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Abstract: We consider an interacting, dilute Bose gas trapped in a harmonic potential
at a positive temperature. The system is analyzed in a combination of a thermodynamic
and a Gross–Pitaevskii (GP) limit where the trap frequency ω, the temperature T , and
the particle number N are related by N ∼ (T/ω)3 → ∞while the scattering length is so
small that the interaction energy per particle around the center of the trap is of the same
order of magnitude as the spectral gap in the trap. We prove that the difference between
the canonical free energy of the interacting gas and the one of the noninteracting system
can be obtained by minimizing the GP energy functional. We also prove Bose–Einstein
condensation in the following sense: The one-particle density matrix of any approximate
minimizer of the canonical free energy functional is to leading order given by that of
the noninteracting gas but with the free condensate wavefunction replaced by the GP
minimizer.
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1. Introduction and Main Results

1.1. Background and summary. Proving Bose–Einstein condensation (BEC) rigorously
for systems of interacting particles has for a long time been a major challenge in Math-
ematical Physics. The experimental realization of BEC in trapped alkali gases in 1995
[1,8] triggered numerous mathematical investigations of the properties of dilute Bose
gases. Building on work of Dyson on hard-core bosons from 1957 [11], the first proof
of an asymptotically accurate lower bound for the ground state energy of a dilute Bose
gas in the thermodynamic limit was achieved in [30]. Together with the upper bound
given in [29], it established firmly the leading order behavior of the ground state energy.
Perhaps more important than the result itself were the techniques of the proof which
formed the basis of much subsequent work.

For dilute, trapped gases as prepared in typical experiments, the Gross-Pitaevskii
(GP) limit for the ground state is relevant. This limit is characterized by the requirement
that the interaction energy per particle is kept of the same order of magnitude as the
spectral gap in the trap. Mathematically, this can be achieved by either scaling the trap or
the interaction potential suitably as the particle number tends to infinity. In [25,26,29]
it was proved that the ground state energy of a Bose gas is in this limit equal to the
minimum of the GP energy functional. Additionally, the projection onto the minimizer
of this functional is the limit of the one-particle density matrix of the gas, proving
complete Bose–Einstein condensation in the ground state. The dynamics of a system in
the GP limit, on the other hand, can be described by the time-dependent GP equation,
see [2,12,13,34]. For a more extensive list of references to the mathematical analysis of
dilute Bose gases we refer to [3,28,37].

While ground states provide a good description of quantum gases at very low temper-
atures in first approximation, the understanding of finite temperature effects in cold gases
is also essential. For instance, the spectacular emergence of a peak in the momentum
distribution out of a maxwellian thermal cloud in the experiments [1,8] as the temper-
ature falls below a critical value cannot be explained from the ground state properties
alone. For describing such phenomena one has to consider the Gibbs state and the free
energy of the system rather than the ground state and the corresponding energy. For a
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dilute, homogeneous Bose gas, the leading order behavior of the free energy has been
established, see [40] for the lower bound and [46] for the upper bound. The techniques
developed in [29,30] have also been extended to treat fermions, both for the ground state
[27] and for the free energy at finite temperature [39].Wemention also the papers [20,21]
and [14] where Gibbs states of Bose gases with mean-field interactions are studied. A
general proof of Bose–Einstein condensation in dilute gases remains elusive, however.

In this paper we consider the Gibbs state of an interacting Bose gas in a harmonic
trap at positive temperatures in a combination of a thermodynamic and a GP limit.
We show that in this limit the free energy becomes equal to that of the ideal gas plus
a correction given by the GP energy of the condensate. Moreover, we show that the
one-particle density matrix of the system is well approximated by that of the ideal gas
with the noninteracting condensate wavefunction replaced by the minimizer of the GP
energy functional. This proves, in particular, Bose–Einstein condensation at positive
temperatures with the same transition temperature and the same condensate fraction as
for the ideal gas to leading order.

1.2. Notation. For functions a and b depending on the particle number or other param-
eters, we use the notation a � b to say that there exists a constant C > 0 independent of
the parameters such that a ≤ Cb. If a � b and b � a we write a ∼ b and a � b means
that a and b are equal to leading order in the limit considered.

1.3. The model. We consider a system of N bosons trapped in a three-dimensional har-
monic potential with trap frequency ω. The one-particle Hilbert space is H1 = L2(R3)

and that for the whole system is the N -fold symmetric tensor productHN = ⊗N
s L2(R3).

On HN we define the Hamiltonian of the system by1

HN =
N∑

i=1

(
−�i + 1

4ω
2x2i − 3

2ω
)
+

∑

1≤i< j≤N

vN (xi − x j ). (1.1)

In this formula�i denotes the Laplacian acting on the i th particle andwe have subtracted
3
2ω for convenience so that the ground state energy of the harmonic oscillator is zero.
The interaction potential is given by

vN (x) = ωN 2v(ω1/2N x) (1.2)

with a nonnegative, radial and measurable function v, independent of N . A simple
scaling argument shows that if av is the (dimensionless) scattering length of v, then the
scattering length aN of vN is

aN = av ω−1/2N−1. (1.3)

The scattering length is a combined measure of the range and the strength of a potential
and its definition is recalled in Sect. 1.9. To be able to include hard-core interactions, we
allow v to take the value +∞. If v happens to be infinite on a set of nonzero measure,
the domain of the Hamiltonian has to be restricted to functions that vanish on this set.
We require that v is integrable outside some finite ball in order for the scattering length
av to be finite.

1 In our units the mass is m = 1
2 and � = 1 so that �

2/2m = 1 and m/2 = 1
4 . Moreover, Boltzmann’s

constant kB is taken to be 1.
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To motivate the scaling (1.2) we recall that the energy per particle of a dilute gas
of density ρ with interaction potential vN is to first approximation proportional to ρaN
[29,30]. If ρ ∼ N�−3

osc, where �osc ∼ ω−1/2 denotes the length scale of the trap, we see
that

ρaN ∼ ω (1.4)

i.e., the interaction energy per particle is of the order of the spectral gap ω as N → ∞.
Note also that the dimensionless “gas parameter” ρa3

N tends to zero as N−2 so the scaling
(1.2) amounts to considering a special case of a dilute limit.

1.4. The Gross–Pitaevskii energy functional and the GP limit. TheGP energy functional
EGP with trapping potential as in Eq. (1.1) and scattering length a is defined by

EGP(φ) =
∫

R3

(
|∇φ(x)|2 +

(
1
4ω

2x2 − 3
2ω
)

|φ(x)|2 + 4πa|φ(x)|4
)
dx . (1.5)

Its ground state energy is

EGP(N , a, ω) = inf
‖φ‖2

L2(R3)
=N

EGP(φ). (1.6)

The unique minimizer of EGP will be denoted by φGP
N ,a . To keep the notation simple, we

suppress its dependence onω. The energy and the minimizer satisfy the scaling relations

EGP(N , a, ω) = ωN EGP(1, Nω1/2a, 1), φGP
N ,a = N 1/2φGP

1,Na . (1.7)

For a detailed discussion of the mathematical properties of the GP functional and its
relation to the ground state of the Hamiltonian (1.1), we refer to [25] (see also [26,28,
29,32]) where the following is proved:

In the GP limit, where a = aN as in Eq. (1.3) and N → ∞, the ground state energy
per particle of the many-body Hamiltonian (1.1) converges to ωEGP(1, Nω1/2aN , 1) =
ωEGP(1, av, 1). Moreover, the normalized one-particle density matrix of the ground
state wavefunction converges in trace norm to the projector onto φGP

1,avω−1/2 .
Since the GP minimizer differs considerably from the gaussian ground state of the

harmonic oscillator if av is large, the interaction can leave a clear mark on the density
profile of the gas despite the high dilution imposed by theGP limit, as seen in experiments
[7,17]. In fact, for large av (“Thomas-Fermi limit”) the profile has approximately an
inverse parabolic shape of extension ∼ a2/5

v �osc.
Our goal is to generalize these results to equilibrium states at positive temperatures

when the GP limit is combined with the natural thermodynamic limit in the trap. The
definition of the latter and the heuristics behind our main results can be deduced from a
comparison of the length scales involved in the problem, as discussed next.

1.5. Length scales, thermodynamic limit, heuristics. For a noninteracting gas at inverse
temperature β = T −1 the following length scales are relevant:

• The extension �osc ∼ ω−1/2 of the ground state of the harmonic oscillator.
• The thermal de Broglie wavelength �th ∼ β1/2.
• The extension of the thermal cloud in the trap, Rth ∼ ω−1β−1/2, obtained by equat-

ing the potential energy ω2R2
th and the thermal kinetic energy β−1.

• The mean particle distance dth ∼ N−1/3Rth in the thermal cloud.
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The thermodynamic limit is defined by keeping the ratio dth/�th fixed as N → ∞,
i.e. by the condition

N (βω)3 fixed. (1.8)

The thermodynamic limit requires in particular (βω) ∼ N−1/3 → 0 and thus ω 
 T . If
dth � �th, i.e., N (βω)3 � 1, thermal de Broglie wave packets overlap and condensation
can be expected. This heuristics is confirmed by the standard analysis of the ideal Bose
gas in the harmonic trap [5,33,35]:

Bose–Einstein condensation takes place if the temperature T is smaller than the
critical temperature Tc given by

Tc(N , ω) = ω

(
N

ζ(3)

)1/3

. (1.9)

Here ζ is the zeta-function and ζ(3) = 1.202 . . . To be more precise, denote by
N0(β, N , ω) the expected number of particles occupying the ground state of the harmonic
oscillator in the canonical ensemble. If N → ∞with N (βω)3 fixed, the condensate frac-
tion is given by

lim
N0(β, N , ω)

N
=
[
1 −

(
T

Tc

)3
]

+

(1.10)

with [t]+ = max{t, 0}. The condition for the right-hand side of Eq. (1.10) to be larger
than zero, i.e., T < Tc, is equivalent to

lim N (βω)3 > 1.202. (1.11)

In this case the ground state of the harmonic oscillator is macroscopically occupied in
the ideal Bose gas. For T > Tc on the other hand, i.e., if

lim N (βω)3 < 1.202, (1.12)

there is no condensation. These formulas are most conveniently derived in the grand
canonical ensemble.

For an assessment of the effects of interactions the following observation is crucial:
The length scales Rth and �osc become separated if N → ∞,

�osc/Rth ∼ (βω)1/2 ∼ N−1/6. (1.13)

The average density of the condensate,

ρ0 ∼ N0/�
3
osc, (1.14)

and that of the thermal cloud,

ρth ∼ Nth/R3
th ∼ (βω)3/2Nth/�

3
osc, (1.15)

with Nth := N − N0, are therefore widely different in the condensation regime 0 < T <

Tc where N0 and Nth are comparable:

ρth/ρ0 ∼ (βω)3/2 ∼ N−1/2. (1.16)

The same holds for the ratios of the interaction energy per particle, aN ρth and aN ρ0
respectively.We remark that in the presence of a condensate described by aGPminimizer
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with large av it would be more precise to replace �osc in Eqs. (1.14)–(1.15) by a2/5
v �osc.

Also, since the ball |x | � a2/5
v �osc is essentially excluded for the thermal cloud, Rth in

Eq. (1.15) should be replaced approximately by Rth +a2/5
v �osc. As long as av stays O(1),

however, the asymptotic behavior in Eq. (1.16) remains valid.
The separation of scales expressed by Eq. (1.13) leads to the following expectations

for the combined GP and thermodynamic limit:

• The thermal cloud of the ideal gas remains essentially intact.
• BEC takes place for T < Tc and the condensate can be described by the GP mini-

mizer, residing close to the center of the trap.

Transforming this heuristic picture into a mathematical proof is the subject of this paper.
In order to state our main results precisely we need a few more definitions.

1.6. Gibbs state, free energy and the concept of BEC. The canonical Gibbs state for the
Hamiltonian (1.1) is

�G
N = Z(β, N , ω)−1e−βHN (1.17)

with Z(β, N , ω) = TrHN

[
e−βHN

]
the canonical partition function. The free energy of

the system at inverse temperature β = T −1 is given by

F(β, N , ω) = − 1
β
ln
(
TrHN

[
e−βHN

])
. (1.18)

The trace inEqs. (1.17)–(1.18) is taken overHN , that is, over the subspace of permutation
symmetric functions in L2(R3N ). In the following, we will drop the indexHN and just
write Tr for this trace. By F0(β, N , ω) we denote the free energy of the ideal Bose gas
in the harmonic trap, that is, the one for v = 0.

A useful characterization of the free energy is via the Gibbs variational principle.
Denote by SN the set of states on HN that have finite energy with respect to HN .
In other words, consider the set of all linear operators � on HN with 0 ≤ � ≤ 1,
Tr[�] = 1 and Tr[HN �] < ∞.2 Also denote by S(�) = −Tr[� ln(�)] the entropy of
a state � ∈ SN . The free energy functional is defined to be

FN (�) = Tr[HN �] − T S(�), (1.19)

and using this definition, the free energy can be written as

F(β, N , ω) = min
�∈SN

FN (�). (1.20)

The unique minimizer ofFN is given by the canonical Gibbs state defined in Eq. (1.17).
The reduced one-particle density matrix of a state�N ∈ SN is defined via the integral

kernel
γN (x, y) = TrHN [a∗

yax�N ]. (1.21)

Here a∗
x and ax denote creation and the annihilation operators (actually operator-valued

distributions) of a particle at point x , fulfilling the canonical commutation relation

2 Here and elsewhere in the paper, we shall interpret Tr H� for positive operators H and states � as
Tr H1/2�H1/2, which is always well-defined if one allows the value +∞. In particular, finiteness of Tr H�

does not require that H� is trace class, only that H1/2�H1/2 is.
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[ax , a∗
y ] = δ(x − y). Alternatively, γN can be defined as N times the partial trace

of �N over N − 1 particle variables.
Finally,Bose–Einstein condensation for a sequence of states�N means, by definition,

that

lim inf
N→∞

1

N
sup

‖ψ‖2=1
〈ψ, γN ψ〉 > 0. (1.22)

1.7. The main theorem.

Theorem 1.1. Assume that v is a nonnegative, radial and measurable function which
is integrable outside some finite ball. Let HN be the Hamiltonian (1.1) with interac-
tion potential vN given by Eq. (1.2). Let F(β, N , ω) be the corresponding free energy,
F0(β, N , ω) the free energy of the ideal gas, and N0(β, N , ω) the expected number of
particles occupying the ground state of the harmonic oscillator in the canonical Gibbs
state of the ideal Bose gas. In the combined thermodynamic and GP limit, that is, for
N → ∞, (βω)−3 ∼ N and aN as in Eq. (1.3) with av fixed, we have

lim 1
ωN

∣∣∣F(β, N , ω) − F0(β, N , ω) − EGP(N0, aN , ω)

∣∣∣ = 0. (1.23)

Moreover, for any sequence of states �N ∈ SN with

lim 1
ωN

∣∣∣FN (�N ) − F0(β, N , ω) − EGP(N0, aN , ω)

∣∣∣ = 0 (1.24)

we have

lim 1
N

∥∥∥γN −
(
γN ,0 − N0|ϕ0〉〈ϕ0| + |φGP

N0,aN
〉〈φGP

N0,aN
|
)∥∥∥

1
= 0. (1.25)

Here γN ,0 denotes the one-particle density matrix of the noninteracting canonical Gibbs
state, ϕ0 is the normalized ground state wavefunction of the harmonic oscillator Hamil-
tonian h = −� + 1

4ω
2x2 − 3

2ω, and ‖ · ‖1 stands for the trace norm. Finally,

lim 1
N

∥∥∥γN − |φGP
N0,aN

〉〈φGP
N0,aN

|
∥∥∥ = 0 (1.26)

where ‖ · ‖ is the operator norm. In particular, Bose–Einstein condensation takes place
with the same transition temperature Tc and the same condensate fraction as for the
ideal gas to leading order, with the GP minimizer macroscopically occupied while the
occupation of every state orthogonal to it is o(N ).

1.8. Remarks. 1. The bounds leading to Theorem 1.1 are uniform in (βω)−3N−1 as
long as this quantity remains in a compact interval [c, d], 0 ≤ c < d < ∞ of the real
line. That is, we need not require lim T/Tc to exist, only to stay bounded. In particular,
Theorem 1.1 continuously extrapolates to the known result at T = 0.

2. We have the following uniformity of our bounds in the scattering length: Assume
v(x) = a−2

v ṽ(x/av) for some potential ṽ with scattering length equal to one. By scaling,
the scattering length of v is given by av . Then the bounds in Theorem 1.1 are uniform
for av ∈ (0, d] with 0 < d < ∞.

3. The free energy F0(β, N , ω) of the ideal Bose gas in the harmonic trap is of order
Nβ−1 ∼ ω(βω)−4, see Sect. 1.10 below. The GP energy, on the other hand, is of order
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Nω ∼ ω(βω)−3 which is the scale up to which we have to control the free energy
F(β, N , ω) of the interacting gas.

4. Theorem 1.1 is stated and proven for the explicit choice of 1
4ω

2x2 as a trapping
potential. This choice is mainly for notational simplicity, but is also motivated by the
fact that the harmonic trap is the physically most relevant one. Rotational symmetry
is not important, however. The treatment of an anisotropic trap requires only slight
notationalmodifications and the interpretation ofω as the geometricmeanof the principal
frequencies of the parabolic potential.

5. The impressive cover picture of the first Bose–Einstein condensates in the July 1995
issue of Science, where the paper [1] appeared, shows the momentum distribution rather
than the spatial distribution of the trapped gas. Themomentumdistribution of the thermal
cloud is approximately an isotropic maxwellian of width ∼ β−1/2. The condensate
momentum distribution, which is the modulus squared of the Fourier transform of the
GP minimizer, is anisotropic because the trap was anisotropic. The width of the peak
in momentum space is ∼ ω1/2 and thus narrower than the thermal cloud by a factor
(βω)1/2. Our Theorem confirms this picture rigorously for the first time.

6. The techniques used in the proof of Theorem 1.1 carry over with moderate adjust-
ments to the case of trapping potentials behaving as |x |α with α < ∞ for large |x |. The
key point is that such potentials still lead to an asymptotic power law behavior of the
eigenvalues of the related Schrödinger operator and cause a separation of length scales
between the condensate and the thermal cloud. It should be noted, however, that if α > 2
the exponent 1/6 in (1.13) is replaced by a smaller exponent and a clear separation of
scales thus requires even larger values of N .3 If α → ∞ the whole system is confined
in a box and the condensate and the thermal cloud are no longer spatially separated.
Treating such systems will require a different approach from the one of the present pa-
per. This is an important open problem because traps with very large α have recently
become available in experiments [15,31].

7. The fact that the transition temperature for BEC and the condensate fraction for the
interacting gas stay the same as for the ideal gas relies essentially on the diluteness of the
system, expressed through the scaling (1.2), and the N → ∞ limit. Under less restrictive
conditions finite size corrections can be expected and have been seen in experiments [43].
Extending our results to capture these effects requires a proof of BEC beyond the GP
limit, a difficult unsolved problem.

