the L∞-bounds on Vn and Vp , the claim of the 
proposition follows.   ◻

3  Some technical lemmata

A particularly useful relation between the concentrations n, p and ntr is the following 
Lemma.

(27)n∗ =
M − 𝜀ntr,∞

2𝜇n

+

√√√√ (M − 𝜀ntr,∞)
2

4𝜇n
2

+
n0p0𝜇p

𝜇n

> 0

n∗ ≤ |M − 𝜀ntr,∞|
2𝜇n

+

√
(M − 𝜀ntr,∞)

2

4𝜇n
2

+

√
n0p0𝜇p

𝜇n

≤ |M| + 𝜀0
𝜇n

+

√
n0p0𝜇p

𝜇n

≤ 𝛽 < ∞,

n∗ ≥M − 𝜀ntr,∞

2𝜇n

+
|M − 𝜀ntr,∞|

2𝜇n

+

n0p0𝜇p

𝜇n

|M−𝜀ntr,∞|
𝜇n

+

√
n0p0𝜇p

𝜇n

≥
n0p0𝜇p

𝜇n

|M|+𝜀0
𝜇n

+

√
n0p0𝜇p

𝜇n

≥ 𝛼 > 0

ntr,∞ ∈

[
�

� + n0
,

�

� + n0

]
.
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Lemma 3.1 The conservation law n − p + � ntr = M and the equilibrium condition 
(25) imply

Proof With n∞ − p∞ + � ntr,∞ = M (note that ntr,∞ = ntr,∞ is constant), we have 
p − p∞ = n − n∞ + �(ntr − ntr,∞) . We employ this relation to replace p − p∞ on the 
left hand side of (28) and calculate

Now, the first term on the right hand side vanishes due to n∗p∗ = n0p0 while we use 
p∗∕p0 = (1 − ntr,∞)∕ntr,∞ for the second term and obtain

as claimed above.   ◻

Lemma 3.2 (Relative Entropy) The entropy relative to the equilibrium reads

Proof By the definition of E(n, p, ntr) in (5), we note that

(28)
∀ t ≥ 0 ∶ (n − n∞) ln

(
n∗

n0

)
+ (p − p∞) ln

(
p∗

p0

)

= �(ntr − ntr,∞) ln

(
1 − ntr,∞

ntr,∞

)
.

(n − n∞) ln

(
n∗

n0

)
+ (p − p∞) ln

(
p∗

p0

)

= (n − n∞) ln

(
n∗p∗

n0p0

)
+ �(ntr − ntr,∞) ln

(
p∗

p0

)
.

(n − n∞) ln

(
n∗

n0

)
+ (p − p∞) ln

(
p∗

p0

)
= �(ntr − ntr,∞) ln

(
1 − ntr,∞

ntr,∞

)

E(n, p, ntr) − E(n∞, p∞, ntr,∞)

= ∫Ω

(
n ln

n

n∞
− (n − n∞) + p ln

p

p∞
− (p − p∞)

+�∫
ntr(x)

ntr,∞

(
ln

(
s

1 − s

)
− ln

(
ntr,∞

1 − ntr,∞

))
ds

)
dx.

E(n, p, ntr) − E(n∞, p∞, ntr,∞)

= ∫Ω

(
n ln

(
n

n0�n

)
− n∞ ln

(
n∞

n0�n

)
− (n − n∞)

+ p ln

(
p

p0�p

)
− p∞ ln

(
p∞

p0�p

)
− (p − p∞)

+ �∫
ntr(x)

ntr,∞

ln

(
s

1 − s

)
ds

)
dx.
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We expand the first integrand as n ln
(

n

n0�n

)
= n ln

(
n

n∞

)
+ n ln

( n∞

n0�n

)
. Thus, with 

n∞∕�n = n∗ , we get

Together with an analogous calculation of the p-terms, we obtain

Lemma 3.1 allows us to reformulate the last two lines as

which proves the claim.   ◻

Lemma 3.3 (Csiszár–Kullback–Pinsker inequality) Let f , g ∶ Ω → ℝ be non-nega-
tive measurable functions. Then,

Proof Following a proof by Pinsker, we start with the elementary inequality 
3(x − 1)2 ≤ (2x + 4)(x ln x − (x − 1)) . This allows us to derive the following Csiszár–
Kullback–Pinsker-type inequality:

∫Ω

(
n ln

(
n

n0�n

)
− n∞ ln

(
n∞

n0�n

)
− (n − n∞)

)
dx

= ∫Ω

(
n ln

(
n

n∞

)
− (n − n∞)

)
dx + (n − n∞) ln

(
n∗

n0

)
.

E(n, p, ntr) − E(n∞, p∞, ntr,∞)

= ∫Ω

(
n ln

(
n

n∞

)
− (n − n∞) + p ln

(
p

p∞

)
− (p − p∞)

)
dx

+ (n − n∞) ln

(
n∗

n0

)
+ (p − p∞) ln

(
p∗

p0

)

+ �∫Ω ∫
ntr(x)

ntr,∞

ln

(
s

1 − s

)
ds dx.

(n − n∞) ln

(
n∗

n0

)
+ (p − p∞) ln

(
p∗

p0

)
+ �∫Ω ∫

ntr(x)

ntr,∞

ln

(
s

1 − s

)
ds dx

= �(ntr − ntr,∞) ln

(
1 − ntr,∞

ntr,∞

)
+ �∫Ω ∫

ntr(x)

ntr,∞

ln

(
s

1 − s

)
ds dx

= �∫Ω ∫
ntr(x)

ntr,∞

(
ln

(
s

1 − s

)
− ln

(
ntr,∞

1 − ntr,∞

))
ds dx,

�Ω

�
f ln

� f
g

�
− (f − g)

�
dx ≥ 3

2f + 4g
‖f − g‖2

L1(Ω)
.
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where we applied Hölder’s inequality in the last step.   ◻

The subsequent lemma provides L1-bounds for n and p in terms of the initial 
entropy of the system and some further constants.

Lemma 3.4 (L1-bounds) Due to the monotonicity of the entropy functional, any 
entropy producing solution of (1) satisfies

Proof Employing Lemma 3.3 and Young’s inequality, we find

Solving this inequality for n yields

Therefore, we arrive at

where we used the monotonicity of the entropy functional in the last step. In the 
same way, we may bound p from above.   ◻

At certain points, we will have to estimate the difference between terms like 
n∕n∞ and n∕n∞ . Using Lemma 3.5 below, we can bound this difference by the Jn- 
flux term and, hence, by the entropy production.

‖f − g‖L1(Ω) = �Ω

g
����
f

g
− 1

���� dx ≤ �Ω

g

�
2

3

f

g
+

4

3

�
f

g
ln

� f
g

�
−
� f
g
− 1

�
dx

= �Ω

�
2

3
f +

4

3
g

�
f ln

� f
g

�
− (f − g) dx

≤
�

2

3
f +

4

3
g

�

�Ω

�
f ln

� f
g

�
− (f − g)

�
dx

∀ t ≥ 0 ∶ n, p ≤ 5

2
max{n0�n, p0�p} +

3

4
E(n(0), p(0), ntr(0)) =∶ M1.

n ≤ n0�n + ‖n − n0�n‖L1(Ω)

≤ n0�n +

�
2

3
n +

4

3
n0�n

�

�Ω

�
n ln

�
n

n0�n

�
− (n − n0�n)

�
dx

≤ n0�n +
1

3
n +

2

3
n0�n +

1

2 �Ω

�
n ln

�
n

n0�n

�
− (n − n0�n)

�
dx.

n ≤ 5

2
n0�n +

3

4 �Ω

(
n ln

(
n

n0�n

)
− (n − n0�n)

)
dx.

n ≤ 5

2
n0�n +

3

4
E(n, p, ntr) ≤ 5

2
max{n0�n, p0�p} +

3

4
E(n(0), p(0), ntr(0))
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Lemma 3.5 Let f ∈ L1(Ω) and g ∈ L∞(Ω) such that f ≥ 0 , g ≥ 𝛾 > 0 a.e. 
on Ω and f/g is weakly differentiable. Then, there exists an explicit constant 
C(‖f‖L1(Ω), ‖g‖L∞(Ω), 𝛾) > 0 such that

Proof We define � ∶=
f

g
−
(

f

g

)
 and obtain f = g

((
f

g

)
+ �

)
 and

by utilising |Ω| = 1 . Therefore,

by applying Poincaré’s inequality to � with � = 0 and some constant CP(Ω) > 0 . As 
g ≥ 𝛾 > 0 is uniformly positive on Ω and g ≥ � , we arrive at

Finally, we deduce

employing Hölder’s inequality in the second step.   ◻

4  Two preliminary propositions

Notation 4.1 For arbitrary functions f, we define the normalised quantity

The following logarithmic Sobolev inequality on bounded domains was proven in 
[6] by following an argument of Stroock [22].

(
f

g
−

(
f

g

))2

≤ C �Ω

||||||
∇

√
f

g

||||||

2

dx.

f

g
= ∫Ω

f

g
dx = ∫Ω

g

g

((
f

g

)
+ �

)
dx =

(
f

g

)
+ ∫Ω

g

g
� dx

������
f

g
−

�
f

g

�������
≤ ‖g‖L∞(Ω)

g
‖�‖L1(Ω) ≤ CP

‖g‖L∞(Ω)

g

�����
∇

�
f

g

������L1(Ω)

������
f

g
−

�
f

g

�������
≤ CP

‖g‖L∞(Ω)

�2

�����
g∇

�
f

g

������L1(Ω)
.

�
f

g
−

�
f

g

��2

≤
�
CP

‖g‖L∞(Ω)

�2

�2�����
√
fg

�
g

f
∇

�
f

g

������

2

L1(Ω)

≤ 4fg

�
CP

‖g‖L∞(Ω)

�2

�2

�Ω

������
∇

�
f

g

������

2

dx

f̃ ∶=
f

f
.
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Lemma 4.2 (Logarithmic Sobolev inequality on bounded domains) Let Ω be a 
bounded domain in ℝm , m ≥ 1 , such that the Poincaré (–Wirtinger) and Sobolev 
inequalities

hold with q = ∞ for m = 1 and any q < ∞ for m = 2 . Then, the logarithmic Sobolev 
inequality

holds (for some constant L(Ω,m) > 0).

The Log-Sobolev inequality allows to bound an appropriate part of the entropy 
functional by the flux parts of the entropy production. The normalised variables 
on the left hand side of the subsequent inequality naturally arise when reformulat-
ing the flux terms on the right hand side in such a way that we can apply the Log-
Sobolev inequality on Ω.

Proposition 4.3 Recall the assumptions ‖Vn‖L∞(Ω), ‖Vp‖L∞(Ω) ≤ V  . Then, there exists 
a constant C(V) > 0 such that

Proof From the definition of Jn one obtains

We set

and observe that � =
�n

n
∫
Ω

n

�n

dx ≤ �ne
V is bounded independently of n. Next, we 

introduce the rescaled variable y∶=�−
1

m x where m ≥ 1 denotes the space dimension. 

(29)‖� − �Ω

� dx‖2
L2(Ω)

≤ P(Ω) ‖∇�‖2
L2(Ω)

,

(30)‖�‖2
Lq(Ω)

≤ C1(Ω) ‖∇�‖2L2(Ω) + C2(Ω) ‖�‖2L2(Ω),
1

q
=

1

2
−

1

m
, m ≥ 3,

(31)�Ω

�2 ln

�
�2

‖�‖2
L2(Ω)

�
dx ≤ L(Ω,m) ‖∇�‖2

L2(Ω)

�Ω

(
n ln

(
ñ

�̃n

)
+ p ln

(
p̃

�̃p

))
dx ≤ C �Ω

(
|Jn|2
n

+
|Jp|2
p

)
dx.

∫Ω

|Jn|2
n

dx =∫Ω

�n

n

|||||
∇

(
n

�n

)|||||

2

�n dx = 4 n∫Ω

�n

n

|||||
∇

√
n

�n

|||||

2

dx

=4 n∫Ω

�n

�n

||||||
∇

√
ñ

�̃n

||||||

2

dx.

�(x) ∶=

√
ñ

�̃n

, �∶=∫Ω

�(x)2 dx
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Note that ‖�‖L2(dx) is in general different from one, whereas ‖�‖L2(dy) = 1 . We now 
estimate with ‖Vn‖L∞(Ω) ≤ V  and the logarithmic Sobolev inequality (31)

The corresponding estimate involving Jn reads

The same arguments apply to the terms involving p.   ◻

The following proposition contains the first step towards an entropy–entropy 
production inequality. The relative entropy can be controlled by the flux part of 
the entropy production and three additional terms, which mainly consist of square 
roots of averaged quantities. The proof that the entropy production also serves as 
an upper bound for these terms will be the subject of the next section.

Proposition 4.4 There exists an explicit constant C(𝛾 ,Γ,M1) > 0 such that 
for (n∞, p∞, ntr,∞) ∈ X from Theorem  2.1 and all non-negative functions 
(n, p, ntr) ∈ L1(Ω)3 satisfying ntr ≤ 1 , the conservation law

and the L1-bound

the following estimate holds true:

(Note that the right hand side of (32) vanishes at the equilibrium (n∞, p∞, ntr,∞).)

Proof According to Lemma 3.2, we have

�Ω

|∇x�|2 dx =�Ω

|�−
1

m∇y�|2 � dy = �1−
2

m �Ω

|∇y�|2 dy

≥�1−
2

m
1

L �Ω

�2 ln(�2) dy = �1−
2

m
1

L �Ω

ñ

�̃n

ln

(
ñ

�̃n

)
dy

=�−
2

m
1

L

�n

n �Ω

n

�n

ln

(
ñ

�̃n

)
dx.

�Ω

|Jn|2
n

dx ≥ 4
n

�n

e−V �Ω

||∇x�||2 dx ≥ 4

L
�−

2

m e−2V �Ω

n ln
(
ñ

�̃n

)
dx.

n − p + �ntr = M

n, p ≤ M1,

(32)

E(n, p, ntr) − E(n∞, p∞, ntr,∞) ≤ C

�
�Ω

�
�Jn�2
n
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√
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�2
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⎞
⎟⎟⎟⎠
.
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Recall that n = ñ n , n∞ = ñ∞ n∞ and ñ∞ = �̃n . Using these relations, we rewrite the 
first two integrands as

and analogously for the p-terms. This results in

The terms in the second line of (33) can be estimated using the Log-Sobolev inequal-
ity of Proposition 4.3. Moreover, the elementary inequality x ln x − (x − 1) ≤ (x − 1)2 
for x > 0 gives rise to

and an analogous estimate for the corresponding expressions involving p. The sec-
ond term on the right hand side of the previous line can be bounded from above by 
applying Lemma 3.5, which guarantees a constant C(𝛾 ,Γ,M1) > 0 such that

for some constant c1(𝛾 ,Γ,M1) > 0 . Besides,

E(n, p, ntr) − E(n∞, p∞, ntr,∞)

= ∫Ω

(
n ln

n

n∞
− (n − n∞) + p ln

p

p∞
− (p − p∞)

+�∫
ntr

ntr,∞

(
ln

(
s

1 − s

)
− ln

( ntr,∞

1 − ntr,∞

))
ds

)
dx.

n ln
(

n

n∞

)
− (n − n∞) = n ln

(
ñ

�̃n

)
+ n ln

(
n

n∞

)
− (n − n∞)

(33)

E(n, p, ntr) − E(n∞, p∞, ntr,∞)

= ∫Ω

(
n ln

(
ñ

�̃n

)
+ p ln

( p̃

�̃p

))
dx

+ n∞

(
n

n∞
ln

(
n

n∞

)
−
(

n

n∞
− 1
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+ p∞

(
p

p∞
ln

( p

p∞

)
−
( p

p∞
− 1
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+ �∫Ω ∫
ntr

ntr,∞

(
ln

(
s

1 − s

)
− ln

( ntr,∞

1 − ntr,∞

))
ds dx.

n∞

(
n

n∞
ln

(
n

n∞
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−
(

n

n∞
− 1

)) ≤ n∞

(
n

n∞
− 1

)2

≤ 2n∞

[((
n

n∞

)
− 1

)2

+

(
n
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−
(

n
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]

(
n
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(

n
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∇
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See (26) and Lemma 3.4 for the bounds on n∗ , n∞ and n . We have thus verified that

with some c2(𝛾 ,Γ,M1) > 0 . A similar estimate holds true for the corresponding part 
of (33) involving p.

