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Tomm C, Avermann M, Petersen C, Gerstner WG, Vogels TP.
Connection-type-specific biases make uniform random network models
consistent with cortical recordings. J Neurophysiol 112: 1801–1814,
2014. First published June 18, 2014; doi:10.1152/jn.00629.2013.—Uni-
form random sparse network architectures are ubiquitous in compu-
tational neuroscience, but the implicit hypothesis that they are a good
representation of real neuronal networks has been met with skepti-
cism. Here we used two experimental data sets, a study of triplet
connectivity statistics and a data set measuring neuronal responses to
channelrhodopsin stimuli, to evaluate the fidelity of thousands of
model networks. Network architectures comprised three neuron types
(excitatory, fast spiking, and nonfast spiking inhibitory) and were
created from a set of rules that govern the statistics of the resulting
connection types. In a high-dimensional parameter scan, we varied the
degree distributions (i.e., how many cells each neuron connects with)
and the synaptic weight correlations of synapses from or onto the
same neuron. These variations converted initially uniform random and
homogeneously connected networks, in which every neuron sent and
received equal numbers of synapses with equal synaptic strength
distributions, to highly heterogeneous networks in which the number
of synapses per neuron, as well as average synaptic strength of
synapses from or to a neuron were variable. By evaluating the impact
of each variable on the network structure and dynamics, and their
similarity to the experimental data, we could falsify the uniform
random sparse connectivity hypothesis for 7 of 36 connectivity
parameters, but we also confirmed the hypothesis in 8 cases. Twenty-
one parameters had no substantial impact on the results of the test
protocols we used.

neuronal network models; random connectivity; layer 2/3 sensory
cortex

THE SIMPLICITY OF THEIR IMPLEMENTATION as much as the lack of
experimentally unambiguous data makes networks of uniform
random and sparsely connected neurons a popular model to
capture the dynamics of real nervous systems (Van Vreeswijk
and Sompolinsky 1996; Amit and Brunel 1997; Brunel 2000;
Vogels and Abbott 2005; Destexhe and Contreras 2006; Mor-
rison et al. 2007; Hertz 2010; Renart et al. 2010). Connection
probabilities for uniform random networks can be obtained
from pairwise recordings (Markram et al. 1997; Feldmeyer et
al. 1999; Holmgren et al. 2003; Feldmeyer et al. 2006; Thom-
son and Lamy 2007; Helmstaedter et al. 2008; Lefort et al.
2009), but pairwise statistics can be afflicted with artifacts
from slicing injuries (Song et al. 2005) and provide only

limited possibilities to extract the absolute number of synapses
per neuron (we call this value the neuron’s “in- or out-degree,”
depending on whether we count incoming or outgoing connec-
tions). More importantly, small experimental data sets make it
impossible to estimate degree distributions, so that we cannot
know about the potentially convergent (i.e., many neurons
connect to only a few) or divergent (i.e., few neurons connect
to many) nature of specific connection types.

The analysis of recordings with multiple electrodes (Song et
al. 2005; Perin et al. 2011) shows that specific connectivity
patterns, known as motifs, are more frequent than predicted by
uniform random network architectures. These properties have
been thought to be reminiscent of so-called small-world archi-
tectures (Watts and Strogatz 1998) and scale-free network
models (Barabási and Albert 1999). Small-world models intro-
duce a geography in which neighboring cells are connected
more densely and distant nodes are connected sparsely. Scale-
free networks also produce nonuniform-random architectures
that are characterized by highly connected hub neurons em-
bedded in a sparser background connectivity. Both of these
types of models have been fitted to the experimental data with
some success (Feldt et al. 2011; Prettejohn et al. 2011; Bonifazi
et al. 2009). However, the experimental data are limited by the
number of electrodes used, and even with 12 simultaneous
electrodes only patterns with up to 8 cells can be classified to
the point of statistical significance (Perin et al. 2011).