8. Since we work in the canonical ensemble, explicit expressions for the free energy
F0(β, N , ω), the one-particle density matrix γN ,0 and the condensate fraction N0/N
in the ideal Bose gas are not available. However, Theorem 1.1 remains valid if these
expressions are replaced by their corresponding grand canonical versions, which we
recall in Sect. 1.10. This is due to the fact that the difference between the two ensembles
is negligible in the limit of consideration here (see Sect. 1.10 and the discussion in the
Appendix for details).

9. Theorem 1.1 is also valid if we replace F(β, N , ω) by its grand canonical analogue
Fgc(β, N , ω) where a chemical potential μ is chosen such that the expected number of
particles equals N . We know from the Gibbs variational principle that Fgc(β, N , ω) ≤
F(β, N , ω) holds. Hence the upper bound for the canonical free energy directly implies
the upper bound for its grand canonical version. On the other hand, the proofs of the
lower bound for the free energy and of the asymptotics of the one-particle density matrix
are carried out in a way that is directly applicable to the grand canonical ensemble.

3 Even if N = 106 the scale separation in (1.13) is only by a factor 1/10.
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10. The strategy of the proof of Theorem 1.1 also applies in two space dimensions
with the obvious modifications, compare with [28, Chapter 6.2].

1.9. Supplementary 1: the scattering length. Let us quickly summarize the basic facts
about the scattering length. Amore detailed discussion can be found in [28, AppendixC].
Our assumptions on v guarantee that the zero energy scattering equation

−� f (x) +
1

2
v(x) f (x) = 0 with lim|x |→∞ f (x) = 1 (1.27)

has a unique solution. It satisfies

f (x) � 1 − a

|x | for |x | → ∞ (1.28)

for some constant a > 0 which is called the scattering length of v. The scattering length
has the natural interpretation of a combined measure for the range and the strength of the
interaction potential v. If v happens to be a hard core potential with range r for example,
one finds a = r , whereas for weak, integrable potentials a ≈ (8π)−1

∫
R3 v(x)dx . For

dilute quantum gases where collisions can be described in a low energy approximation,
the leading order contribution to the scattering amplitude comes from s-wave scattering.
In this approximation, particles are scattered in every direction with the same probability
and the scattering cross-section is given by 4πa2.

In the case of nonnegative potentials, the scattering length can be characterized via
the following variational principle. Denote by X the set of functions in H1

loc(R
3) with

φ(x) → 1 for |x | → ∞. Then the scattering length is given by

4πa = inf
φ∈X

∫

R3

(
|∇φ(x)|2 + 1

2
v(x)|φ(x)|2

)
dx . (1.29)

Equation (1.29) implies 8πa ≤ ∫
R3 v(x)dx . By a trial state argument one can improve

this inequality and show that it is strict if v is not identically zero.

1.10. Supplementary 2: the chemical potential and the free energy of the ideal Bose
gas. For typical quantities of interest, as for example the free energy, there do not
exist simple closed form expressions in the canonical ensemble. Nevertheless, in the
thermodynamic limit as defined in Sect. 1.5, these quantities are very close to those
computed in the grand canonical ensemble, which allows for explicit computations. We
start by introducing several grand canonical quantities, and subsequently discuss their
relation to their canonical versions.

The ideal Bose gas in the harmonic trap is described by the one-particle Hamiltonian

h = −� +
ω2x2

4
− 3ω

2
. (1.30)

The expected number of particles in the condensate and the thermal cloud are given by

N gc
0 = 1

e−βμ0 − 1
and N gc

th =
∞∑

n=1

g(n)

e−βμ0eβωn − 1
, (1.31)

respectively. Here g(n) = (n +1)(n +2)/2 is the degeneracy of the energy level ωn of h.
For βω 
 1 the sum in the above equation can be interpreted as a Riemann sum and one
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finds N gc
th ∼ (βω)−3. The expected number of particles in the gas is N = N gc

0 + N gc
th .

It will be adjusted by the chemical potential μ0 such that N = N holds. To be more
precise, we choose μ0 = μ0(β, N , ω) such that

N =
∞∑

n=0

g(n)

e−βμ0eβωn − 1
. (1.32)

If N gc
0 � 1 one has −(βμ0)

−1 � N gc
0 . If T < Tc(1 − ε) for some ε > 0, the chemical

potential behaves as −μ0 � T (N (1 − (T/Tc)3))−1, see Eq. (1.10). On the other hand,
for T > Tc(1 + ε) one has −μ0 � ηT , where η is the unique solution of the equation

(
T

Tc

)3 1

2

∫ ∞

0

x2

ex+η − 1
dx = ζ(3). (1.33)

The grand canonical free energy is given by

Fgc
0 (β, N , ω) = 1

β

∞∑

n=0

g(n) ln
(
1 − eβμ0e−βωn) + μ0N . (1.34)

In the same way as for the expected number of particles in the thermal cloud, the sum in
the above equation can be interpreted as a Riemann sum and one finds Fgc

0 (β, μ0, ω) ∼
−ω(βω)−4, compare with [35, Eqs. (10.19)–(10.22)]. Note, however, that the error one
makes by approximating the sum in Eq. (1.34) by an integral is of orderω(βω)−3 ∼ ωN
which is the order of the GP energy. Hence, we cannot do this replacement and have to
work with the sum. The same is true in the case of N gc

th .
The canonical free energy F0 is given by (1.18) with v = 0 in HN . We shall show in

Corollary A.1 in the Appendix that |F0(β, N , ω) − Fgc
0 (β, N , ω)| ≤ T O(ln N ), so

F0(β, N , ω) = 1

β

∞∑

n=0

g(n) ln
(
1 − eβμ0e−βωn) + μ0N + T O(ln(N )) (1.35)

with the last term much smaller than the main contribution in the thermodynamic limit.
Moreover, Corollary A.2 tells us that |N0 − N gc

0 | � (βω)−3/2(ln N )1/2 + (βω)−1 ln N .
The same bound holds for the expected numbers of particles in the thermal cloud.

1.11. The proof strategy. The rigorous mathematical implementation of the heuristic
picture behind Theorem 1.1 is technically rather involved. For the convenience of the
readerwe describe here briefly themain steps before turning to the proof in the remaining
sections.

Section 2 contains an upper bound on the free energy F(β, N , ω) that has the correct
asymptotic form (1.23). It utilizes the Gibbs variational principle (1.20), so the task
is to construct an appropriate trial state. The latter consists on the one hand of a pure
state, describing the condensate particles, which are confined to a ball of some size R
with ω−1/2 
 R 
 ω−1β−1/2, i.e., large compared to the oscillator length but small
compared to the length scale of the thermal cloud. On the other hand, the remaining
particles, constituting the thermal cloud, will be described by a suitably modified Gibbs
state confined to the complement of the ball. For the condensate, we can use the known
zero-temperature results to obtain the GP energy. Even though the particle interactions
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affect the free energy to the order we are interested in only through the condensate,
we cannot simply use the noninteracting Gibbs state as a trial state for the thermal
cloud, since we want to allow for nonintegrable interaction potentials (e.g., having a
hard-core) which can have infinite energy in that state. We thus have to appropriately
modify the trial state, avoiding configurations where the particles are too close. This
creates some technical complications which have to be dealt with carefully. For various
bounds, it turns out to be necessary to compare certain expressions for the ideal Bose in
the canonical and grand canonical ensembles, respectively. The relevant estimates are
collected in Appendix A.

In Sect. 3 we shall give a lower bound on the free energy, which together with the
upper bound proves Eq. (1.23). We shall use the technique of Fock-space localization to
spatially divide the system into two, one confined to a ball of radius R (chosen as above
to satisfy ω−1/2 
 R 
 ω−1β−1/2) and one confined to the complement. Inside the
ball, the effect of the positive temperature is of lower order, and we can again utilize the
known zero-temperature results to obtain a bound on the energy of these particles, as
well as on the one-particle density matrix, which displays Bose–Einstein condensation
into the GP minimizer. For the system in the complement of the ball, we can drop the
interaction terms (using their positivity) to obtain the free energy of the ideal gas as a
lower bound.

To obtain information on the one-particle density matrix of the interacting Gibbs
state (or approximate Gibbs state) we develop in Sect. 4 a novel lower bound on the
free energy functional for an ideal Bose gas quantifying its coercivity. More precisely, in
Lemma 4.1 we show that any approximate minimizer of the Gibbs free energy functional
is, in a suitable sense, close to the actual minimizer. In combination with the result on
Bose–Einstein condensation for the system inside the ball of radius R, this allows us to
prove Eqs. (1.25) and (1.26).

Finally, Appendix A collects certain properties of the ideal Bose gas that we need in
our proofs.

2. Proof of the Upper Bound

2.1. The variational ansatz. In this section we construct a trial state �N whose free
energy has the correct asymptotics (1.23). In the case of the ideal Bose gas in the
harmonic trap, the characteristic length scale of the condensate is ω−1/2 while for the
thermal cloud it is ω−1/2(βω)−1/2 which is much larger in the limit we consider. The
main idea of the proof is based on the expectation that in the GP limit this picture does
not change if an interaction is turned on. What also does not change to leading order is
the expected number of particles in the condensate and in the thermal cloud. Since the
thermal cloud is therefore much more dilute than the condensate, the free energy of the
particles outside the condensate is not affected by the interaction to the same order of
magnitude as the condensate. The following analysis makes this intuition precise.

The first step in the construction of our trial state �N is to decompose space into three
disjoint parts, a ball B(R) with radius R > 0, an annulus A(R, R + �) with radii R and
R + �, and the complement of a ball with radius R + �. All those sets are assumed to be
centered around zero. For later convenience we will refer to them as Region 1, 2 and 3,
respectively. The length R will be chosen such that ω−1/2 
 R 
 ω−1/2(βω)−1/2, i.e.,
between the length scale of the condensate and the one of the thermal cloud. Choosing
R like this, we will be able to spatially separate the system into two parts, a condensate
living in B(R) and a thermal cloud living in B(R+�)c without affecting each of them too
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much. In Region 2 there will be no particles in the trial state. The length � ∼ ω−1/2N−1

is chosen such that there is no hard-core interaction between particles in Region 1 and
particles in Region 3.

The one-particle Hilbert space and the Fock space naturally decompose as

L2(R3) ∼= L2(B(R))︸ ︷︷ ︸
H1

⊕ L2(A(R, R + �))︸ ︷︷ ︸
H2

⊕ L2(B(R + �)c)︸ ︷︷ ︸
H3

(2.1)

and F(L2(R3)) ∼= F(H1) ⊗ F(H2) ⊗ F(H3), respectively. The heuristics in Sect. 1.5
tells us that we can neglect the contribution from the thermal cloud in Region 1 since it
is too dilute to contribute with a macroscopic number of particles. The condensate will
be described by the ground state of the Hamiltonian

HD≤R =
N0∑

i=1

(
−�D

i,≤R +
ω2x2i
4

− 3ω

2

)
+

∑

1≤i< j≤N0

vN (xi − x j ) (2.2)

actingon L2
sym(B(R)N0), the spaceof permutation symmetric square integrable functions

depending on N0 variables. Here, �D
i,≤R denotes the Laplacian on B(R) with Dirichlet

boundary conditions, acting on the i th particle, and N0 = N0(β, N , ω) is the expected
number of particles in the condensate of an ideal Bose gas in the canonical ensemble.
Strictly speaking N0 is not necessarily an integer and we should rather choose �N0�, the
smallest integer larger than or equal to N0, in the definition of HD≤R instead. In the end,
this will lead to 1/N corrections which do not cause any additional difficulties, however.
In order not to complicate the presentation unnecessarily, we therefore assume that N0
is an integer. By �D≤R we denote the unique ground state wavefunction of HD≤R with

energy ED≤R . The above construction will allow us to use existing results for the ground
state of a Bose gas in a trap.

In Region 3 on the other hand, the condensate does not contribute to the free energy
to leading order because its extension ω−1/2 is much smaller than R. To describe the
thermal cloud, we define the one-particle Hamiltonian

hD≥R+� = −�D≥R+� +
ω2x

4
− 3ω

2
, (2.3)

where �D
i,≥R+� denotes the Laplacian on B(R + �)c with Dirichlet boundary conditions.

We also define the noninteracting Nth-particle operator with energy cut-off �

HD,�
≥R+� =

Nth∑

i=1

1
(

hD≥R+�,i ≤ �
)

hD≥R+�,i (2.4)

acting on L2
sym((B(R+�)c)Nth)with Nth = N − N0 and hD≥R+�,i the operator in Eq. (2.3)

acting on the i th particle. By 1(hD≥R+�,i ≤ �) we denote the spectral projection onto the

subspace ofH3 where hD≥R+�,i is at most �. The cut-off � in Eq. (2.4) is introduced for
technical reasons, whichwill be explained in the text preceding Lemma 2.5 in Subsection
2.3 below. Let the many-particle projection PNth be defined by

PNth =
Nth∏

i=1

1
(

hD≥R+�,i ≤ �
)

. (2.5)
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Its range consists of linear combinations of symmetrized products of eigenfunctions of
hD≥R+�, where each of these one-particle functions has energy at most �. By

�
D,�
≥R+� = e−βHD,�

≥R+� PNth

Tr
[
e−βHD,�

≥R+� PNth

] (2.6)

we denote the canonical Gibbs state associated with the Hamiltonian HD,�
≥R+�.

Since the interaction potential may include a hard-core repulsion between the parti-
cles, we have to add a correlation structure to the state �

D,�
≥R+�. For this purpose we define

the Jastrow-type function [18]

F(x1, . . . , xNth) =
∏

1≤i< j≤Nth

fb(xi − x j )

with fb(x) =
{

f0(|x |)/ f0(b) for |x | < b
1 for |x | ≥ b,

(2.7)

where b is a parameter to be determined and f0(|x |) is the unique solution of the zero-
energy scattering equation (1.27) with v replaced by vN . Since f0 is an increasing
function, 0 ≤ fb(x) ≤ 1 for all x ∈ R

3. The parameter b will be chosen to be larger
than the scattering length aN but of the same order of magnitude.

We expand �
D,�
≥R+� = ∑∞

α=1 λα|�α〉〈�α| where we choose the functions �α as

symmetrized products of eigenfunctions of the one-particle Hamiltonian hD≥R+� with

energy at most �. The energy of �α is denoted by Eα , that is, HD≥R+��α = Eα�α . The

modified state �̃
D,�
≥R+� is defined as

�̃
D,�
≥R+� =

∞∑

α=1

λα|�α〉〈�α| where �α = F�α

‖F�α‖ . (2.8)

Here and in the following, ‖�‖ denotes the L2-norm of �.
After these preparations we can now finally define our trial state �N on F(H1) ⊗

F(H2) ⊗ F(H3) to be

�N = |�D≤R〉〈�D≤R | ⊗ |�〉〈�| ⊗ �̃
D,�
≥R+�, (2.9)

where � denotes the Fock space vacuum in F(H2).
Let

HD≥R+� =
Nth∑

i=1

hD≥R+�,i (2.10)

be the noninteracting Nth-particle Hamiltonian in the region B(R + �)c without the cut-
off. Because the first two factors in Eq. (2.9) do not contribute to the entropy of �N , its
free energy with respect to the original Hamiltonian (1.1) is given by

Tr (HN �N ) − T S(�N ) = ED≤R + Tr
[(

HD≥R+� + V33

)
�̃
D,�
≥R+�

]

− T S
(
�̃
D,�
≥R+�

)
+ Tr (V13�N ) . (2.11)
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Here Vi j denotes the interaction between Regions i and j . The remaining part of this
section will be devoted to finding an appropriate upper bound to the right-hand side of
Eq. (2.11), which is an upper bound for F(β, N , ω) by the Gibbs variational principle
(1.20). In order to simplify the notation, we will from now on replace R + � everywhere
by R. Since � 
 R the number � does not enter the proofs explicitly, except when we
bound the interaction energy between the condensate and the thermal cloud.

In the rest of the proof of the upper bound we assume that (βω)−1 � N 1/3 (i.e.,
T � Tc), as well as � � T and ω−1/2 
 R ≤ λω−1β−1/2 for some λ > 0 that we
choose small enough.

2.2. Preparatory lemmas. The thermal cloud in Region 3, that is, in B(R)c, is described
by an ideal Bose gas with the one-particle Hamiltonian 1(hD≥R ≤ �)hD≥R . We would
like to relate its canonical free energy to that of the gas living in all of R

3 and without a
cut-off. To that end, we will first compare it to the grand canonical free energy with the
help of Corollary A.1. Here explicit formulas are available which allow us to quantify
the change in energy caused by the Dirichlet boundary conditions at ∂ B(R) and by the
energy cut-off �. As a preparation we state and prove in this subsection four Lemmas.

The first one, Lemma 2.1, is a general statement allowing to compare traces of
functions of Schrödinger operators with different boundary conditions. Lemma 2.2 es-
timates the differences between traces of functions of Schrödinger operators with Neu-
mann boundary conditions acting on L2(B(R)c) and those acting on L2(R3) without
boundary conditions. Together these two lemmas are used in the sequel to quantify the
difference between the grand canonical free energy of the system living in Region 3 and
that of the system living in R

3, and also the difference of the expected particle numbers.
Lemmas 2.1 and 2.2 also enter the proof of Lemma 2.3 which concerns the effects of
the boundary condition at ∂ B(R) and the cut-off � on the chemical potential.

To show that the interaction energy in the thermal cloud and between the thermal
cloud and the condensate is of lower order we need an estimate on the L∞-norm of the
density of the canonical ideal gas in Region 3. Using Proposition A.2, we can estimate
the canonical density in terms of the grand canonical density. To close the argument, we
need a bound on the L∞-norm of the latter showing that the system is dilute in a suitable
sense. Such a bound is given in Lemma 2.4 whose proof uses also Lemma 2.3.