Considering the last line in (33), we further know that for all x ∈ Ω there exists 
some mean value

such that

Consequently,

In fact, we will prove that there even exists some constant � ∈ (0, 1∕2) such that

for all x ∈ Ω . Thus, the function �(x) is uniformly bounded away from 0 and 1 on Ω . 
To see this, we first note that ntr,∞ ∈ [� , 1 − �] using the constant � ∈ (0, 1∕2) from 
(26). In addition,

for all x ∈ Ω . Together with (34), this estimate implies
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��
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2⎛⎜⎜⎝
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⎟⎟⎠
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We now choose an arbitrary x ∈ Ω and distinguish two cases. If 
|ntr(x) − ntr,∞| ≥ �∕2 , then

As a consequence of ln(s∕(1 − s)) → ∞ for s → 1− and ln(s∕(1 − s)) → −∞ 
for s → 0+ , there exists some constant � ∈ (0, �) depending only on � such 
that �(x) ∈ (�, 1 − �) . If |ntr(x) − ntr,∞| < 𝛾∕2 , then ntr,∞ ∈ [� , 1 − �] implies 
ntr(x) ∈ (�∕2, 1 − �∕2) and, hence, �(x) ∈ (�∕2, 1 − �∕2) . Again the constant � 
depends only on �.

As a result of the calculations above, we may rewrite the last line in (33) as

Applying the mean-value theorem to the expression in brackets and observing that

we find

with some �(x) ∈ (min{�(x), ntr,∞}, max{�(x), ntr,∞}) . Since both �(x), ntr,∞ ∈ (�, 1 − �) 
for all x ∈ Ω , we also know that �(x) ∈ (�, 1 − �) for all x ∈ Ω . Thus, 
(�(x)(1 − �(x)))−1 is bounded uniformly in Ω in terms of � = �(�) . Consequently,

with a constant c3(𝛾) > 0 after applying the estimate |�(x) − ntr,∞| ≤ |ntr(x) − ntr,∞| 
for all x ∈ Ω . Finally, we arrive at

|||||
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)|||||
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with a constant C(𝛾 ,Γ,M1) > 0 .   ◻

5  Abstract versions of the EEP‑inequality

Notation 5.1 We set

and define the positive constants

The motivation for introducing the additional variable n′
tr
 is the possibil-

ity to symmetrise expressions like (n(1 − ntr) − ntr)
2 + (pntr − (1 − ntr))

2 as 
(nn�

tr
− ntr)

2 + (pntr − n�
tr
)2 . Similar terms will appear frequently within the subse-

quent calculations.

Remark 5.2 We may consider n′
tr
 as a fourth independent variable within our model. 

In this case, the reaction–diffusion system features the following two independent 
conservation laws:

The special formulation of the first conservation law will become clear when look-
ing at the following two Propositions. There, we derive relations for general varia-
bles a, b, c and d, which correspond to 

√
n∕(n0�n) , 

√
p∕(p0�p) , 

√
ntr and 

√
n′tr , 

respectively.
In addition, we have the following L1-bound (cf. Lemma 3.4):

E(n, p, ntr) − E(n∞, p∞, ntr,∞) ≤ C
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n�
tr
∶= 1 − ntr, n�

tr,∞
∶= 1 − ntr,∞

�∞ ∶=

�
n∗

n0
=

�
n∞

n0�n

, �∞ ∶=

�
p∗

p0
=

�
p∞

p0�p

,

�tr,∞ ∶=
√
ntr,∞, ��
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∶=

�
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n − p + � ntr =n0 �n

(
n

n0�n

)
− p0 �p

(
p

p0�p

)
+ � ntr = M ∈ ℝ,

ntr(x) + n�
tr
(x) =1 for all x ∈ Ω.

n, p ≤ M1.
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The following Proposition 5.3 establishes an upper bound for the terms in the 
second line of (32) in the case of constant concentrations a, b, c and d. This result 
is then generalised in Proposition 5.5 to non-constant states a, b, c, d.

Proposition 5.3 (Homogeneous concentrations) Let a, b, c, d ≥ 0 be constants such 
that their squares satisfy the conservation laws

for any � ∈ (0, �0] and arbitrary 𝜀0 > 0 . Moreover, assume

Then, there exists an explicitly computable constant C(𝜀0, n0, p0,M,M1,V) > 0 such 
that

for all � ∈ (0, �0].

Proof We first introduce the following change of variable: Due to the non-negativity 
of the concentrations a,  b,  c,  d, we define constants �1,�2,�3,�4 ∈ [−1,∞) such 
that

where �∞ , �∞ , �tr,∞ and ��
tr,∞

 are uniformly positive and bounded for all � ∈ (0, �0] 
in terms of �0, n0, p0,M and V by (26). Thus, the boundedness of a, b, c, d implies 
the existence of a constant K(𝜀0, n0, p0,M,M1,V) > 0 , such that �i ∈ [−1,K] for all 
1 ≤ i ≤ 4 . The left hand side of (35) expressed in terms of the �i rewrites as

Employing the equilibrium conditions (25), we also find

and

Moreover, the two conservation laws from the hypotheses rewrite as

n0�na
2 − p0�pb

2 + � c2 =M = n0�n�
2

∞
− p0�p�

2

∞
+ � �2

tr,∞
,

c2 + d2 =1 = �2
tr,∞

+ �� 2
tr,∞

a2, b2 ≤ C(n0, p0,M1,V).

(35)(a − �∞)
2 + (b − �∞)

2 + (c − �tr,∞)
2 ≤ C

(
(ad − c)2 + (bc − d)2

)

a = �∞(1 + �1), b = �∞(1 + �2), c = �tr,∞(1 + �3), d = ��
tr,∞

(1 + �4),

(a − �∞)
2 + (b − �∞)

2 + (c − �tr,∞)
2 = �2

∞
�2

1
+ �2

∞
�2

2
+ �2

tr,∞
�2

3
.

ad − c =�∞�
�
tr,∞

(1 + �1)(1 + �4) − �tr,∞(1 + �3)

=�tr,∞
[
(1 + �1)(1 + �4) − (1 + �3)

]

bc − d =�∞�tr,∞(1 + �2)(1 + �3) − ��
tr,∞

(1 + �4)

=��
tr,∞

[
(1 + �2)(1 + �3) − (1 + �4)

]
.
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The relations (36), (37) allow to express ��3 and ��4 in terms of �1 and �2 , although 
not explicitly:

where the last definition follows from inserting the previous expression (38) for ��3 
while the factor 2 + �3 is bounded in [1,K + 2] since �i ∈ [−1,K] for all 1 ≤ i ≤ 4 . 
Therefore, all the terms fi,j are uniformly positive as well as bounded from above:

All constants Ci,j and Ci,j only depend on �0 , n0 , p0 , M, M1 and V, and there exist 
corresponding bounds C > 0 and C > 0 such that for all i, j

In order to prove (35), we show that under the constraints of the conserva-
tion laws (36), (37), respectively, the relations (38), (39), there exists a constant 
C(𝜀0, n0, p0,M,C,C) > 0 for all � ∈ (0, �0] such that

which is equivalent to

Recall that �2
∞
≤ Γ∕n0 , �2

∞
≤ Γ∕p0 and �2

tr,∞
, �� 2

tr,∞
∈ [� , 1 − �] with � ∈ (0, 1∕2) 

and Γ ∈ (1∕2,∞) depending on �0 , n0 , p0 and M for all � ∈ (0, �0] (cf. the proof 

(36)n0�n�
2

∞
�1(2 + �1) − p0�p�

2

∞
�2(2 + �2) + � �2

tr,∞
�3(2 + �3) = 0,

(37)�2
tr,∞

�3(2 + �3) + �� 2
tr,∞

�4(2 + �4) = 0.

(38)
��3 = −

n0�n�
2
∞

�2tr,∞

2 + �1

2 + �3

�1 +
p0�p�

2
∞

�2tr,∞

2 + �2

2 + �3

�2

=∶ −f1,3(�1,�3)�1 + f2,3(�2,�3)�2,

(39)
��4 = −

�2
tr,∞

�� 2tr,∞

2 + �3

2 + �4

��3 =∶ −f3,4(�3,�4) ��3

=∶ f1,4(�1,�3,�4)�1 − f2,4(�2,�3,�4)�2,

0 < C1,3 ≤ f1,3 ≤ C1,3 < ∞, 0 < C2,3 ≤ f2,3 ≤ C2,3 < ∞,

0 < C3,4 ≤ f3,4 ≤ C3,4 < ∞, 0 < C1,4 ≤ f1,4 ≤ C1,4 < ∞,

0 < C2,4 ≤ f2,4 ≤ C2,4 < ∞.

C ≤ Ci,j,Ci,j ≤ C.

(a − �∞)
2 + (b − �∞)

2 + (c − �tr,∞)
2

(ad − c)2 + (bc − d)2
≤ C,
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1
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∞
�2

2
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tr,∞
�2

3

�2tr,∞
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(1 + �1)(1 + �4) − (1 + �3)
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+ �� 2tr,∞
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(1 + �2)(1 + �3) − (1 + �4)

]2 ≤ C.
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of Proposition 26). Since numerator and denominator of (40) are sums of quadratic 
terms, it is sufficient to bound the denominator from below in terms of its numerator 
omitting the prefactors �2

∞
 , �2

∞
 , �2

tr,∞
 and �� 2

tr,∞
 , i.e. to prove that

More precisely, we will prove that there exists a constant c(𝜀0,C,C) > 0 for all 
� ∈ (0, �0] such that

and that

For this reason, we distinguish four cases and we shall frequently use estimates like

since �j ≥ −1 for all 1 ≤ j ≤ 4 . We mention already here that all subsequent con-
stants c1 , c2 are strictly positive and depend only on �0 , C and C uniformly for 
� ∈ (0, �0].

Case 1: �1 ≥ 0 ∧ �2 ≥ 0 : If �3 ≥ 0 , then (37) implies �4 ≤ 0 and 
�2 + �3 + �2�3 − �4 ≥ �2 . Moreover, �3 ≥ 0 yields 

 and 

 Hence, (∗) ≥ (
�2 + �3 + �2�3 − �4

)2 ≥ c2(�
2

1
+ �2

2
) . Besides, 

(∗) ≥ (
�2 + �3 + �2�3 − �4

)2 ≥ �2

3
 . If 𝜇3 < 0 , (37) yields 𝜇4 > 0 and 

�1 + �4 + �1�4 − �3 ≥ �1 . Since 𝜇3 < 0 , (38) implies 

 and 

 As above, (∗) ≥ c2(�
2

1
+ �2

2
) . The signs �3 ≤ 0 ≤ �1,�4 yield 

(∗) ≥ (
�1 + �4 + �1�4 − �3

)2 ≥ �2

3
.

(41)
(∗) ∶=

[
(1 + �1)(1 + �4) − (1 + �3)

]2
+
[
(1 + �2)(1 + �3) − (1 + �4)

]2
≥C(�2

1
+ �2

2
+ �2

3

)
.

(∗) =
(
�1 + �4 + �1�4 − �3

)2
+
(
�2 + �3 + �2�3 − �4

)2 ≥ c (�2

1
+ �2

2
)

(∗) =
(
�1 + �4 + �1�4 − �3

)2
+
(
�2 + �3 + �2�3 − �4

)2 ≥ �2

3
.

�i + �i�j = �i(1 + �j) ≥ 0 iff �i ≥ 0 for all 1 ≤ j ≤ 4,

f2,3�2 ≥ f1,3�1 ⇒ C2,3�2 ≥ C1,3�1 ⇒ �2 ≥ C1,3∕C2,3 �1

�2 + �3 + �2�3 − �4 ≥ �2 ≥ �2∕2 + C1,3∕(2C2,3)�1 ≥ c1(�1 + �2).

f1,3�1 ≥ f2,3�2 ⇒ C1,3�1 ≥ C2,3�2 ⇒ �1 ≥ C2,3∕C1,3 �2

�1 + �4 + �1�4 − �3 ≥ �1 ≥ �1∕2 + C2,3∕(2C1,3)�2 ≥ c1(�1 + �2).
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Case 2: 𝜇1 ≥ 0 ∧ 𝜇2 < 0 : Equations (38) and (39) imply �3 ≤ 0 and �4 ≥ 0 , and 
we deduce for all � ∈ (0, �0]

 and, thus, (∗) ≥ (�1 + �4 + �1�4 − �3)
2 ≥ c2(�

2

1
+ �2

2
) . Since �2,�3 ≤ 0 ≤ �4 , 

we have 

Case 3: 𝜇1 < 0 ∧ 𝜇2 ≥ 0 : Here, �3 ≥ 0 due to (38) and, thus, �4 ≤ 0 by (39), 
which yields for all � ∈ (0, �0]

 and (∗) ≥ (�2 + �3 + �2�3 − �4)
2 ≥ c2(�

2

1
+ �2

2
) . And as �1,�4 ≤ 0 ≤ �3 , one 

has 

Case 4: 𝜇1 < 0 ∧ 𝜇2 < 0 : Supposing that �3 ≥ 0 and thus �4 ≤ 0 by (39), we 
observe 

 Furthermore, �3 ≥ 0 enables us to estimate 

 and 

 Hence, (∗) ≥ (�1 + �4 + �1�4 − �3)
2 ≥ c2(�

2

1
+ �2

2
) . The second estimate in 

terms of �2

3
 follows with �1,�4 ≤ 0 ≤ �3 from 

 In the opposite case that 𝜇3 < 0 and thus �4 ≥ 0 due to (39), we estimate 

 and 

�1 + �4 + �1�4 − �3 ≥ �4 − �3

= �−1(f1,3 + f1,4)�1 − �−1(f2,3 + f2,4)�2

≥ �−1
0
(C1,3 + C1,4)|�1| + �−1

0
(C2,3 + C2,4)|�2| ≥ c1(|�1| + |�2|)

(∗) ≥ (
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3
.

�2 + �3 + �2�3 − �4 ≥ �3 − �4 = �−1(f2,3 + f2,4)�2 − �−1(f1,3 + f1,4)�1

≥ �−1
0
(C1,3 + C1,4)|�1| + �−1

0
(C2,3 + C2,4)|�2| ≥ c1(|�1| + |�2|)

(∗) ≥ (
�3 − �4 − �1(1 + �4)

)2 ≥ �2

3
.

|�1 + �4 + �1�4 − �3| = �3 − �1 − �4(1 + �1) ≥ −�1.

f1,3�1 ≤ f2,3�2 ⇒ C1,3�1 ≤ C2,3�2 ⇒ −�1 ≥ −C2,3∕C1,3 �2.

|�1 + �4 + �1�4 − �3| ≥ −�1 ≥ −�1∕2 − C2,3∕(2C1,3)�2 ≥ c1(|�1| + |�2|).

(∗) ≥ (
�3 − �4 − �1(1 + �4)

)2 ≥ �2

3
.

|�2 + �3 + �2�3 − �4| = �4 − �2 − �3(1 + �2) ≥ −�2
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 We, thus, arrive at 

 and (∗) ≥ (�2 + �3 + �2�3 − �4)
2 ≥ c2(�

2

1
+ �2

2
) . The corresponding inequality 

for �3 reads 

 which follows from �2,�3 ≤ 0 ≤ �4.
The proof of the proposition is now complete.   ◻

Notation 5.4 From now on, ‖ ⋅ ‖ without further specification shall always denote 
the L2-norm in Ω.

Within the subsequent Proposition 5.5, the expressions (ad − c)2 and (bc − d)2 
on the right hand side of (35) will be generalised to ‖ad − c‖2 and ‖bc − d‖2 in 
(42). We will later show in the proof of Theorem  1.5 that ‖ad − c‖2 (and also 
‖bc − d‖2 ) can be estimated from above via the reaction terms within the entropy 
production (7) when using the special choices 

√
n∕(n0�n) , 

√
p∕(p0�p) , 

√
ntr  , and √

n′tr  for a, b, c, and d.

Proposition 5.5 (Inhomogeneous concentrations) Let a, b, c, d ∶ Ω → ℝ be measur-
able, non-negative functions such that their squares satisfy the conservation laws

for any � ∈ (0, �0] and arbitrary 𝜀0 > 0 . In addition, we assume

Then, there exists an explicitly computable constant C(𝜀0, n0, p0,M,M1,V) > 0 such 
that

for all � ∈ (0, �0].

f2,3�2 ≤ f1,3�1 ⇒ C2,3�2 ≤ C1,3�1 ⇒ −�2 ≥ −C1,3∕C2,3 �1.

|�2 + �3 + �2�3 − �4| ≥ −�2 ≥ −�2∕2 − C1,3∕(2C2,3)�1 ≥ c1(|�1| + |�2|)

(∗) ≥ (
�4 − �3 − �2(1 + �3)

)2 ≥ �2

3
,

n0�na
2 − p0�pb

2 + � c2 =M = n0�n�
2

∞
− p0�p�

2

∞
+ � �2

tr,∞
,

c2 + d2 =1 = �2
tr,∞

+ �� 2
tr,∞

a2, b2 ≤ C(n0, p0,M1,V).

(42)

��
a2 − �∞

�2

+

��
b2 − �∞

�2

+ ‖c − �tr,∞‖2

≤ C
�‖ad − c‖2 + ‖bc − d‖2 + ‖∇a‖2 + ‖∇b‖2

+‖a − a‖2 + ‖b − b‖2 + ‖c − c‖2 + ‖d − d‖2
�
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Proof We divide the proof into two steps. In the first part, we shall derive 
lower bounds for the reaction terms ‖ad − c‖2 + ‖bc − d‖2 involving 
(a d − c)2 + (b c − d)2 . This will allow us to apply Proposition 5.3 in the second step.