Optical identification and stimulation techniques such as
fluorescent labeling of cells, glutamate uncaging, and channel-
rhodopsin stimulation (Deisseroth et al. 2006; Miesenböck
2011; Cardin 2012; Packer et al. 2013) make it feasible to
collect data from a larger number of neurons. Thus more
complex connectivity patterns, especially in regard to cell-type
specific connectivity rules (Yoshimura and Callaway 2005;
Yoshimura et al. 2005; Fino and Yuste 2011; Bock et al. 2011;
Avermann et al. 2012; cf. Table 1), become apparent. These
findings complement the results from intracellular recordings
and show that the connectivity between neurons can be very
specific. However, conclusions about the overall structure of
the network are still lacking, because neither all inputs or
outputs of a cell nor all cells can be counted in their entirety.
The in- and out-degree distributions of a neuron type (adjusted
by the parameters din and dout, respectively, see METHODS), i.e.,
the distribution of the number of cell-type-specific synapses
neurons make or receive, or, in other words, how heteroge-
neously a network is connected, is thus still unknown. For the
same reason, it is impossible to evaluate cell-type-specific
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inhomogeneties in synaptic weight distributions: from the
current data sets we cannot evaluate if neurons connect with
similar or widely different average synaptic weights. In fact,
the challenges such studies face [simultaneous (intracellular)
recording and consecutive stimulation of many thousand neu-
rons] are probably going to make such data sets difficult to
obtain for the foreseeable future. These technical limitations
have ensured that uniform random network connectivity is still
the de facto working hypothesis for many simulations.

Here, instead of trying to untangle the connectivity of
cortical networks experimentally, we generated thousands of
network architectures and asked which ones produced plausi-
ble results, i.e., which networks produced similar triplet (struc-
tural) statistics as observed in layer 2/3 of rat visual cortex
slices by Yoshimura and Callaway (2005) and Yoshimura et al.
(2005), and subthreshold responses similar to those in layer 2/3
mouse barrel cortex slices shown in Avermann et al. (2012).
We obeyed global pairwise connectivity statistics but deviated
from uniform random connectivity by introducing parameters
that created both structural and synaptic weight inhomogene-
ities (see Fig. 1., cf. Roxin 2011; Koulakov et al. 2009; Pernice
et al. 2013). We did not consider distance-dependent connec-
tion probabilities because the experimental evidence for the
spatial scale of our models (ca. 3 � 10�3 mm3) is inconclusive:
on this scale all possibilities, no distance (Lefort et al. 2009;
Avermann et al. 2012), weak (Packer and Yuste 2011), and
even strong (Holmgren et al. 2003) distance dependency, have
been observed.

To investigate the architecture of each generated network,
we used similar analysis methods as in previous experimental
investigations: to compare the connectivity structure, we cal-
culated the connection probabilities of randomly drawn neuron
triplets, as reported by Yoshimura and Callaway (2005) and
Yoshimura et al. (2005). To investigate the biological plausi-
bility of synaptic weight distributions we used the following
proxy: we mimicked recent experimental work (Avermann et
al. 2012) in which a small number of channelrhodopsin ex-
pressing pyramidal neurons of layer 2/3 neurons in mouse
barrel cortex were light activated to emit single spikes. The
maximum voltage deflection of the postsynaptic response was
measured in nonexpressing excitatory neurons, as well as in
fast-spiking and nonfast-spiking GABAergic neurons and cat-

aloged in maximum response histograms (MRH). We used the
same protocol in our networks and could thus compare the
resulting MRHs to identify important architectural qualities
that increased the similarity score between experiment and
model.