Lemma 2.1. Let f ∈ C2((0,∞), R) be a convex, monotone decreasing and nonnegative
function. We assume | f ′(x)| � x−3 for x → 0 as well as

∫ ∞

0
f (x)

(
x1/2 + x2

)
dx < ∞ and

∫ ∞

0
| f ′(x)|x2dx < ∞. (2.12)

Denote by hN/D
≥R the harmonic oscillator Hamiltonian −�

N/D
≥R + ω2x2

4 − 3ω
2 acting on

functions in L2(B(R)c) with Neumann/Dirichlet boundary conditions at ∂ B(R) and
choose μ with μ ≤ Cω for some C > 0. We then have

Tr
[

f (β(hN≥R − μ))
]

≤ Tr
[

f
(
β(hD≥R − μ)

)]
+O

(
1

β2ω3R2

)
+O

(
R3

β3/2

)
. (2.13)

Proof. By the assumptions on f we can write

f (x) =
∫ ∞

0
f

′′
(E)[E − x]+dE, (2.14)

where [x]+ = max{x, 0}. Since f is convex, f
′′
is nonnegative.
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Let j1, j2 ∈ C∞(R3) be such that j1(x)2 + j2(x)2 = 1 for all x ∈ R
3. We further

assume that j1(x) equals one for x ∈ B(R) and zero for x ∈ B(2R)c, as well as
|∇ j1(x)|2 + |∇ j2(x)|2 ≤ 3R−2. An application of the IMS localization formula (see e.g.
[6]) and the inequality ji (x)1(hN≥R ≤ E) ji (x) ≤ 1 tell us that

Tr
[

E − β
(

hN≥R − μ
)]

+

=
2∑

i=1

Tr

[
ji

(
E − β

(
hN≥R − μ

)
+

2∑

l=1

(∇ jl)
2

)
ji1
(
β
(

hN≥R − μ
)

≤ E
)]

≤ Tr

[
χ1

(
E − β

(
hN,D

≥R,≤2R − μ
)
+

2∑

l=1

(∇ jl)
2

)
χ1

]

+

+ Tr

[
χ2

(
E − β

(
hD≥R − μ

)
+

2∑

l=1

(∇ jl)
2

)
χ2

]

+

(2.15)

holds. Here χi denotes the characteristic function of the support of ji and hN,D
≥R,≤2R is the

harmonic oscillator Hamiltonian in the annulus A(R, 2R)with Neumann boundary con-
ditions on ∂ B(R) and Dirichlet boundary conditions on ∂ B(2R). To arrive at Eq. (2.15),
we used that the cut-off functions ji introduce additional Dirichlet boundary conditions
for the operators under the trace. Together with Eq. (2.14) and |∇ j1(x)|2 + |∇ j2(x)|2 ≤
3R−2, we conclude that

Tr
[

f (β(hN≥R − μ))
]

≤ Tr
[

f
(
β
(

hD≥R − μ − 3R−2
))]

+Tr
[

f
(
β
(

hN,D
≥R,≤2R − μ − 3R−2

))]
(2.16)

holds.
Let us continue with the first term on the right-hand side of the above equation. Using

the convexity of f , we see that

Tr
[

f
(
β
(

hD≥R − μ − 3R−2
))]

≤ Tr
[

f
(
β(hD≥R − μ)

)]

− 3β R−2 Tr
[

f ′ (β
(

hD≥R − μ − 3R−2
))]

.

(2.17)

In order to give anupper bound for the second termon the right-hand side ofEq. (2.17),we
note that the αth eigenvalue eα(hD≥R) of hD≥R can be bounded from below by eα(hD≥R) ≥
max{eα(h), ω2R2/4 − 3ω/2}. Here eα(h) denotes the αth eigenvalue of the harmonic
oscillator Hamiltonian h in (1.30) acting on L2(R3). We thus have

Tr
[

f ′ (β
(

hD≥R − μ − 3R−2
))]

≥
α0∑

α=0

f ′
(

β

(
ω2R2

4
− 3ω

2
− μ − 3R−2

))

+
∑

α>α0

f ′ (β
(

eα(h) − μ − 3R−2
))

(2.18)

for any α0 ∈ N. If we choose α0 ∼ 1 such that eα0(h) − μ − 3R−2 ≥ ω and use that
| f ′(x)| � x−3 for x → 0, we see that the first term on the right-hand side of Eq. (2.18) is
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at most of the order (βω2R2)−3. Our assumptions on R imply (βω2R2)−3 
 (βω)−3.
To treat the second term, we recall that the eigenvalue ωn of h is g(n)-fold degenerate,
where g(n) = (n + 2)(n + 1)/2. Hence, for an appropriately chosen integer m0 > 0, we
can write the second term on the right-hand side of Eq. (2.18) as

∑

α>α0

f ′ (β
(

eα(h) − μ − 3R−2
))

=
∑

n>m0

g(n) f ′ (β
(
ωn − μ − 3R−2

))

� 1

(βω)3

∫ ∞

0
x2 f ′(x)dx . (2.19)

To obtain the last line, we used that the sum in the line above can be interpreted as a
Riemann sum approximating the integral in the last line, as well as the bound eα(h) −
μ − 3R−2 ≥ ω. We now collect the results of Eqs. (2.17)–(2.19) and obtain

Tr
[

f
(
β
(

hD≥R − μ − 3R−2
))]

≤ Tr
[

f
(
β
(

hD≥R − μ
))]

+ O

(
1

β2ω3R2

)
(2.20)

as an upper bound on the first term on the right-hand side of Eq. (2.16).
It remains to give a bound on the second term on the right-hand side of Eq. (2.16). Us-

ing theWeyl asymptotics [45, Satz XI] for the eigenvalues of the Laplacian in A(R, 2R),
one sees that

eα

(
hN,D

≥R,≤2R

)
− μ − 3R−2 ≥ ω2R2

8
+

Cα2/3

R2 (2.21)

holds for some appropriately chosen constant C > 0. This allows us to estimate the
second term on the right-hand side of Eq. (2.16) by

Tr
[

f
(
β
(

hN,D
≥R,≤2R − μ − 3R−2

))]
≤

∞∑

α=0

f

(
β

(
ω2R2

8
+

Cα2/3

R2

))

� R3

β3/2

∫ ∞

0
x1/2 f (x)dx . (2.22)

In combination, Eqs. (2.16), (2.20) and (2.22) yield Eq. (2.13). ��
Lemma 2.2. Let f : R+ → R be a nonnegative and monotone decreasing measurable
function. We also assume that

∫ ∞

0
f (x)

√
xdx < ∞ as well as f (x) � x−1 for x → 0. (2.23)

Denote by hN≥R the harmonic oscillator Hamiltonian −�N≥R + ω2x2
4 − 3ω

2 acting on

functions in L2(B(R)c) with Neumann boundary conditions at ∂ B(R) and choose μ ≤
cω with c < 1. Then

Tr
[

f (β(hN≥R − μ))
]

≥ Tr [1 (h ≥ ω) f (β(h − μ))] − O

(
R3

β3/2

)
(2.24)

where h is defined in (1.30).
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Proof. Denote by hN≤R the harmonic oscillator Hamiltonian inside B(R) with Neumann
boundary conditions. Using the Weyl asymptotics [45, Satz XI] of the eigenvalues of
the Neumann Laplacian −�N≤R inside B(R), we see that there exists a C > 0 such that

eα

(
hN≤R

)
≥ C

α2/3

R2 − 3ω

2
(2.25)

for α ≥ 0. Choose α0 to be the smallest positive integer for which the right-hand side of
Eq. (2.25) is larger than or equal toω+μ. Our assumptionμ ≤ cω implies α0 � ω3/2R3.
Let hN

R = hN≤R ⊕ hN≥R . Using eα(hN
R) ≤ eα(h) and the monotonicity of f , the trace on

the right-hand side of Eq. (2.24) can be bounded from above by

∞∑

α=1

f (β (eα(h) − μ)) ≤
α0∑

α=1

f (β (eα(h) − μ)) +
∑

α>α0

f
(
β
(

eα

(
hN

R

)
− μ

))
.

(2.26)
The asymptotic behavior (2.23) of f at 0 and μ ≤ cω with c < 1 imply that the
first term on the right-hand side of the above equation can be bounded from above by
α0 f (β(ω−μ)) � ω1/2β−1R3. Sinceω1/2β−1 
 β−3/2, this error term ismuch smaller
than R3β−3/2.

Next, we investigate the second term on the right-hand side of Eq. (2.26). The α0th
eigenvalue of hN

R is bounded from above by

eα0(h
N
R) ≤ eα0(h) � ωα

1/3
0 � ω3/2R. (2.27)

To obtain the second inequality, we used that the eigenvalue ωn of h is (n +1)(n +2)/2-
fold degenerate. On the other hand, eα(hN≥R) ≥ ω2R2

4 − 3ω
2 which is much larger than

the right-hand side of Eq. (2.27) by the assumption ω−1/2 
 R. Hence, the second term
on the right-hand side of Eq. (2.26) can be written as

∑

α>α0

f
(
β
(

eα

(
hN
)

− μ
))

=
∞∑

α=0

f
(
β
(

eα

(
hN≥R

)
− μ

))

+
∑

α>α0

f
(
β
(

eα

(
hN≤R

)
− μ

))
. (2.28)

It remains to estimate the second term on the right-hand side of Eq. (2.28). We invoke
Eq. (2.25) and the monotonicity of f to find

∑

α>α0

f
(
β
(

eα

(
hN≤R

)
− μ

))
≤
∑

α>α0

f

(
β

(
Cα2/3

R2 − 3ω

2
− μ

))

� R3

β3/2

∫ ∞

0
f (x)

√
x dx . (2.29)

To arrive at the second line, we used μ ≤ cω and the fact that the sum in the first line
on the right-hand side can be interpreted as a Riemann sum approximating the integral
in the second line. This proves the claim. ��
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Lemma 2.3. Define μ via the equation

Tr

⎡

⎣1
(

hD≥R ≤ �
) 1

e
β
(

hD≥R−μ)
)

− 1

⎤

⎦ = Nth (2.30)

(with Nth defined after Eq. (1.15)). Then

0 ≤ μ − μ0 � ω

(
1

ωR2 + β1/2ω2R3 +
e−β�/4

βω
+ (βω)2

(
Nth − N gc

th

))
(2.31)

holds. Here N gc
th denotes the expected number of particles in the grand canonical thermal

cloud, defined in (1.31).

Proof. Since eα(h) ≤ eα(hD≥R), the chemical potential can only increase if we cut out
B(R) and impose Dirichlet boundary conditions at ∂ B(R). Since the cut-off � also
causes the chemical potential to increase, we have μ ≥ μ0.

In order to find an upper bound on μ − μ0, we start by estimating the influence of
the cut-off � and write

Tr

⎡

⎣1
(

hD≥R > �
) 1

e
β
(

hD≥R−μ
)

− 1

⎤

⎦ =
∑

α∈N:
eα(hD≥R)>�

1

e
β
(

eα

(
hD≥R

)
−μ

)

− 1
. (2.32)

Tobe able to proceed,we need a rough upper boundon the chemical potential. Certainly it
cannot be larger than the lowest eigenvalue of hD≥R . A simple trial state argument gives an
upper bound� ω2R2 on this lowest eigenvalue and therebyonμ. Since R ≤ λω−1β−1/2,
this implies μ ≤ �/4 for �/T large enough. Hence

1

e
β
(

eα

(
hD≥R

)
−μ

)

− 1
≤ 2e−β�/4e

−βeα

(
hD≥R

)
/2

(2.33)

which holds as long as (1 − e−3β�/4)−1 ≤ 2 and eα(hD≥R) ≥ �. Using Eq. (2.33),

Eq. (2.32), and the inequality eα(hD≥R) ≥ eα(h) with h defined in Eq. (1.30) we see that

Tr

⎡

⎣1
(

hD≥R > �
) 1

e
β
(

hD≥R−μ
)

− 1

⎤

⎦ ≤ 2e−β�/4 Tr
[
e−βhD≥R/2

]

≤ 2e−β�/4 Tr
[
e−βh/2

]
(2.34)

holds. The trace on the right-hand side of the above equation can be bounded by a
constant times (βω)−3, and hence

Tr

⎡

⎣ 1

e
β
(

hD≥R−μ
)

− 1

⎤

⎦− Tr

⎡

⎣1
(

hD≥R ≤ �
) 1

e
β
(

hD≥R−μ
)

− 1

⎤

⎦ � e−β�/4

(βω)3
, (2.35)

which estimates the effect of the cut-off �.
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It remains to quantify the influence of the boundary conditions at ∂ B(R). Together
with Eqs. (2.30) and (2.35), an application of Lemma 2.1 with the choice f (x) =
(ex − 1)−1 tells us that

Nth ≥ Tr

[
1

eβ(hN≥R−μ) − 1

]
− O

(
e−β�/4

(βω)3

)
− O

(
1

β2ω3R2

)
− O

(
R3

β3/2

)
.

(2.36)

Let us have a closer look at the first termon the right-hand side of Eq. (2.36). By convexity
of x �→ (ex − 1)−1 and ex/(ex − 1)2 ≥ 1/(ex − 1) for x > 0, we have

Tr

[
1

eβ(hN≥R−μ) − 1
− 1

eβ(hN≥R−μ0) − 1

]
≥ β(μ − μ0)Tr

⎡

⎢⎣
eβ(hN≥R−μ0)

(
eβ(hN≥R−μ0) − 1

)2

⎤

⎥⎦

≥ β(μ − μ0)Tr

[
1

eβ(hN≥R−μ0) − 1

]
. (2.37)

Using that μ0 < 0, we know from Lemma 2.2 with the choice f (x) = (ex − 1)−1 that

Tr

[
1

eβ(hN≥R−μ0) − 1

]
≥ Tr [1 (h ≥ ω) f (β(h − μ0))] − O

(
R3

β3/2

)
(2.38)

holds. Note that the trace on the right-hand side of the above equation equals N gc
th ∼

(βω)−3, the expected number of particles in the grand canonical thermal cloud. It dom-
inates the error term in (2.38) if R ≤ λω−1β−1/2 with λ small enough. In combination,
Eqs. (2.36)–(2.38) thus imply (2.31). ��
Lemma 2.4. Denote by

�
D,�
≥R (x) =

⎡

⎣1
(

hD≥R ≤ �
) 1

e
β
(

hD≥R−μ
)

− 1

⎤

⎦ (x, x) (2.39)

the one-particle density in the grand canonical ensemble in Region 3 with cut-off � and
let the chemical potential μ be chosen as in (2.30) such that

∫

R3
�
D,�
≥R (x)dx = Nth. (2.40)

Assume that e−β�/4 � βω and βω ln N � 1 holds. Then, for ω−1/2 
 R ≤ λω−1β−1/2

with λ > 0 small enough,

sup
x∈R3

�
D,�
≥R (x) � 1

β3/2 . (2.41)

Proof. We start by noting that we obtain an upper bound on �
D,�
≥R (x) if we drop the

cut-off � on the right-hand side of Eq. (2.39). To be able to continue, we need an upper
bound on the chemical potential μ which we are going to derive now. Lemma 2.3 tells
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us thatμ−μ0 is bounded from above by the right-hand side of Eq. (2.31). Sinceμ0 < 0
the same expression also bounds μ, that is,

μ � 1

R2 + β1/2ω3R3 +
e−β�/4

β
+ β2ω3 (Nth − N gc

th

)
. (2.42)

The first term on the right-hand side of Eq. (2.42) is much smaller than ω because
R � ω−1/2. The second term is smaller than λω2R2 because R ≤ λω−1β−1/2. For
the third term we have β−1e−β�/4 
 ω2R2 by assumption and with Lemma A.2 the
fourth term can be estimated by β2ω3|Nth − N gc

th | � ω(βω ln N )1/2 +ω(βω ln N ). This
is much smaller than λω2R2 because of ω2R2 � ω and our assumption βω ln N � 1.
We conclude that μ � λω2R2 holds.

Let V (x) = ω2x2
4 − 3ω

2 − μ. By choosing λ small enough, the upper bound on μ

above allows to conclude that V (x) ≥ 0 holds for |x | ≥ R. Using the Feynman–Kac
formula, see e.g. [4,41], we have

⎡

⎣ 1

e
β
(

hD≥R−μ
)

− 1

⎤

⎦ (x, y) =
∞∑

α=1

e
−β
(

hD≥R−μ
)
α
(x, y)

=
∞∑

α=1

∫
1� (q) exp

(
−
∫ βα

0
V (q(s))ds

)
dWx,y(q)

(2.43)

for all x, y ∈ B(R)c. Here dWx,y denotes the Wiener measure on paths with startpoint
x and endpoint y and � is the set of those paths that do not leave B(R)c. By 1�(q)

we denote its characteristic function. Since V (x) ≥ 0, the exponential function in the
second line on the right-hand side of Eq. (2.43) is bounded from above by 1.We can also
drop the characteristic function of � in the Wiener integral to obtain an upper bound.
Together with Eq. (2.43) this implies

⎡

⎣ 1

e
β
(

hD≥R−μ
)

− 1

⎤

⎦ (x, y) ≤
∞∑

α=1

eβα�(x, y) (2.44)

for all x, y ∈ B(R)c. Here eβα�(x, y) denotes the heat kernel of the Laplacian on R
3

which is bounded from above by (4πβα)−3/2, see e.g. [24]. Hence,
⎡

⎣ 1

e
β
(

hD≥R−μ
)

− 1

⎤

⎦ (x, y) ≤
(

1

4πβ

)3/2 ∞∑

α=1

1

α3/2 (2.45)

which proves the claim. ��

2.3. The thermal cloud. With the above preparations at hand we start our discussion of
the free energy of the trial state in Eq. (2.11) by considering the part representing the
energy of the thermal cloud. In terms of the spectral decomposition of the density matrix
�̃
D,�
≥R this energy can be written as
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Tr
[(

HD≥R + V33

)
�̃
D,�
≥R

]
=

∞∑

α=1

λα

〈F�α,
(

HD≥R + V33

)
F�α〉

〈F�α, F�α〉 . (2.46)

Bearing in mind that all eigenfunctions �α of HD≥R can be chosen to be real-valued, we
integrate by parts once to rewrite the kinetic energy for the i th coordinate as

∫

R
3Nth

F�α∇2
i F�αdX =

∫

R
3Nth

[
F2
(
�α∇2

i �α

)
− �2

α (∇i F)2
]
dX , (2.47)

where dX is short for d(x1, . . . , xNth). For the energy of a single �α this implies

〈
F�α,

⎡

⎣
Nth∑

i=1

(
−�i +

ω2x2i
4

− 3ω

2

)
+

∑

1≤i< j≤Nth

vN (xi − x j )

⎤

⎦ F�α

〉

=
∫

R
3Nth

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F2�α

[
Nth∑

i=1

(
−�i +

ω2x2i
4

− 3ω

2

)]
�α

︸ ︷︷ ︸
=Eαψα

+

⎡

⎣
Nth∑

i=1

(∇i F)2 +
∑

1≤i< j≤Nth

vN (xi − x j )F2

⎤

⎦�2
α

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2.48)

and the whole energy can be written as

Tr
[(

HD≥R + V33

)
�̃
D,�
≥R

]
= Tr

(
HD≥R�

D,�
≥R

)

+
∞∑

α=1

λα

∫
R
3Nth �2

α

[∑Nth
i=1(∇i F)2 +

∑
1≤i< j≤Nth

vN (xi − x j )F2
]

‖F�α‖2 . (2.49)

The following Lemma provides a lower bound for the norm of F�α and thereby an
upper bound on the second term on the right-hand side of Eq. (2.49) as long as (ω +
�)3/2aN b3N 2

th is small enough. We need the cut-off� in the definition of the state �̃
D,�
≥R

in the proof of Lemma 2.5. It could be avoided if we knew that the L4(R3)-norm of the
eigenfunctions of the operator hD≥R are bounded independently of the energy, which we
expect to be true. (Compare with the result in [19] for h on the whole space R

3.) The
bound would most likely grow with R, however, which would need to be quantified.
We do not have such a bound at our disposal, and therefore need the cut-off. It will be
chosen such that ω 
 T 
 � holds.