Step 1: We show

and

with some explicitly computable constant c1 > 0 . For this reason, we define

and note that �1 = �2 = �3 = �4 = 0 . Moreover,

due to Young’s inequality, a2 , b2 ≤ C(n0, p0,M1,V) and c2 , d2 ≤ 1.
We now define

and split the squares of the L2(Ω)-norm as

and

respectively. In order to estimate the first integral in (43) from below, we write

This yields

‖ad − c‖2 ≥ 1

2

�
a d − c

�2
− c1

�
‖a − a‖2 + ‖b − b‖2 + ‖c − c‖2 + ‖d − d‖2

�
,

‖bc − d‖2 ≥ 1

2

�
b c − d

�2
− c1

�
‖a − a‖2 + ‖b − b‖2 + ‖c − c‖2 + ‖d − d‖2

�

�1 ∶= a − a, �2 ∶= b − b, �3 ∶= c − c, �4 ∶= d − d

|a d − c|, |b c − d| ≤ C(n0, p0,M1,V)

S ∶=
{
x ∈ Ω || |�1| ≤ 1 ∧ |�2| ≤ 1 ∧ |�3| ≤ 1 ∧ |�4| ≤ 1

}

(43)‖ad − c‖2 = ∫S

(ad − c)2 dx + ∫Ω�S

(ad − c)2 dx

‖bc − d‖2 = ∫S

(bc − d)2 dx + ∫Ω�S

(bc − d)2 dx,

ad = (a + �1)(d + �4) = ad + a�4 + d�1 + �1�4, c = c + �3.
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where we used Young’s inequality 2xy ≥ −x2∕2 − 2y2 for x, y ∈ ℝ in the second step 
and the boundedness of �i , 1 ≤ i ≤ 4 , in the last step. Similarly, we deduce

The second integral in (43) is mainly estimated by deriving an upper bound for the 
measure of Ω�S . For all i ∈ {1,… , 4} we have

and, hence,

As a consequence of |a d − c| ≤ C(n0, p0,M1,V) , we obtain

This implies

and, analogously,

Taking the sum of both contributions to (43), we finally arrive at

�S

(ad − c)2 dx =�S

(ad − c)2 dx + 2�S

(ad − c)(a�4 + d�1 + �1�4 − �3) dx

+ �S

(a�4 + d�1 + �1�4 − �3)
2 dx

≥1

2 �S

(ad − c)2 dx − �S

(a�4 + d�1 + �1�4 − �3)
2 dx

≥1

2 �S

(ad − c)2 dx − C(n0, p0,M1,V)
(
�2
1
+ �2

3
+ �2

4

)

�S

(bc − d)2 dx ≥ 1

2 �S

(bc − d)2 dx − C(n0, p0,M1,V)
(
�2
2
+ �2

3
+ �2

4

)
.

|||
{
𝛿2
i
> 1

}||| = �{𝛿2i >1}
1 dx ≤ �Ω

𝛿2
i
dx = 𝛿2

i

|Ω�S| ≤
4∑
i=1

|||
{
𝛿2
i
> 1

}||| ≤ 𝛿2
1
+ 𝛿2

2
+ 𝛿2

3
+ 𝛿2

4
.

�Ω�S

(a d − c)2 dx ≤C(n0, p0,M1,V) |{Ω�S}|

≤C(n0, p0,M1,V)
(
�2
1
+ �2

2
+ �2

3
+ �2

4

)
.

�Ω�S

(ad − c)2 dx ≥0 ≥ 1

2 �Ω�S

(a d − c)2 dx

− C(n0, p0,M1,V)
(
�2
1
+ �2

2
+ �2

3
+ �2

4

)

�Ω�S

(bc − d)2 dx ≥ 0 ≥1

2 �Ω�S

(b c − d)2 dx

− C(n0, p0,M1,V)
(
�2
1
+ �2

2
+ �2

3
+ �2

4

)
.
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and

Step 2: We introduce constants �i ≥ −1 , 1 ≤ i ≤ 4 , such that

We recall that (26) guarantees the uniform positivity and boundedness of 
�∞ , �∞ , �tr,∞ , and ��

tr,∞
 for all � ∈ (0, �0] in terms of �0 , n0 , p0 , M, and V. There-

fore, the bounds a2 , b2 ≤ C(n0, p0,M1,V) and c2 , d2 ≤ 1 give rise to a constant 

K(𝜀0, n0, p0,M,M1,V) > 0 such that �i ∈ [−1,K] for all 1 ≤ i ≤ 4 uniformly for 
� ∈ (0, �0].

We now want to derive a formula for a in terms of �1 and �1 . Since 
a2 − a

2
= ‖a − a‖2 = ‖�1‖2 = �2

1
 , one finds

and analogous expressions for b , c and d:

Furthermore,

and, similarly,

(44)‖ad − c‖2 ≥ 1

2

�
a d − c

�2
− c1(n0, p0,M1,V)

�
�2
1
+ �2

2
+ �2

3
+ �2

4

�

(45)‖bc − d‖2 ≥ 1

2

�
b c − d

�2
− c1(n0, p0,M1,V)

�
�2
1
+ �2

2
+ �2

3
+ �2

4

�
.

a2 =�2
∞
(1 + �1)

2, b2 = �2

∞
(1 + �2)

2,

c2 =�2
tr,∞

(1 + �3)
2, d2 = �� 2

tr,∞
(1 + �4)

2.

(46)a =

√
a2 −

�2
1√

a2 + a

= �∞(1 + �1) −
�2
1√

a2 + a

b = �∞(1 + �2) −
�2
2√

b2 + b

, c = �tr,∞(1 + �3) −
�2
3√

c2 + c

,

d = ��
tr,∞

(1 + �4) −
�2
4√

d2 + d

.

(√
a2 − �∞

)2

= �2
∞
�2

1
,

(√
b2 − �∞

)2

= �2

∞
�2

2
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One observes that the expansions above in terms of �2
i
 are singular if, e.g., a2 is 

zero. We therefore distinguish the following two cases.
Case 1: a2 ≥ �2 ∧ b2 ≥ �2 ∧ c2 ≥ �2 ∧ d2 ≥ �2 : The constant 𝜅 > 0 will be cho-

sen according to the calculations in the other Case 2. Here, we have

and

for all � ∈ (0, �0] due to the bounds on �∞ and �∞ from (26). Equation (46) further 
implies

with an explicit constant c2 thanks to �∞�
�
tr,∞

= �tr,∞ (cf. (25)) and 
|�i|, �2i ≤ c1(�0, n0, p0,M,M1,V) . In a similar fashion using �∞�tr,∞ = ��

tr,∞
 , one 

obtains

‖c − �tr,∞‖2 = c2 − 2c�tr,∞ + �2
tr,∞

= �2
tr,∞

(1 + �3)
2 − 2�2

tr,∞
(1 + �3) +

2�tr,∞�
2

3�
c2 + c

+ �2
tr,∞

= �2
tr,∞

�2

3
+

2�tr,∞�
c2 + c

�2
3
.

1√
a2 + a

,
1√
b2 + b

,
1√
c2 + c

,
1√

d2 + d

≤ 1

�

��
tr,∞√
a2 + a

,
�tr,∞√
b2 + b

,
�∞√
c2 + c

,
�∞√
d2 + d

≤ C(�, �0, n0, p0,M,V)

(ad − c)2 =

⎛
⎜⎜⎜⎝
�∞�

�
tr,∞

(1 + �1)(1 + �4) −
�∞(1 + �1)�

d2 + d

�2
4
−

��
tr,∞

(1 + �4)�
a2 + a

�2
1

+
1

(

�
a2 + a)(

�
d2 + d)

�2
1
�2
4
− �tr,∞(1 + �3) +

�2
3�

c2 + c

⎞⎟⎟⎟⎠

2

≥�2
tr,∞

�
(1 + �1)(1 + �4) − (1 + �3)

�2

− c2(�, �0, n0, p0,M,M1,V)
�
�2
1
+ �2

3
+ �2

4

�
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In order to finish the proof, it is—according to Step 1—sufficient to show that

for appropriate constants C1,C2 > 0 . But due to Step 2 it is sufficient to show that 
for suitable constants C1,C2 > 0,

Collecting all �2
i
-terms on the right hand side, one only has to prove that

or, equivalently,

(bc − d)2 =

⎛
⎜⎜⎜⎝
�∞�tr,∞(1 + �2)(1 + �3) −

�∞(1 + �2)�
c2 + c

�2
3
−

�tr,∞(1 + �3)�
b2 + b

�2
2

+
1

(

�
b2 + b)(

�
c2 + c)

�2
2
�2
3
− ��

tr,∞
(1 + �4) +

�2
4�

d2 + d

⎞
⎟⎟⎟⎠

2

≥�� 2
tr,∞

�
(1 + �2)(1 + �3) − (1 + �4)

�2

− c2(�, �0, n0, p0,M,M1,V)
�
�2
2
+ �2

3
+ �2

4

�
.

�2
∞
�2

1
+ �2

∞
�2

2
+ �2

tr,∞
�2

3
+

2�tr,∞�
c2 + c

�2
3
≤ C1

�
‖∇a‖2 + ‖∇b‖2

+
1

2

�
a d − c

�2
+

1

2

�
b c − d

�2
− 2 c1(n0, p0,M1,V)

�
�2
1
+ �2

2
+ �2

3
+ �2

4

��

+ C2

�
�2
1
+ �2

2
+ �2

3
+ �2

4

�

�2
∞
�2

1
+ �2

∞
�2

2
+ �2

tr,∞
�2

3
+

2�tr,∞�
c2 + c

�2
3
≤ C1

�
‖∇a‖2 + ‖∇b‖2

+
�2
tr,∞

2

�
(1 + �1)(1 + �4) − (1 + �3)

�2
+

�� 2
tr,∞

2

�
(1 + �2)(1 + �3) − (1 + �4)

�2

− c3(�, �0, n0, p0,M,M1,V)
�
�2
1
+ �2

2
+ �2

3
+ �2

4

��
+ C2

�
�2
1
+ �2

2
+ �2

3
+ �2

4

�
.

�2
∞
�2

1
+ �2

∞
�2

2
+ �2

tr,∞
�2

3
≤ C1

�
‖∇a‖2 + ‖∇b‖2

+ �2
tr,∞

�
(1 + �1)(1 + �4) − (1 + �3)

�2
+ �� 2

tr,∞

�
(1 + �2)(1 + �3) − (1 + �4)

�2�

+
�
C2 − C(C1, �, �0, n0, p0,M,M1,V)

��
�2
1
+ �2

2
+ �2

3
+ �2

4

�
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In order to verify (47), we start with the estimate

and a corresponding one involving b. The last term on the right hand side satisfies

due to Lemma 3.5 with a constant c(𝜅, n0, p0,M1,V) > 0 . Similarly,

Proposition 5.3 (with a2 , b2 , c2 , and d2 therein replaced by �na
2∕�n , �pb

2∕�p , 
c2 , and d2 ) tells us that there exists an explicitly computable constant 
C(𝜀0, n0, p0,M,M1,V) > 0 such that

(47)

��
a2 − �∞

�2

+

��
b2 − �∞

�2

+

��
c2 − �tr,∞

�2

≤ C1

⎛
⎜⎜⎝

��
a2

�
d2 −

�
c2

�2

+

��
b2

�
c2 −

�
d2

�2

+ ‖∇a‖2 + ‖∇b‖2
⎞
⎟⎟⎠

+
�
C2 − C(C1, �, �0, n0, p0,M,M1,V)

��
�2
1
+ �2

2
+ �2

3
+ �2

4

�
.

��
a2 − �∞

�2

≤ 2

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎝

�
�na

2

�n

− �∞

⎞
⎟⎟⎠

2

+

⎛⎜⎜⎝

�
�na

2

�n

−

�
a2
⎞
⎟⎟⎠

2 ⎤
⎥⎥⎥⎦

⎛⎜⎜⎝

�
�na

2

�n

−

�
a2
⎞⎟⎟⎠

2

=

�
�na

2

�n

− a2

�2

��
�na

2

�n

+

�
a2

�2
≤ 1

�2

�
�na

2

�n

− a2

�2

≤c�Ω

����∇
√
a2
����
2

dx = c ‖∇a‖2

��
b2 − �∞

�2

≤ c(�, n0, p0,M1,V)

⎡⎢⎢⎢⎣

⎛⎜⎜⎜⎝

�����pb
2

�p

− �∞

⎞⎟⎟⎟⎠

2

+ ‖∇b‖2
⎤⎥⎥⎥⎦
.

(48)

⎛⎜⎜⎝

�
�na

2

�n

− �∞

⎞⎟⎟⎠

2

+

⎛⎜⎜⎜⎝

�����pb
2

�p

− �∞

⎞⎟⎟⎟⎠

2

+

��
c2 − �tr,∞

�2

≤ C

⎛⎜⎜⎜⎝

⎛
⎜⎜⎝

�
�na

2

�n

�
d2 −

�
c2
⎞
⎟⎟⎠

2

+

⎛⎜⎜⎜⎝

�����pb
2

�p

�
c2 −

�
d2

⎞⎟⎟⎟⎠

2⎞⎟⎟⎟⎠
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for all � ∈ (0, �0] . Using an analogue expansion as before, we further deduce with 
d2 ≤ 1,

As a corresponding estimate holds true also for the other expression on the right hand 
side of (48), we have shown that there exists a constant C1(𝜅, 𝜀0, n0, p0,M,M1,V) > 0 
independent of � for � ∈ (0, �0] such that

Choosing C2 > 0 now sufficiently large, Eq. (47) holds true.

Case 2: a2 < 𝜅2 ∨ b2 < 𝜅2 ∨ c2 < 𝜅2 ∨ d2 < 𝜅2 : In this case, we will not need 
Proposition 5.3 and we shall directly prove (42) employing only the result of Step 1. 
In fact, for � chosen sufficiently small, the states considered in Case 2 are necessarily 
bounded away from the equilibrium and the following arguments show that conse-
quentially the right hand side of (42) is also bounded away from zero, which allows 
to close the estimate (42). As a result of the hypotheses a2, b2 ≤ C(n0, p0,M1,V) 
and c2, d2 ≤ 1 , we use Young’s inequality to estimate a, b, c, d ≤ c(n0, p0,M1,V) and

with C > 0 uniformly for � ∈ (0, �0] . We stress that the subsequent cases are not nec-
essarily exclusive.

Case 2.1: c2 < 𝜅2 : First, c =
√
c
2 ≤

�
c2 < 𝜅 . This yields

For 𝜅 > 0 sufficiently small, we then have 0 < 1 − C(n0, p0,M1,V)𝜅 − 𝜅2

≤ (b c − d)2 + �2
4
 and, hence,

⎛
⎜⎜⎝

�
�na

2

�n

�
d2 −

�
c2
⎞
⎟⎟⎠

2

=

⎛
⎜⎜⎝

�
a2

�
d2 −

�
c2 +

⎛
⎜⎜⎝

�
�na

2

�n

−

�
a2
⎞
⎟⎟⎠

�
d2
⎞
⎟⎟⎠

2

≤c(�, n0, p0,M1,V)

⎛
⎜⎜⎝

��
a2

�
d2 −

�
c2

�2

+ ‖∇a‖2
⎞
⎟⎟⎠
.

��
a2 − �∞

�2

+

��
b2 − �∞

�2

+

��
c2 − �tr,∞

�2

≤ C1

⎛⎜⎜⎝

��
a2

�
d2 −

�
c2

�2

+

��
b2

�
c2 −

�
d2

�2

+ ‖∇a‖2 + ‖∇b‖2
⎞⎟⎟⎠
.

��
a2 − �∞

�2

+

��
b2 − �∞

�2

+ ‖c − �tr,∞‖2 ≤ C(�0, n0, p0,M,M1,V)

d2 =1 − c2 > 1 − 𝜅2
⇒ d

2

= d2 − 𝛿2
4
> 1 − 𝛿2

4
− 𝜅2

⇒

(
b c − d

)2 ≥ d
2

− 2b c d > 1 − 𝛿2
4
− 𝜅2 − 2b d 𝜅

≥1 − 𝛿2
4
− 𝜅2 − C(n0, p0,M1,V) 𝜅.
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by (45) with some K(𝜅, 𝜀0, n0, p0,M,M1,V) > 0 . Let us call the parameter � from 
above �c.

Case 2.2: d2 < 𝜅2 : Now d =

√
d
2 ≤

√
d2 < 𝜅 and

Again 𝜅 > 0 sufficiently small gives rise to 0 < 1 − C(n0, p0,M1,V)𝜅 − 𝜅2

≤ (a d − c)2 + �2
3
 and

for some constant K(𝜅, 𝜀0, n0, p0,M,M1,V) > 0 using (44). This 𝜅 > 0 shall be 
denoted by �d.