The networks we investigated were composed of excitatory
(E), fast-spiking (FS), and nonfast-spiking (NFS) neurons. We
could change the statistics of each of the nine resulting con-
nection types independently with two structural and two weight
manipulations. To investigate this 36-dimensional parameter
space we simplified our approach as follows (see Fig. 2): for
each parameter we chose only two possible values. Addition-
ally, we divided our parameter exploration into four steps.
First, we investigated (in 1,024 models) the impact of experi-
mentally available structural parameters. In a second step (and
a new set of 1,024 models with appropriately adjusted struc-
tural parameters), we investigated the impact of correlations in
the synaptic weights on the spiking responses as described
above. In a third step and fourth step (with 64 and 1,024
models, respectively), we investigated the impact of experi-
mentally nonverifiable dimensions, e.g., the impact of the
weight correlations of outgoing synapses of NFS inhibitory
neurons. We sorted and visualized the results of the parameter
scans through clutter-based dimensional reordering (CBDR;
also known as “dimensional stacking,” LeBlanc et al. 1990;
Peng 2005; Taylor et al. 2006), a visualization technique that
preserves the original dimensionality of the data set but is
otherwise similar to principle component analysis. With the
help of CBDR we identified which of the parameters signifi-
cantly changed the network constitution and its similarity to the
described biological data and were thus “crucial” for an accu-
rate reproduction of neuronal networks. The required adjust-
ments were highly connection specific. For example, recurrent
E ¡ E connections required a deviation from the uniform
random network architecture both in the connection structure
(in- and out-degree distributions) and in the input weight
correlations. E ¡ NFS connections, on the other hand, had to
be connected uniformly randomly to produce the best results.
In the following (cf. Table 2), we discuss which out of the 36
tested connection parameters must deviate from uniform ran-
dom connectivity (7/36) in their structural and weight statistics
to reproduce the datasets we used, which parameters must obey

Table 1. Probabilities of sharing inputs

x �exp ¡ �exp ¢ �exp ↔ �exp

E ¡ E
Experiment 0.038 0.0 0.201 0.0
Uniform random model 0.059 0.021 0.059 0.142
Best model 0.078 0.040 0.173 0.028

E ¡ FS
Experiment 0.051 0.0 — — 0.013 0.0 0.172 0.0
Uniform random model 0.098 0.047 — — 0.098 0.085 0.098 0.074
Best model 0.027 0.024 — — 0.076 0.063 0.151 0.021

E ¡ NFS
Experiment 0.040 0.0 0.030 0.0 0.050 0.0 0.050 0.0
Uniform random model 0.081 0.041 0.081 0.051 0.081 0.031 0.081 0.031
Best model 0.066 0.026 0.070 0.040 0.069 0.019 0.067 0.017

Probabilities of sharing input for the structurally adjusted network with all significant parameters (model) and the corresponding experimental findings. Shown
are the probabilities for all tested pairings. Neurons were either unconnected (x), unidirectionally connected (¡, ¢), or bidirectionally connected (↕). The
experimental results of Yoshimura et al. (2005) only differentiated connected and unconnected for pairs of excitatory neurons. Hence, only 1 value is shown.
Yoshimura and Callaway (2005) only analyzed unidirectional connections from FS interneurons to excitatory cells. The probability of shared input for the
unidirectional E ¡ FS connection remained untested.
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uniform random connectivity statistics (8/36), and which are
not crucial (21/36) (and partially not appropriately testable due
to lack of structural data). We show that these conceptually
simple changes created networks that produced biologically
realistic dynamics with high degree of similarity to experimen-
tal data. The improved network architectures are available via
ModelDB (http://senselab.med.yale.edu/modeldb/ShowModel.
asp?model�156040).

METHODS

We simulated networks of excitatory and inhibitory fast-spiking
and nonfast-spiking neurons with population sizes that mirrored cell

counts of Lefort et al. (2009) in mouse barrel cortex (E: 1691, FS: 97,
and NFS: 133). All simulations utilized the NEST simulator (Gewaltig
and Diesmann 2007) and pyNN (Davison et al. 2009).

Neuron model. Single neuron dynamics were simulated using the
Adex integrate-and-fire neuron models as provided with the NEST
simulator (Brette and Gerstner 2005; Gewaltig and Diesmann 2007).
Closely following Brette and Gerstner (2005), we use an integrate-
and-fire model with adaptation defined by CV̇ � f(V) � w � I, in
which C is the membrane capacitance, f(V) is a function describing the
passive properties and the spiking mechanism, w is an adaptation
variable, and I is the synaptic current. The intrinsic parameters of the
model relevant for f(V) (membrane capacitance, membrane time
constant, resting membrane potential, reset potential, threshold, slope
factor, refractory time constant, adaptation parameters, and adaptation
time constant) were taken from previous fits to experimental record-
ings of mouse barrel cortex (see Table 3, Mensi et al. 2012). The
(excitatory and inhibitory) synaptic time constants and the reversal
potentials (0 and �75 mV for excitation and inhibition, respectively)
were fitted directly to available experimental data (Avermann et al.
2012). To introduce heterogeneity in the network populations, we
used multiple parameter sets for each cell type (9 E, 9 FS, and 8 NFS).
For each cell of the network one of these parameter sets was chosen
at random, so that any given network consisted of multiples of 26
unique model neurons. This heterogeneity was introduced for biolog-
ical plausibility but did not alter the final results.