Lemma 2.5. There exists a constant C > 0 independent of α such that

‖F�α‖2 ≥ 1 − C(ω + �)3/2aN b2N 2
th. (2.50)
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Proof. Spelled out in more detail, the norm of F�α reads

‖F�α‖2 =
∫

R
3Nth

|�α|2
∏

1≤i< j≤Nth

fb(xi − x j )
2dX. (2.51)

We define ηb(x) = 1 − fb(x)2 and estimate

‖F�α‖2 ≥
∫

R
3Nth

|�α|2
⎛

⎝1 −
∑

1≤i< j≤Nth

ηb(xi − x j )

⎞

⎠ dX (2.52)

= 1 −
∫

R6
ηb(x − y)�

(2)
�α

(x, y)d(x, y),

where �
(2)
�α

(x, y) denotes the two-particle density of �α . We use the fact that the

�α are symmetrized products of one-particle orbitals to conclude that �
(2)
�α

(x, y) ≤
��α(x)��α (y) holds, where ��α is the one-particle density of �α . This allows us to
bound the integral on the right-hand side of Eq. (2.52) in the following way:

∫

R6
ηb(x − y)�

(2)
�α

(x, y)d(x, y) ≤
∫

R3
ηb(x)dx

︸ ︷︷ ︸
≤ 4π

3 aN b2

∫

R3
��α(y)2dy. (2.53)

To obtain the bound for the integral of ηb, we used its explicit form and the lower bound
f0(|x |) ≥ [1 − a/|x |]+, see [28, Appendix C].

Let us have a closer look at the integral over the squared density on the right-hand
side of Eq. (2.53). Denote by {ϕD

j }∞j=0 a complete set of eigenfunctions of hD≥R and
estimate

∫

R3
��α(x)2dx =

∫

R3

⎡

⎣
∑

j

〈ϕ j |γ�α |ϕ j 〉ϕD
j (x)2

⎤

⎦
2

dx ≤ N 2
th sup

j≥0:
e j (hD≥R)≤�

∥∥∥ϕD
j

∥∥∥
4

L4(R3)
.

(2.54)
In the above equation e j (hD≥R) is the j th eigenvalue of hD≥R . By the Hölder and Sobolev

inequalities and thenormalizationof the functionsϕD
j ,wehave‖ϕD

j ‖L4(R3) � ‖∇ϕD
j ‖3/4.

On the other hand, ‖∇ϕD
j ‖ ≤ (3ω/2 + e j (hD≥R))1/2 ≤ (3ω/2 + �)1/2. This implies

∫

R3
��α(x)2dx � N 2

th(ω + �)3/2. (2.55)

Together with Eqs. (2.52)–(2.53) this proves the claim. ��
Nextwe analyze the numerator of the second termon the right-hand side of Eq. (2.49).

We compute

∇i F(x1, . . . , xNth) =
Nth∑

l=1
l �=i

F(x1, . . . , xNth)

fb(xl − xi )
∇ fb(xl − xi ). (2.56)
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The square of this expression is given by

(∇i F)2 =
∑

l=1
l �=i

F2

fb(xl − xi )2
[∇ fb(xl − xi )]

2

+
∑

k,l=1
l,k �=i
k �=l

F2

fb(xl − xi ) fb(xk − xi )
∇ fb(xl − xi )∇ fb(xk − xi ). (2.57)

These terms need to be inserted into the numerator of the second term on the right-hand
side of Eq. (2.49) and we start with the first term on the right-hand side of the above
equation. Introducing the function ξ(x) = [∇ fb(x)]2 + 1

2vN (x) fb(x)2 and noting that

0 ≤ fb ≤ 1 and
∑∞

α=1 λα�
(2)
�α

(x, y) = �
(2)

�
D,�
≥R

(x, y), we obtain

∞∑

α=1

λα

∑

1≤i< j≤Nth

∫

R
3Nth

{
2F2

fb(xi − x j )2

[∇ fb(xi − x j )
]2 + vN (xi − x j )F2

}
�2

αdX

≤ 2
∫

R6
ξ(x − y)�

(2)

�
D,�
≥R

(x, y)d(x, y). (2.58)

Similarly, the off-diagonal terms in Eq. (2.57) are bounded from above by

6
∫

R9
�

(3)

�
D,�
≥R

(x, y, z)|∇ fb(x − y)∇ fb(z − y)|d(x, y, z). (2.59)

Combining this with Eqs. (2.49)–(2.50), we obtain for an appropriately chosen constant
C > 0 and C(ω + �)3/2aN b2N 2

th < 1

Tr
[(

HD≥R + V33

)
�̃
D,�
≥R

]
≤ Tr

(
HD,�

≥R �D≥R

)
+

A

1 − C(ω + �)3/2aN b2N 2
th

(2.60)

as an upper bound for the energy of the thermal cloud, where

A = 2
∫

R6
ξ(x − y)�

(2)

�
D,�
≥R

(x, y)d(x, y)

+ 6
∫

R9
|∇ fb(x − y)∇ fb(z − y)| �(3)

�
D,�
≥R

(x, y, z)d(x, y, z). (2.61)

With the help of Proposition A.2 and Lemma 2.4, one readily estimates the first term on
the right-hand side of Eq. (2.61) by

∫

R6
ξ(x − y)�

(2)

�
D,�
≥R

(x, y)d(x, y) � Nth

β3/2

∫

R3
ξ(x)dx

︸ ︷︷ ︸
4πaN
1− aN

b
+
∫
|x |>b vN (x)dx

� aN Nth

β3/2 . (2.62)

The terms below the curly brackets are obtained from the explicit form of fb, see [28,
Appendix C]. To obtain the final bound we used b ≥ caN for some c > 1. Note that we
assumed e−β�/4 � βω and βω ln N � 1 in order to be able to apply Lemma 2.4.
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The second term on the right-hand side of Eq. (2.61) can be treated with a rough
bound that we derive now. Let aα and a∗

α denote the usual creation and annihilation
operators on Fock space corresponding to an eigenfunction ϕD

α of hD≥R . An application
of the Cauchy-Schwarz inequality tells us that

�
(3)

�
D,�
≥R

(x, y, z) =
∑

α1,α2,α3

∣∣∣∣∣∣
1

6

∑

σ∈S3

ϕD
σ(α1)

(x)ϕD
σ(α2)

(y)ϕD
σ(α3)

(z)

∣∣∣∣∣∣

2

× 〈
a∗
α1

a∗
α2

a∗
α3

aα3aα2aα1

〉
�
D,�
≥R

≤
∑

α1,α2,α3

ϕD
α1

(x)2ϕD
α2

(y)2ϕD
α3

(z)2
〈
a∗
α1

a∗
α2

a∗
α3

aα3aα2aα1

〉
�
D,�
≥R

, (2.63)

where S3 denotes the group of permutations of three elements. Using abc ≤ 1
3 (a

3 +b3 +
c3), we obtain

�
(3)

�
D,�
≥R

(x, y, z) ≤ 1

3

∑

α1,α2,α3

(
ϕD

α1
(x)6 + ϕD

α2
(y)6 + ϕD

α3
(z)6

) 〈
a∗
α1

a∗
α2

a∗
α3

aα3aα2aα1

〉
�
D,�
≥R

.

(2.64)
We insert this bound into the second term on the right-hand side Eq. (2.61) and obtain

∫

R9
|∇ fb(x − y)∇ fb(z − y)| �(3)

�
D,�
≥R

(x, y, z)d(x, y, z)

≤ N 3
th

(∫

R3
|∇ fb(x)| dx

)2

sup
α≥0:

eα(hD≥R)≤�

∥∥∥ϕD
α

∥∥∥
6

L6(R3)
. (2.65)

From Sobolev’s inequality we infer that
∥∥ϕD

α

∥∥2
L6(R3)

≤ 3ω/2+eα(hD≥R) ≤ 3ω/2+�.We

also have
∫
R3 |∇ fb(x)| dx ≤ aN b. Combining this with Eqs. (2.60)–(2.62) we finally

obtain

Tr
[(

HD≥R + V33

)
�̃
D,�
≥R

]
≤ Tr

(
HD≥R�

D,�
≥R

)
+ C

(
aN Nth

β3/2 + �3a2
N b2N 3

th

)
(2.66)

for some appropriately chosen C > 0 as an upper bound on the energy of the thermal
cloud.

Next, we investigate the entropy of the thermal cloud. To that end, we use [39,
Lemma 2] which we spell out here for the sake of completeness.

Lemma 2.6. Let � be a density matrix on some Hilbert space, with eigenvalues λα ≥ 0,
α ≥ 0. Additionally let {Pα}∞α=0 be a family of one-dimensional orthogonal projections

(for which Pα Pα′ = δα,α′ Pα need not necessarily be true) and define �̂ = ∑
α λα Pα .

Then
S(�̂) ≥ S(�) − ln

(∥∥∑
α Pα

∥∥) . (2.67)

Since 0 ≤ F ≤ 1 we have

∞∑

α=0

|F�α〉〈F�α|
‖F�α‖2 ≤

(
sup
α≥0

‖F�α‖−2

)
. (2.68)
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Equation (2.68) together with Lemmas 2.5 and 2.6 show that

−T S
(
�̃
D,�
≥R

)
≤ −T S

(
�
D,�
≥R

)
+ O

(
T �3/2aN b2N 2

th

)
(2.69)

holds (as long as (ω + �)3/2aN b2N 2
th is small enough).

What remains to be done is to get rid of the Dirichlet boundary condition and the

cut-off in the canonical free energy FD,�
≥R (β, N , ω) = Tr

[
HD≥R�

D,�
≥R

]
− T S(�

D,�
≥R ) of

the ideal gas. For that purpose, we will first relate it to its grand canonical analogue
where explicit formulas are available. Using Corollary A.1, we can bound the canonical
free energy from above by

FD,�
≥R (β, Nth, ω) ≤ 1

β
Tr

[
1
(

hD≥R ≤ �
)
ln

(
1 − e

−β
(

hD≥R−μ
))]

+ μNth + O(T ln Nth)

(2.70)

where the chemical potential μ is chosen as in (2.30) such that the particle number of
the grand canonical Gibbs state associated to 1(hD≥R ≤ �)hD≥R equals Nth. In order to
replace the chemical potential μ by μ0 we use the convexity inequalities

1
β
Tr

[
1
(

hD≥R ≤ �
){

ln

(
1 − e

−β
(

hD≥R−μ
))

− ln

(
1 − e

−β
(

hD≥R−μ0

))}]

≤ (μ0 − μ)Tr

[
1
(

hD≥R ≤ �
) 1

eβ(hD≥R−μ0) − 1

]

≤ (μ0 − μ)Nth + β(μ0 − μ)2 Tr

⎡

⎢⎣1
(

hD≥R ≤ �
) eβ(hD≥R−μ)

(
eβ(hD≥R−μ) − 1

)2

⎤

⎥⎦ . (2.71)

To bound the last term from above, we can drop the projection 1(hD≥R ≤ �). Moreover,

since μ � λω2R2 (as argued in the proof of Lemma 2.4) and hD≥R ≥ ω2R2/4 − 3ω/2,

we have hD≥R −μ ≥ c(hD≥R +ω) for a suitable constant c > 0 for small λ and large ωR2.

Since the eigenvalues of hD≥R are larger than the ones of h, this implies that

Tr

⎡

⎢⎣
eβ(hD≥R−μ)

(
eβ(hD≥R−μ) − 1

)2

⎤

⎥⎦ ≤ Tr

[
ecβ(h+ω)

(
ecβ(h+ω) − 1

)2

]
� (βω)−3. (2.72)

Next,we estimate the influenceof the cut-off. Todo so,weuse the sameargumentation
as the one in the proof of Lemma 2.3 that leads to Eq. (2.35). We find that

∣∣∣∣Tr
[
1
(

hD≥R > �
)
ln

(
1 − e

−β
(

hD≥R−μ0

))]∣∣∣∣ � e−β�/4

(βω)3
(2.73)

holds. To get rid of the Dirichlet boundary conditions at ∂ B(R), we use Lemma 2.1 and
Lemma 2.2 with the choice f (x) = − ln(1 − e−x ), which gives

1
β
Tr

[
ln

(
1 − e

−β
(

hD≥R−μ0

))]

≤ 1
β
Tr
[
1 (h ≥ ω) ln

(
1 − e−β(h−μ0)

)]
+ O

(
1

β3ω3R2

)
+ O

(
R3

β5/2

)
. (2.74)
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Together with Eqs. (2.70)–(2.73), this implies the upper bound

FD,�
≥R (β, Nth, ω) ≤ 1

β
Tr
[
1 (h ≥ ω) ln

(
1 − e−β(h−μ0)

)]
+ μ0Nth

+ O

(
e−β�/4

β(βω)3

)
+ O

(
1

β3ω3R2

)
+ O

(
R3

β5/2

)

+ O(T ln Nth) + O

(
β(μ − μ0)

2

(βω)3

)
. (2.75)

In the final step we relate the right-hand side of Eq. (2.75) to the canonical free energy
F0(β, N , ω) of the ideal gas. First of all, we note that we can drop the spectral projection
1 (h ≥ ω) in the first term on the right-hand side of Eq. (2.75) at the cost of an error of
the size β−1 ln(1−eβμ0) � β−1 ln N gc

0 ≤ β−1 ln N . Secondly, we add the missing term
μ0N0 which is O(T ). Finally, CorollaryA.1 tells us that |F0(β, N , ω)−Fgc

0 (β, N , ω)| ≤
T O(ln N ). Together with Eq. (2.75), we conclude that

FD≥R(β, Nth, ω) ≤ F0(β, N , ω) + O

(
1

β3ω3R2

)
+ O

(
R3

β5/2

)
+ O

(
e−β�/4

β(βω)3

)

+ O
(
β−1 ln N

)
+ O

(
β(μ − μ0)

2

(βω)3

)
. (2.76)

We combine Eqs. (2.66), (2.69) and (2.76) to find the final upper bound for the
contribution of the thermal cloud to the free energy (2.11) of the trial state. It reads

Tr
[(

HD≥R + V33

)
�̃
D,�
≥R

]
− T S

(
�̃
D,�
≥R

)

≤ F0(β, N , ω) + O

(
1

β3ω3R2

)
+ O

(
R3

β5/2

)
+ O

(
e−β�/4

β(βω)3

)
+ O

(
β−1 ln N

)

+ O

(
β(μ − μ0)

2

(βω)3

)
+ O

(
aN Nth

β3/2

)
+ O

(
�3a2

N b2N 3
th

)
. (2.77)

Recall that μ − μ0 was estimated in Lemma 2.3. To obtain the result, we assumed
ω−1/2 
 R ≤ λω−1β−1/2 with λ > 0 small enough, e−β�/4 � βω and βω ln N � 1
as well as that �3/2aN b2N 2

th is small enough.

2.4. The condensate energy and the interaction between the condensate and the thermal
cloud. We recall that ED≤R denotes the ground state energy of the Hamiltonian HD≤R in

(2.2). In the following we write it as ED≤R(N0) to explicitly highlight its dependence on
the number of particles in the condensate. The strategy here is to use existing results for
the ground state energy to relate ED≤R(N0) to the GP energy EGP(N0, aN , ω) defined in
Eq. (1.6).

If we go through the proof of the upper bound in [29], we obtain

ED≤R(N0) ≤ EGP,D
≤R (N0, aN , ω)

(
1 + O

(
N−2/3
0

))
. (2.78)

Here EGP,D
≤R (N0, aN , ω) denotes the GP energy when we minimize only over functions

in H1
0 (B(R)), that is, over functions that vanish outside B(R). It is therefore sufficient to
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find an upper bound for EGP,D
≤R (N0, aN , ω) in terms of the GP energy EGP(N0, aN , ω)

without additional boundary conditions. Let j1, j2 ∈ C∞(R3) be a partition of unity in
the sense that j1(x)2 + j2(x)2 = 1 for all x ∈ R

3. We assume that j1 equals one for
|x | ≤ R/2 and zero for |x | ≥ R and that |∇ j1(x)|2 + |∇ j2(x)|2 ≤ 12R−2. The IMS
localization formula (see e.g. [6]) tells us that h = j1hj1 + j2hj2 − |∇ j1|2 − |∇ j2|2
where h is the harmonic oscillator Hamiltonian (1.30). For the GP energy this implies

EGP(N0, aN , ω) ≥ inf
‖φ‖2=N0

{
〈 j1φ, hj1φ〉 + 4πaN

∫

R3
| j1(x)φ(x)|4 dx

+

(
ω2R2

4
− 3ω

2

)
‖ j2φ‖2

}
− 12R−2N0. (2.79)

By minimizing over j1φ and j2φ separately, keeping the constraint ‖ j1φ‖2 + ‖ j2φ‖2 =
N0, we obtain a lower bound on the right-hand side of Eq. (2.79). Since aN ∼ N−1 and
ω2R2 � ω, one easily sees that the minimum is attained if we put all L2-mass into the
function j1φ. For the energy, we therefore obtain

EGP(N0, aN , ω) ≥ EGP,D
≤R (N0, aN , ω) − 12R−2N0. (2.80)

This finally proves

ED≤R(N0) ≤ EGP(N0, aN , ω) + O
(
ωN 1/3

0

)
+ O

(
N0R−2

)
, (2.81)

which is the desired bound for the first term on the right-hand side of (2.11).
The last term in (2.11) to consider is the interaction between the condensate and the

thermal cloud, given by

Tr (V13�N ) =
∫

B(R+�)c×B(R)

vN (x − y)�
�̃
D,�
≥R+�

(x)��D≤R
(y)d(x, y) , (2.82)

where �
�̃
D,�
≥R+�

is the one-particle density of the state �̃
D,�
≥R+� defined in (2.8). Note that we

have inserted the missing � in B(R +�) again (compare with the discussion in Sect. 2.1).
When we use that F ≤ 1 and apply Lemma 2.5, we find

�
�̃
D,�
≥R+�

(x) ≤
�

�
D,�
≥R+�

(x)

1 − C(ω + �)3/2aN b2N 2
th

. (2.83)

for some C > 0 and C(ω + �)3/2aN b2Nth < 1. An application of Proposition A.2 and
Lemma 2.4 tells us that �

�
D,�
≥R+�

(x) � β−3/2, hence

Tr (V13�N ) � β−3/2N0

∫

|x |≥�

vN (x)dx = ω−1/2β−3/2 N0

N

∫

|x |≥�Nω1/2
v(x)dx .

(2.84)

As already mentioned at the beginning of Sect. 2.1, we choose � such that �Nω1/2 is
larger than the radius of the hard-core part of the interaction potential. We thus conclude
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that Tr (V13�N ) � ω−1/2β−3/2. In combination with Eq. (2.81), this yields the upper
bound

ED≤R(N0) + Tr (V13�N ) ≤ EGP(N0, aN , ω) + O
(
ωN 1/3

0

)

+ O
(

N0R−2
)
+ O

(
ω−1/2β−3/2

)
(2.85)

for the condensate energy plus the interaction energy between the condensate and the
thermal cloud. To obtain Eq. (2.85)we assumed in addition toω−1/2 
 R ≤ λω−1β−1/2

with λ > 0 small enough that e−β�/4 � βω and βω ln N � 1 holds, as required for the
application of Lemma 2.4. We also assumed that �3/2aN b2N 2

th is small enough.