Case 2.3: a2 < 𝜅2 : We first notice that a < 𝜅 and 2 c d ≤ c
2
+ d

2 ≤ c2 + d2 = 1 . 
Now, we choose 𝜅a ∶= 𝜅 > 0 sufficiently small such that 2𝜅 < 𝜅2

c
 . Then, if c2 < 2𝜅 , 

we have c2 < 𝜅2
c
 , and the estimate

with K(𝜅, 𝜀0, n0, p0,M,M1,V) > 0 immediately follows from Case 2.1. And if 
c2 ≥ 2� , then

Consequently, 0 < 𝜅 ≤ (a d − c)2 + 𝛿2
3
 and

��
a2 − �∞

�2

+

��
b2 − �∞

�2

+ ‖c − �tr,∞‖2

≤ C(�0, n0, p0,M,M1,V) ≤ K(b c − d)2 + K�2
4

≤ 2K‖bc − d‖2 + (2Kc1(n0, p0,M1,V) + K)
�
�2
1
+ �2

2
+ �2

3
+ �2

4

�

c2 =1 − d2 > 1 − 𝜅2
⇒ c

2
= c2 − 𝛿2

3
> 1 − 𝛿2

3
− 𝜅2

⇒

(
a d − c

)2 ≥ c
2
− 2a c d > 1 − 𝛿2

3
− 𝜅2 − 2a c 𝜅

≥1 − 𝛿2
3
− 𝜅2 − C(n0, p0,M1,V) 𝜅.

��
a2 − �∞

�2

+
��

b2 − �∞

�2

+ ‖c − �tr,∞‖2

≤ C(�0, n0, p0,M,M1,V) ≤ K(a d − c)2 + K�2
3

≤ 2K‖ad − c‖2 + (2Kc1(n0, p0,M1,V) + K)
�
�2
1
+ �2

2
+ �2

3
+ �2

4

�

��
a2 − �∞

�2

+

��
b2 − �∞

�2

+ ‖c − �tr,∞‖2

≤ 2K‖bc − d‖2 + (2Kc1(n0, p0,M1,V) + K)
�
�2
1
+ �2

2
+ �2

3
+ �2

4

�

c
2
= c2 − �2

3
≥ 2� − �2

3
⇒

(
a d − c

)2 ≥ c
2
− 2 a c d ≥ 2� − �2

3
− � = � − �2

3
.
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due to (44) with a constant K(𝜅, 𝜀0, n0, p0,M,M1,V) > 0.

Case 2.4: b2 < 𝜅2 : Again b < 𝜅 and 2 c d ≤ c
2
+ d

2 ≤ c2 + d2 = 1 . Here, we 
choose 𝜅b ∶= 𝜅 > 0 sufficiently small such that 2𝜅 < 𝜅2

d
 . If d2 < 2𝜅 , we have 

d2 < 𝜅2

d
 , and due to Case 2.2 there exists some K(𝜅, 𝜀0, n0, p0,M,M1,V) > 0 such 

that

If d2 ≥ 2� , then

This implies 0 < 𝜅 ≤ (b c − d)2 + 𝛿2
4
 and

with K(𝜅, 𝜀0, n0, p0,M,M1,V) > 0 employing (45).
All arguments within Step 2 remain valid, if we finally set � ∶= min(�a, �b, �c, �d) . 

We also observe that the constants K > 0 above are independent of � ∈ (0, �0] . And 
since � only depends on n0 , p0 , M1 and V, we may skip the explicit dependence of C2 
on � at the end of Case 1. This finishes the proof.   ◻

We already pointed out that ‖ad − c‖2 and ‖bc − d‖2 can be controlled by the 
reaction terms of the entropy production, if we replace a, b, c, d by 

√
n∕(n0�n) , √

p∕(p0�p) , 
√
ntr  and 

√
n′tr  (see the proof of Theorem 1.5 in Sect. 6 for details). In 

this proof, also ‖∇a‖2 , ‖∇b‖2 , ‖a − a‖2 and ‖b − b‖2 may be bounded by the 
entropy production. However, ‖c − c‖2 and ‖d − d‖2 may not be estimated with 
the help of Poincaré’s inequality since this would yield terms involving ∇ntr , 
which do not appear in the entropy production.

��
a2 − �∞

�2

+

��
b2 − �∞

�2

+ ‖c − �tr,∞‖2

≤ C(�0, n0, p0,M,M1,V) ≤ K(a d − c)2 + K�2
3

≤ 2K‖ad − c‖2 + (2Kc1(n0, p0,M1,V) + K)
�
�2
1
+ �2

2
+ �2

3
+ �2

4

�

��
a2 − �∞

�2

+

��
b2 − �∞

�2

+ ‖c − �tr,∞‖2

≤ 2K‖ad − c‖2 + (2Kc1(n0, p0,M1,V) + K)
�
�2
1
+ �2

2
+ �2

3
+ �2

4

�
.

d
2

= d2 − �2
4
≥ 2� − �2

4
⇒

(
b c − d

)2 ≥ d
2

− 2 b c d ≥ 2� − �2
4
− � = � − �2

4
.

��
a2 − �∞

�2

+

��
b2 − �∞

�2

+ ‖c − �tr,∞‖2

≤ C(�0, n0, p0,M,M1,V) ≤ K(b c − d)2 + K�2
4

≤ 2K‖bc − d‖2 + (2Kc1(n0, p0,M1,V) + K)
�
�2
1
+ �2

2
+ �2

3
+ �2

4

�
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Instead, we are able to derive the following estimates for ‖c − c‖2 and ‖d − d‖2 , 
which describe an indirect diffusion transfer from c to b and from d to a, respec-
tively: Even if c and d are lacking an explicit diffusion term in the dynamical equa-
tions, they do experience indirect diffusive effects thanks to the reversible reaction 
dynamics and the diffusivity of a and b. This is the interpretation of the following 
functional inequalities.

Proposition 5.6 (Indirect diffusion transfer) Let a, b, c, d ∶ Ω → ℝ be non-negative 
functions such that

holds true a.e. in Ω . Then,

Proof We only verify the second inequality; the first one can be checked along the 
same lines. First, we notice that

because of the bound 0 ≤ d ≤ 1 . Besides, we deduce

employing 0 ≤ c, d ≤ 1 . For the subsequent estimates, we need two auxiliary ine-
qualities: For every function f ∶ Ω → ℝ and all � ∈ ℝ , we have

And for all x ≥ 0 , one has

Since c2 + d2 = 1 , we obtain

c2 + d2 = 1

‖c − c‖2 ≤ 4
�‖bc − d‖2 + ‖b − b‖2� and ‖d − d‖2 ≤ 4

�‖ad − c‖2 + ‖a − a‖2�.

(49)‖ad − c‖ = ‖ad − c + (a − a)d‖ ≤ ‖ad − c‖ + ‖a − a‖

‖a2d2 − c2‖ = ‖(ad + c)(ad − c)‖ ≤ (1 + a)‖ad − c‖

(50)

‖f − f‖2 = �Ω

(f − � + � − f )2dx

= �Ω

�
(f − �)2 − 2(f − �)(f − �) + (f − �)2

�
dx

= �Ω

(f − �)2dx − (f − �)2 ≤ ‖f − �‖2.

1 + x√
1 + x2

=

√
1 + 2x + x2√

1 + x2
≤

√
2(1 + x2)√
1 + x2

=
√
2.

‖a2d2 − c2‖ =‖a2d2 + d2 − 1‖ = ‖(1 + a
2
)d2 − 1‖

=��
��

1 + a
2
d + 1

���
1 + a

2
d − 1

���
≥��

�
1 + a

2
d − 1�� =

�
1 + a

2
����d −

1√
1 + a

2

���� ≥
�

1 + a
2‖d − d‖.
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where we applied (50) in the last step. Consequently,

and

using (49).   ◻

6  EEP‑inequality and convergence to the equilibrium

We are now prepared to prove Theorem 1.5.

Proof of Theorem  1.5 Let (n, p, ntr) ∈ L1(Ω)3 be non-negative functions satisfying 
ntr ≤ 1 , the conservation law n − p + �ntr = M and the L1-bound n, p ≤ M1 . Keep-
ing in mind that �∞ =

√
n∗∕n0 and �∞ =

√
p∗∕p0 (cf. Notation 5.1), Proposition 4.4 

guarantees that there exists a positive constant C1(𝛾 ,Γ,M1) > 0 such that

Next, we have to bound the second line of (51) in terms of the entropy production. 
To this end, we apply Proposition 5.5 with the choices a ∶=

√
n∕(n0�n) , 

b ∶=
√

p∕(p0�p) , c ∶=
√
ntr and d ∶=

√
n�tr (as always n�

tr
= 1 − ntr ). The hypothe-

ses of this proposition are fulfilled as a consequence of the conservation law 
n − p + �ntr = M and the L1-bound n, p ≤ M1 . As a result, we obtain

‖d − d‖ ≤ 1√
1 + a

2
‖a2d2 − c2‖ ≤ 1 + a√

1 + a
2
‖ad − c‖ ≤ √

2 ‖ad − c‖

‖d − d‖2 ≤ 2‖ad − c‖2 ≤ 4
�‖ad − c‖2 + ‖a − a‖2�

(51)

E(n, p, ntr) − E(n∞, p∞, ntr,∞) ≤ C1

�
�Ω

�
�Jn�2
n

+
�Jp�2
p

�
dx

+n0

��
n

n0�n

− �∞

�2

+ p0

��
p

p0�p

− �∞

�2

+ ��Ω

�√
ntr −

√
ntr,∞

�2

dx

⎞⎟⎟⎠
.
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for all � ∈ (0, �0] with a constant C2(𝜀0, n0, p0,M,M1,V) > 0 . Thanks to Poincaré’s 
inequality, we are able to bound the second and third line on the right hand side 
from above:

and

Moreover, the elementary inequality (
√
x − 1)2 ≤ (x − 1) ln(x) for x > 0 gives rise to

and similarly

��
n

n0�n

− �∞

�2

+

��
p

p0�p

− �∞

�2

+ ‖√ntr −
√
ntr,∞‖2

≤ C2

�������

�
nn�tr

n0�n

−
√
ntr

������

2

+

������

�
pntr

p0�p

−

�
n�tr

������

2

+
�����
∇

�
n

n0�n

�����

2

+
�����
∇

�
p

p0�p

�����

2

+
�����

�
n

n0�n

−

�
n

n0�n

�����

2

+
�����

�
p

p0�p

−

�
p

p0�p

�����

2

+ ��
√
ntr −

√
ntr

��2 + ��
�

n�tr −

�
n�tr

��2
�

‖‖‖‖‖

√
n

n0�n

−

√
n

n0�n

‖‖‖‖‖

2

≤ CP

‖‖‖‖‖
∇

√
n

n0�n

‖‖‖‖‖

2

= CP �Ω

|||||
1

2

√
�n

n0n
∇
(
n

�n

)|||||

2

dx ≤ CP

4n0 infΩ �n
�Ω

|Jn|2
n

dx

‖‖‖‖‖

√
p

p0�p

−

√
p

p0�p

‖‖‖‖‖

2

≤ CP

‖‖‖‖‖
∇

√
p

p0�p

‖‖‖‖‖

2

≤ CP

4p0 infΩ �p
�Ω

|Jp|2
p

dx.

������

�
nn�tr

n0�n

−
√
ntr

������

2

=�Ω

ntr

⎛⎜⎜⎝

�
nn�tr

n0�nntr
− 1

⎞⎟⎟⎠

2

dx

≤�Ω

ntr

�
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n0�nntr
− 1

�
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�
nn�
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n0�nntr

�
dx

=�Ω

�
n(1 − ntr)

n0�n

− ntr

�
ln

�
n(1 − ntr)

n0�nntr

�
dx

=�n �Ω

(−Rn) ln

�
n(1 − ntr)

n0�nntr

�
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Proposition 5.6 further implies that

Combining the above estimates, we arrive at

with a constant C3(𝜀0, 𝜏n, 𝜏p, n0, p0,M,M1,V) > 0 uniformly for � ∈ (0, �0] . With 
respect to (51), we now find

And since the constant C1 in (51) only depends on �0 , n0 , p0 , M, M1 and V (via the 
constants � and Γ ), we have finally proven that

‖‖‖‖‖‖

√
pntr

p0�p

−

√
n�tr

‖‖‖‖‖‖

2

≤ �p �Ω

(−Rp) ln

(
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p0�p(1 − ntr)

)
dx.

��
√
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√
ntr

��2 + ��
�
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�
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��2

≤ 4

⎛
⎜⎜⎝

�����

�
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n0�n
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�
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�����
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+
�����

�
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p0�p

−

�
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�����
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+

������

�
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−
√
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������

2

+

������

�
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−

�
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������

2⎞
⎟⎟⎠
.
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p0�p

− �∞
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√
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�
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+
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�
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�
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.
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for a constant C4(𝜀0, 𝜏n, 𝜏p, n0, p0,M,M1,V) > 0 independent of � ∈ (0, �0] .   ◻

Theorem 1.5 provides an upper bound for the relative entropy in terms of the 
entropy production. This already implies exponential convergence of the relative 
entropy. The subsequent proposition now yields a lower bound for the relative 
entropy involving the L1-distance of the solution to the equilibrium. This will 
allow us to establish exponential convergence in L1.

Proposition 6.1 (Csiszár–Kullback–Pinsker inequality) Let �0 , n0 , p0 , M, M1 and V 
be positive constants. Then, there exists an explicit constant CCKP > 0 such that for 
all � ∈ (0, �0] , the equilibrium (n∞, p∞, ntr,∞) ∈ X from Theorem  2.1 and all non-
negative functions (n, p, ntr) ∈ L1(Ω)3 satisfying ntr ≤ 1 , the conservation law

and the L1-bound

the following Csiszár–Kullback–Pinsker-type inequality holds true:

Proof Due to Lemma 3.2, we know that the relative entropy reads

Similar to Proposition 4.4, we employ the mean-value theorem and observe that

for all s ∈ (0, 1) . Thus, there exists some �(s) between ntr,∞ and s such that

E(n, p, ntr) − E(n∞, p∞, ntr,∞)

≤ C4 �Ω

(
|Jn|2
n

+
|Jp|2
p

− Rn ln

(
n(1 − ntr)

n0�nntr

)
− Rp ln

(
pntr

p0�p(1 − ntr)

))
dx

n − p + �ntr = M

n, p ≤ M1,

E(n, p, ntr) − E(n∞, p∞, ntr,∞)

≥ CCKP

�‖n − n∞‖2L1(Ω) + ‖p − p∞‖2L1(Ω) + �‖ntr − ntr,∞‖2L2(Ω)
�
.

E(n, p, ntr) − E(n∞, p∞, ntr,∞)

= ∫Ω

(
n ln

n

n∞
− (n − n∞) + p ln

p

p∞
− (p − p∞)

+�∫
ntr

ntr,∞

(
ln

(
s

1 − s

)
− ln

(
ntr,∞

1 − ntr,∞

))
ds

)
dx.

d

ds
ln

(
s

1 − s

)
=

1

s(1 − s)
≥ 4
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Moreover, we utilise the Csiszár–Kullback–Pinsker-inequality from Lemma 3.3 to 
estimate

where c(𝜀0, n0, p0,M,M1,V) > 0 is a positive constant independent of � ∈ (0, �0] . As 
a corresponding estimate holds true also for p, we have verified that

for some C(𝜀0, n0, p0,M,M1,V) > 0 uniformly for � ∈ (0, �0] .   ◻

Now, we are able to prove exponential convergence in relative entropy and L1.