Network architecture. The network comprised two parts: the con-
nectivity matrix and the weight matrix. Both of these matrixes could
be manipulated independently to construct networks of various con-
nectivity profiles.

Connectivity matrix. The number of connections N between two
neuronal populations of size MPRE and MPOST was calculated from
N � p � MPRE � MPOST, where p is the specific, experimentally
measured connection probability between PRE and POST popula-
tions. For each possible connection type, we used pairwise probabil-
ities reported by Lefort et al. (2009) and Avermann et al. (2012). To
create a connectivity matrix between two neuron populations PRE and

Table 2. Summary of parameter effects

d �

In Out In Out

E ¡ E XXX XXX XXX ✓✓✓
E ¡ FS XXX ✓✓✓ XXX X
E ¡ NFS (✓✓) ✓✓✓ XXX ✓
FS ¡ E — — — —
FS ¡ FS — (✓✓✓) — (✓✓)
FS ¡ NFS — — — —
NFS ¡ E ✓✓✓ — — —
NFS ¡ FS — — — —
NFS ¡ NFS — — — —

Parameters that significantly altered similarity scores between model and
experimental data are listed with a check mark indicating compliance with the
classical random network approach and a crossout for cases in which the
random connectivity hypothesis was falsified. Significance levels were 0.1,
0.05, and 0.01, marked by 1, 2, or 3 check marks or crosses, respectively
Noncrucial parameters are marked with “—”. Parameters that failed their
Bonferroni confirmation are displayed in (). E, excitatory; FS, fast spiking;
NFS, nonfast spiking; d, degree distribution.

Table 3. Single neuron parameters

Label cm tau m v rest v reset tau refrac v thresh delta T a b tau w tau syn I tau syn E e rev I