2.5. The final estimate for the upper bound. We combine the results of Eqs. (2.77)
and (2.85). Together with an application of Lemma 2.3 and Corollary A.2, which allows
us to obtain a bound on |μ − μ0|, we obtain

F(β, N , ω) ≤ F0(β, N , ω) + EGP(N0, aN , ω) + O

(
1

β3ω3R2

)

+ O

(
R3

β5/2

)
+ O

(
e−β�/4

β4ω3

)
+ O

(
ln N

β

)
+ O

(
aN Nth

β3/2

)

+ O
(
�3a2

N b2N 3
th

)
+ O

(
ωN 1/3

0

)
+ O

(
N0

R2

)

+ O

(
1

ω1/2β3/2

)
+ O

(
1

β2ω3R4

)
+ O

(
ω3R6

β

)
. (2.86)

We assumed ω−1/2 
 R ≤ λω−1β−1/2 with λ > 0 small enough, e−β�/4 � βω,
βω ln N � 1, b ≥ caN for some c > 1 as well as that �3/2aN b2N 2

th is small enough.
To conclude the proof of the upper bound we will distinguish two cases, one where
βω � (ln N )−1 and the other one where (βω) � (ln N )−1. We start with the first one.

Let us start with the terms containing the cut-off �. With the choices β� ∼ N δ for
δ > 0, caN ≤ b � ω−1/2N−1 with c > 1 and the estimate (βω)−1 � N 1/3, we find

O

(
e−β�/4

β4ω3

)
+ O

(
�3a2

N b2N 3
th

)
≤ O

(
ωN 3δ

)
. (2.87)

That is, these terms grow onlywith an arbitrarily small power of N .Moreover,�3/2aN b2

N 2
th � N 3δ/2−1/2 
 1 if δ < 1/3. When we use Nth ≤ N and N0 ≤ N , we see that

O

(
ln N

β

)
+ O

(
aN Nth

β3/2

)
+ O

(
ωN 1/3

0

)
+ O

(
1

ω1/2β3/2

)
≤ O

(
ωN 1/2

)
(2.88)

holds. Since (βω)−3 + N0 � N and ω−1/2 
 R ≤ λω−1β−1/2 the remaining error
terms are bounded from above by

O

(
N

R2

)
+ O

(
R3

β5/2

)
. (2.89)
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Optimization yields R = β1/2N 1/5 which is in accordance with R ≤ λω−1β−1/2 as
long as βωN 1/5 ≤ λ. If βωN 1/5 > λ we choose R = λω−1β−1/2 instead. Putting all
this together, we find

F(β, N , ω) − F0(β, N , ω) − EGP(N0, aN , ω)

� ω

{
N 3/5(βω)−1 if βω ≤ λN−1/5

Nβω if λN−1/5 < βω � (ln N )−1 (2.90)

which is our final bound for the case βω � (ln N )−1.
To obtain a better bound for relatively large βω and, in particular, to cover the case

βω � (ln N )−1, we proceed as follows. Let E(N ) denote the ground state energy of
HN in Eq. (1.1). We use the upper bound on E(N ) in [29] and estimate

F(β, N , ω) ≤ inf‖ψ‖=1
〈�, HN �〉 ≤ EGP(N , aN , ω)(1 + O(N−2/3)). (2.91)

Since N = N0+Nth ≤ N0+O((βω)−3) (see RemarkA.1), we also have EGP(N , aN , ω)

≤ EGP(N0, aN , ω)(1 + O(N−1(βω)−3)). Moreover, F0(β, N , ω) � −ω(βω)−4,
see Sect. 1.10 and Appendix A. We therefore have

F(β, N , ω) − F0(β, N , ω) − EGP(N0, aN , ω) � ω
(

N 1/3 + (βω)−3 + (βω)−4
)

.

(2.92)

We use Eq. (2.90) if N−1/3 � βω ≤ λN−1/5 and Eq. (2.92) for βω > λN−1/5, and
arrive at

F(β, N , ω) ≤ F0(β, N , ω) + EGP(N0, aN , ω) + O
(
ωN 14/15

)
. (2.93)

This completes the proof of the upper bound.

3. Proof of the Lower Bound

As for the upper bound, the main idea of the proof of the lower bound is to make use
of the two different length scales on which the condensate and the thermal cloud live.
Anticipating the result that their respective particle numbers are equal to those of the
ideal gas to leading order, this implies that the thermal cloud is muchmore dilute than the
condensate and therefore does not see the interaction to the same order as the condensate
does. For a more detailed discussion of these issues, see Sect. 1.5. The main technique to
implement this mathematically is geometric localization in Fock space which has been
introduced in [9] in the context of bosonic quantumfield theory. It allows, for the purpose
of a lower bound, to replace the free energy of the whole system by a sum of two free
energies, one of a system localized in a ball with radius 2R and another one of a system
living in the complement of a ball with radius R. At this point the two systems are still
correlated, however. The overlap of the two regions comes from the fact that we have to
use smooth cut-off functions. The radius R is, as in the proof of the upper bound, chosen
such that ω−1/2 
 R 
 ω−1β−1/2 holds. In the following step, we minimize these two
free energies separately which again results in a lower bound. For this it is necessary to
drop the restriction on the particle number and work in Fock space. The minimization
procedure in the ball with radius 2R yields the GP energy (as for the upper bound we
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use the known result at zero temperature here) plus lower order corrections coming from
the entropy. In the complement of the ball with radius R we drop the interaction (it is
positive by assumption) and obtain the free energy of an ideal gas. Throughout the proof
of the lower bound we shall assume that (βω)−1 � N 1/3 (i.e., T � Tc) as well as that
Rω1/2 is large enough.

The case where N0 = o(N ) and/or N0aN = o(1) is quite simple for the lower bound
so we discuss it first. On the one hand, the GP energy is of order o(ωN ) in this case.
On the other hand, our interaction potential is nonnegative which allows us to drop it
to obtain a lower bound on the free energy, i.e., F(β, N , ω) ≥ F0(β, N , ω), which is
sufficient in this case. The case where N0 ∼ N is considerably more difficult and will
be treated in the remaining part of this Section.

Our first task is to replace the free energy of a given state �N by the sum of the free
energies of two localized versions of �N and to show that this yields a lower bound.
Let j1, j2 ∈ C∞(R3) be a partition of unity in the sense that j1(x)2 + j2(x)2 = 1 for all
x ∈ R

3 and choose j1 such that it equals one for x ∈ B(R) and zero for x ∈ B(2R)c.
We can also assume that |∇ j1(x)|2 + |∇ j2(x)|2 ≤ 3R−2 holds. By γ

(k)
� we denote the

k-particle reduced density matrix of a state � on the bosonic Fock space F(H). It is
defined via the integral kernel

γ
(k)
� (y1, . . . , yk; x1, . . . , xk) = Tr

[
a∗

x1 · · · a∗
xk

ayk · · · ay1�
]
. (3.1)

The following well-known Lemma, see [9,16], concerns localizations of a given state.
Because its proof is instructive we sketch it here.

Lemma 3.1. Let � be a state on F(H) with k-particle density matrices γ
(k)
� , k ≥ 1 and

j1, j2 as above. Then there exist unique states � j1 and � j2 on F(H) with k-particle

density matrices j⊗k
1 γ

(k)
� j⊗k

1 and j⊗k
2 γ

(k)
� j⊗k

2 , respectively. Moreover, the entropies of
these states are related by

S(�) ≤ S(� j1) + S(� j2). (3.2)

Proof. Define the map

J : H → H ⊕ H, ψ �→ ( j1ψ, j2ψ), (3.3)

where H = L2(R3). That is, J splits the wavefunction into two parts, one supported in
B(2R) and one supported in B(R)c. Let A be an operator onH. We denote by ϒ(A) the
second quantization of A acting on F(H). On basis vectors its action is defined by

ϒ(A)a∗(ψ1) · · · a∗(ψn)|�〉 = a∗(Aψ1) · · · a∗(Aψn)|�〉, (3.4)

where� denotes the Fock space vacuum. It extends to all Fock space vectors by linearity.
Let U be the unitary map that identifies F(H ⊕ H) and F(H) ⊗ F(H) given by

Ua∗(ψ1) · · · a∗(ψn)a∗(ϕ1) · · · a∗(ϕn)|�〉
= c∗(ψ1) · · · c∗(ψn)d∗(ϕ1) · · · d∗(ϕn)|�1 ⊗ �2〉. (3.5)

Here {ψi }∞i=0 denotes a basis for the first copy of H and {ϕi }∞0=1 is a basis for the
second copy. By c∗/d∗ we denote the creation operator acting on the first/second factor
of F(H) ⊗F(H) and �1/�2 is the vacuum in the first/second factor. Having those two
operators at hand, we can define the J -extension �J of � by

�J = Uϒ(J )�ϒ(J )∗U∗. (3.6)
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It follows that the states

� j1 = Tr2 (�J ) and � j2 = Tr1 (�J ) (3.7)

have the desired property. Here Tr1,2 denotes the partial trace over the first/second factor
of F(H) ⊗ F(H). The uniqueness part follows from the fact that states are uniquely
determined by their reduced density matrices, which we are not going to discuss here.
The proof of Eq. (3.2) follows from Eq. (3.7) and the subadditivity of the entropy. ��
Before we continue, let us introduce some notation. For an operator A on H let the
operator dϒ(A) on F(H) be given by dϒ(A)|FN = ∑N

i=1 Ai where Ai stands for A
acting on the i th particle in the the Fock space sector FN with N particles. We also
define

HD≤2R = dϒ
(

hD≤2R

)
+
⊕

N≥2

∑

1≤i< j≤N

vN (xi − x j ) (3.8)

on F(L2(B(2R)), where hD≤2R denotes the operator (1.30) restricted to B(2R) with

Dirichlet boundary conditions. By N̂ we denote the particle number operator on Fock
space.

Let �N ∈ SN be an N -particle state. Using the IMS localization formula (see e.g.
[6]) and the fact that v(x) ≥ 0 for all x ∈ R

3, we find

Tr (HN �N ) ≥ Tr
(
hj1γ�N j1

)
+ Tr

(
hj2γ�N j2

)
+ Tr

(
V j⊗2

1 γ
(2)
�N

j⊗2
1

)
− 3N R−2. (3.9)

Lemma 3.1 tells us that we can bound the entropy of �N by the ones of � j1 and � j2 , the
localized states related to �N . It also allows us to write the energies in Eq. (3.9) in terms
of � j1 and � j2 . This implies

Tr (HN �N ) − T S(�N ) ≥ Tr
(

HD≤2R� j1

)
− T S

(
� j1

)
+ Tr

(
dϒ

(
hD≥R

)
� j2

)

−T S
(
� j2

)− 3N R−2 (3.10)

with hD≥R the operator h in (1.30) restricted to B(R)c withDirichlet boundary conditions.
The states � j1 and � j2 are related via the fact that they both are constructed by localizing
the state�N . In the next stepwewill minimize over each of them separatelywhich results
in a lower bound. We will also drop the restriction on the particle number. To do so, we
have to introduce a chemical potential (and subtract it again).

The intuition from Sect. 1.5 tells us that only the condensate is affected by the inter-
action to leading order. Since the interaction energy per particle inside the condensate
can be expected to be of order ω, while −μ0 ∼ β−4ω−3 is much smaller when N0 ∼ N
(see Sect. 1.10), the chemical potential μ for the interacting system will be of order ω,
too. In fact, in the GP limit the GP chemical potential μGP = μGP(N0, aN , ω), defined
by

μGP(N0, aN , ω) = dEGP

dN
(N0, aN , ω)

= EGP(N0, aN , ω)

N0
+
4πaN

N0

∫

R3

∣∣∣φGP
N0,aN

(x)

∣∣∣
4
dx, (3.11)

is the correct choice for μ. We note that because of scaling [see Eqs. (1.3) and (1.7)]
μGP = ωμGP(1, av, 1). In particular, μGP ∼ ω for fixed av > 0. The chemical potential
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μGP necessarily also appears in the thermal cloud, but as we will see below, this does
not affect its free energy at the level of accuracy we are interested in.

Using the explicit form of the one-particle density matrices of � j1 and � j2 (see
Lemma 3.1), we check that Tr(γ� j1

+ γ� j2
) = N holds. Together with Eq. (3.10), this

implies

Tr (HN �N ) − T S(�N ) ≥ Tr
[(

HD≤2R − μGP N̂
)

� j1

]
− T S

(
� j1

)− 3N R−2

+ Tr
[(

dϒ
(

hD≥R

)
− μGP N̂

)
� j2

]
− T S

(
� j2

)
+ μGPN .

(3.12)

From here on we estimate the two contributions on the right-hand side of Eq. (3.12)
separately, and start with the first line.

3.1. The condensate. For the minimization problem inside B(2R) we take a small
amount of the kinetic energy to control the entropy, which results in a lower order
contribution. The minimization problem for the remaining part of the energy then fol-
lows from the results in [29] for the ground state energy. Let 0 < ε < 1. From the
positivity of the interaction potential v, we conclude that

Tr
[(

HD≤2R − μGP N̂
)
� j1

]
− T S

(
� j1

) ≥ (1 − ε)Tr
[(

HD≤2R − μGP N̂
)

� j1

]

+ ε Tr
[(

dϒ
(

hD≤2R

)
− μGP N̂

)
� j1

]
− T S

(
� j1

)
. (3.13)

We will later choose ε such that ε 
 1 holds.
We start by considering the first term on the right-hand side of Eq. (3.13). We denote

by ED≤2R(M) the ground state energy of the Hamiltonian HD≤2R (3.8) when restricted to
the M-particle sector of the Fock space. Also, let E(N ) be the ground state energy of
the Hamiltonian (1.1). By the variational principle for the energy, we have ED≤2R(M) ≥
E(M) for all M ≥ 0 which allows us to get rid of the Dirichlet boundary conditions at
∂ B(2R). In particular, it implies

Tr
[(

HD≤2R − μGP
)

� j1

]
≥ inf

0≤M≤N

{
E(M) − μGPM

}
. (3.14)

To bound the infimum on the right-hand side of the above equation, we distinguish two
different regimes for the particle number M . This is necessary because we cannot relate
E(M) to the GP energy (1.6) if M is too small.

We first consider the case where M 
 N0. Choose δ > 0 such that δ 
 1 and still
δN0 � 1 and assume M ≤ δN0. When we drop the positive energy E(M), we obtain
the lower bound

E(M) − μGPM ≥ −μGPδN0. (3.15)

Since the term on the right-hand side is of order o(ωN0) it is not important for the
minimization on the right-hand side of Eq. (3.14). For δN0 < M ≤ N we apply [29,
Thm. IV.1] and obtain E(M) ≥ EGP(M, aN , ω)(1 − o(1)). Together with Eq. (3.14),
Eq. (3.15) and the convexity of the map N0 �→ EGP(N0, aN , ω), this proves the lower
bound
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Tr
((

HD≤2R − μGP N̂
)

� j1

)
≥ min

δN0≤M≤N

(
EGP(M, aN , ω) − μGPM

)
− o(ωN )

≥ EGP(N0, aN , ω) − μGPN0 − o(ωN ) (3.16)

for the energy inside B(2R).

Remark 3.1. Let us make a short remark concerning the grand-canonical lower bound
(compare with Remark 9 in Sect. 1.8) in which case one cannot restrict attention to
M ≤ N : In this case we can use the superadditivity of the energy E(M) and [29,
Thm. IV.1] to observe that for η ∈ N with η ∼ N0 we have E(M) ≥ Mη−1E(η) ≥
Mη−1EGP(η, aN , ω)(1 − o(1)). Choosing η = O(N0) large enough such that
EGP(η, aN , ω) − μGPη is larger than a constant times ωη, one checks that values of
M with M > η are not relevant for the computation of the minimum in Eq. (3.16). The
rest of the argument remains unchanged.

Next, we estimate the contribution coming from the entropy in the region B(2R). We
use Tr[N̂� j1] ≤ N to see that the term in the second line of Eq. (3.13) is bounded from
below by

ε Tr
[(

dϒ
(

hD≤2R

)
− μGP N̂

]
� j1

)
− T S(� j1)

≥ 1
β
Tr

[
ln

(
1 − e

−βε
(

hD≤2R+
3
2ω
))]

− εN
(
3
2ω + μGP

)
. (3.17)

Note that we have added and subtracted a chemical potential of size − 3
2ω. To bound

the first term on the right-hand side, we note that the hD≤2R is bounded from below by

−�D≤2R − 3
2ω. Using the Weyl asymptotics [45, Satz XI] of the eigenvalues of −�D≤2R ,

we see that there exists a constant C > 0 such that the αth eigenvalue of this operator
satisfies eα(−�D≤R) ≥ C(α + 1)2/3/R2. This allows us to estimate

Tr

[
ln

(
1 − e

−βε
(

hD≤2R+
3
2ω
))]

≥ Tr

[
ln

(
1 − e

−βε
(
−�D≤2R

))]

≥
∑

α≥1

ln
(
1 − e−Cβεα2/3R−2

)
. (3.18)

The last sum can be interpreted a Riemann sum approximating the corresponding inte-
gral, and one readily checks that it is bounded below by −O(R3β−3/2ε−3/2). That is,

ε Tr
[(

dϒ
(

hD≤2R

)
− μGP N̂

]
� j1

)
− T S(� j1) � − R3

β5/2ε3/2
− εNω. (3.19)

Together with Eqs. (3.13), (3.16), and (3.17) this yields

Tr
[(

HD≤2R − μGP N̂
)

� j1

]
− T S

(
� j1

) ≥ (1 − ε)
[

EGP(N0, aN , ω) − μGPN0

]

− o(ωN ) − O (ωεN ) − O

(
R3

ε3/2β5/2

)

(3.20)

as a lower bound for the free energy inside B(2R).
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3.2. The thermal cloud. Next we consider the terms in the second line on the right-hand
side of Eq. (3.12). Explicit minimization shows that

Tr
((

dϒ(hD≥R) − μGP N̂
)

� j2

)
− T S(� j2)

≥ 1
β
Tr

[
ln

(
1 − e

−β
(

hD≥R−μGP
))]

. (3.21)

To relate the right-hand side of Eq. (3.21) to F0(β, N , ω), we first need to replace
μGP by μ0, the chemical potential of the ideal gas leading to an expected number of
N particles. After the chemical potential has been replaced, we have to get rid of the
Dirichlet boundary conditions in the formula for the grand canonical free energy, and
replace it by its canonical version.