Proof of Theorem 1.3 We first prove exponential convergence of the relative entropy

using a Gronwall argument as stated in [25]. To this end, we choose 
0 < t0 ≤ t1 ≤ t < T  and rewrite the entropy production law as

where we applied Theorem 1.5 with K ∶= C−1
EEP

 in the second step. Furthermore, we 
set

and obtain from (52) the estimate KΨ(t1) ≤ �(t1) − �(t) which yields

Integrating this inequality from t1 = t0 to t1 = t and observing that Ψ(t) = 0 gives 
rise to

��Ω �
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(
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(
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1 − ntr,∞
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ds dx

= ��Ω �
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1
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≥ 4��Ω �
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2 dx
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�
n ln

�
n
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�
− (n − n∞)

�
dx ≥ 3

2n + 4n∞
‖n − n∞‖2L1(Ω) ≥ c‖n − n∞‖2L1(Ω)

E(n, p, ntr) − E(n∞, p∞, ntr,∞)

≥ C
�‖n − n∞‖2L1(Ω) + ‖p − p∞‖2L1(Ω) + �‖ntr − ntr,∞‖2L2(Ω)

�

�(t) ∶= E(n, p, ntr)(t) − E(n∞, p∞, ntr,∞)

(52)�(t1) − �(t) = �
t

t1

P(n, p, ntr)(s) ds ≥ K �
t

t1

�(s) ds

Ψ(t1) ∶= ∫
t

t1

�(s) ds = −∫
t1

t

�(s) ds

d

dt1

(
Ψ(t1)e

Kt1

)
= −�(t1)e

Kt1 + KΨ(t1)e
Kt1 ≤ −�(t)eKt1 .
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As a consequence of (52) with t1 = t0 , one has −Ψ(t0) ≥ (�(t) − �(t0))∕K and, 
hence,

But this is equivalent to

for all t ≥ t0 > 0 . In order to conclude that

for all t ≥ 0 , we observe that the rate K is independent of t0 and that the entropy 
E(n, p, ntr)(t0) extends in (53) continuously to t0 → 0 since n, p ∈ C([0, T);L2(Ω)) for 
all T > 0 by Theorem 1.1. This results in the announced exponential decay of the 
relative entropy, while the exponential convergence in L1 follows from Proposition 
6.1.   ◻

Proof of Corollary 1.8 We first prove that the linearly growing L∞-bounds together 
with parabolic regularity for system (1) and assumption (4) entail polynomially 
growing W1,q-bounds, q ∈ (1,∞) , for n and p. To this end, we consider

and introduce the variable w = n eVn . We observe that 
∇ ⋅ Jn = ∇ ⋅

(
e−Vn∇w

)
= e−Vn

(
Δw − ∇Vn ⋅ ∇w

)
 and thus,

Under the assumptions of Corollary 1.8, this equation is of the form

where fi ∈ C([0,∞),L∞(Ω)) for i ∈ {1, 2} , f3 ∈ C([0,∞),L∞(Ω)m) and n̂ ⋅ ∇w = 0 
on �Ω . Testing this equation with −(q − 1)|∇w|q−2Δw yields

−Ψ(t0)e
Kt0 ≤ −

�(t)

K

(
eKt − eKt0

)
.

−�(t0)e
Kt0 ≤ −�(t)eKt.

(53)E(n, p, ntr)(t) − E(n∞, p∞, ntr,∞) ≤ (E(n, p, ntr)(t0) − E∞)e
−K(t−t0),

E(n, p, ntr)(t) − E(n∞, p∞, ntr,∞) ≤ (EI − E∞)e
−Kt,

�tn = ∇ ⋅ Jn +
1

�n

(
ntr −

n

n0e
−Vn

(
1 − ntr

))
, Jn = e−Vn∇

(
n eVn

)
,

(54)�tw = Δw − ∇Vn ⋅ ∇w +
eVn

�n

(
ntr −

1 − ntr

n0
w

)
.

�tw − Δw = f1 + f2w + f3 ⋅ ∇w
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Using the inequalities |ab| ≤ (a2 + b2)∕2 and (a + b + c)2 ≤ 3(a2 + b2 + c2) for 
a, b, c ∈ ℝ , we find

Together with C > 0 satisfying |fi(t, x)2| ≤ C for all i ∈ {1, 2, 3} , t ≥ 0 and a.e. 
x ∈ Ω , we derive

An integration by parts and Young’s inequality with C1(C, q) > 0 give rise to

Hence, there exists a constant C2(C, q) > 0 such that

where A,B > 0 result from the linearly growing L∞-bounds from (11). For any fixed 
t0 > 0 and all t ≥ t0 , we now have

1

q

d

dt ∫Ω

|∇w|q dx = ∫Ω

|∇w|q−2∇w ⋅ ∇�tw dx

= −∫Ω

(
(q − 2)|∇w|q−4∇wΔw ⋅ ∇w + |∇w|q−2Δw

)
�tw dx

= −∫Ω

(q − 1)|∇w|q−2Δw �tw dx

= −∫Ω

(q − 1)|∇w|q−2|Δw|2dx

− ∫Ω

(q − 1)|∇w|q−2Δw(f1 + f2w + f3 ⋅ ∇w
)
dx.

1

q

d

dt �Ω

|∇w|q dx ≤ −
1

2 �Ω

(q − 1)|∇w|q−2|Δw|2 dx

+
3

2 �Ω

(q − 1)|∇w|q−2(f 2
1
+ f 2

2
w2 + f 2

3
|∇w|2)dx.

1

q

d

dt �Ω

|∇w|q dx ≤ −
1

2 �Ω

(q − 1)|∇w|q−2|Δw|2 dx

+
3C

2 �Ω

(q − 1)|∇w|q−2(1 + w2 + |∇w|2)dx.

�Ω

(q − 1)|∇w|q−2∇w ⋅ ∇wdx

= −�Ω

(
(q − 1)(q − 2)|∇w|q−4∇wΔw ⋅ ∇w + (q − 1)|∇w|q−2Δw

)
wdx

= −�Ω

(q − 1)2|∇w|q−2Δwwdx

≤ 1

3C �Ω

(q − 1)1|∇w|q−2|Δw|2 dx + C1 �Ω

|∇w|q−2w2 dx.

d

dt �Ω

|∇w|q dx ≤ C2 �Ω

|∇w|q−2(1 + w2) dx ≤ (A + B t2)�Ω

|∇w|q−2 dx,
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A Gronwall lemma (see e.g. [2]) now proves the desired polynomial growth of 
‖∇w‖Lq(Ω) and ‖∇n‖Lq(Ω):

Next, we use the Gagliardo–Nirenberg–Moser interpolation inequality in ℝm , m ≥ 1 
(see e.g. [23]):

Then, interpolating with the exponentially decaying L1-norm of n − n∞ , we obtain

due to the exponential convergence to equilibrium (15). The estimate for p follows 
in the same way.   ◻

Proof of Corollary 1.9 We first notice that exponential convergence of n and p in 
Lq(Ω) , 1 < q < ∞ , immediately follows from Theorem 1.3 and Corollary 1.8 via

and an analogous estimate for p where 0 < Cq,Kq < ∞ are constants independent 
of � ∈ (0, �0] . Reusing the Gagliardo–Nirenberg–Moser interpolation inequality in 
ℝ

m , m ≥ 1 , from (56) and the polynomial bound on the growth of ‖∇n(t)‖L2m(Ω) from 
(55), we derive

thus, establishing exponential convergence of n and p in L∞(Ω) . Concerning the 
convergence of ntr , we recall the following identities from (25) and (22):

We abbreviate u∶=ntr − ntr,∞ and calculate (pointwise in x) by adding and subtract-
ing ntr,∞ and ntr multiple times and by using the relations (58):

‖∇w(t)‖q
Lq(Ω)

≤ ‖∇w(t0)‖qLq(Ω) + �
t

t0

(A + B s2)‖∇w(s)‖q−2
Lq(Ω)

ds.

(55)‖∇w(t)‖Lq(Ω) ≤
�
‖∇w(t0)‖2Lq(Ω) + A(t − t0) +

B

3
(t3 − t3

0
)

� 1

2

.

(56)‖n − n∞‖L∞(Ω) ≤ G(Ω)‖n − n∞‖
1

2

W1,2m(Ω)
‖n − n∞‖

1

2

L2m(Ω)
.

‖n(t, ⋅)‖L∞(Ω) ≤ ‖n∞‖L∞(Ω) + ‖n − n∞‖L∞(Ω)

≤ ‖n∞‖L∞(Ω) + G‖n − n∞‖
1

2

W1,2m(Ω)
‖n − n∞‖

1

2
−

1

4m

L∞(Ω)
‖n − n∞‖

1

4m

L1(Ω)
≤ Z

‖n − n∞‖qLq(Ω) ≤ ‖n − n∞‖q−1L∞(Ω)
‖n − n∞‖L1(Ω) ≤ Cqe

−Kqt

(57)‖n − n∞‖L∞(Ω) ≤ G(Ω)‖n − n∞‖
1

2

W1,2m(Ω)
‖n − n∞‖

1

2

L2m(Ω)
≤ Cme

−Kmt,

(58)

1 − ntr,∞ =
p∞

p0�p

ntr,∞, ntr,∞ =
n∞

n0�n

(1 − ntr,∞),
p∞

�p

= p∗,
n∞

�n

= n∗.
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Hence, due to 0 ≤ ntr(t, x) ≤ 1 for all t ≥ 0 and a.e. x ∈ Ω , �n = e−Vn , �p = e−Vp , and 
V = max(‖Vn‖L∞(Ω), ‖Vp‖L∞(Ω)) , we estimate with (57)

where C∶=Cme
V
(
(�pp0)

−1 + (�nn0)
−1
)
 . For the following calculation, we assume 

w.l.o.g. 2�0Km ≤ K . Hence, using ‖u(0, ⋅)‖L∞(Ω) ≤ 1 , we arrive at

where the last bound is independent of � .   ◻

7  A limiting entropy method for system (20)

The existence theory of the Shockley–Read–Hall model applies classical methods 
(see e.g. [18]) and can be carried out analogously to Theorem 1.1. Therefore, we 
state here the corresponding results without proof.

Theorem  7.1 (Shockley–Read–Hall for � = 0 ) Under the assumptions 
of Theorem  1.1, there exists a unique non-negative global weak solution 
(n, p) ∈

(
C([0, T], L2(Ω)) ∩W2(0, T) ∩ L∞((0, T), L∞(Ω))

)2
, of system (20) for all 

T ∈ (0,∞) satisfying the boundary conditions (2).

� �tu = Rp − Rn =
1

�p

(
1 − ntr −

p

p0�p

ntr

)
−

1

�n

(
ntr −

n

n0�n

(1 − ntr)

)

=
1

�p

(
− u +

p∞

p0�p

ntr,∞ −
p

p0�p

ntr

)

−
1

�n

(
u +

n∞

n0�n

(1 − ntr,∞) −
n

n0�n

(1 − ntr)

)

= −u

(
1

�p
+

p∗

�pp0
+

1

�n
+

n∗

�nn0

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶K

−
ntr

�pp0�p

(
p − p∞

)
+

(1 − ntr)

�nn0�n

(
n − n∞

)
.

d

dt
‖u(t, ⋅)‖L∞(Ω) ≤ −

K

�
‖u(t, ⋅)‖L∞(Ω) +

eV

��pp0
��p(t, ⋅) − p∞

��L∞(Ω)

+
eV

��nn0
��n(t, ⋅) − n∞

��L∞(Ω)

≤ −
K

�
‖u(t, ⋅)‖L∞(Ω) +

C

�
e−Kmt

‖ntr(t, ⋅) − ntr,∞‖L∞(Ω) ≤ e−Kt∕� +
C

� �
t

0

e−K(t−s)∕�−Kms ds

≤ e−Kt∕� + e−Kt∕�
C

K − �Km

�
e(K∕�−Km)t − 1

� ≤ e−Kt∕�0 +
C

K − �0Km

e−Kmt,
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Moreover, there exist positive constants Cn(‖nI‖L∞(Ω),Vn) , Cp(‖pI‖L∞(Ω),Vp) and 
Kn(Vn) , Kp(Vp) such that

Finally, there exist positive constants � , Γ , 𝜃 > 0 (depending on � , Cn , Cp , Kn , Kp , Vn , 
Vp ) such that

where �� =
Γ

1+��
 such that the bounds �t and Γ∕(1 + �t) intersect at time �.

The entropy functional (5) extends continuously to the limit � = 0:

which is again an entropy (the free energy) functional of the Shockley–Read–Hall 
model (20). The corresponding entropy production (free energy dissipation) func-
tional reads as

Next, we recall from the introduction n
qssa

tr = n
qssa

tr (n, p) such that 
Rn(n, n

qssa

tr ) = Rp(p, n
qssa

tr ) , i.e.

n
qssa

tr (n, p) denotes the pointwise equilibrium value of the trapped states in (1) for 
fixed n and p, which corresponds to the quasi-steady-state approximation � = 0.

Moreover, we observe that the Shockley–Read–Hall entropy production functional 
(61) can be identified as the entropy production functional P(n, p, nqssatr ) as given in (7) 
along trajectories of (1) with � = 0 when ntr ≡ n

qssa

tr (n, p):

(59)‖n(t, ⋅)‖L∞(Ω) ≤ Cn + Knt, ‖p(t, ⋅)‖L∞(Ω) ≤ Cp + Kpt, for all t ≥ 0.

(60)n(t, x), p(t, x) ≥ min

{
�t,

Γ

1 + �t

}
for all t ≥ 0 and a.e. x ∈ Ω

E0(n, p)∶=∫Ω

(
n ln

n

n0�n

− (n − n0�n) + p ln
p

p0�p

− (p − p0�p)

)
dx,

(61)

P0(n, p)∶= −
d

dt
E0(n, p) = �Ω

(
|Jn|2
n

+
|Jp|2
p

− R ln

(
np

n0�np0�p

))
dx ≥ 0.

(62)n
qssa

tr ∶=
�n + �p

n

n0�n

�n + �p + �n
p

p0�p

+ �p
n

n0�n

.

P(n, p, n
qssa

tr ) = ∫Ω

(
|Jn|2
n

+
|Jp|2
p

− Rn ln

(
n(1 − n

qssa

tr )

n0�nn
qssa

tr

)

−Rp ln

(
pn

qssa

tr

p0�p(1 − n
qssa

tr )

))
dx

= ∫Ω

(
|Jn|2
n

+
|Jp|2
p

− R ln

(
np

n0�np0�p

))
dx = P0(n, p)
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where one uses R = Rn = Rp at ntr = n
qssa

tr  and that the involved integrals are finite.
Analogously to Theorem 2.1, there exists a unique equilibrium (n∞,0, p∞,0) ∈ X0 

in the case � = 0 , where

This equilibrium reads

where n∗,0, p∗,0 > 0 are uniquely determined by n∗,0p∗,0 = n0p0 and 
n∗,0�n − p∗,0�p = M.

We are now in the position to formulate the EEP-inequality.

Theorem 7.2 (Entropy–Entropy Production Inequality for � = 0 ) Let �n , �p , n0 , p0 , 
M1 and V be positive constants. Consider M ∈ ℝ and the correspondingly unique 
equilibrium (n∞,0, p∞,0) ∈ X0.

Then, the following EEP-inequality holds true for all non-negative functions 
(n, p) ∈ L1(Ω)2 satisfying the conservation law n − p = M, the L1-bound n, p < M1 
as well as the conditions E0(n, p) < ∞ , P0(n, p) < ∞ , P(n, p, nqssatr ) < ∞ for some 
𝜀0 > 0:

where CEEP > 0 is the same constant as in Theorem 1.5.

Theorem 7.3 (Exponential convergence for � = 0 ) Let (n, p) be a global weak solu-
tion of system (20) as given in Theorem 7.1 corresponding to the non-negative initial 
data (nI , pI) ∈ L∞(Ω)2 . Then, this solution satisfies the entropy production law

for all 0 < t0 ≤ t1 < ∞.

Moreover, the following versions of the exponential decay towards the equilib-
rium (n∞,0, p∞,0) ∈ X0 hold true:

and

X0 ∶={(n, p) ∈ H1(Ω)2 || n − p = M

∧ (∃ 𝛾 > 0) n, p ≥ 𝛾 a.e. ∧ n
qssa

tr ∈ [𝛾 , 1 − 𝛾] a.e. }.

(63)n∞,0 = n∗,0e
−Vn , p∞,0 = p∗,0e

−Vp ,

(64)E0(n, p) − E0(n∞,0, p∞,0) ≤ CEEPP0(n, p),

(65)E0(n, p)(t1) + ∫
t1

t0

P0(n, p)(s) ds = E0(n, p)(t0)

E0(n, p)(t) − E∞ ≤ (EI − E∞)e
−Kt

(66)‖n − n∞,0‖2L1(Ω) + ‖p − p∞,0‖2L1(Ω) ≤ C(EI − E∞)e
−Kt
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where C ∶= C−1
CKP

 and K ∶= C−1
EEP

 are the same constants as in Theorem 1.3. Moreo-
ver, EI and E∞ denote the initial entropy of the system and the entropy in the equilib-
rium, respectively.

Remark 7.4 We believe that the entropy–entropy production inequality (64) can also 
be proven by combining estimates of Sect.  5 with previous works on the entropy 
method for detailed balanced reaction–diffusion models, see e.g. [5, 7, 10, 19]. 
We emphasise, however, that our goal with Theorem 7.2 is to be able to derive an 
entropy–entropy production inequality via the fast-reaction parameter � → 0.

Finally, in the same way as for strictly positive 𝜀 > 0 , we can derive uniform-
in-time L∞-bounds for n and p also in the case � = 0 . As before, these bounds 
further improve the lower bounds on n and p.

Corollary 7.5 There exists a constant Z > 0 such that

And for all 𝜏 > 0 there exist sufficiently small constants 𝜇,Γ > 0 such that

for all t ≥ 0 and a.e. x ∈ Ω , where �� = Γ such that the bounds �t and Γ intersect at 
time 𝜏 > 0.