E1 0.08 22.44 �67.00 �36.74 4.00 �43.08 0.50 0.00 19.39 89.00 15.00 4.00 �75.00
E2 0.05 9.05 �75.81 �37.59 4.00 �45.09 0.50 0.00 22.46 55.58 15.00 4.00 �75.00
E3 0.05 8.31 �65.71 �28.44 4.00 �37.80 1.30 0.00 14.43 45.66 15.00 4.00 �75.00
E4 0.08 22.44 �67.00 �36.74 4.00 �44.22 0.50 0.00 19.39 89.00 15.00 4.00 �75.00
E5 0.05 9.05 �75.80 �37.59 4.00 �49.66 0.50 0.00 22.46 55.58 15.00 4.00 �75.00
E6 0.08 33.32 �69.93 �34.75 4.00 �35.18 1.10 0.00 28.01 113.09 15.00 4.00 �75.00
E7 0.05 6.13 �67.83 �39.37 4.00 �45.37 0.60 0.00 11.31 61.07 15.00 4.00 �75.00
E8 0.06 7.77 �58.59 �31.94 4.00 �39.76 0.50 0.00 16.86 76.12 15.00 4.00 �75.00
E9 0.09 12.10 �71.98 �36.89 4.00 �42.91 0.70 0.00 15.84 71.76 15.00 4.00 �75.00
FS1 0.05 8.60 �72.13 �56.11 4.00 �46.89 0.50 0.00 3.13 20.01 4.00 2.25 �75.00
FS2 0.06 8.47 �70.12 �60.11 4.00 �47.10 0.40 0.00 5.16 32.02 4.00 2.25 �75.00
FS3 0.05 3.65 �62.71 �53.61 4.00 �40.86 0.50 0.00 0.01 0.10 4.00 2.25 �75.00
FS4 0.04 5.40 �66.29 �51.88 4.00 �39.37 2.20 0.00 4.02 21.15 4.00 2.25 �75.00
FS5 0.04 6.43 �67.81 �45.31 4.00 �39.38 0.40 0.00 6.43 38.46 4.00 2.25 �75.00
FS6 0.05 4.48 �72.04 �56.23 4.00 �43.84 1.10 0.00 5.71 17.79 4.00 2.25 �75.00
FS7 0.05 8.72 �72.38 �55.59 4.00 �47.27 0.50 0.00 2.95 20.11 4.00 2.25 �75.00
FS8 0.06 8.52 �70.04 �60.11 4.00 �46.75 0.50 0.00 5.21 31.85 4.00 2.25 �75.00
FS9 0.05 4.48 �72.04 �56.23 4.00 �43.18 0.50 0.00 5.71 17.79 4.00 2.25 �75.00
NFS1 0.05 6.97 �71.20 �48.42 4.00 �43.46 0.50 0.00 5.82 35.08 5.00 3.25 �75.00
NFS2 0.03 5.66 �63.02 �42.27 4.00 �36.61 0.40 0.00 7.20 75.68 5.00 3.25 �75.00
NFS3 0.04 14.35 �61.65 �40.25 4.00 �40.14 0.60 0.00 10.56 105.28 5.00 3.25 �75.00
NFS4 0.05 6.93 �71.21 �48.42 4.00 �44.47 0.50 0.00 6.00 33.90 5.00 3.25 �75.00
NFS5 0.05 9.93 �59.79 �38.67 4.00 �33.09 0.50 0.00 7.75 56.52 5.00 3.25 �75.00
NFS6 0.04 6.43 �67.81 �45.31 4.00 �39.77 1.10 0.00 6.43 38.46 5.00 3.25 �75.00
NFS7 0.03 5.66 �63.02 �42.27 4.00 �35.39 0.50 0.00 7.20 75.68 5.00 3.25 �75.00
NFS8 0.04 14.35 �61.65 �40.25 4.00 �39.52 0.80 0.00 10.56 105.28 5.00 3.25 �75.00

List of all used single neuron parameters. The label indicates the neuron type (E, FS, and NFS).
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POST, we thus drew exactly N pairs of presynaptic neuron j and
postsynaptic neuron i. The indexes j and i were drawn independently
from normalized, truncated exponential distributions with probability
PPRE(j) and PPOST(i), respectively. We designed these probability
distributions such that the presynaptic probability follows

PPRE� j� �
1

C
e�

j dout

MPRE (1)

where C is the appropriate normalizing factor to keep the total number
of synapses constant,

C � �
j�1

MPRE

e�
j dout

MPRE . (2)

Postsynaptic indexes i were drawn independently from an analogous
distribution PPOST(i), using parameter din and MPOST. The index lists
i � {1 . . . MPRE} and j � {1 . . . MPOST} were shuffled so that when
XPRE � XPOST, for X � {E, FS, NFS} and j � i, neuron j � neuron
i. With dout � 0 or din � 0 this algorithm generated uniform random
connectivity with a low variance in the number of connections per
neuron (Fig. 1). Alternatively, with din � 0 or dout � 0, structured
networks with higher variance in the number of connections per
neuron were created. In such networks few neurons had many
connections and most neurons had very few connections. The result-
ing distribution is approximately exponential (Fig. 1E, blue histo-
gram). For clarity it should be pointed out that dout is not the
out-degree, but the parameter used to manipulate the distribution of
out-degrees across the network.

We only used two values for d � {0, 5} in our simulations because
even a single additional test value increased the number of possible
variable combinations by a factor of 50 (to more than 50,000 possible
combinations) and consequently increased the computer time to 120
processor days for a single parameter sweep. To insure a sufficient
difference between degree distributions, we ran test simulations with
d � {1 . . . 15} (data not shown, but cf. Fig. 8B). We chose d � 5 as
a compromise that created a wide range of different connection
numbers per neuron without creating many neurons that were con-
nected to every other neuron in the network. For clarity, we labeled d
with a tag of the specific connection type and called it the degree
distribution parameter because its value controls the shape of the
synapse number distributions. For example, dout

FS¡E was the parameter
that controlled the shape of the out-degree distribution of fast-spiking
(FS) to excitatory (E) connections.