To replace μGP by μ0, we use convexity to bound

Tr

[
ln

(
1 − e

−β
(

hD≥R−μGP
))]

− Tr

[
ln

(
1 − e

−β
(

hD≥R−μ0

))]

≥ β(μ0 − μGP)Tr

[
1

eβ(hD≥R−μGP) − 1

]

≥ β(μ0 − μGP)Tr

[
1

eβ(hD≥R−μ0) − 1

]

− β2(μ0 − μGP)2 Tr

⎡

⎢⎣
eβ(hD≥R−μGP)

(
eβ(hD≥R−μGP) − 1

)2

⎤

⎥⎦ . (3.22)

By arguing as inEq. (2.72),we see that the last trace is bounded by O((βω)−3). It remains
to get rid of the Dirichlet boundary conditions in the various terms in Eq. (3.22). To that
end, we use that the αth eigenvalue of hD≥R is bounded from below by eα(hD≥R) ≥ eα(h).
For the second term on the left-hand side of (3.22), this implies

Tr
[
ln
(
1 − e−β(hD≥R−μ0)

)]
≥ Tr

[
ln
(
1 − e−β(h−μ0)

)]
. (3.23)

Note that the above bound is rough in the sense that the right-hand side includes the grand
canonical potential of the condensate. The latter is negligible in the limit considered,
however. The first term on the right-hand side of Eq. (3.22) is proportional to the particle
number and hence we have to be more careful. We use eα(hD≥R) ≥ eα(h) for α ≥ 1 and

e0(hD≥R) ≥ ω2R2

4 − 3ω
2 , which avoids adding the expected number of particles in the

condensate, and find

Tr

[
1

eβ(hD≥R−μ0) − 1

]
≤ Tr

[
1 (h ≥ ω)

1

eβ(h−μ0) − 1

]
+ O

(
β−1ω−2R−2

)
. (3.24)

Note that the first term on the right-hand side of Eq. (3.24) is N gc
th , the expected number

of particles in the grand canonical thermal cloud. Combining Eqs. (3.21)–(3.24) and
using that |μ0 − μGP| � ω we find
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Tr
((

dϒ(hD≥R) − μGP N̂
)
� j2

)
− T S(� j2)

≥ 1
β
Tr
[
ln
(
1 − e−β(h−μ0)

)]
−
(
μGP − μ0

)
N gc
th

− O(β−2ω−1) − O(β−1ω−1R−2). (3.25)

It remains to replace the grand canonical free energy by the canonical one, and N gc
th

by Nth. Corollary A.1 tells us that the difference of the canonical and the grand canonical
free energy is at most of order −T ln N . Moreover, |Nth − N gc

th | � (βω)−3/2(ln N )1/2 +
(βω)−1 ln N by Corollary A.2. We therefore have

Tr
((

dϒ(hD≥R) − μGP N̂
)

� j2

)
− T S(� j2) ≥ F0(β, N , ω)

− μGPNth − O

(
1

β2ω

)
− O

(
1

βωR2

)

− O

(
(ln N )1/2

ω1/2β3/2

)
− O

(
ln N

β

)
(3.26)

as a lower bound for the free energy in region B(R)c. Note that we have added the
additional negative term μ0N gc

0 on the right hand side.

3.3. The final estimate for the lower bound. We combine the results from Eqs. (3.12),
(3.20) and (3.26) and the fact that EGP(N0, aN , ω) − μGPN0 = O(ωN ) to find

Tr(HN �N ) − T S(�N ) ≥ F0(β, N , ω) + EGP(N0, aN , ω) − o(ωN )

− O(ωεN ) − 3N R−2 − O

(
R3

ε3/2β5/2

)
. (3.27)

Toobtain the resultwe assumed that Rω1/2 is large enough, andused that (βω)−1 � N 1/3

to dominate some of the error terms by others. The optimal choice of the parameters R
and ε turns out to be R ∼ ω−1/2N 1/8(βω)5/16 and ε ∼ N−1/4(βω)−5/8. The three terms
on the second line of the right hand side of Eq. (3.27) are thus bounded by ωN 23/24. In
particular,

F(β, N , ω) ≥ F0(β, N , ω) + EGP(N0, aN , ω) − o(ωN ). (3.28)

This completes the proof of the lower bound.

4. Proof of the Asymptotics of the One-Particle Density Matrix

In the following discussion, we assume that N0 ∼ N and NaN ≥ εω−1/2, i.e. av ≥ ε

for some ε > 0 holds. The case where one of these conditions is not fulfilled will be
taken care of at the end.

Assume we are given a sequence of states �N with reduced one-particle density
matrices γN such that

Tr [HN �N ] − T S(�N ) = F0(β, N , ω) + EGP(N0, aN , ω) + o(ωN ) (4.1)
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as N tends to infinity. Choose two functions j1 and j2 as in the proof of the lower bound,
satisfying j1(x)2 + j2(x)2 = 1 for all x ∈ R

3, j1(x) = 1 for x ∈ B(R) and j1(x) = 0 for
x ∈ B(2R)c, and also |∇ j1(x)|2 + |∇ j2(x)|2 ≤ 3R−2. Using Eqs. (3.12), (3.13), (3.20)
and (3.26) and the choice of parameters from Sect. 3.3, we see that

o(ωN ) ≥ Tr
[(

HD≤2R − μGP N̂
)

�N , j1

]
− EGP(N0, aN , ω) + μGPN0 (4.2)

holds. The operator HD≤2R was defined in Eq. (3.8), μGP is given by (3.11) and the
state �N , j1 is related to �N in the way described in the proof of Lemma 3.1. Moreover,
Eqs. (3.12) and (3.20) together with the fact that μ0N0 < 0 tell us that

o(ωN ) ≥ Tr
[(

dϒ
(

hD≥R

)
− μGP N̂

)
�N , j2

]
− T S

(
�N , j2

)

− 1
β
Tr
[
ln
(
1 − e−β(h−μ0)

)]
+
(
μGP − μ0

)
Nth , (4.3)

where also �N , j2 is related to �N in the way described in the proof of Lemma 3.1. Note
that we have the grand canonical free energy on the right-hand side of Eq. (4.3) instead
of the canonical free energy, which is allowed by Corollary A.1 in the Appendix.

Equations (4.2) and (4.3) will be used to deduce the desired bounds on γN . As a
first step we will derive asymptotic expressions for the one-particle density matrices of
�N , j1 and �N , j2 , that is, for j1γN j1 and j2γN j2, respectively. Afterwards, we consider
the “off-diagonal” contribution coming from j1γN j2 and j2γN j1 and show that their
trace norm is of order o(N ). As one would expect, j1γN j1 turns out to be close to
N0|φGP

1,N0aN
〉〈φGP

1,N0aN
| and j2γN j2 is close to γN ,0 − N0|ϕ0〉〈ϕ0|.

4.1. The bound for j1γN j1. To derive a bound for j1γN j1, we make use of existing
results [25,26,38] on the convergence of the one-particle density matrix of approximate
minimizers of the ground state energy functional to the projection onto theGPminimizer.
The main difficulty to overcome is that the particle number of the state �N , j1 may
fluctuate, that is, it is a state on the full Fock space.

As in Sect. 3.1 we choose 0 < δ 
 1 such that still δN0 � 1. Let PM be the pro-
jection onto the Fock space sector with M particles. Keeping in mind the normalization
Tr[�N , j1 ] = 1, Eq. (4.2) can be written as

o(ωN ) ≥
N∑

M=0

Tr
[{(

HD≤2R − μGPM
)
−
(

EGP(N0, aN , ω) − μGPN0

)}
PM�N , j1 PM

]
.

(4.4)
Let us again distinguish two cases: For 0 ≤ M ≤ δN0 we drop HD≤2R to obtain a lower
bound and use μGPδN0 
 ωN0 to show that there is a constant C1 > 0 such that the
expression in the curly brackets in the above equation is bounded from below byC1ωN0.
In the case where δN0 < M ≤ N , we invoke [38, Eq. (101) and Lemma 4] to see that
there exists a constant C2 > 0 such that the summand in Eq. (4.4) is bounded from
below by

Tr
[
PM�N , j1 PM

] {
EGP(M, aN , ω) − EGP(N0, aN , ω) − μGP(M − N0)

+
ωC2

M

∥∥∥γPM �N , j1 PM − M PGP
MaN

∥∥∥
2

1
− o(ωN )

}
. (4.5)
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Here γPM �N , j1 PM denotes the one-particle density matrix of the state PM�N , j1 PM

(Tr[PM�N , j1 PM ])−1. It is normalized to have Tr[γPM � j1 PM ] = M . By PGP
MaN

we denote

the projection onto the GP minimizer φGP
1,MaN

. This estimate is in fact uniform in MaN
for M in the range we consider.

We shall use the strict convexity of M �→ EGP(M, aN , ω) in order to obtain a lower
boundon thefirst three terms in the aboveparentheses that is strictly positive for M �= N0.
Using that μGP = d

dN EGP(N0, aN , ω), as well as the convexity of ρ �→ ∫ |∇√
ρ|2, we

deduce that

EGP(M, aN , ω) − EGP(N0, aN , ω) − μGP(M − N0)

≥ 4πaN

∫

R3

(
φGP

M,aN
(x)2 − φGP

N0,aN
(x)2

)2
dx . (4.6)

For a lower bound, we pick s > 0 and t ∈ R and estimate

∫

R3

(
φGP

M,aN
(x)2−φGP

N0,aN
(x)2

)2
dx ≥

∫

|x |<s

(
φGP

M,aN
(x)2 − φGP

N0,aN
(x)2

)2
dx

≥ 2t
∫

|x |<s

(
φGP

M,aN
(x)2−φGP

N0,aN
(x)2

)
dx− 4π

3
t2s3.

(4.7)

Since
∫

|x |≥s
φGP

M,aN
(x)2dx ≤ s−2

∫

R3
φGP

M,aN
(x)2|x |2dx

≤ 4s−2ω−2
(

EGP(M, aN , ω) + 3
2 Mω

)
(4.8)

this implies

∫

R3

(
φGP

M,aN
(x)2 − φGP

N0,aN
(x)2

)2
dx

≥ 2t (M − N0) − 8|t |s−2ω−2
(

EGP(M, aN , ω) + EGP(N0, aN , ω) + 3
2 (M + N0)ω

)

− 4π

3
t2s3. (4.9)

After optimizing over s and t , we thus obtain the lower bound

1

14π

(
3

7

)5/2

ω3 |M − N0|7/2
(
EGP(M, aN , ω) + EGP(N0, aN , ω) + 3

2 (M + N0)ω
)3/2 . (4.10)

In particular, with (4.6) we conclude that

EGP(M, aN , ω)− EGP(N0, aN , ω)−μGP(M − N0) � ω3/2aN
|M − N0|7/2
(M + N0)3/2

. (4.11)
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Putting all this together, we obtain

o(N ) ≥ N0

∑

0≤M≤δN0

Tr
[
PM�N , j1 PM

]
+

∑

δN0<M≤N

Tr
[
PM�N , j1 PM

]

×
(

ω1/2aN
|M − N0|7/2
(M + N0)3/2

+
1

M

∥∥∥γPM �N , j1 PM − M PGP
MaN

∥∥∥
2

1

)
. (4.12)

Next, we write j1γN j1 = ∑N
M=0 Tr

[
PM�N , j1 PM

]
γPM �N , j1 PM and estimate the trace

norm difference of j1γN j1 and N0PGP
N0aN

in a first step by

∥∥∥ j1γN j1 − N0PGP
N0aN

∥∥∥
1

≤ N0(1 + δ)
∑

0≤M≤δN0

Tr
[
PM�N , j1 PM

]

+
∑

δN0<M≤N

Tr
[
PM�N , j1 PM

] ∥∥∥γPM �N , j1 PM − M PGP
MaN

∥∥∥
1

+

∥∥∥∥∥∥

∑

δN0<M≤N

Tr
[
PM�N , j1 PM

] (
M PGP

MaN
− N0PGP

N0aN

)
∥∥∥∥∥∥
1

.

(4.13)

Eq. (4.12) tells us that the first two terms on the right-hand side of the above equation
are of order o(N ). For the term in the last line, we insert N0PGP

MaN
− N0PGP

MaN
in the

obvious place to see that it is bounded from above by

∥∥∥∥∥∥

∑

δN0<M≤N

Tr
[
PM�N , j1 PM

] (
M PGP

MaN
− N0PGP

N0aN

)
∥∥∥∥∥∥
1

≤
∑

δN0<M≤N

Tr
[
PM�N , j1 PM

] {|M − N0| + N0

∥∥∥PGP
MaN

− PGP
N0aN

∥∥∥
1

}
. (4.14)

To bound the right-hand side of Eq. (4.14), we choose 0 < κ < 1 and split the sum into
two parts, one where |M − N0| ≤ κ N0 and another one where |M − N0| > κ N0. We
claim that there exists a function f : R+ → R+ with f (x) → 0 for x → 0 such that the
first part of the sum is bounded by (κ + f (κ))N0. This follows from the continuity of
the map M �→ φGP

1,MaN
in L2(R3), which can easily be deduced from the uniqueness of

the minimizer of the GP functional. To estimate the contribution to the sum of the terms
with |M − N0| > κ N0, we write

∑

δN0<M≤N :
|M−N0|>κ N0

Tr
[
PM�N , j1 PM

] {|M − N0| + N0

∥∥∥PGP
MaN

− PGP
N0aN

∥∥∥
1

}

≤
∑

δN0<M≤N :
|M−N0|>κ N0

Tr
[
PM�N , j1 PM

]
{

|M − N0|7/2
κ5/2N 5/2

0

+ 2
|M − N0|7/2

κ7/2N 5/2
0

}
. (4.15)
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Together with Eq. (4.12), this implies for κ � 1 that

∑

δN0<M≤N :
|M−N0|>κ N0

Tr
[
PM�N , j1 PM

] {|M − N0| + N0

∥∥∥PGP
MaN

− PGP
N0aN

∥∥∥
}

≤ o(N )

ω1/2κ7/2aN N0
.

(4.16)
Choosing κ 
 1 and δ appropriately, we see that the right-hand side of Eq. (4.16) as
well as the part of the sum in Eq. (4.14) where |M − N0| ≤ κ N0 is of the order o(N ).
Together with Eq. (4.13), this proves

∥∥∥ j1γN j1 − N0PGP
N0aN

∥∥∥
1

≤ o(N ). (4.17)

4.2. The bound for j2γN j2. The main ingredient to derive a bound for j2γN j2 is a novel
coercivity estimate for the bosonic relative entropy that we prove in Lemma 4.1 below.
Using this estimate, we shall show that j2γN j2 is close to γ

gc
0 − N gc

0 |ϕ0〉〈ϕ0| in trace
norm, where

γ
gc
0 = 1

eβ(h−μ0) − 1
(4.18)

denotes the grand canonical analogue of γN ,0. This part of the proof is motivated by a
related analysis for the one-particle density matrix of a dilute Fermi gas in [39].

For positive trace-class operators γ define

s(γ ) = −Tr σ(γ ), with σ(x) = x ln(x) − (1 + x) ln(1 + x). (4.19)

We have [44, 2.5.14.5]
S(� j2) ≤ s( j2γN j2). (4.20)

Since
Tr
[(

dϒ
(

hD≥R

)
− μGP N̂

)
�N , j2

]
= Tr

[(
h − μGP

)
j2γN j2

]
(4.21)

we conclude that

Tr
[(

dϒ
(

hD≥R

)
− μGP N̂

)
�N , j2

]
− T S

(
�N , j2

)

≥ Tr
[(

h − μGP
)

j2γN j2
]

− T s ( j2γN j2) (4.22)

holds. Let us define

ν(x) = max{x, μ} with cμGP < μ � ω for some c > 1. (4.23)

For what follows, it will be convenient to replace the Hamiltonian h by ν(h) on the
right-hand side of Eq. (4.22). We write h = ∑∞

α=0 eα(h)|ϕα〉〈ϕα| and choose α0 to be
the largest integer such that eα0(h) < μ. Using α0 = O(1) and μ � ω we can estimate

Tr[(ν(h) − h) j2γN j2] ≤ μ

α0∑

α=0

〈ϕα, j2γN j2ϕα〉 � ωN
α0∑

α=0

‖ j2ϕα‖2 � ωNe−CωR2
,

(4.24)
where C > 0 is some appropriately chosen constant. To obtain the last inequality on the
right-hand side of Eq. (4.24), we used the decay of the eigenfunctions of h and the fact
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that the support of j2 is given by B(R)c. Together with Eqs. (4.3), (4.22) andω1/2R � 1,
this implies

o(ωN ) ≥ Tr
[(

ν(h) − μGP
)

j2γN j2
]

− T s ( j2γN j2)

− 1
β
Tr
[
ln
(
1 − e−β(h−μ0)

)]
+
(
μGP − μ0

)
Nth. (4.25)

To be able to compare the expressions in the first and in the second line on the right-hand
side of Eq. (4.25), we will replace h by ν(h) and afterwards μ0 by μGP in the first term
in the second line. In fact, since ν(h) ≥ h,

Tr
[
ln
(
1 − e−β(h−μ0)

)]
≤ Tr

[
ln
(
1 − e−β(ν(h)−μ0)

)]
. (4.26)

Moreover, using that βμ0 = O(N−1
0 ) and thus |μ0 − μGP| � ω, we can proceed

similarly to Eq. (3.22) to obtain

1

β
Tr
[
ln
(
1 − e−β(ν(h)−μ0)

)
− ln

(
1 − e−β

(
ν(h)−μGP

))]

≤
(
μ0 − μGP

)
N gc
th + O

(
1

β2ω

)
. (4.27)

Corollary A.2 tells us that |Nth − N gc
th | � (βω)−3/2(ln N )1/2 + (βω)−1 ln N . Together

with Eqs. (4.25)–(4.27), this shows that

o(ωN ) ≥ Tr[(ν(h) − μGP) j2γN j2] − T s( j2γN j2) − 1
β
Tr
[
ln
(
1 − e−β(ν(h)−μGP)

)]

(4.28)
holds.

The right-hand side of Eq. (4.28) can bewritten in terms of the relative entropy, which
is defined as follows. For two nonnegative operators γ, γ0 with finite trace, the bosonic
relative entropy of γ with respect to γ0 is given by

S(γ, γ0) = Tr
(
σ(γ ) − σ(γ0) − σ ′(γ0)(γ − γ0)

)
(4.29)

with σ defined in Eq. (4.19). For matrices it is well-defined as long as γ0 > 0. In case
γ0 has a nontrivial kernel and γ − γ0 �= 0 on ker(γ0), one defines S(γ, γ0) = ∞. If
γ −γ0 = 0 on ker(γ0) the trace is by definition taken on the complement of that subspace.
In the case of trace-class operators with γ0 strictly positive, one can equivalently define

S(γ, γ0) =
∑

i, j

∣∣〈ψi |ϕ j
〉∣∣2 S(γi , ν j ) (4.30)

where S(x, y) = σ(x) − σ(y) − σ ′(y)(x − y) ≥ 0, and {λi , ψi } respectively {ν j , ϕ j }
are the eigenvalues and eigenfunctions of γ and γ0, respectively. The definition (4.30)
will be most convenient for our purpose. We note that S can be defined more generally
even for non-compact operators by approximating the operators by matrices and taking
limits, see [10,22].

Denote by

γν,0 =
(

eβ
(
ν(h)−μGP

)
− 1

)−1
(4.31)
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the one-particle density matrix of the Gibbs state related to the grand canonical po-
tential 1

β
Tr[ln(1 − e−β(ν(h)−μGP))]. A simple computation shows that Eq. (4.28) can

equivalently be written as

o(ωN ) ≥ 1
β
S ( j2γN j2, γν,0

)
. (4.32)

In order to get quantitative information out of Eq. (4.32), we need the following Lemma:

Lemma 4.1. There exists a constant C > 0 such that for any two nonnegative trace-class
operators γ, γ0 we have

S(γ, γ0) ≥ C Tr

(
1

1 + γ0

(
γ√
1 + γ

− γ0√
1 + γ0

)2
)

(4.33)

and

S(γ, γ0) ≥ C

[
Tr (γ − γ0)

]2

Tr ((γ + γ0) (1 + γ0))
. (4.34)

Remark 4.1. With Eqs. (4.33) and (4.34) one can show that for fixed γ0 convergence of
the relative entropy to zero implies convergence of γ to γ0 in trace norm. A quantitative
estimate on their trace norm distance will in fact be given below, see Eq. (4.49) et seq.

