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Abstract

We define and study a discrete process that generalizes the convex-layer decomposition of a planar
point set. Our process, which we call homotopic curve shortening (HCS), starts with a closed curve
(which might self-intersect) in the presence of a set P ⊂ R2 of point obstacles, and evolves in discrete
steps, where each step consists of (1) taking shortcuts around the obstacles, and (2) reducing the
curve to its shortest homotopic equivalent.

We find experimentally that, if the initial curve is held fixed and P is chosen to be either a very
fine regular grid or a uniformly random point set, then HCS behaves at the limit like the affine
curve-shortening flow (ACSF). This connection between HCS and ACSF generalizes the link between
“grid peeling” and the ACSF observed by Eppstein et al. (2017), which applied only to convex curves,
and which was studied only for regular grids.

We prove that HCS satisfies some properties analogous to those of ACSF: HCS is invariant
under affine transformations, preserves convexity, and does not increase the total absolute curvature.
Furthermore, the number of self-intersections of a curve, or intersections between two curves
(appropriately defined), does not increase. Finally, if the initial curve is simple, then the number of
inflection points (appropriately defined) does not increase.
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12:2 Homotopic Curve Shortening and the ACSF

Figure 1 Affine curve-shortening flow. The arrows indicate the instantaneous velocity of different
points along the curve at the shown time moment.

1 Introduction

Let S1 be the unit circle. In this paper we call a piecewise-smooth function γ : [0, 1]→ R2 a
path, and a piecewise-smooth function γ : S1 → R2 a closed curve, or simply a curve. If γ is
injective then the curve or path is said to be simple. We say that two paths or curves γ, δ are
ε-close to each other if their Fréchet distance is at most ε, i.e. if they can be re-parametrized
such that for every t, the Euclidean distance between the points γ(t), δ(t) is at most ε.

1.1 Shortest Homotopic Curves
Let P be a finite set of points in the plane, which we regard as obstacles. Two curves γ, δ
that avoid P are said to be homotopic if there exists a way to continuously transform γ into
δ while avoiding P at all times. And two paths γ, δ that avoid P (except possibly at the
endpoints) and satisfy γ(0) = δ(0), γ(1) = δ(1) are said to be homotopic if there exists a way
to continuously transform γ into δ, without moving their endpoints, while avoiding P at all
times (except possibly at the endpoints). We extend these definitions to the case where γ
avoids obstacles but δ does not, by requiring the continuous transformation of γ into δ to
avoid obstacles at all times except possibly at the last moment.

Then, for every curve (resp. path) γ in the presence of obstacles there exists a unique
shortest curve (resp. path) δ that is homotopic to γ. The problem of computing the shortest
path or curve homotopic to a given piecewise-linear path or curve, under the presence of
polygonal or point obstacles, has been studied extensively. A simple and efficient algorithm
for this task is the so-called “funnel algorithm” [12, 26, 27]. See also [7, 9, 18].

1.2 The Affine Curve-Shortening Flow
In the affine curve-shortening flow, a smooth curve γ ⊂ R2 varies with time in the following
way. At each moment in time, each point of γ moves perpendicularly to the curve, towards
its local center of curvature, with instantaneous velocity r−1/3, where r is that point’s radius
of curvature at that time. See Figure 1.

The ACSF was first studied by Alvarez et al. [3] and Sapiro and Tannenbaum [28].
It differs from the more usual curve-shortening flow (CSF) [10, 14], in which each point
is given instantaneous velocity r−1. Unlike the CSF, the ACSF is invariant under affine
transformations: Applying an affine transformation to a curve, and then performing the
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ACSF, gives the same results (after rescaling the time parameter appropriately) as performing
the ACSF and then applying the affine transformation to the shortened curves. Moreover, if
the affine transformation preserves area, then the time scale is unaffected.

The ACSF was originally applied in computer vision, as a way of smoothing object
boundaries [10] and of computing shape descriptors that are insensitive to the distortions
caused by changes of viewpoint.

Properties of the CSF and ACSF for Simple Curves. Under either the CSF or the ACSF,
a simple curve remains simple, and its length decreases strictly with time ([14], [28], resp.).
Furthermore, a pair of disjoint curves, run simultaneously, remain disjoint at all times ([29],
[5], resp.). More generally, the number of intersections between two curves never increases
([4], [5], resp.). The total absolute curvature2 of a curve decreases strictly with time and
tends to 2π ([21, 22], [5], resp.). The number of inflection points of a simple curve does not
increase with time ([4], [5], resp.).