Corollary 7.6 Under the hypotheses of Theorem  7.3, there exist constants 
0 < C,K < ∞ such that

holds true for all t ≥ 0.

Proof of Theorem 1.5 Our goal is to derive an estimate of the form

by applying the EEP-inequality from Theorem 1.5 directly to the functions n, p and 
n
qssa

tr  . However, since we assume that n and p satisfy

the triple (n, p, nqssatr ) does not satisfy the conservation law with right hand side M but

In order to resolve this issue, we shall apply the EEP-inequality from Theorem 1.5 
to a suitably defined sequence of functions (n�, p�, ntr,�) ∈ L1(Ω)3 which fulfil 
‖ntr,�‖L∞(Ω) ≤ 1 , the L1-bound n�, p� ≤ M1 and the conservation law

(67)‖n(t, ⋅)‖L∞(Ω), ‖p(t, ⋅)‖L∞(Ω) ≤ Z for all t ≥ 0.

(68)n(t, x), p(t, x) ≥ min {�t,Γ}

‖n − n∞‖L∞(Ω) + ‖p − p∞‖L∞(Ω) ≤ Ce−Kt

E0(n, p) − E0(n∞,0, p∞,0) ≤ CEEPP0(n, p)

n − p = M,

n − p + �nqssatr = M + �nqssatr .



579

1 3

Uniform convergence to equilibrium for a family of drift–…

A convenient choice is n�∶=n , p�∶=p + �nqssatr  and ntr,�∶=n
qssa

tr  , where 
n
qssa

tr = n
qssa

tr (n, p) as defined in (62). For this choice, we derive the stated EEP-esti-
mate for the case � = 0 via the following steps, which are proven below:

We recall that n and p are assumed to satisfy E0(n, p) < ∞ and 
P0(n, p),P(n, p, n

qssa

tr ) < ∞ , which implies that P0(n, p) = P(n, p, n
qssa

tr ) as discussed 
in the introduction.

Step 1. Proof of (69): We first show, that with (n�, p�, ntr,�) = (n, p�, n
qssa

tr )

Recalling that

we first notice that p� = p + �nqssatr → p monotonically decreasing for 
� → 0 for all x ∈ Ω . Thus, by using nqssatr ≤ 1 and the elementary estimate 
p� ln p� ≤ 2p (ln p + ln 2) for p ≥ max{�0, 1} , the Lebesgue dominated convergence 
theorem, the L1-bounds n, n�, p, p� ≤ M1 and E0(n, p) < ∞ imply the convergence of 
the p�-integral in (72). The convergence of the third integral follows directly from

Using analogue arguments, the convergence

follows from observing the monotone convergence n∗ → n∗,0 and p∗ → p∗,0 for 
� → 0 due to (27) in the proof of Theorem 2.1, which directly implies the mono-
tone convergence n∞ → n∞,0 and p∞ → p∞,0 for all x ∈ Ω , where (n∞, p∞, ntr,∞) and 
(n∞,0, p∞,0) are defined in (22) and (63), respectively.

n� − p� + �ntr,� = M.

(69)E0(n, p) − E0(n∞,0, p∞,0) = lim
�→0

(
E(n�, p�, ntr,�) − E(n∞, p∞, ntr,∞)

)

(70)≤ lim
�→0

(
CEEPP(n�, p�, ntr,�)

)

(71)= CEEPP(n, p, n
qssa

tr ) = CEEPP0(n, p)

(72)E0(n, p) = lim
�→0

E(n�, p�, ntr,�).

E(n, p�, n
qssa

tr ) =∫Ω

(
n ln

n

n0�n

− (n − n0�n) + p� ln
p�

p0�p

−(p� − p0�p) + �∫
n
qssa
tr

1∕2

ln

(
s

1 − s

)
ds

)
dx,

|||||
��

n
qssa
tr (x)

1∕2

ln
s

1 − s
ds
|||||
≤ ��

1

1∕2

ln
s

1 − s
ds

�→0

����������������→ 0.

E0(n∞,0, p∞,0) = lim
�→0

E(n∞, p∞, ntr,∞)
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Step 2. Proof of (70): We observe that the functions 

(n�, p�, ntr,�) = (n, p + �nqssatr , n
qssa

tr ) ∈ L1(Ω)3 satisfy ‖ntr,�‖L∞(Ω) ≤ 1 , the conserva-
tion law

as well as the L1-bounds n� ≤ M1 and p� ≤ p + �� where 𝜀 ∈ (0, 𝜀�] ⊂ (0, 𝜀0] . 
Because of p < M1 , we have p� ≤ M1 for 𝜀′ > 0 sufficiently small. As a consequence,

where CEEP > 0 is the same constant as in Theorem 1.5.
Step 3. Proof of (71): As the constant CEEP > 0 is independent of � ∈ (0, �0] , it 

suffices to show that

To this end, we consider the representation

where we have already taken into account that n� = n , ∇p� = ∇p and ntr,� = n
qssa

tr  for 
all 𝜀 > 0.

We note first that the convergence of the second, third and forth integral follows 
from the pointwise convergence of p� for all x ∈ Ω and from the Lebesgue domi-
nated convergence theorem by estimating

where the function on the right hand side is integrable due to the finiteness of 
P(n, p, n

qssa

tr ).
Secondly, the product

n� − p� + �ntr,� = n − p = M

E(n�, p�, ntr,�) − E(n∞, p∞, ntr,∞) ≤ CEEPP(n�, p�, ntr,�)

lim
�→0

P(n�, p�, ntr,�) = P(n, p, n
qssa

tr ).

P(n�, p�, ntr,�) =∫Ω

(|Jn|2
n

+
|∇p|2
p�

+ 2∇p ⋅ ∇Vp + p�|∇Vp|2

− Rn ln

(
n(1 − n

qssa

tr )

n0�nn
qssa

tr

)
+

1

�p

(
p�

p0�p

n
qssa

tr − (1 − n
qssa

tr )

)

×

(
ln

p�n
qssa

tr

p0�p

− ln(1 − n
qssa

tr )

))
dx,

0 ≤ |∇p|2
p�

+ 2∇p ⋅ ∇Vp + p�|∇Vp|2 ≤ |∇p|2
p

+ 2∇p ⋅ ∇Vp + p|∇Vp|2

+ (p� − p)|∇Vp|2 ≤ |Jp|2
p

+ �0n
qssa

tr |∇Vp|2,

(
p�

p0�p

n
qssa

tr − (1 − n
qssa

tr )

)(
ln

p�n
qssa

tr

p0�p

− ln(1 − n
qssa

tr )

)

⟶

(
p

p0�p

n
qssa

tr − (1 − n
qssa

tr )

)(
ln

pn
qssa

tr

p0�p

− ln(1 − n
qssa

tr )

)
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converges pointwise for all x ∈ Ω as � → 0 . In order to conclude the convergence 
of the corresponding integral via the Lebesgue dominated convergence theorem, 
we use similar to Step 1 the elementary inequality p� ln p� ≤ 2p (ln p + ln 2) for 
p ≥ max{�0, 1} and the finiteness of P(n, p, nqssatr ) . This yields

and therefore, P(n�, p�, ntr,�) → P(n, p, n
qssa

tr ) for � → 0 .   ◻

Proof of Theorem 1.3 We only have to check that the assumptions on the finiteness 
of the entropy E0 and the entropy production functionals P0 and P within Theorem 2 
are satisfied. The claim of this theorem then follows from the same arguments as in 
the proof of Theorem 1.3.

Due to the uniform L∞-bounds (59) of n(t) and p(t) for all t ≥ 0 , we know that 
E0(n, p) < ∞ for all t ≥ 0 . Similarly, we deduce that P(n, p, nqssatr ) and P0(n, p) are 
finite for all strictly positive t > 0 since n, p are bounded away from zero and nqssatr  is 
bounded away from zero and one uniformly in Ω.

Finally, the lower bounds (60) guarantee similar to Theorem  1.5 that solutions 
satisfy the weak entropy production law (65) for all t0 > 0 .   ◻

8  Conclusion

We have investigated the drift–diffusion–recombination system (1) modelling the 
transport, generation and annihilation of negatively charged electrons and posi-
tively charged holes (vacancies of electrons) in certain types of semiconductors. As 
depicted in Fig. 1, we have considered a two-level system augmented by an addi-
tional intermediate energy level, the so-called trap level, which results from the 
presence of foreign atoms inside the crystal of the semiconductor. We have derived 
an entropy–entropy production (EEP) inequality (cf. Theorem  1.5) which bounds 
the entropy functional (5) from above in terms of the entropy production functional 
(7). This EEP-inequality has then be used to show that the concentrations of elec-
trons and holes converge to their equilibrium distributions at an exponential rate as 
time tends to infinity (cf. Theorem 1.3).

A novel achievement of our studies is the fact that the entropy method has been 
applied uniformly in a small time-related parameter. More precisely, the constant 
CEEP in Theorem 1.5 is independent of the lifetime � of electrons on the trap level 
(cf. (1)) provided � ∈ (0, �0] for some 𝜀0 > 0 . The �-independence of CEEP transfers 
to the constants appearing in the exponential decay estimate in Theorem 1.3. This 
proves that the exponential convergence rate is independent of a quasi-steady-state 

lim
�→0∫Ω

1

�p

(
p�

p0�p

n
qssa

tr −(1 − n
qssa

tr )

)(
ln

p�n
qssa

tr

p0�p

− ln(1 − n
qssa

tr )

)
dx

= −∫Ω

Rp ln

(
pn

qssa

tr

p0�p(1 − n
qssa

tr )

)
dx
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approximation of the electrons on the trap level, which leads to the famous Shock-
ley–Read–Hall recombination model [16, 21].

In particular, we were able to derive an EEP-inequality and the convergence 
estimate for the limiting Shockley–Read–Hall model. This fact is notable from a 
conceptual point of view as we transfer the results for 𝜀 > 0 to the case � = 0 by 
performing the limit � → 0 . We believe that our limiting approach to the Shock-
ley–Read–Hall model may serve as an example for possible applications of this 
technique to fast-reaction limits and quasi-steady-state approximations.

In view of the technicalities of the proofs and the resulting length of the cur-
rent paper, our results are still limited by not taking into account the self-consistent 
potential generated by electrons and holes, which is required by a physically more 
precise model. However, this leads to an additional coupling of (1) to Poisson’s 
equation and a further increase in complexity of the problem. We expect however to 
resolve these issues in a future work by combining techniques and results presented 
in the current paper with ideas in [9], which considered a self-consistent Shock-
ley–Read–Hall model without trapped states.
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the case of arbitrary values for �n , �p , n0 and p0 . The structure of system (1) can be 
further simplified via introducing new variables
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One obtains

which results in

Analogously, we derive

For convenience, we also introduce the abbreviations

as well as 𝛼, 𝛽 > 0 such that the following estimates hold true a.e. in Ω:

Next, we introduce the new variable

for reasons of symmetry. In fact, we can prove the positivity of n′
tr
 in the same way 

as for ntr , which then implies the desired bound 0 ≤ ntr ≤ 1 . A further ingredient 
for establishing the positivity of the variables u, v, ntr and n′

tr
 is to project them onto 

[0,∞) and [0,  1], respectively, on the right hand side of the PDE-system. In this 
context, we use X+ ∶= max(X, 0) to denote the positive part of an arbitrary function 
X and X[0,1] ∶= min(max(X, 0), 1) for the projection of X to the interval [0, 1]. The 
modified system now reads

u ∶= e
Vn

2 n, v ∶= e
Vp

2 p.

∇u =
1

2
e

Vn

2 ∇Vnn + e
Vn

2 ∇n and

Δu =e
Vn

2

(
Δn + ∇n ⋅ ∇Vn +

1

4
n|∇Vn|2 + 1

2
nΔVn

)

�tu = e
Vn

2 �tn = e
Vn

2

(
Δn + ∇n ⋅ ∇Vn + nΔVn + Rn

)

= Δu − e
Vn

2

(
1

4
n|∇Vn|2 − 1

2
nΔVn

)
+ e

Vn

2 Rn

= Δu +
(
1

2
ΔVn −

1

4
|∇Vn|2

)
u + e

Vn

2 ntr − eVnu(1 − ntr).

�tv = Δv +
(
1

2
ΔVp −

1

4
|∇Vp|2

)
v + e

Vp

2 (1 − ntr) − eVpvntr.

An ∶=
1

2
ΔVn −

1

4
|∇Vn|2 ∈ L∞(Ω), Ap ∶=

1

2
ΔVp −

1

4
|∇Vp|2 ∈ L∞(Ω)

|An|, |Ap| ≤ � and e
Vn

2 , e
Vp

2 , eVn , eVp ≤ �.

(73)n�
tr
∶= 1 − ntr

(74)

⎧⎪⎪⎨⎪⎪⎩

�tu − Δu = Anu
+ + e

Vn

2 n[0,1]
tr

− eVnu+n�[0,1]
tr

,

�tv − Δv = Apv
+ + e

Vp

2 n�[0,1]
tr

− eVpv+n[0,1]
tr

,

� �tntr = n�[0,1]
tr

− e
Vp

2 v+n[0,1]
tr

− n[0,1]
tr

+ e
Vn

2 u+n�[0,1]
tr

,

� �tn
�
tr
= n[0,1]

tr
− e

Vn

2 u+n�[0,1]
tr

− n�[0,1]
tr

+ e
Vp

2 v+n[0,1]
tr

.
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The no-flux boundary conditions of (1) transfer to similar conditions on u and v. In 
detail, we have

and, hence,

Therefore, the corresponding boundary conditions for u and v read

Furthermore, we assume that the corresponding initial states satisfy

In this situation, ‖ntr,I‖L∞(Ω) + ‖n�
tr,I
‖L∞(Ω) ≥ 1 and we set

We now aim to apply Banach’s fixed-point theorem to obtain a solution of (74)–(76).
Step 1: Definition of the fixed-point iteration. For any time T > 0 (to be chosen 

sufficiently small in the course of the fixed-point argument), we introduce the space

and the closed subspace

The fixed-point mapping S ∶ XT → XT is now defined via

where (u, v, ntr, n�tr) is the solution of the following PDE-system subject to the bound-
ary and initial conditions specified above:

e
−

Vn

2 ∇u = ∇n +
1

2
n∇Vn

∇n + n∇Vn = e
−

Vn

2

(
∇u +

1

2
u∇Vn

)
.

(75)n̂ ⋅
(
∇u +

1

2
u∇Vn

)
= n̂ ⋅

(
∇v +

1

2
v∇Vp

)
= 0.

(76)(uI , vI , ntr,I , n
�
tr,I
) ∈ L∞

+
(Ω)4, ntr,I + n�

tr,I
= 1.

I ∶= ‖uI‖L∞(Ω) + ‖vI‖L∞(Ω) + ‖ntr,I‖L∞(Ω) + ‖n�
tr,I
‖L∞(Ω) ≥ 1.

XT ∶= C([0, T], L2(Ω))4

MT ∶=
�
(u, v, ntr, n

�
tr
) ∈ XT

�� (u(0), v(0), ntr(0), n�tr(0)) = (uI , vI , ntr,I , n
�
tr,I
),

max
0≤t≤T ‖u(t)‖L2(Ω), max

0≤t≤T ‖v(t)‖L2(Ω), max
0≤t≤T ‖ntr(t)‖L2(Ω),

max
0≤t≤T ‖n

�
tr
(t)‖L2(Ω), ‖u‖L∞((0,T)×Ω), ‖v‖L∞((0,T)×Ω) ≤ 2I

�
⊂ XT .

S(ũ, ṽ, ñtr, ñ
�
tr
) ∶= (u, v, ntr, n

�
tr
)

(77)

⎧⎪⎪⎨⎪⎪⎩

�tu − Δu = Anũ
+ + e

Vn

2 ñ[0,1]
tr

− eVn ũ+ñ�[0,1]
tr

=∶ f̃1,

�tv − Δv = Apṽ
+ + e

Vp

2 ñ�[0,1]
tr

− eVp ṽ+ñ[0,1]
tr

=∶ f̃2,

� �tntr = ñ�[0,1]
tr

− e
Vp

2 ṽ+ñ[0,1]
tr

− ñ[0,1]
tr

+ e
Vn

2 ũ+ñ�[0,1]
tr

=∶ f̃3,

� �tn
�
tr
= ñ[0,1]

tr
− e

Vn

2 ũ+ñ�[0,1]
tr

− ñ�[0,1]
tr

+ e
Vp

2 ṽ+ñ[0,1]
tr

=∶ f̃4.
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We first show that (u, v, ntr, n�tr) = S(ũ, ṽ, ñtr, ñ
�
tr
) ∈ XT provided (ũ, ṽ, ñtr, ñ�tr) ∈ XT . 

Due to f̃1 , f̃2 ∈ L2((0, T) × Ω) , it is known from classical PDE-theory (see e.g. [3]) 
that

And since

for almost all t ∈ [0, T] , we deduce

Hence, ntr ∈ L∞((0, T), L2(Ω)) . Moreover, we derive for [0, T] ∋ tk → t ∈ [0, T],

This proves ntr ∈ C([0, T], L2(Ω)) . The same arguments can be applied to n′
tr
.