Proof. We start with the proof of the second inequality. With S(x, y) = σ(x) − σ(y) −
σ ′(y)(x − y) we wish to show that

S(x, y) ≥ C
(x − y)2

(x + y)(1 + y)
(4.35)

holds for all numbers x, y ∈ R+. To that end, we will consider several cases and start
with the one where x ≥ y and y ≥ 1. We claim that

S(x, y) =
∫ x

y

(x − s)

s(s + 1)
ds ≥ 1

2

(
−1 +

x

y
− ln

(
x

y

))
(4.36)

which follows from s(s + 1) ≤ 2s2 for s ≥ 1. One also checks that z ≥ 1 implies
−1 + z − ln(z) ≥ (8/9)(z − 1)2/(z + 1). Together with Eq. (4.36), this gives

S(x, y) ≥ 4

9

(x − y)2

(x + y)(1 + y)
. (4.37)

Next, consider the case x ≥ 2 and y ≤ 1. Here
∫ x

y

(x − s)

s(s + 1)
ds ≥ 1

2

∫ x

1

(x − s)

s2
ds = 1

2
(−1 + x − ln(x)) . (4.38)

We use the same inequality as above to obtain a lower bound for the right-hand of
Eq. (4.38) and find

S(x, y) ≥ 4

9

(x − 1)2

1 + x
≥ 1

9

(x − y)2

1 + x
≥ 2

27

(x − y)2

(x + y)(1 + y)
. (4.39)
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For x ≥ y and x ≤ 2, we again consider the integral representation of S(x, y) from
above and replace s by x + y in the denominator of the function under the integral sign.
This yields a lower bound of the form

S(x, y) ≥ 1

2

(x − y)2

(x + y)(1 + x + y)
≥ 1

6

(x − y)2

(x + y)(1 + y)
. (4.40)

It remains to consider the case y ≥ x . Here we argue in the same way as in the previous
step:

S(x, y) ≥ 1

2

(x − y)2

(x + y)(1 + x + y)
≥ 1

4

(x − y)2

(x + y)(1 + y)
. (4.41)

This proves the claimed bound (4.35) for S(x, y) with C ≥ 2/27.
In order to deduce Eq. (4.34) from Eq. (4.35), we follow the argument in the proof of

[39, Lemma 7]. For (x, y) ∈ R
2 with y > 0, the map (x, y) �→ x2

y is jointly convex. In

fact, x2
y = supλ∈R

{
2λx − λ2y

}
. Using this representation and Klein’s inequality (see

e.g. [44, 2.1.4(5)]), which simply amounts to plugging the lower bound for S into (4.30),
we find that

S (γ, γ0) ≥ 4

27
λTr

[
γ − γ0

]− 2

27
λ2 Tr

[
(γ − γ0)(1 + γ0)

]
(4.42)

which holds for all λ ∈ R. By optimizing over λ we obtain Eq. (4.34).
It remains to show that Eq. (4.33) holds. Let f (x) = x/

√
1 + x and note that f ′(x) ≤

x−1/2 implies

( f (x) − f (y))2 ≤ 4
(√

x − √
y
)2

. (4.43)

Since
(√

z − 1
)2 ≤ (z−1)2

z+1 for z ≥ 0 we conclude that

(
x√
1 + x

− y√
1 + y

)2

≤ 4
(x − y)2

x + y
. (4.44)

Eq. (4.44) together with Eq. (4.35) and Klein’s inequality prove the claim. ��
As in the above Lemma, let γ and γ0 be nonnegative trace-class operators and choose
λ > 0. We have

‖γ − γ0‖1 ≤ Tr
[
1(γ > λ)γ

]
+ ‖1(γ ≤ λ)γ − γ0‖1 . (4.45)

Let P be some orthogonal projection, Q = 1 − P and denote

γ̃ = 1(γ ≤ λ)γ. (4.46)

The following argumentation follows closely the related argument in [39, Eqs. (4.33)–
(4.35)]. We estimate

‖γ̃ − γ0‖1 ≤ ‖(γ̃ − γ0) P‖1 + ‖γ̃ Q‖1 + ‖γ0Q‖1
≤ ‖(γ̃ − γ0) P‖1 + ‖γ̃ ‖1/21 ‖Qγ̃ Q‖1/21 + ‖γ0‖1/21 ‖Qγ0Q‖1/21 . (4.47)
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For the trace norm of γ̃ , we have ‖γ̃ ‖1 ≤ ‖γ0‖1 +
∣∣Tr
[
γ̃ − γ0

]∣∣. Together with

‖Qγ̃ Q‖1 = Tr (γ̃ Q) = Tr
[
γ0Q + (γ̃ − γ0) − (γ̃ − γ0)P

]

≤ ‖Qγ0Q‖1 + |Tr[γ̃ − γ0]| + ‖(γ̃ − γ0)P‖1 , (4.48)

this implies

‖γ − γ0‖1 ≤ Tr
[
1(γ > λ)γ

]
+ ‖(γ̃ − γ0) P‖1 + 2

(‖γ0‖1 +
∣∣Tr
[
γ̃ − γ0

]∣∣)1/2

× (‖Qγ0Q‖1 + |Tr[γ̃ − γ0]| + ‖(γ̃ − γ0)P‖1
)1/2

. (4.49)

We shall apply this to γ = j2γN j2 and γ0 = γν,0 in Eq. (4.31), with λ = 4‖γν,0‖. Let us
note that ‖γν,0‖ = O((βω)−1) which follows from the explicit form of the eigenvalues
of h and the definition of ν, see Eq. (4.23). We also define

f (x) = x√
1 + x

. (4.50)

To keep the notation simple, we will still write γ instead of j2γN j2 in the following
discussion.

Let us start with the first term on the right-hand side of (4.49). We want to show that
it is of the order o(N ). To do so, we bound

Tr[γ1(γ > λ)] ≤ 1 + λ

λ
Tr
[

f (γ )21(γ > λ)
]

= 1 + λ

λ

∑

ei (γ )>λ

f (ei (γ ))2 (4.51)

where ei (γ ) are the eigenvalues of γ . Since f (t) ≥ 2 f (t/4), we have f (ei (γ )) ≤
2( f (ei (γ ))− f (λ/4)) for ei (γ ) > λ. Since f (γν,0) ≤ f (λ/4), we further have (denoting
by ψi the eigenfunctions of γ )

Tr[γ1(γ > λ)] ≤ 4
1 + λ

λ

∑

γi >λ

〈ψi |( f (γ ) − f (γν,0))|ψi 〉2

≤ 4
1 + λ

λ

∑

γi >λ

〈ψi |( f (γ ) − f (γν,0))
2|ψi 〉

= 4
1 + λ

λ
Tr
[
1(γ > λ)

(
f (γ ) − f (γν,0)

)2]
. (4.52)

We know from Lemma 4.1 and Eq. (4.32) that

Tr

[
1

1 + γν,0

(
f (γ ) − f (γν,0)

)2
]

≤ o(βωN ). (4.53)

Together with 1(γ > λ) ≤ 1 and ‖γν,0‖ � (βω)−1, Eqs. (4.51)–(4.53) imply that

Tr[γ1(γ > λ)] ≤ o(N ). (4.54)

Next, consider the second termon the right-hand side of Eq. (4.49).Using theCauchy-
Schwarz inequality and the cyclicity of the trace, we find

∥∥(γ̃ − γν,0)P
∥∥
1 ≤

(
Tr

[
1

1 + γν,0
(γ̃ − γν,0)

2
])1/2 (

Tr
[
(1 + γν,0)P

])1/2
. (4.55)
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We write f (x) − f (y) = (x − y)
∫ 1
0 f ′(y + t (x − y))dt and use the lower bound

f ′(x) ≥ 1
2 (1 + x)−1/2 to show that

( f (x) − f (y))2 ≥ 1

4(1 + max{x, y}) (x − y)2 ≥ 1

4(1 + λ)
(x − y)2 (4.56)

for 0 ≤ x, y ≤ λ. The fact that max{‖γν,0‖, ‖γ̃ ‖} ≤ λ and an application of Klein’s
inequality therefore gives

Tr

[
1

1 + γν,0
(γ̃ − γν,0)

2
]

≤ 4 Tr

[
1 + λ

1 + γν,0

(
f (γ̃ ) − f (γν,0)

)2
]

. (4.57)

Denote by {ψ j }∞j=0 the eigenbasis of γ and by {ϕi }∞i=0 the eigenbasis of γν,0. In order
to replace γ̃ by γ , we write

Tr

[
1

1 + γν,0

(
f (γ̃ ) − f (γν,0)

)2
]

=
∞∑

i, j=0

1

1 + ei (γν,0)

∣∣〈ψi |ϕ j
〉∣∣2 ( f (1(e j (γ ) ≤ λ)e j (γ )) − f (ei (γν,0))

)2
. (4.58)

Sinceλ = 4‖γν,0‖,wehave f (λ) ≥ 2 f (‖γν,0‖). It follows that f (e j (γ )) ≥ 2 f (ei (γν,0))

for all i and j such that e j (γ ) > λ. Hence we can replace f (1(e j (γ ) ≤ λ)e j (γ )) by
f (e j (γ )) in Eq. (4.58) to obtain an upper bound. Combining this upper bound with
Eqs. (4.57), (4.55) and (4.53), we find that

∥∥(γ̃ − γν,0)P
∥∥
1 ≤ o(N 1/2)

(
Tr
[
(1 + γν,0)P

])1/2
. (4.59)

Eq. (4.32), ‖γν,0‖ � (βω)−1 and an application of Lemma 4.1 prove the bound∣∣Tr[γ − γν,0]
∣∣ ≤ o(N ). Together with Eq. (4.54), this shows

|Tr[1(γ ≤ λ)γ − γν,0]| ≤ |Tr[γ − γν,0]| + Tr[1(γ > λ)γ ] ≤ o(N ). (4.60)

HavingEqs. (4.60) and (4.59) at hand,we combine themwithEq. (4.49) and‖γν,0‖1 ≤ N
to finally obtain

∥∥ j2γN j2 − γν,0
∥∥
1 ≤ o(N ) + o

(
N 1/2

) (
Tr
[
(1 + γν,0)P

])1/2

+ O(N 1/2)
(∥∥Qγν,0Q

∥∥
1 + o(N 1/2)

(
Tr
[
(1 + γν,0)P

])1/2)1/2
,

(4.61)

where we inserted j2γN j2 for γ . To complete the argument it remains to choose the
projection P .

We choose P = 1(h ≤ ηT ) for some large η > 0. Recall that g(n) = (n+1)(n+2)/2
denotes the degree of degeneracy of the energy level ωn of the harmonic oscillator
Hamiltonian h. We then have

Tr[(1 + γν,0)P] ≤ Tr
[
P + γν,0

] =
∑

n≥0:
ωn≤ηT

g(n) + O

(
1

(βω)3

)
� 1 + η3

(βω)3
. (4.62)
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The term involving Q can be estimated as

∥∥Qγν,0Q
∥∥
1 ≤ Tr

[
γ0Q

] =
∑

n≥0:
ωn>ηT

g(n)

eβ(ωn−μ0) − 1
� e−η/2

(βω)3
. (4.63)

By choosing η � 1 appropriately, this shows
∥∥ j2γN j2 − γν,0

∥∥
1 ≤ o(N ). (4.64)

As afinal step in the estimate of j2γN j2,we replaceγν,0 byγ
gc
0 −N gc

0 |ϕ0〉〈ϕ0|withγ
gc
0

defined in Eq. (4.18). A straightforward computation shows that ‖γ gc
0 − N gc

0 |ϕ0〉〈ϕ0| −
γν,0‖1 � (βω)−1. Hence,

∥∥ j2γN j2 − (
γ
gc
0 − N gc

0 |ϕ0〉〈ϕ0|
)∥∥

1 ≤ o(N ) (4.65)

holds.

4.3. The off-diagonal elements of γN and the final estimate. To complete the proof of
Theorem 1.1, it remains to estimate the trace norm of j21 γN j22 . In combination with
Corollary A.2, which shows that the trace norm difference of γN ,0 and γ

gc
0 is small,

this will allow us to conclude the convergence result (1.25) for the one-particle density
matrix in the case N0 ∼ N and NaN ≥ εω−1/2 for some ε > 0. Finally, we shall
comment on the case where one of these assumptions is not valid.

We define γ̃
gc
0 = γ

gc
0 − N gc

0 |ϕ0〉〈ϕ0| as well as PGP = PGP
N0aN

= |φGP
1,N0aN

〉〈φGP
1,N0aN

|
for short. The identity j1(x)2 + j2(x)2 = 1 for all x ∈ R

3 and the triangle inequality
allow us to bound

∥∥∥γN − γ̃
gc
0 − N0PGP

∥∥∥
1

≤
∥∥∥ j21 γN j21 − N0 j1PGP j1

∥∥∥
1
+
∥∥∥ j22 γN j22 − j2γ̃

gc
0 j2

∥∥∥
1

+ 2
∥∥∥ j21 γN j22

∥∥∥
1
+ N0

∥∥∥PGP − j1PGP j1
∥∥∥
1

+
∥∥γ̃ gc

0 − j2γ̃
gc
0 j2

∥∥
1 . (4.66)

With Eqs. (4.17), (4.65) and ji (x) ≤ 1 for i ∈ {1, 2}, we see that the first two terms on
the right-hand side of the above equation are of order o(N ). To derive an estimate for the
first term in the second line of Eq. (4.66), we bound

∥∥ j21 γN j22
∥∥
1 ≤ ∥∥PGP j21 γN j22

∥∥
1 +∥∥(1 − PGP) j21 γN j22

∥∥
1. Since PGP is a rank one projection, we have (recall that ‖ · ‖

denotes the operator norm)

∥∥∥PGP j21 γN j22

∥∥∥
1

=
∥∥∥PGP j21 γN j22

∥∥∥ ≤ ‖γN ‖1/2
∥∥∥ j22 γN j22

∥∥∥
1/2 ≤ N 1/2 ‖ j2γN j2‖1/2 .

(4.67)

We also estimate
‖ j2γN j2‖ ≤ ∥∥ j2γN j2 − γ̃

gc
0

∥∥ +
∥∥γ̃ gc

0

∥∥ . (4.68)

Recall that the largest eigenvalue of γ̃ gc
0 is bounded by a constant times (βω)−1. Making

use of Eq. (4.65), this implies
∥∥PGP j21 γN j22

∥∥
1 ≤ o(N ). On the other hand,
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∥∥∥(1 − PGP) j21 γN j22

∥∥∥
1

≤
∥∥∥(1 − PGP) j21 γ

1/2
N

∥∥∥
2

∥∥∥γ 1/2
N j22

∥∥∥
2

≤
(
Tr
[(

j21 γN j21 − N0PGP
)

(1 − PGP)
])1/2

N 1/2 , (4.69)

where ‖ · ‖2 denotes the Hilbert-Schmidt norm. We apply Eq. (4.17) to see that the trace
in the second line of Eq. (4.69) is bounded by o(N )+N0

∥∥PGP − j1PGP j1
∥∥
1. Moreover,

the exponential decay of φGP
1,N0aN

, see [29, Appendix A], implies

∥∥∥PGP − j1PGP j1
∥∥∥
1

�
(∫

B(R)c

∣∣∣φGP
1,N0aN

(x)

∣∣∣
2
dx

)1/2

� e−cω1/2R (4.70)

for an appropriately chosen constant c > 0. Since R � ω−1/2 we know that the last term
on the right-hand side of Eq. (4.70) is of order o(1). Together with Eqs. (4.67)–(4.70),
we therefore see that

∥∥∥ j21 γN j22

∥∥∥
1
+ N0

∥∥∥PGP − j1PGP j1
∥∥∥
1

≤ o(N ) (4.71)

holds.
It remains to give a bound on the last term on the right-hand side of Eq. (4.66). We

add and subtract j2γ̃
gc
0 and use j2 ≤ 1 to see that

∥∥γ̃ gc
0 − j2γ̃

gc
0 j2

∥∥
1 ≤ 2

∥∥(1 − j2)γ̃
gc
0

∥∥
1 ≤ 2

∥∥∥(1 − j2)
(
γ̃
gc
0

)1/2∥∥∥
2

∥∥∥
(
γ̃
gc
0

)1/2∥∥∥
2

(4.72)

holds. The last factor equals (N gc
th )1/2. The square of the first factor, on the other hand,

can be bounded by

∥∥∥(1 − j2)
(
γ̃
gc
0

)1/2∥∥∥
2

2
=
∫

R3
γ̃
gc
0 (x, x) (1 − j2(x))2 dx ≤ 4π(2R)3

3
sup
x∈R3

γ̃
gc
0 (x, x).

(4.73)

To obtain this bound, we used that the support of 0 ≤ 1− j2 ≤ 1 is given by B(2R). We
claim that γ̃ gc

0 (x, x) � β−3/2 holds. This can be seen by an analysis similar to a part of
the analysis carried out in Lemma 2.4: We first replace the chemical potential μ0 by a
larger one that guarantees − 3ω

2 − μ ≥ 0 to hold. In fact, we choose μ = − 3ω
2 . Then

there exists a constant C > 0 such that

eβ(eα(h)−μ) − 1

eβ(eα(h)−μ0) − 1
≤ C (4.74)

holds for all α ≥ 1. This can easily be checked when we realize that the expression
on left-hand side of the above equation is monotone decreasing in eα(h) if μ < μ0. It
therefore suffices to check the inequality with eα(h) replaced by ω. Eq. (4.74) implies

∞∑

α=1

1

eβ(eα(h)−μ0) − 1
|ϕα(x)|2 ≤

∞∑

α=1

C

eβ(eα(h)−μ) − 1
|ϕα(x)|2 (4.75)
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where {ϕα}∞α=0 denotes the set of eigenfunctions of h. Since x2ω2

4 − 3ω
2 − μ ≥ 0, we

can argue as in the proof of Lemma 2.4, Eqs. (2.43)–(2.45), to show that

γ̃
gc
0 (x, x) � β−3/2 (4.76)

holds.
Together with Eqs. (4.72) and (4.73), Eq. (4.76) implies

∥∥γ̃ gc
0 − j2γ̃

gc
0 j2

∥∥
1 �

(
N gc
th

)1/2 R3/2

β3/4 . (4.77)

For our choice of R in Sect. 3.3, we have R3/2 
 β3/4(βω)3/2N and hence the right-
hand side of (4.77) is of order o(N ). Together with Eqs. (4.66) and (4.71) this proves

∥∥∥γN − γ̃
gc
0 − N0PGP

∥∥∥
1

≤ o(N ). (4.78)

The desired bound in Eq. (1.25) then follows from Corollary A.2.
Recall that so far we have worked under the assumptions N0 ∼ N and NaN ≥

εω−1/2 for some ε > 0. It remains to consider the case where either N0 = o(N ) and/or
aN 
 ω−1/2N−1. In each of these cases, we have ‖PGP − |ϕ0〉〈ϕ0|‖ 
 1, and also
EGP(N0, aN , ω) 
 ωN . The equivalent of Eq. (4.1) therefore reads

Tr [HN �N ] − T S(�N ) = F0(β, N , ω) + o(ωN ) (4.79)

and implies

o(ωN ) ≥Tr [(dϒ (h − μ0)) �N ] − T S (�N ) − 1
β
Tr
[
ln
(
1 − e−β(h−μ0)

)]
. (4.80)

With this input, we go through the analysis of Sect. 4.2. In case μ0 � −ω, we can
directly apply Lemma 4.1 and the subsequent estimates, and the equivalent of Eq. (4.65)
tells us that ‖γN − γ

gc
0 ‖1 ≤ o(N ). Together with Corollary A.2 this implies the claim.