Under the CSF, a simple curve eventually becomes convex and then converges to a circle
as it collapses to a point [21, 22]. Correspondingly, under the ACSF, a simple curve becomes
convex and then converges to an ellipse as it collapses to a point [5].

Self-Intersecting Curves. When the initial curve is not simple, a self-intersection might
collapse and form a cusp with infinite curvature. For the CSF, it has been shown that, as
long as the initial curve satisfies some natural conditions, it is possible with some care to
continue the flow past the singularity [2, 4]. Angenent [4] generalized these results to a wide
range of flows, but unfortunately the ACSF is not included in this range [5]. Hence, no
rigorous results have been obtained for self-intersecting curves under the ACSF. Still, ACSF
computer simulations can be run on curves that have self-intersections or singularities with
little difficulty.

1.3 Relation to Grid Peeling
Let P be a finite set of points in the plane. The convex-layer decomposition (also called the
onion decomposition) of P is the partition of P into sets P1, P2, P3, . . . obtained as follows:
Let Q0 = P . Then, for each i ≥ 1 for which Qi−1 6= ∅, let Pi be the set of vertices of the
convex hull of Qi−1, and let Qi = Qi−1 \ Pi. In other words, we repeatedly remove from P

the set of vertices of its convex hull. See [6, 13, 16, 17].
Eppstein et al. [19], following Har-Peled and Lidický [24], studied grid peeling, which is

the convex-layer decomposition of subsets of the integer grid Z2. Eppstein et al. found an
experimental connection between ACSF for convex curves and grid peeling. Specifically, let γ
be a fixed convex curve. Let n be large, let (Z/n)2 be the uniform grid with spacing 1/n, and
let Pn(γ) be the set of points of (Z/n)2 that are contained in the region bounded by γ. Then,
as n→∞, the convex-layer decomposition of Pn(γ) seems experimentally to converge to the
ACSF evolution of γ, after the time scale is adjusted appropriately. They formulated this
connection precisely in the form of a conjecture. They also raised the question whether there
is a way to generalize the grid peeling process so as to approximate ACSF for non-convex
curves as well.

Dalal [16] studied the convex-layer decomposition of point sets chosen uniformly and
independently at random from a fixed convex domain, in the plane as well as in Rd.

2 Let γ : [0, 1] → R2 be a smooth closed curve, and let α : [0, 1] → S1 be continuous such that α(s) is
tangent to γ(s) for all s ∈ [0, 1]. Then the total absolute curvature of γ is the total distance traversed by
α(s) in S1 as s goes from 0 to 1. If γ is convex then its total absolute curvature is exactly 2π; otherwise,
it is larger than 2π.

SoCG 2020
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1.4 Our Contribution
In this paper we describe a generalization of the convex-layer decomposition to non-convex,
and even non-simple, curves. We call our process homotopic curve shortening, or HCS. Under
HCS, an initial curve evolves in discrete steps in the presence of point obstacles. We find
that, if the obstacles form a uniform grid, then HCS shares the same experimental connection
to ACSF that grid peeling does. Hence, HCS is the desired generalization sought by Eppstein
et al. [19]. We also find that the same experimental connection between ACSF and HCS
(and in particular, between ACSF and the convex-layer decomposition) holds when the
obstacles are distributed uniformly at random, with the sole difference being in the constant
of proportionality.

Although the experimental connection between HCS and ACSF seems hard to prove, we
do prove that HCS satisfies some simple properties analogous to those of ACSF: HCS is
invariant under affine transformations, preserves convexity, and does not increase the total
absolute curvature. Furthermore, the number of self-intersections of a curve, or intersections
between two curves (appropriately defined), does not increase. Finally, if the initial curve is
simple, then the number of inflection points (appropriately defined) does not increase.

Organization of This Paper. In Section 2 we describe homotopic curve shortening (HCS),
our generalization of the convex-layer decomposition. In Section 3 we present our conjectured
connection between ACSF and HCS, as well as experimental evidence supporting this
connection. In Section 4 we state our theoretical results, to the effect that HCS satisfies
some properties analogous to those of ACSF. In Section 5 we sketch the proofs the results
stated in Section 4. Missing details can be found in the full version in the arXiv.

2 Homotopic Curve Shortening

Let P be a finite set of obstacle points. A P -curve (resp. P -path) is a curve (resp. path) that
is composed of straight-line segments, where each segment starts and ends at obstacle points.

Homotopic curve shortening (HCS) is a discrete process that starts with an initial P -curve
γ0 (which might self-intersect), and at each step, the current P -curve γn is turned into a
new P -curve γn+1 = HCSP (γn).