Step 2: Invariance of MT . Now, let (ũ, ṽ, ñtr, ñ�tr) ∈ MT . Similar to the strategy of 
e.g. [1, 15, 26], we perform the subsequent calculations for any q ∈ 2ℕ+ and every 
t ∈ [0, T]:

Note that the last term in the second and the first term in the third line are both 
non-positive due to q ∈ 2ℕ and assumption (4). Introducing � ∶= 2�I + � + 2�I , we 
obtain

u, v ∈ W2(0, T) =
{
f ∈ L2((0, T),H1(Ω)) | �tf ∈ L2((0, T),H1(Ω)∗)

}

↪ C([0, T],L2(Ω)).

ntr(t) = ntr(0) +
1

� ∫
t

0

f̃3(s) ds

‖ntr(t)‖L2(Ω) ≤‖ntr(0)‖L2(Ω) + 1

� �
t

0

‖f̃3(s)‖L2(Ω) ds

≤I + T

�
max
0≤t≤T ‖f̃3(s)‖L2(Ω).

‖ntr(tk) − ntr(t)‖L2(Ω) ≤1

�

������
tk

t

‖f̃3(s)‖L2(Ω) ds
�����

≤ �tk − t�
�

max
0≤t≤T ‖f̃3(s)‖L2(Ω)

k→∞
�������������������→ 0.

�
t

0

d

ds �Ω

uq

q
dx ds =�

t

0
�Ω

uq−1𝜕tu dx ds = �
t

0
�Ω

uq−1Δu dx ds

+ �
t

0
�Ω

uq−1�f1 dx ds ≤ −(q − 1)�
t

0
�Ω

uq−2�∇u�2 dx ds

−
1

2 �
t

0
�𝜕Ω

uq n̂ ⋅ ∇Vn d𝜎ds + ‖�f1‖L∞((0,T)×Ω) �
t

0
�Ω

�u�q−1dxds

≤ (2𝛼I + 𝛽 + 2𝛽I)�
t

0

‖u‖q−1
Lq(Ω)

ds.

(78)‖u(t)‖q
Lq(Ω)

− ‖u(0)‖q
Lq(Ω)

≤ q� �
t

0

‖u(s)‖q−1
Lq(Ω)

ds.
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This inequality already implies a linear bound on the L∞-norm of u as we shall see 
below (cf. [2]). We define

and note that U(0) = 0 . Estimate (78) entails

for all t ∈ [0, T] , where 𝜂 > 0 is an arbitrary constant, which guarantees that the 
expression X ∶= � + ‖u(0)‖q

Lq(Ω)
+ U(t) is strictly positive. Multiplying both sides 

with X(1−q)∕q and integrating from 0 to t gives

We now substitute � ∶= U(s) and deduce

where we have used (78) in the last step. Therefore,

and, taking the limit � → 0,

As the bound on the right hand side is independent of q, we even obtain

for all t ∈ [0, T] . This result naturally gives rise to

An analogous estimate is valid for v. As a result, we obtain

for T > 0 chosen sufficiently small.
Employing (79), we also derive

U(t) ∶= q� ∫
t

0

‖u(s)‖q−1
Lq(Ω)

ds

U�(t) = q�
�
‖u(t)‖q

Lq(Ω)

� q−1

q ≤ q�
�
� + ‖u(0)‖q

Lq(Ω)
+ U(t)

� q−1

q

�
t

0

�
� + ‖u(0)‖q

Lq(Ω)
+ U(s)

� 1−q

q

U�(s) ds ≤ �
t

0

q� ds.

q�t ≥ �
U(t)

0

�
� + ‖u(0)‖q

Lq(Ω)
+ �

� 1

q
−1

d� = q
�
� + ‖u(0)‖q

Lq(Ω)
+ �

� 1

q ���
U(t)

0

= q
�
� + ‖u(0)‖q

Lq(Ω)
+ U(t)

� 1

q

− q
�
� + ‖u(0)‖q

Lq(Ω)

� 1

q

≥ q
�
‖u(t)‖q

Lq(Ω)

� 1

q

− q
�
� + ‖u(0)‖q

Lq(Ω)

� 1

q

‖u(t)‖Lq(Ω) ≤
�
� + ‖u(0)‖q

Lq(Ω)

� 1

q

+ �t

‖u(t)‖Lq(Ω) ≤ ‖u(0)‖Lq(Ω) + �t ≤ I + �t.

(79)‖u(t)‖L∞(Ω) ≤ I + �t,

‖u‖L∞((0,T)×Ω) ≤ I + �T .

‖u‖L∞((0,T)×Ω), ‖v‖L∞((0,T)×Ω) ≤ 2I
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The same argument is applicable to v, which results in

for sufficiently small T > 0 . The corresponding bounds on ntr and n′
tr
 can be deduced 

from the formula

and from an analogous one for n′
tr
 . In fact,

and, hence,

for T > 0 sufficiently small.
Step 3: Contraction property of S . We consider 

(ũ1, ṽ1, ñtr,1, ñ
�
tr,1

), (ũ2, ṽ2, ñtr,2, ñ
�
tr,2

) ∈ MT and the correspond-
ing solutions (u1, v1, ntr,1, n

�
tr,1

) = S(ũ1, ṽ1, ñtr,1, ñ
�
tr,1

) ∈ MT and 
(u2, v2, ntr,2, n

�
tr,2

) = S(ũ2, ṽ2, ñtr,2, ñ
�
tr,2

) ∈ MT . We further introduce the notation

and similarly v, ntr , n′tr , ṽ , ñtr and ñ′
tr
 . Then, we have to show that

with a constant c ∈ (0, 1) on a time interval [0, T] small enough. The norm in XT is 
defined as

We obtain the following system by taking the difference of corresponding equations 
of the system for the 1- and the 2-variables, respectively:

max
0≤t≤T ‖u(t)‖L2(Ω) ≤ max

0≤t≤T ‖u(t)‖L∞(Ω) ≤ I + �T .

max
0≤t≤T ‖u(t)‖L2(Ω), max

0≤t≤T ‖v(t)‖L2(Ω) ≤ 2I

ntr(t) = ntr(0) +
1

� ∫
t

0

f̃3(s) ds

‖ntr(t)‖L2(Ω) ≤ ‖ntr(0)‖L2(Ω) + 1

� �
t

0

��f̃3(s)��L2(Ω) ds ≤ I +
T

�
(2 + 4�I)

max
0≤t≤T ‖ntr(t)‖L2(Ω), max

0≤t≤T ‖n
�
tr
(t)‖L2(Ω) ≤ 2I

u ∶= u1 − u2, ũ ∶= ũ1 − ũ2

‖(u, v, ntr, n�tr)‖XT
≤ c‖(ũ, ṽ, ñtr, ñ�tr)‖XT

‖(u, v, ntr, n�tr)‖XT
∶= max

0≤t≤T ‖u(t)‖L2(Ω) + max
0≤t≤T ‖v(t)‖L2(Ω)

+ max
0≤t≤T ‖ntr(t)‖L2(Ω) + max

0≤t≤T ‖n
�
tr
(t)‖L2(Ω).
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We mention that u and v are subject to the boundary conditions

and the homogeneous initial conditions

First, one finds

where C1 > 0 is the constant resulting from the embedding 
W2(0, T) ↪ C([0, T], L2(Ω)) . The constant C2 > 0 originates from well-known para-
bolic regularity estimates for ‖u‖W2(0,T)

 in terms of the L2-norms of f̃1 and u(0) = 0 . 
Therefore,

Moreover, every f ∈ C([0, T],L2(Ω)) fulfils

and we proceed with the previous estimates to derive

(80)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�tu − Δu = An

�
ũ+
1
− ũ+

2

�
+ e

Vn

2

�
ñ
[0,1]

tr,1
− ñ

[0,1]

tr,2

�

− eVn

�
ũ+
1
ñ
�[0,1]

tr,1
− ũ+

2
ñ
�[0,1]

tr,2

�
=∶ f̃1,

�tv − Δv = Ap

�
ṽ+
1
− ṽ+

2

�
+ e

Vp

2

�
ñ
�[0,1]

tr,1
− ñ

�[0,1]

tr,2

�

− eVp

�
ṽ+
1
ñ
[0,1]

tr,1
− ṽ+

2
ñ
[0,1]

tr,2

�
=∶ f̃2,

� �tntr = ñ
�[0,1]

tr,1
− ñ

�[0,1]

tr,2
− e

Vp

2

�
ṽ+
1
ñ
[0,1]

tr,1
− ṽ+

2
ñ
[0,1]

tr,2

�

− ñ
[0,1]

tr,1
+ ñ

[0,1]

tr,2
+ e

Vn

2

�
ũ+
1
ñ
�[0,1]

tr,1
− ũ+

2
ñ
�[0,1]

tr,2

�
=∶ f̃3,

� �tn
�
tr
= ñ

[0,1]

tr,1
− ñ

[0,1]

tr,2
− e

Vn

2

�
ũ+
1
ñ
�[0,1]

tr,1
− ũ+

2
ñ
�[0,1]

tr,2

�

− ñ
�[0,1]

tr,1
+ ñ

�[0,1]

tr,2
+ e

Vp

2

�
ṽ+
1
ñ
[0,1]

tr,1
− ṽ+

2
ñ
[0,1]

tr,2

�
=∶ f̃4.

n̂ ⋅
(
∇u +

1

2
u∇Vn

)
= n̂ ⋅

(
∇v +

1

2
v∇Vp

)
= 0

u(0) = v(0) = ntr(0) = n�
tr
(0) = 0.

max
0≤t≤T ‖u(t)‖L2(Ω) ≤ C1‖u‖W2(0,T)

≤ C1C2‖f̃1‖L2((0,T)×Ω)

max
0≤t≤T ‖u(t)‖L2(Ω) ≤ C1C2

�
���ũ+1 − ũ+

2
��L2((0,T)×Ω) + ���ñ[0,1]tr,1

− ñ
[0,1]

tr,2
��L2((0,T)×Ω)

+ ���ũ+1 − ũ+
2
��L2((0,T)×Ω)��ñ�[0,1]tr,1

��L∞((0,T)×Ω)

+ ���ũ+2 ��L∞((0,T)×Ω)
��ñ�[0,1]tr,1

− ñ
�[0,1]

tr,2
��L2((0,T)×Ω)

�

≤ C1C2

�
�‖ñtr‖L2((0,T)×Ω) + (� + �)‖ũ‖L2((0,T)×Ω)

+ 2�I‖ñ�
tr
‖L2((0,T)×Ω)

�
.

‖f‖2
L2((0,T)×Ω)

= �
T

0
�Ω

f 2dxdt ≤ �
T

0

dt max
0≤t≤T ‖f (t)‖

2

L2(Ω)
= T‖f‖2

C([0,T],L2(Ω))
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In a similar way, we arrive at

Due to ntr(0) = 0 , one obtains

for t ∈ [0, T] and, using similar techniques as above,

Note that because of f̃4 = −f̃3 , the last estimate equally serves as an upper bound for 
‖n�

tr
(t)‖L2(Ω) . Taking the sum of the above estimates and choosing T > 0 sufficiently 

small yields

with some c ∈ (0, 1).
Step 4: Solution of (1). Step 2 and Step 3 imply that for T > 0 sufficiently 

small the mapping S ∶ MT → MT is a contraction. Banach’s fixed point theo-
rem, thus, guarantees that there exists a unique (u, v, ntr, n�tr) ∈ MT such that 
S(u, v, ntr, n

�
tr
) = (u, v, ntr, n

�
tr
) . Moreover, due to standard parabolic regularity for 

(u, v), the fixed-point (u, v, ntr, n�tr) is the unique weak solution of

max
0≤t≤T ‖u(t)‖L2(Ω) ≤C1C2(� + 2�I)

√
T

�
‖ñtr‖C([0,T],L2(Ω))

+ ‖ũ‖C([0,T],L2(Ω)) + ‖ñ�
tr
‖C([0,T],L2(Ω))

�
.

max
0≤t≤T ‖v(t)‖L2(Ω) ≤C1C2(� + 2�I)

√
T

�
‖ñ�

tr
‖C([0,T],L2(Ω))

+ ‖ṽ‖C([0,T],L2(Ω)) + ‖ñtr‖C([0,T],L2(Ω))
�
.

ntr(t) =
1

� ∫
t

0

f̃3 ds

max
0≤t≤T ‖ntr(t)‖L2(Ω) ≤

1

� �
T

0

‖f̃3‖L2(Ω) ds ≤
√
T

�
‖f̃3‖L2((0,T)×Ω)

≤ 1 + 2�I

�

√
T

�
‖ũ‖L2((0,T)×Ω) + ‖ṽ‖L2((0,T)×Ω)

+ ‖ñtr‖L2((0,T)×Ω) + ‖ñ�
tr
‖L2((0,T)×Ω)

�

≤ 1 + 2�I

�
T

�
‖ũ‖C([0,T],L2(Ω)) + ‖ṽ‖C([0,T],L2(Ω))

+ ‖ñtr‖C([0,T],L2(Ω)) + ‖ñ�
tr
‖C([0,T],L2(Ω))

�
.

‖(u, v, ntr, n�tr)‖XT
≤ c ‖(ũ, ṽ, ñtr, ñ�tr)‖XT
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In order to prove the non-negativity of u, v, ntr and n′
tr
 , we adapt an argument from 

[26]. First, we define

on [0, T] × Ω and notice that h ≤ 0 and h(t = 0) = 0 a.e. since u(0) ≥ 0 a.e. We now 
multiply the first equation in (81) with h and integrate over (0, t) × Ω for t ∈ [0, T] . 
This yields

The first term on the right hand side of (82) can be seen to be non-positive using 
integration by parts and the boundary condition from (75):

due to uh ≥ 0 , n̂ ⋅ ∇Vn ≥ 0 , and since ∇h ≠ 0 holds true only in the case u < 0 , 
where we have ∇u = ∇h in L2 , see e.g. [14]. Moreover,

and the third term in (82) is again non-positive as an integral over non-positive 
quantities:

as a consequence of u+h = 0 in L2(Ω) . The left hand side of (82) can be reformu-
lated as

For the first step, we have used that the integrand �su h only contributes to the inte-
gral if h < 0 . But in this case, u = h and, hence, �su = �sh in L2 , see e.g. [14]. This 

(81)

⎧
⎪⎪⎨⎪⎪⎩

�tu − Δu = Anu
+ + e

Vn

2 n[0,1]
tr

− eVnu+n�[0,1]
tr

,

�tv − Δv = Apv
+ + e

Vp

2 n�[0,1]
tr

− eVpv+n[0,1]
tr

,

� �tntr = n�[0,1]
tr

− e
Vp

2 v+n[0,1]
tr

− n[0,1]
tr

+ e
Vn

2 u+n�[0,1]
tr

,

� �tn
�
tr
= n[0,1]

tr
− e

Vn

2 u+n�[0,1]
tr

− n�[0,1]
tr

+ e
Vp

2 v+n[0,1]
tr

.

h ∶= min(0, u)

(82)
∫

t

0
∫Ω

�su h dx ds =∫
t

0
∫Ω

Δu h dx ds + ∫
t

0
∫Ω

Anu
+h dx ds

+ ∫
t

0
∫Ω

(
e

Vn

2 n[0,1]
tr

− eVnu+n�[0,1]
tr

)
h dx ds.

�
t

0
�Ω

Δu h dx ds = −�
t

0
�Ω

∇u ⋅ ∇h dx ds −
1

2 �
t

0
�𝜕Ω

u h n̂ ⋅ ∇Vn d𝜎 ds

≤ −�
t

0
�Ω

∇u ⋅ ∇h dx ds = −�
t

0
�Ω

∇h ⋅ ∇h dx ds ≤ 0

∫
t

0
∫Ω

Anu
+h dx ds = 0,

�
t

0
�Ω

(
e

Vn

2 n[0,1]
tr

− eVnu+n�[0,1]
tr

)
h dx ds = �

t

0
�Ω

e
Vn

2 n[0,1]
tr

h dx ds ≤ 0

∫
t

0
∫Ω

�su h dx ds = ∫
t

0
∫Ω

�sh h dx ds =
1

2 ∫Ω ∫
t

0

�
d

ds
h2
�
ds dx =

1

2
‖h(t)‖2

L2(Ω)
.
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proves ‖h(t)‖L2(Ω) ≤ 0 for all t ∈ [0, T] , which establishes h(t) = 0 in L2(Ω) for all 
t ∈ [0, T] , and thus u(t, x) ≥ 0 for all t ∈ [0, T] and a.e. x ∈ Ω . In the same way, one 
can show that v(t, x) ≥ 0 for all t ∈ [0, T] and a.e. x ∈ Ω.