If |μ0| 
 ω, we have to first remove the condensate. Let P = |ϕ0〉〈ϕ0| denote the
projection onto the ground state of h, and Q = 1 − P . From the subadditivity of the
entropy and Eq. (4.20), we have

S(�N ) ≤ s(PγN P) + s(QγN Q) ≤ s(QγN Q) + 1 + ln(1 + N ). (4.81)

Since Tr P ln(1 − e−β(h−μ0)) = ln(1 − eβμ0) ≤ 0 and Tr(h − μ)PγN P ≥ 0, we
conclude from Eq. (4.80) that S(QγN Q, γ̃

gc
0 ) = o(βωN ). The analysis of Sect. 4.2

then implies that ‖QγN Q − γ̃
gc
0 ‖1 ≤ o(N ). Since Tr γN = Tr γ gc

0 , this also implies that
‖PγN P − N gc

0 P‖1 = o(N ). Finally, by arguing as in Eq. (4.67), one easily sees that
‖PγN Q‖1 ≤ o(N ). In combination with Corollary A.2, this shows that also in this case
‖γN − γN ,0‖1 ≤ o(N ). This completes the proof of Eq. (1.25).

To conclude the proof of Theorem 1.1 it remains to prove Eq. (1.26). To that end, we
write

∥∥∥γN − N0PGP
∥∥∥ ≤

∥∥∥γN − N0PGP − γ̃N ,0

∥∥∥ +
∥∥γ̃N ,0 − γ̃

gc
0

∥∥ +
∥∥γ̃ gc

0

∥∥ . (4.82)

The first term on the right-hand side of Eq. (4.82) can be bounded by the trace norm
of the same expression, which is bounded by o(N ) according to Eq. (1.25). Similarly,
Eq. (A.24) implies that the second term is bounded by a constant times (N ln N )1/2. From
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the explicit form of γ̃
gc
0 we deduce that its largest eigenvalue is of the order O((βω)−1).

Therefore, ∥∥∥γN − N0PGP
∥∥∥ ≤ o(N ) (4.83)

and the proof of Theorem 1.1 is complete.
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A. Some Properties of the Ideal Bose Gas

In this Appendix we collect several statements about the ideal Bose that are needed
in the proof of Theorem 1.1 and do not seem to have appeared in the literature before
(except for the first part of Proposition A.1). We start by introducing some notation.
Fix a nondecreasing sequence

{
E j
}∞

j=0 of nonnegative real numbers. A vector n =
(n0, n1, . . .) of infinite length is called a configuration if all its entries are nonnegative
integers and if only a finite number of them is different fromzero. The collection

{
E j
}∞

j=0
plays the role of the energy levels of a one-particle quantum systemwith the temperature
factor β absorbed, and a configuration n labels an element of the standard basis of
the bosonic Fock space. For each configuration n, we define its energy to be E(n) =∑

j≥0 E j n j . The canonical partition function is given by Z(N ) = ∑
|n|=N exp (−E(n))

for N ∈ N0. Here |n| = ∑∞
j=0 n j denotes the number of particles in the configuration

n. Let 〈A〉N be the expectation of an operator A in the canonical Gibbs state related
to Z(N ). By a∗

j and a j we denote the bosonic creation and annihilation operator of a
particle with the energy E j and we define n̂ j = a∗

j a j . The free energy of the system is
given by

F(N ) = − ln (Z(N )) (A.1)

and the expectation of f (n̂ j ) for j ∈ N0 with a function f : N0 → R reads

〈
f (n̂ j )

〉
N =

∑
|n|=N f (n j )e−E(n)

Z(N )
. (A.2)

We assume that the energy levels
{

E j
}∞

j=0 and the function f are such that the partition
function and the expectations of all f (n̂ j ) are finite. We then have:

Proposition A.1. The map N �→ F(N ) is convex, i.e., F(N + 1) + F(N − 1) ≥ 2F(N )

holds for all N ≥ 1, and for any nonnegative, nondecreasing function f : N0 → R the
map N �→ 〈

f (n̂ j )
〉
N is nondecreasing for each j ∈ N0.

The proof of the first statement seems to appear for the first time in [23] and it was
later reproven in [42]. The second statement has been shown in [36] for the functions
f (x) = xk with k ∈ N and in [42] for f (x) = x . The proof in [42] still works if one
replaces the identity by a nonnegative, nondecreasing function f .

http://creativecommons.org/licenses/by/4.0/
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Proposition A.1 has two consequences that will be of importance for us. The first is
naturally formulated in the following setup: Denote by Zgc(μ) = ∑

n exp(−(E(n) −
μ|n|)) the grand canonical partition function anddefineλN ,μ = Z(N ) exp(μN )/Zgc(μ).
The grand canonical free energy is given by Fgc(μ) = ∑

N≥0 λN ,μF(N )− S(λ), where
S(λ) = −∑N≥0 λN ,μ ln(λN ,μ). The first consequence of Proposition A.1 is the fol-
lowing statement which quantifies the difference between the canonical free energy and
its grand canonical counterpart:

Corollary A.1. Assume μ is such that N = ∑
N≥0 NλN ,μ ∈ N. Then

F(N ) ≥ Fgc(μ) ≥ F(N ) − ln(1 + N ) − 1. (A.3)

Proof. The convexity of the map N �→ F(N ), see Proposition A.1, implies
∑

N≥0

λN ,μF(N ) ≥ F(N ). Denote by M the set of all real, nonnegative sequences w =
{wN }∞N=0 with the properties that

∑
N≥0 wN = 1 and

∑
N≥0 NwN = N . By definition,

we have S(λ) ≤ supw∈M S(w). The supremum on the right-hand side can be computed
explicitly and equals ln(1 + N ) + N ln((1 + N )/N ). Since N ln((1 + N )/N ) ≤ 1 this
proves the lower bound for Fgc(μ). The upper bound follows from the Gibbs variational
principle. ��
The second consequence is an estimate of the canonical one/two-particle density in terms
of the grand canonical one-particle density.

Proposition A.2. Let h be a one-particle Hamiltonian on L2(Rd), d ≥ 1, with energy
levels {E j }∞j=0 and eigenfunctions {φ j }∞j=0, that is, hφ j = E jφ j . Denote by

�c
N (x) =

∑

j

〈n̂ j 〉N |φ j (x)|2 and

�
(2),c
N (x, y) =

∑

j1, j2, j3, j4

φ j1(x)φ j2(y)φ j3(y)φ j4(x)
〈
a∗

j1a∗
j2a j3a j4

〉

N
(A.4)

the canonical one-particle and two-particle densities, respectively. The grand canonical
one-particle density is given by

�
gc
μ (x) =

∑

N≥0

λN ,μ�c
N (x), (A.5)

where μ is chosen such that N = ∑
N≥0 NλN ,μ ∈ N. Then

�c
N
(x) ≤ 40

1.8�
gc
μ (x) and �

(2),c
N

(x, y) ≤ 4
( 40
1.8

)2
�
gc
μ (x)�

gc
μ (y) (A.6)

holds almost everywhere.

Proof. We start with the proof of the inequality for the one-particle density. From the
definition of the one-particle densities, Eqs. (A.4) and (A.5), and the monotonicity of
the map N �→ 〈n̂ j 〉N , see Proposition A.1, we find

�
gc
μ (x) ≥ �c

N
(x)

∑

N≥N

λN ,μ. (A.7)
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To prove the claim, we need to show that
∑

N≥N λN ,μ ≥ 1.8
40 holds. From Lemma A.1

below we know that

∑

N≥0

λN ,μ

(
N − N

)4 ≤ 9

⎛

⎝
∑

N≥0

λN ,μ

(
N − N

)2
⎞

⎠
2

+
∑

N≥0

λN ,μ

(
N − N

)2
. (A.8)

The grand canonical Gibbs state is quasi-free and hence can use Wick’s Theorem to see
that ∑

N≥0

λN ,μ

(
N − N

)2 ≥ N ≥ 1 (A.9)

holds. Hence, we can bound the centered fourth moment of the particle number in
Eq. (A.8) by 10 times the variance squared.

Let us define the new random variable X by X = (N − N )(E((N − N )2))−1/2 which
by our assumptions has the following properties:

E(X) = 0, E(X2) = 1 and E(X4) = Y. (A.10)

HereE(X) is the expectation of X and we have Y ≤ 10 by the arguments in the previous
paragraph. Denote by PX the probability measure on R induced by X and choose a, b,
d such that the function f (x) = ax + bx2 − dx4 obeys f (x) ≤ χ[0,∞)(x) for all x ∈ R.
Here χ[0,∞) denotes the characteristic function of the interval [0,∞). We then have

P(X ≥ 0) =
∫

R

χ[0,∞)(s)dPX (s) ≥
∫

R

f (s)dPX (s) = b − Y d. (A.11)

Explicit optimization of the right-hand side of Eq. (A.11) under the constraint f (x) ≤
χ[0,∞)(x) yields

P(X ≥ 0) ≥ 2
√
3 − 3

Y
≥ 1.8

40
. (A.12)

This proves the claim for the one-particle densities (assuming the validity ofLemmaA.1).
It remains to prove the bound for the two-particle densities. An application of the

Cauchy-Schwarz inequality tells us that

�
(2),c
N

(x, y) =
∑

i, j

∣∣∣∣∣∣
1

2

∑

σ∈S2

φσ(i)(x)φσ( j)(y)

∣∣∣∣∣∣

2 〈
a∗

i a∗
j a j ai

〉

N

≤
∑

i, j

|φi (x)|2 ∣∣φ j (y)
∣∣2
〈
a∗

i a∗
j a j ai

〉

N
(A.13)

holds. Here S2 denotes the group of permutations of two elements. Let us denote by
〈A〉gc = ∑

N≥0 λN ,μ〈A〉N the expectation of an operator A in the grand canonical
Gibbs state. We want to derive an upper bound for the expectation value in the second
line on the right-hand side of Eq. (A.13). For i = j we have a∗

i a∗
i ai ai = n̂i (n̂i − 1)

with n̂i = a∗
i ai . From Proposition A.1 we know that the map N �→ 〈n̂ j (n̂ j − 1)〉N is

nondecreasing. Using this fact, we argue as in the case of the one-particle density to see
that

〈n̂ j (n̂ j − 1)〉N ≤ 40

1.8
〈n̂ j (n̂ j − 1)〉gc (A.14)
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holds. The right-hand side of Eq. (A.14) can be simplifiedwhenwe useWick’s Theorem:
〈n̂ j (n̂ j − 1)〉gc = 2〈n̂ j 〉2gc. If i �= j we have a∗

i a∗
j a j ai = n̂i n̂ j and [42] tells us that

〈n̂i n̂ j 〉N ≤ 〈n̂i 〉N 〈n̂ j 〉N (A.15)

holds. As in the previous case, we use 〈n̂ j 〉N ≤ 40
1.8 〈n̂ j 〉gc. Combining these estimates

with Eq. (A.13), we finally obtain

�
(2),c
N

(x, y) ≤ 4

(
40

1.8

)2∑

i, j

|φi (x)|2 ∣∣φ j (y)
∣∣2 〈n̂i

〉
gc

〈
n̂ j
〉
gc . (A.16)

This proves the claim (A.6). ��
Remark A.1. The first part of the proof shows that 〈n̂ j 〉N ≤ 40

1.8 〈n̂ j 〉gc for all j , where
〈 · 〉gc denotes the corresponding grand canonical state with average particle number N .
In particular, N0 � N gc

0 and Nth � N gc
th holds.

The next Lemma provides an estimate of the fourth moment of the particle number
in the grand canonical ensemble in terms of the second moment. It is needed in the proof
of Proposition A.2.

Lemma A.1. Let N̂ = ∑∞
j=0 n̂ j be the particle number operator and denote by N =

〈N̂ 〉gc the expected number of particles in the grand canonical ensemble. We then have

〈(N̂ − N )4〉gc ≤ 9〈(N̂ − N )2〉2gc + 〈(N̂ − N )2〉gc. (A.17)

Proof. If we use that ∂
∂μ

Zgc(μ) = Zgc(μ)N holds, a simple computation leads to

(
∂

∂μ

)3

N =
〈
N̂ 4
〉

gc
− 4

〈
N̂ 3
〉

gc
N − 3

〈
N̂ 2
〉2
gc
+ 12

〈
N̂ 2
〉

gc
N

2 − 6N
4
. (A.18)

On the other hand,
〈(

N̂ − N
)4〉

gc
=
〈
N̂ 4
〉

gc
− 4

〈
N̂ 3
〉

gc
N + 6

〈
N̂ 2
〉

gc
N

2 − 3N
4
, (A.19)

which together with ∂
∂μ

N = 〈N̂ 2〉gc − N
2
allows us to conclude that

〈(
N̂ − N

)4〉 =
(

∂

∂μ

)3

N + 3

(
∂

∂μ
N

)2

. (A.20)

To treat the first term on the right-hand side, we need to do a little computation. It yields

∂

∂μ

∞∑

j=0

1

eE j −μ − 1
=

∞∑

j=0

1

4 sinh
(

E j −μ

2

)2 (A.21)

as well as

(
∂

∂μ

)3 ∞∑

j=0

1

eE j −μ − 1
=

∞∑

j=0

⎡

⎢⎣
3

8 sinh
(

E j −μ

2

)4 +
1

4 sinh
(

E j −μ

2

)2

⎤

⎥⎦ . (A.22)



A. Deuchert, R. Seiringer, J. Yngvason

With Eq. (A.21) we see that the first term on the right-hand side of Eq. (A.22) is bounded
from above by six times the variance of the particle number squared. Together with
Eq. (A.20) this proves the claim. ��

The last statement of this Appendix is an estimate on the trace norm difference of the
one-particle density matrices of the canonical and grand canonical Gibbs states, which
we denote by γN and γ

gc
N , respectively. The latter equals

γ
gc
N = 1

eh−μ − 1
=
∑

j≥0

1

eEi −μ − 1
|φ j 〉〈φ j | (A.23)

where μ < 0 is chosen such that Tr γ gc
N = N ∈ N. We shall also introduce γ̃

gc
N =

γ
gc
N −N gc

0 |φ0〉〈φ0|, where N gc
0 = (e−μ−1)−1 is the number of particles in the condensate

in the grand canonical ensemble, and similarly γ̃N = γN −N0|φ0〉〈φ0|, with N0 = 〈n̂0〉N
the number of particles in the condensate in the canonical ensemble.

Lemma A.2. With the definitions above, we have

|N0 − N gc
0 | ≤ ∥∥γ̃ gc

N − γ̃N
∥∥
1 ≤ ∥∥γ gc

N − γN
∥∥
1

�
(
Tr
[
γ̃
gc
N (1 + γ̃

gc
N )
]
ln N

)1/2
+
(
1 + ‖γ̃ gc

N ‖) ln N . (A.24)

Proof. Let �G
N denote the canonical Gibbs state, with one-particle density matrix γN .

With s(γ ) defined in Eq. (4.19), we have the entropy inequality (see, e.g., [44, 2.5.14.5])
S(�G

N ) ≤ s(γN ). Therefore,

F(N ) ≥ Tr
[
hγN

]− s(γN ) = Fgc(μ) + S(γN , γ
gc
N ) (A.25)

where S denotes the relative entropy defined in (4.30). Corollary A.1 thus implies that

S (γN , γ
gc
N

)
� ln(N ). (A.26)

Note that γN and γ
gc
N have the same eigenfunctions φ j . In particular, they commute.

Hence the relative entropy can be written as

S (γN , γ
gc
N

) =
∑

α≥0

S(aα, bα) (A.27)

where S is defined in the proof of Lemma 4.1, and aα resp. bα denote the eigenvalues of
γN and γ

gc
N , respectively. Using (4.35) and the Cauchy-Schwarz inequality, this implies

∥∥γ̃ gc
N − γ̃N

∥∥
1 =

∑

α≥1

|aα − bα|

≤
⎛

⎝
∑

α≥1

(aα − bα)2

(aα + bα)(1 + bα)

⎞

⎠
1/2⎛

⎝
∑

α≥1

(aα + bα)(1 + bα)

⎞

⎠
1/2

� S (γN , γ
gc
N

)1/2 {(
1 + ‖γ̃ gc

N ‖) ∥∥γ̃ gc
N − γ̃N

∥∥
1 + Tr

[
γ̃
gc
N (1 + γ̃

gc
N )
]}1/2

.

(A.28)

In combination with Eq. (A.26), this gives
∥∥γ̃ gc

N − γ̃N
∥∥
1 �

(
Tr
[
γ̃
gc
N (1 + γ̃

gc
N )
]
ln N

)1/2
+
(
1 + ‖γ̃ gc

N ‖) ln N . (A.29)



Bose–Einstein Condensation in a Dilute Gas

The claim (A.24) then follows from the fact that N = Tr γN = Tr γ gc
N , which implies

that
|N0 − N gc

0 | = |Tr(γ̃ gc
N − γ̃N )| ≤ ∥∥γ̃ gc

N − γ̃N
∥∥
1 (A.30)

holds. ��
We shall now apply Lemma A.2 to the case of the harmonic oscillator Hamiltonian

in Eq. (1.30). We re-introduce the inverse temperature β, and adjust the notation to the
one used in the main text. That is, we denote the one-particle density matrices by γN ,0

and γ
gc
0 , respectively. Recall also the definitions Nth = N − N0 and similarly for N gc

th .
In this case, we have

Tr γ̃ gc
0 = N gc

0 = O((βω)−3), ‖γ̃ gc
0 ‖ = O((βω)−1) (A.31)

and also

Tr
(
γ̃
gc
0

)2 �
∫ ∞

0

x2
(
eβωx − 1

)2 dx = O((βω)−3). (A.32)

Hence we obtain the following Corollary.

Corollary A.2. Consider the three-dimensional ideal Bose gas in the harmonic oscil-
lator potential, that is, the one-particle Hamiltonian of the system is given by h =
−� + ω2

4 x2 − 3
2ω. We assume that the chemical potential μ0 is chosen such that the

expected number of particles in the grand canonical ensemble equals N ∈ N. Then

|N0 − N gc
0 | = |Nth − N gc

th | ≤ ∥∥γ gc
0 − γN ,0

∥∥
1 � (βω)−3/2 (ln N )1/2 + (βω)−1 ln N .

(A.33)
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