The definition of γ′ = HCSP (γ) for a given P -curve γ is as follows. Let (p0, . . . , pm−1)
be the circular list of obstacle points visited by γ. Call pi nailed if γ goes straight through
pi, i.e. if ∠pi−1pipi+1 = π.3 Let (q0, . . . , qk−1) be the circular list of nailed vertices of γ.
Suppose first that k ≥ 1. Then γ′ is obtained through the following three substeps:
1. Splitting. We split γ into k P -paths δ0, . . . , δk−1 at the nailed vertices, where each δi goes

from qi to qi+1.
2. Shortcutting. For each non-endpoint vertex pi of each δi, we make the curve avoid pi

by taking a small shortcut. Specifically, let ε > 0 be sufficiently small, and let Cpi be a
circle of radius ε centered at pi. Let ei be the segment pi−1pi of δi. Let xi = ei ∩ Cpi

and yi = ei+1 ∩Cpi
. Then we make the path go straight from xi to yi instead of through

pi. Call the resulting path ρi, and let ρ be the curve obtained by concatenating all the
paths ρi.

3. Shortening. Each ρi in ρ is replaced by the shortest P -path homotopic to it. The resulting
curve is γ′.

3 All indices in circular sequences are modulo the length of the sequence.
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Figure 2 Computation of a single step of homotopic curve shortening: Given a P -curve γ (blue),
we first identify its nailed vertices (purple). In this case, the two nailed vertices split γ into two
paths δ0, δ1. In each δi we take a small shortcut around each intermediate vertex (red). Then we
replace each δi by the shortest path homotopic to it, obtaining the new P -curve γ′ = HCSP (γ)
(green).

If γ has no nailed vertices (k = 0) then γ′ is obtained by performing the shortcutting
and shortening steps on the single closed curve γ. Figure 2 illustrates one HCS step on a
sample curve.

The process terminates when the curve collapses to a point. This will certainly happen
after a finite number of steps, since at each step the curve gets strictly shorter, and there is
a finite number of distinct P -curves of at most a certain length.

HCS for Convex Curves. If the initial curve γ0 is the boundary of the convex hull of P ,
then the HCS evolution of γ0 is equivalent to the convex-layer decomposition of P . Namely,
for every i ≥ 0, the curve γi is the boundary of a convex polygon, and the set of vertices of
this polygon equals the (i+ 1)-st convex layer of P . See Section 4 below.

3 Experimental Connection Between ACSF and HCS

Our experiments show that HCS, using P = (Z/n)2 as the obstacle set, approximates
ACSF at the limit as n → ∞, just as grid peeling approximates ACSF for convex curves.
The connection between the two processes is formalized in the following conjecture, which
generalizes Conjecture 1 of [19].

I Conjecture 1. There exists a constant cg ≈ 1.6 such that the following is true: Let δ be a
piecewise-smooth initial curve. Fix a time t > 0, and let δ′ = δ(t) under ACSF. For a fixed n,
let γ0 be the shortest curve homotopic to δ under obstacle set Pn = (Z/n)2. Let m = cgtn

4/3,
and let γm = HCS(m)

P (γ0) be the result of m iterations of HCS starting with γ0. Then, as
n→∞, the Fréchet distance between γm and δ′ tends to 0.

Furthermore, we find that the connection between ACSF and HCS also holds if the
uniform grid (Z/n)2 is replaced by a random point set, though with a different constant of
time proportionality.

SoCG 2020
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Figure 3 Left: Initial curve ∆ (blue) and simulated ACSF result after the curve’s length reduced
to 70% of its original length (red). Right: Comparison between ACSF approximation (red), HCS
with n = 107 uniform-grid obstacles (green), and HCS with n = 107 random obstacles (yellow) on a
small portion of the curve.

I Conjecture 2. There exists a constant cr ≈ 1.3 such that the following is true: Let δ be a
piecewise-smooth initial curve, contained in a convex region R of area A. Fix a time t > 0,
and let δ′ = δ(t) under ACSF. For a fixed n, let P be a set of An2 obstacle points chosen
uniformly and independently at random from R. Let γ0 be the shortest curve homotopic
to δ under obstacle set P . Let m = crtn

4/3, and let γm = HCS(m)
P (γ0) be the result of m

iterations of HCS starting with γ0. Then, as n→∞, the Fréchet distance between γm and δ′
is almost surely smaller than ε, for some ε = ε(n) that tends to 0 with n.

3.1 Experiments
We tested Conjectures 1 and 2 on a variety of test curves. We found that for all our test
curves, the result of HCS does seem to converge to the result of ACSF as n→∞, both for
grid and for random obstacle sets.