The non-negativity of ntr follows from a similar idea using

Again, h ≤ 0 and h(t = 0) = 0 due to ntr(0) ≥ 0 . Multiplying the third equation of 
(81) with h and integrating over (0, t) × Ω , t ∈ [0, T] , we find

As before, all terms under the integral on the right hand side involving n[0,1]tr  vanish. 
Consequently,

for all t ∈ [0, T] . The same result holds true for n′
tr
 . Therefore, we have verified that 

ntr(t, x) , n�tr(t, x) ≥ 0 for all t ∈ [0, T] and a.e. x ∈ Ω.
The non-negativity of ntr and n′

tr
 together with n�

tr
= 1 − ntr from (73) now even 

imply

This allows us to identify the unique weak solution (u, v, ntr, n�tr) of (81) to equally 
solve

which is the transform version of the original problem (1).
Up to now, we have proven that there exists a unique solution 

(u, v, ntr) ∈ C([0, T], L2(Ω))3 such that (u, v, ntr, 1 − ntr) ∈ MT on a sufficiently small 
time interval [0, T].

Step 5: Global solution. We now fix T∗ > 0 in such a way that [0, T∗) is the maxi-
mal time interval of existence for the solution (u, v, ntr) ∈ C([0, T], L2(Ω))3 of (83). 
Moreover, we choose some arbitrary q ∈ ℕ≥2 and multiply the first equation in (83) 
with uq−1 . Integrating over Ω at time t ∈ [0, T∗) gives

h ∶= min(0, ntr).

�∫
t

0
∫Ω

�sntr h dx ds = ∫
t

0
∫Ω

(
n�[0,1]
tr

− e
Vp

2 v+n[0,1]
tr

− n[0,1]
tr

+ e
Vn

2 u+n�[0,1]
tr

)
h dx ds.

�

2
‖h(t)‖2

L2(Ω)
= ��

t

0
�Ω

�sh h dx ds = �
t

0
�Ω

�
n�[0,1]
tr

+ e
Vn

2 u+n�[0,1]
tr

�
h dx ds ≤ 0

ntr(t, x), n
�
tr
(t, x) ∈ [0, 1], for all t ∈ [0, T] and a.e. x ∈ Ω.

(83)

⎧⎪⎨⎪⎩

�tu − Δu = Anu + e
Vn

2 ntr − eVnu(1 − ntr),

�tv − Δv = Apv + e
Vp

2 (1 − ntr) − eVpv ntr,

� �tntr = 1 − ntr − e
Vp

2 v ntr − ntr + e
Vn

2 u(1 − ntr),

d

dt ∫Ω

uq

q
dx =∫Ω

uq−1�tu dx = ∫Ω

uq−1Δu dx + ∫Ω

Anu
q dx

+ ∫Ω

uq−1
(
e

Vn

2 ntr − eVnu(1 − ntr)
)
dx.
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Integration by parts and the estimates |An| ≤ � , ||e
Vn

2 ntr − eVnu(1 − ntr)
|| ≤ �(1 + u) 

further yield

Moreover, we derive

where we used |Ω| = 1 . Hence,

after defining � ∶= � + 2� . This results in

which can be integrated over time from 0 to t:

From this generalised Gronwall-type inequality, we deduce (cf. [2])

and

since 1 + ‖u(0)‖Lq(Ω) ≤ 1 + ‖u(0)‖L∞(Ω) ≤ I . As Ie�t is independent of q, we even 
arrive at

In the same way, we can show that ‖v(t)‖L∞(Ω) ≤ Ie�t for all t ∈ [0, T∗) . As a conse-
quence, we obtain that the solution (u, v, ntr) ∈ C([0, T],L2(Ω))3 can be extended for 
all times, i.e. T∗ = ∞.

Step 6: L∞-bounds for n and p. We now prove the linearly growing L∞-bounds 
(11) for n and p. We only detail the bound for p and sketch how the bound for n fol-
lows in a similar fashion. After recalling (with �p = 1 w.l.o.g.)

d

dt �Ω

uq

q
dx ≤ − (q − 1)�Ω

uq−2|∇u|2 dx − 1

2 �𝜕Ω

uq n̂ ⋅ ∇Vn d𝜎 ds

+ 𝛼 �Ω

uq dx + 𝛽 �Ω

(uq−1 + uq) dx.

�Ω

uq−1 dx = �{u≤1}
uq−1dx + �{u>1}

uq

u
dx ≤ �Ω

1dx + �Ω

uq dx = 1 + �Ω

uq dx

(84)
d

dt �Ω

uq

q
dx ≤ � + (� + 2�)�Ω

uq dx ≤ �

(
1 + �Ω

uq dx

)

d

dt �Ω

uq dx ≤ �q

(
1 + �Ω

uq dx

)
,

‖u(t)‖q
Lq(Ω)

≤ ‖u(0)‖q
Lq(Ω)

+ �q�
t

0

�
1 + ‖u(s)‖q

Lq(Ω)

�
ds.

‖u(t)‖q
Lq(Ω)

≤ ‖u(0)‖q
Lq(Ω)

e𝛾qt + e𝛾qt − 1 <
�
1 + ‖u(0)‖q

Lq(Ω)

�
e𝛾qt

‖u(t)‖Lq(Ω) ≤ �
1 + ‖u(0)‖Lq(Ω)

�
e�t ≤ Ie�t

‖u(t)‖L∞(Ω) ≤ Ie�t.
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we introduce the variable w = p eVp and observe that 
∇ ⋅ Jp = ∇ ⋅

(
e−Vp∇w

)
= e−Vp

(
Δw − ∇Vp ⋅ ∇w

)
 and thus,

while the no-flux boundary condition n̂ ⋅ Jp = 0 on �Ω transforms to the homogene-
ous Neumann condition n̂ ⋅ ∇w = 0 on �Ω.

Next, by testing (85) with the positive part (w − r − st)+ ∶= max{0,w − r − st} 
for two constant r, s > 0 to be chosen, we calculate by integration by parts in the first 
two terms

since n̂ ⋅ Vp ≥ 0 by assumption (4). Moreover, since ntr ∈ [0, 1] and w ≥ 0 , we have

Thus, by choosing s∶=‖eVp‖L∞(Ω) and r∶=‖w(�, ⋅)‖L∞(Ω) for some time � ≥ 0 , we 
conclude that

and a Gronwall lemma implies

Transforming back, this yields

�tp = ∇ ⋅ Jp +

(
1 − ntr −

p

p0e
−Vp

ntr

)
, Jp = e−Vp∇

(
p eVp

)
,

(85)�tw = Δw − ∇Vp ⋅ ∇w + eVp

(
1 − ntr −

ntr

p0
w

)
,

d

dt

1

2 �Ω

(w − r − st)2
+
dx

= �Ω

(w − r − st)+

�
Δw − ∇Vp ⋅ ∇w + eVp

�
1 − ntr −

ntr

p0
w
�
− s

�
dx

= −�Ω

�w≥r+st�∇w�2 dx − �Ω

∇Vp ⋅ ∇
(w − r − st)2

+

2
dx

+ �Ω

(w − r − st)+

�
eVp

�
1 − ntr −

ntr

p0
w
�
− s

�
dx

≤ ‖ΔVp‖L∞(Ω)

2 �Ω

(w − r − st)2
+
dx

+ �Ω

(w − r − st)+

�
eVp

�
1 − ntr −

ntr

p0
w
�
− s

�
dx,

d

dt

1

2 �Ω

(w − r − st)2
+
dx ≤‖ΔVp‖L∞(Ω)

2 �Ω

(w − r − st)2
+
dx

+ �Ω

(w − r − st)+

�
‖eVp‖L∞(Ω) − s

�
dx.

d

dt �Ω

(w − r − st)2
+
dx ≤ ‖ΔVp‖L∞(Ω) �Ω

(w − r − st)2
+
dx,

(86)‖w(t, ⋅)‖L∞(Ω) ≤ ‖w(�, ⋅)‖L∞(Ω) + ‖eVp‖L∞(Ω) t, for all t ≥ � ≥ 0.
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In order to deduce the analogue bound for n in (11), we consider (with �n = 1 
w.l.o.g.)

We introduce the variable � = n eVn and obtain in the same way as in (54)

Following the same arguments as above,

Transforming back, this yields

and thus (11).
Step 7: Regularity and bounds for ntr . We still have to verify ntr ∈ C([0, T], L∞(Ω)) 

for all T > 0 . Now, let T > 0 and recall that

in L2(Ω) for all t ∈ [0, T] . Considering a sequence (tk)k∈ℕ ⊂ [0, T] , tk → t , we thus 
arrive at

for k → ∞ . This proves the assertion.
The claim �tntr ∈ C([0, T], L2(Ω)) for all T > 0 is an immediate consequence of 

the last equation in (83) together with the L2-continuity and L∞-bounds of u, v and 
ntr.

Next, concerning the bounds (12), we recall system (1) and observe that for all 
� ∈ (0, �0]

(87)
‖p(t, ⋅)‖L∞(Ω) ≤ 1

inf{eVp}

�‖p(�, ⋅)‖L∞(Ω)‖eVp‖L∞(Ω) + ‖eVp‖L∞(Ω) t
�
,

for all t ≥ � ≥ 0.

�tn = ∇ ⋅ Jn +

(
ntr −

n

n0e
−Vn

(
1 − ntr

))
, Jn = e−Vn∇

(
n eVn

)
.

�t� = Δ� − ∇Vn ⋅ ∇� + eVn

(
ntr −

1 − ntr

n0
�

)
.

(88)‖�(t, ⋅)‖L∞(Ω) ≤ ‖�(�, ⋅)‖L∞(Ω) + ‖eVn‖L∞(Ω) t, for all t ≥ � ≥ 0.

(89)

‖n(t, ⋅)‖L∞(Ω) ≤ 1

inf{eVn}

�‖n(�, ⋅)‖L∞(Ω)‖eVn‖L∞(Ω) + ‖eVn‖L∞(Ω) t
�
, for all t ≥ � ≥ 0

ntr(t) = ntr(0) +
1

� ∫
t

0

(
1 − ntr − eVpp ntr − ntr + eVnn(1 − ntr)

)
ds

‖ntr(tk) − ntr(t)‖L∞(Ω) ≤1

�

������
tk

t

‖1 − ntr − eVpp ntr − ntr

+eVnn(1 − ntr)‖L∞(Ω) ds
��� ≤

�tk−t�
�

CT → 0

��tntr = h(ntr) ∶= Rp(p, ntr) − Rn(n, ntr),



595

1 3

Uniform convergence to equilibrium for a family of drift–…

in the sense of L2(Ω) , where h(ntr = 0) ≥ 1

𝜏p
> 0 and h(ntr = 1) ≤ −

1

𝜏n
< 0 uniformly 

for all non-negative n and p. Therefore, wherever ntr,I(x) = 0 (or analogously 
ntr,I(x) = 1 ), an elementary argument proves that ntr(t, x) grows (or decreases) line-
arly in time and decays back to 0 (or 1) at most like (a + bt)−1 . More precisely, we 
reuse the transformed variable w = p eVp and find

for some constants r and s due to the estimate (86). Setting �n∶=�p∶=1 w.l.o.g., we 
have

with appropriate �r,�s > 0 independent of � . By observing that the ODE 
𝜀0ẏ = 1 − (�r +�st)y features the positive nullcline y0(t) = 1∕(̃r + s̃t) , which moreover 
attracts all solution trajectories, standard comparison arguments (pointwise in x ∈ Ω ) 
imply that for all times 𝜏 > 0 , there exist positive constants � = �(�0, �, �n, �p) , 
� = �(Cn,Cp,Kn,Kp) and a sufficiently small constant 𝛾(𝜏,Cn,Cp,Kn,Kp) > 0 such 
that

where �� =
�

1+��
 such that the linear and the inverse linear bound intersect at time �.

Finally, the upper bounds (12) follow from analogue arguments.
Step 8: Lower bounds for n and p. Finally, we prove the bounds (13). We will only 

detail the argument for the lower bound on n, as the bound for p follows in an ana-
logue way. Recalling the transformed equation for � = eVnn (satisfying n̂ ⋅ ∇𝜔 = 0 
on �Ω ), we estimate

where 𝛼 > 0 and c > 0 are positive constants due to the assumptions (4) and 
eVn�ntr ≥ 0.

Next, we use (12), i.e. that for all 𝜏 > 0 fixed, there exist constants � , � and � such 
that ntr(t, x) ≥ �t for all 0 ≤ t ≤ � and a.e. x ∈ Ω , while ntr(t, x) ≥ �∕(1 + �t) for all 
t ≥ � and a.e. x ∈ Ω . Then, by introducing the negative part (�)− ∶= min{�, 0} and 
testing (90) with 

(
� −

�t2

2

)
−
 for a constant 𝜇 > 0 to be chosen below, we estimate

��tntr ≥ 1

�p

�
1 −

�
1 +

�p

�n
+

‖w‖L∞(Ω)

p0

�
ntr

�
≥ 1

�p

�
1 −

�
1 +

�p

�n
+

r + st

p0

�
ntr

�

��tntr ≥ 1 − (̃r + s̃t)ntr.

ntr(t, x) ≥ min

{
�t,

�

1 + �t

}
for all t ≥ 0 and a.e. x ∈ Ω

(90)

�t� = Δ� − ∇Vn ⋅ ∇� + eVn

(
ntr −

1 − ntr

n0
�

)
≥ Δ� − ∇Vn ⋅ ∇� − � � + cntr,
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Thus, for 0 ≤ t ≤ � when ntr(t, x) ≥ �t , we have

If we choose �
(
� �

2
+ 1

) ≤ c� , we obtain

Hence, since ∫
Ω

(
�(0, x)

)2
−
dx = 0 , we deduce from a Gronwall lemma

which yields in particular �(t, x) ≥ �t2

2
 for all 0 ≤ t ≤ � and a.e. x ∈ Ω.

Moreover, for t ≥ � when ntr(t, x) ≥ �

1+�t
 , we test (90) with 

(
� −

Γ

1+�t

)
−
 for a con-

stant Γ > 0 to be chosen below, and estimate similar to above

d

dt

1

2 �Ω

(
� −

�t2

2

)2

−
dx = �Ω

(
� −

�t2

2

)
−

(
�t� − �t

)
dx

= �Ω

|||||
(
� −

�t2

2

)
−

|||||
(
−�t� + �t

)
dx

≤ �Ω

|||||
(
� −

�t2

2

)
−

|||||
(
−Δ� + ∇Vn ⋅ ∇� + �� − cntr + �t

)
dx

= �Ω

(
� −

�t2

2

)
−

(
Δ� − ∇Vn ⋅ ∇�

)
dx + �Ω

|||||
(
� −

�t2

2

)
−

|||||
(
�� − cntr + �t

)
dx

≤ −�Ω

�
�≤ �t2

2

|∇�|2 dx − 1

2 �Ω

∇
(
� −

�t2

2

)2

−
⋅ ∇Vn dx

+ �Ω

|||||
(
� −

�t2

2

)
−

|||||
(
�� − cntr + �t

)
dx.

d

dt

1

2 �Ω

(
� −

�t2

2

)2

−

dx ≤ �Ω

(
� −

�t2

2

)2

−

ΔVn

2
dx

+ �Ω

|||||

(
� −

�t2

2

)

−

|||||

(
�
�t2

2
− c�t + �t

)
dx.

d

dt �Ω

�
� −

�t2

2

�2

−

dx ≤ ‖ΔVn‖L∞(Ω) �Ω

�
� −

�t2

2

�2

−

dx.

�Ω

(
� −

�t2

2

)2

−
dx = 0, for all 0 ≤ t ≤ �,

d

dt

1

2 �Ω

(
� −

Γ

1 + �t

)2

−
dx = �Ω

(
� −

Γ

1 + �t

)
−

(
�t� +

Γ�

(1 + �t)2

)
dx

≤ �Ω

(
� −

Γ

1 + �t

)
−

(
Δ� − ∇Vn ⋅ ∇� − �� + cntr +

Γ�

(1 + �t)2

)
dx

≤ −�Ω

��≤ Γ

1+�t

|∇�|2 dx − 1

2 �Ω

∇
(
� −

Γ

1 + �t

)2

−
⋅ ∇Vn dx

+ �Ω

||||
(
� −

Γ

1 + �t

)
−

||||
(
�� − cntr −

Γ�

(1 + �t)2

)
dx.
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And as ntr(t, x) ≥ �

1+�t
 for t ≥ � , we find

Choosing �Γ ≤ c� , we arrive at

By further reducing either Γ or � , we are able to satisfy Γ

1+��
=

��2

2
 . On the one hand, 

this implies that ∫
Ω

(
�(�, x) − Γ

1+��

)2

−
dx = 0 , which results—by using a Gronwall 

argument—in

and, hence, �(t, x) ≥ Γ

1+�t
 for all t ≥ � and a.e. x ∈ Ω . On the other hand, the increas-

ing and decreasing bounds now again intersect at time � as desired.   ◻
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