We illustrate our experiments on the piecewise-liner curve ∆ having vertices (0, 0),
(0.16, 0.81), (0.4, 0.45), (0.64, 1), (0.94, 0.3), (1, 0.45), (0.56, 0.07), (0.52, 0.13). We approxima-
ted ACSF using an approach similar to the one in [19]. We ran our ACSF simulation on
∆ until we obtained a curve ∆′ whose length equals 70% of the original length of ∆. See
Figure 3 (left). This happened at t∗ ≈ 0.0266. By this time, the self-intersection and an
inflection point of the curve have disappeared.

Then we introduced in the unit square [0, 1]2 ⊃ ∆ a set P of n obstacle points, where P is
either a uniform grid (i.e. a

√
n×
√
n grid) Gn, or a random set Rn. For each case, we initially

snapped each vertex of ∆ to its closest point in P , obtaining a P -curve, and then we ran
HCS until the length of the curve shrank to 70% of its original length, obtaining a new curve
∆′′ = ∆′′(P ). We did this for several values of n. For each case, we computed h(∆′,∆′′),
where h(γ1, γ2) for piecewise-linear curves γ1, γ2 is defined as the maximum distance between
a vertex of one curve and the closest point on the other curve. (For “nice” curves as ours,
there is no significant difference, if at all, between this distance h and either the Hausdorff or
the Fréchet distance between the two curves.)
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Figure 4 Left: Distance between ACSF approximation and HCS with uniform-grid obstacles
(blue curve) or random obstacles (red curve, average of 5 trials), for increasing values of n, the
number of obstacles. Right: Distance between HCS with uniform-grid obstacles for n = 104, . . . , 1010

and with n = 1011.

Table 1 Approximations of the constants cg and cr given by the experiments.

n iterations with Gn cg avg. iterations with Rn cr

104 20 1.616 15.6 1.261
105 93 1.619 75.2 1.309
106 434 1.628 351.2 1.317
107 2006 1.621 1628.6 1.316
108 9266 1.613

For random obstacles, we conducted this experiment for n = 104, 105, 106, 107, taking the
average of 5 samples for each value of n. Our random-obstacle program is limited by memory
rather than by time, since it stores all the obstacle points in memory. For uniform-grid
obstacles, we conducted this experiment also for n = 108. After this point, our ACSF
approximation ∆′ does not seem to be accurate enough for reliable comparisons. The results
are shown in Figure 4 (left).

We also checked whether the relation between the ACSF time t∗ and the number of HCS
iterations m behaves as predicted by Conjectures 1 and 2. For this purpose, we computed
c = m/(t∗n2/3) for each case, and checked whether c is roughly constant. The results are
shown in Table 1.

As we can see, Conjectures 1 and 2 are well supported by the experiments.
Finally, we measured the rate of convergence of the uniform-grid HCS to its limit shape

as n→∞. To this end, we computed h(∆′′(Gn),∆′′(Gm)) for n ∈ {104, 105, . . . , 1010} and
m = 1011. See Figure 4 (right). As we can see, increasing n by a factor of 10 has the effect
of multiplying the distance by roughly a factor of 0.47.

See the full version in the arXiv for some implementation details of our ACSF and HCS
simulations.

4 Properties of Homotopic Curve Shortening

We now prove that HCS satisfies some properties analogous to those of ACSF.

I Theorem 3. HCS is invariant under affine transformations. Namely, if P is a set of
obstacle points, γ is a P -curve, and T is a non-degenerate affine transformation, then
T (HCSP (γ)) = HCST (P )(T (γ)).

SoCG 2020
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Figure 5 HCS might cause disjoint curves to intersect, or a simple curve to self-intersect.

In particular, if T is a grid-preserving affine transformation, meaning that T maps (Z/n)2

injectively to itself, then the HCS evolution using P = (Z/n)2 (as in Conjecture 1) is
unaffected by T . Hence, HCS on uniform-grid obstacles is invariant under a certain subset of
the area-preserving affine transformations, just as in grid peeling [19].

Also, if T is an area-preserving affine transformation, then the probability distribution of
random sets P in the convex region R of Conjecture 2 stays unaffected after applying T to R.

I Theorem 4. Let γ be a simple P -curve, and let γ′ = HCSP (γ). If γ is the boundary of a
convex polygon, then so is γ′. Hence, under HCS, once a curve becomes the boundary of a
convex polygon, it stays that way.

The total absolute curvature of a piecewise-linear curve γ with vertices (p0, . . . , pm−1) is
the sum of the exterior angles

∑m−1
i=0 (π − |∠pi−1pipi+1|). It equals 2π if γ is the boundary

of a convex polygon, and it is larger than 2π otherwise.

I Theorem 5. Let γ be a P -curve, and let γ′ = HCSP (γ). Let α, α′ be the total absolute
curvature of γ, γ′, respectively. Then α ≥ α′. Hence, under HCS, the total absolute curvature
of a curve never increases.

If γ, δ are disjoint P -curves, then HCSP (γ),HCSP (δ) are not necessarily disjoint. Similarly,
if γ is a simple P -curve, then HCSP (γ) is not necessarily simple. See Figure 5.

Curves γ, δ are called disjoinable if they can be made into disjoint curves by peforming
on them an arbitrarily small perturbation. Similarly, a curve γ is called self-disjoinable if
it can be turned into a simple curve by an arbitrarily small perturbation. Note that if γ is
self-disjoinable then γ, γ are disjoinable, though the reverse is not necessarily true: Consider
for example a curve γ that makes two complete clockwise turns around the unit circle.

Akitaya et al. [1] recently found an O(n logn)-time algorithm for deciding whether a
given mapping of a graph into the plane is a so-called weak embedding. This algorithm can
decide, in particular, whether a given curve is self-disjoinable.

An intersection between two curves, or between two portions of one curve, is called
transversal, if at the point of intersection both curves are differentiable and their normal vectors
are not parallel at that point. If all intersections between curves γ1 and γ2 are transversal,
then we say that γ1, γ2 are themselves transversal. Similarly, if all self-intersections of γ are
transversal, then we say that γ is self-transversal. (Transversal and self-transversal curves
are sometimes called generic, see e.g. [11].)
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If γ is self-transversal, we denote by χ(γ) the number of self-intersections of γ.4 If γ is
not self-transversal, then we define χ(γ) as the minimum of χ(γ̂) among all self-transversal
curves γ̂ that are ε-close to γ, for all small enough ε > 0. Hence, χ(γ) = 0 if and only if γ is
self-disjoinable. We define similarly the number of intersections χ(γ1, γ2) between two curves.
Then, γ1 and γ2 are disjoinable if and only if χ(γ1, γ2) = 0. Fulek and Tóth recently proved
that the problem of computing χ(γ) is NP-hard [20].

I Theorem 6. Let γ be a P -curve, and let γ′ = HCSP (γ). Then their self-intersection
numbers satisfy χ(γ′) ≤ χ(γ). Let δ be another P -curve, and let δ′ = HCSP (δ). Then their
intersection numbers satisfy χ(γ′, δ′) ≤ χ(γ, δ). In particular, if γ is self-disjoinable, so is
γ′, and if γ, δ are disjoinable, then so are γ′, δ′. Hence, under HCS, the intersection and
self-intersection numbers never increase.

With the technique of Theorem 6 we can obtain an upper bound on the number of
iterations of HCS:

I Theorem 7. If |P | = n then the HCS process starting with any P -curve ends in at most
n/2 iterations. If P = {1, 2, . . . ,

√
n}2 then the process ends in at most O(n2/3) iterations.

If P is uniformly and independently chosen at random inside a fixed convex domain, then
the expected number of iterations is O(n2/3).

We say that an obstacle set P is in general position if no three points of P lie on a line.
Note that if P is in general position then there are no nailed vertices in HCS.

I Theorem 8. Let P be an obstacle set in general position. Let γ be a simple P -curve. Then
HCSP (γ) is also simple. Let γ1, γ2 be disjoint P -curves. Then HCSP (γ1),HCSP (γ2) are also
disjoint. Hence, under HCS with obstacles in general position, a simple curve stays simple,
and a pair of disjoint curves stay disjoint.

Let γ be a simple piecewise-linear curve with vertices (v0, . . . , vn−1). Assume that the
sequence of vertices is minimal, meaning no vi−1, vi, vi+1 lie on a straight line. An inflection
edge of γ is an edge vivi+1 such that the previous and next vertices vi−1, vi+2 lie on opposite
sides of the line through vi, vi+1. Let ϕ(γ) be the number of inflection edges of γ. Note
that ϕ(γ) is always even, since every inflection edge lies either after a sequence of clockwise
vertices and before a sequence of counterclockwise vertices, or vice versa.

If γ is not simple but self-disjoinable, then we define ϕ(γ) as the minimum of ϕ(γ′) over
all simple piecewise-linear curves γ′ that are ε-close to γ, for all sufficiently small ε > 0.
(Note that for a given γ there might exist different curves γ′ with different values of ϕ(γ′).
For example, if γ goes from a point p to a point q and back n times, then γ′ could be a spiral
with just two inflection edges, or a double zig-zag with 2n− 2 inflection edges.)

I Theorem 9. Let γ be self-disjoinable, and let γ′ = HCSP (γ). Then their inflection-edge
numbers satisfy ϕ(γ′) ≤ ϕ(γ). Hence, under HCS on a self-disjoinable curve, the curve’s
number of inflection edges never increases.

5 Proofs

In order to prove Theorems 3–9, we rely on two different approaches for computing shortest
homotopic curves. The first approach uses a triangulation of the ambient space, while the
second aproach consists of repeatedly releasing unstable vertices. We start by describing
these two approaches in detail.

4 A self-intersection in a curve γ : S1 → R2 is a pair s 6= t such that γ(s) = γ(t). Hence, if γ passes k
times through a certain point, that counts as

(
k
2

)
self-intersections.

SoCG 2020
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x

γ

Figure 6 In the shortest curve homotopic to γ, the position of the point x is not uniquely defined.

5.1 Triangulations
Let P be a finite set of point obstacles, and let γ be a piecewise-smooth curve avoiding P .
Assume without loss of generality that γ is contained in the convex hull of P (by adding
points outside the convex hull of γ if necessary). Let T be a triangulation of the convex hull
of P using the points of P as vertices.

We can assume without loss of generality that the curve γ intersects each triangle edge
transversally. Let E = E(γ) be the circular sequence of triangle edges intersected by γ. Then
a piecewise-smooth homotopic change of γ can only have two possible types of effects on
E : Either an adjacent pair ee is inserted somewhere in the sequence, or an existing such
pair is deleted. Hence, two curves γ, γ′ are homotopic if and only if their corresponding
edge sequences E(γ), E(γ′) are equivalent, in the sense that they can be transformed into one
another by a sequence of operations of these two types.

Call an edge sequence E(γ) reduced if it contains no adjacent pair ee. Then every
edge sequence is equivalent to a unique reduced sequence. (Proof sketch: Supposing for
a contradiction that there exist two distinct equivalent reduced sequences S1, S2, consider
a transformation of S1 into S2 that uses the minimum possible number of deletions, and
among those, consider one in which the first deletion is done as early as possible. Then it is
easy to arrive at a contradiction.)

Hence, in order to compute the shortest curve homotopic to γ, we first compute E(γ),
then we reduce this sequence by repeatedly removing adjacent pairs, obtaining a reduced
sequence E ′, then we place a point x(e) on each e ∈ E ′, and then we slide the points x(e)
along their edges so as to minimize the length of the curve. This last step can be done by
the above-mentioned “funnel algorithm”, the details of which we omit.

See the full version of this paper for a proof that there is always a unique shortest curve.
Note that, even though the shortest curve is always unique, the final positions of the points
x(e) are not necessarily unique. This can happen if a triangulation edge is an edge of the
final curve. See Figure 6.

5.2 The Vertex Release Algorithm
We now present another simple algorithm for the shortest homotopic curve problem. This
algorithm is not mentioned in any previous publication that we are aware of, but it is similar
in spirit to well-known algorithms, in particular to the funnel algorithm.

As a warm-up, let us first consider the case in which the obstacles are are not single
points but rather polygons. Let γ be a curve that avoids all the obstacles. Call a vertex v
of γ unstable if v does not lie on any obstacle, or if v lies on the boundary of an obstacle
T , but T lies locally on the side of γ at which the angle is larger than π. If v is unstable,
then the process of releasing v is as follows: Let u and w be the previous and next vertices
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Figure 7 Releasing an unstable vertex in the presence of polygonal obstacles (left) or point
obstacles (right).

of γ. Suppose first that u 6= w. Let ∆ be the triangle uvw, and let S be the set of obstacle
vertices that lie inside ∆. Let u, z1, . . . , zk, w be the vertices of the convex hull of S \ {v}
in order. Then we replace v by z1, . . . , zk in γ. The new vertices z1, . . . , zk are necessarily
stable, but u and w might change from stable to unstable or vice versa. If u = w then we
simply remove v and w from γ. See Figure 7 (left).

Then the algorithm consists of releasing unstable vertices one by one, in an arbitrary
order, until no more unstable vertices remain.

If there are also point obstacles, then the algorithm becomes slightly more complicated.
For each curve vertex v that lies on a point obstacle, we need to remember the corresponding
signed angle αv that the curve turns around the obstacle, since this angle could be larger
than 2π in absolute value. The angle αv is always congruent modulo 2π to ∠uvw, where u
and w are the previous and next vertices. A vertex v is unstable if and only if |αv| < π.

Whenever we release an unstable vertex v preceded by u and followed by w, we proceed
as described above, and we update the angles as follows (see Figure 7, right):

If u 6= w then we give to each new vertex zi the unique appropriate angle that has the
opposite sign of αv and satisfies π ≤ |αzi | < 2π. We then update the angles αu and αw

as follows: Denote z0 = u and zk+1 = w (in order to handle properly the case k = 0).
We add to αu the angle ∠vuz1, and we add to αw the angle ∠zkwv.
If u = w then we update αu by adding to it the angle αw.

For the proof of correctness of the vertex release algorithm, see the full version of this
paper.

5.3 Proof of Theorems 3–5
Theorems 3–5 follow easily from the vertex-release algorithm.

Proof of Theorem 3. The claim follows from the fact that shortest homotopic curves and
paths are invariant under affine transformations. Namely, let γ be a curve or path in the
presence of obstacle points P , let δ be the shortest curve or path homotopic to γ, and let
T : R2 → R2 be a non-degenerate affine transformation. Then the shortest curve or path
homotopic to T (γ) in the presence of T (P ) is T (δ). This, in turn, follows from the fact
that T does not affect whether a vertex is stable or unstable, and furthermore, if a vertex is
unstable, then it does not matter whether we first release the vertex and then apply T , or do
these operations in the opposite order. J

Theorem 4 is also trivial, since the property of being the boundary of a convex polygon
is preserved by each vertex release.

SoCG 2020
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γ

δ

Figure 8 A P -curve γ and a corresponding type-2 curve δ.

Proof of Theorem 5. Given a curve γ with vertices (p0, . . . , pm−1), let vi ∈ S1 be the
unit vector parallel to −−−−→pipi+1 for each i . Call a tour of S1 valid if it visits the vectors
v0, v1, . . . , vm−1, v0 in this order. Then the total absolute curvature of γ equals the length of
the shortest valid tour of S1.

Now let γ be a given P -curve, and let γ′ = HCSP (γ). Recall that γ′ is obtained from γ by
a series of vertex releases. Each vertex release replaces two adjacent vectors vi, vi+1 ∈ S1 by
a certain number k ≥ 1 of vectors w1, . . . , wk lying between them, in this order. Hence, the
shortest valid tour of S1 for the old vector sequence goes from vi to vi+1 through w1, . . . , wk,
and hence this tour is also valid for the new vector sequence. J

5.4 Proof sketch of Theorems 6–8

The proof of Theorems 6–8 is based on the triangulation technique. Let γ be a P -curve, let
ε > 0 be small enough, and let γ̂ be a self-transversal curve that is ε-close to γ and has the
minimum possible number of self-intersections.

In order to prove Theorem 6, we proceed as follows:
1. We show that, without loss of generality, we can assume that γ̂ passes through the “correct

side” of each non-nailed obstacle, as in the “shortcutting” step of HCS.
2. We modify γ̂ homotopically, by first eliminating repetitions in its edge sequence E and

then sliding its vertices along the triangulation edges, until each vertex comes within ε of
its final position as given by γ′ = HCSP (γ). We show that the number of self-intersections
never increases in the process.

The case of two curves is similar.
In order to do the first step, we define a type of curves that are ε-close to P -curves and

pass through the “correct side” of non-nailed obstacles. We call them type-2 curves. We also
define a “snapping” operation, which transforms γ̂ into a type-2 curve without increasing its
number of self-intersections.

Type-2 Curves. Let γ be a P -curve, let (p0, . . . , pk−1) be the circular list of obstacles visited
by γ, and let ε > 0 be small enough. For each p ∈ P , let Cp be a circle of radius ε centered
at p. For each i, let xi ∈ Cpi be a point at distance at most ε2 from the segment pi−1pi,
and let yi ∈ Cpi

be a point at distance at most ε2 from the segment pipi+1. Then a type-2
curve δ corresponding to γ travels in a straight line from yi−1 to xi and then in a straight
line from xi to yi for each i. See Figure 8. We call each segment yi−1xi a long part and
each segment xiyi a short part. If ∠pi−1pipi+1 6= π and ε is chosen small enough, then pi

lies on the side of the curve at which the angle is larger than π. If ∠pi−1pipi+1 = π then the
corresponding short part passes within distance ε2 of vi.
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e e

Figure 9 Reducing a curve’s edge sequence without increasing its number of self-intersections.
Different portions of the curve are shown in different colors.

The Snapping Operation. Let γ be a P -curve, and let γ̂ be a curve (ε2)-close to γ. We
define the type-2 curve snap(γ̂) as follows. For each pi visited by γ̂ there exists a point zi in
γ̂ that is within distance ε2 of pi. Let yi be the first intersection of γ̂ with Cpi that comes
after zi, and let xi be the last intersection of γ̂ with Cpi

that comes before zi. (Thus, the
part of γ̂ between xi and yi is entirely contained in the disk bounded by Cpi .) Then we let
snap(γ̂) be the type-2 curve that uses these points xi, yi for all i as vertices.

The curve δ = snap(γ̂) also is also self-transversal, and it satisfies χ(δ) ≤ χ(γ̂). Similarly,
if γ1, γ2 are two P -curves, and γ̂1, γ̂2 are transversal curves (ε2)-close to them, respectively,
such that no intersection between γ̂1 and γ̂2 occurs on any circle Cp, then the curves
δ1 = snap(γ̂1), δ2 = snap(γ̂2) are transversal and satisfy χ(δ1, δ2) ≤ χ(γ̂1, γ̂2). See the full
version of this paper.

Proof of Theorem 6. Let γ be a P -curve, let ε > 0 be small enough, and let γ̂ be a
self-transversal curve that is ε-close to γ and has the minimum possible number of self-
intersections. Fix a triangulation T of P . Assume without loss of generality that γ̂ does
not pass through any obstacle, and that no self-intersection of γ lies on any edge of T . Let
η = snap(γ̂). Partition η into paths η0, . . . , ηk−1 that are ε-close to the corresponding paths
δ0, . . . , δk−1 of the HCS “splitting” step, by introducing split points as follows: For each
nailed visit to an obstacle p ∈ P , we choose a split point that is within distance O(ε) of p
and lies on a triangle edge (where the implicit constant depends only on P ).

Then we modify each ηi into a homotopic path η′i whose edge sequence E(η′i) is reduced.
We do this without increasing the number of intersections, by repeatedly doing the following:
Let e be triangulation edge such that ee appears one or more times in the sequences E(η′i).
We shortcut the corresponding paths η′i so as to not cross e at all, instead keeping a small
distance from e. We make the distance to e inversely related to the distance between the
two crossing points of η′i with e. See Figure 9.

Next, we modify each η′i into η′′i by straightening out each part within each triangle of T .
Hence, each η′′i is determined by the position of its vertices x(e) along the triangle edges e.

Finally, we slide the vertices x(e) along the edges to within ε of their final positions, as
given by γ′. We do this without changing the order of any pair of vertices along the same
edge, unless necessary. Call the resulting paths η′′′i . Meaning, if in γ′ there are several vertices
along an edge that coincide, then in the paths η′′′i we place those vertices within ε of each
other, conserving the order they had in η′′i . Let η′′, η′′′ be the curves formed by concatenating
the paths η′′i , η′′′i for all i, respectively. Hence, by construction, η′′′ is ε-close to γ′.

The number of self-intersections of η′′′ is not larger than that of η′′. See the full version
of this paper. This concludes the proof of Theorem 6 for the case of the number of self-
intersections of a single curve. The case of the number of intersections of two curves
is similar. J
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Theorem 7 follows by running HCS simultaneously on the given curve γ0 and on the
boundary δ0 of the convex hull of P . The HCS process starting with δ0 is just the convex-layer
decomposition of P , so we can apply the known bounds on the number of convex layers.
Denote γi+1 = HCSP (γi) and δi+1 = HCSP (δi) for all i. By the proof of Theorem 6, the two
curves stay disjoinable throughout the HCS process, with δi bounding γi for all i. See the
full version for more details, as well as for the proof of Theorem 8.

5.5 Proof sketch of Theorem 9
The proof of Theorem 9 (regarding the number of inflection edges) is based of the vertex-
release algorithm. The basic idea is that, given a self-disjoinable curve, if the vertex releases
are performed in an appropriate order, then the curve stays self-disjoinable at all times.
Moreover, no vertex release increases the number of inflection edges. Along the way, we
develop enough machinery to re-prove Theorem 6. The proof appears in the full version of
this paper.

6 Discussion

One of the reasons continuous curve-shortening flows were introduced and studied was to
overcome the shortcomings of the Birkhoff curve-shortening process ([8], see also e.g. [15]),
specifically the fact that it might cause the number of curve intersections to increase [23, 25].
As we have shown, HCS is a discrete process that overcomes this flaw without introducing
analytical difficulties, at least in the plane. It would be interesting to check whether HCS
can be applied on more general surfaces.
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