Weight matrix. For each existing connection, the synaptic strength
w was drawn from a lognormal distribution,

P�wij� �
1

wij��2�
e�

�In�wij� � ��2

2�2 (3)

with scale � and shape �, chosen so as to maximize the likelihood of
and thus to emulate the experimentally measured synaptic strength
distributions for each connection type (Lefort et al. 2009; Avermann
et al. 2012; Table 4), that is

� �
1

N �
q�1

N

In�xq� (4)

�2 �
1

N �
q�1

N

�In�xq� � ��2 (5)

where xq are the experimentally measured synaptic strengths and N
the number of data points. These global weight distributions were
subsequently used for all network architectures.

Weight correlations. Additionally, we created heterogeneity in the
weight structure of the networks by introducing correlations between
the strengths of all incoming or outgoing synapses of the same neuron.
To introduce these changes in the weight correlations of single
neurons, we drew two sets of scaling values, �pre

j and �post
i (Koulakov

et al. 2009) from log normal distributions,

P��	� �
1

�	��2�
e�

�In��	� � �	�2

2�	
2 (6)

where 	 stands for pre or post. To parameterize the induction of
correlations we set �	 � {0, 1}, and adjusted the scale �	,

�	 � ���	
2� ⁄ 2 (7)

[i.e., �	
(�	�0) � 0, and �	

(�	�1) � �0.5] to ensure that the mean of the
distribution was equal to 1, thus leaving the global weight distribu-
tions undisturbed. We then multiplied the original weights wij with
�PRE

j of the presynaptic partner and �POST
i of the postsynaptic partner.

For � � 0 the distribution of P(�	) collapsed to a 
-function around
1. No weight correlations were induced, leading to a narrow distribu-
tion of average weights per neuron (Fig. 1H, gray). For � � 1, the
distribution of values in �	 forces (row and/or columnwise) correla-
tions of the synaptic weights of each neuron, leading to increased
variance and skewness of the distribution of average weights (Fig. 1H,
red). For similar reasons as mentioned in the case of parameters dx, we
restricted ourselves to only two parameter values (data not shown but
cf. Fig. 8C). We labeled � depending on the locus of the pre- or
postsynaptic weight correlations as �out or �in, respectively. Addition-

H

E

0.0 0.3

0 1000
# connections / neuron

500

# 
ne
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s
# 
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s

mean weight [mV]

E

NFSFS
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A B DC

Weight changes

Structural changes

Fig. 1. Network and connectivity schematics. A: network schematic with excitatory (E), inhibitory fast spiking (FS), and nonfast spiking (NFS) neurons
recurrently connected. All 9 connection types of the network could be manipulated individually to divert from uniform, random connectivity (B) in which all
neurons received and sent near-equal number of synapses (E, gray histogram) with near-equal average synaptic weights (H, gray histogram). We investigated
the effect of altered structural connectivity by changing the in-degree (C) and out-degree (D) distributions of a connection type so that the number of synapses
per neuron was more broadly distributed (E, blue histogram) than in a classical random network (E, gray histogram). We also investigated the effect of changes
in the correlations of incoming (F) and outgoing (G) synaptic weights of each neuron, so that some neurons received or sent only strong or only weak synapses
(H, red histogram).
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ally we added a tag to identify the connection type we manipulated.
For example, �in

E¡NFS in controls the input weight correlations in the
E ¡ NFS connection.

Structural similarity to experimental data. By definition, the net-
works we constructed exhibited the same pairwise connectivity as
biological networks reported in Lefort et al. (2009) and Avermann et
al. (2012). To investigate the occurrence of more complex patterns in
the connectivity matrix, we compared them to some of the most
complete studies of connectivity profiles between excitatory and
inhibitory neurons (Yoshimura and Callaway 2005; Yoshimura et al.
2005). In these publications, pairs of neurons in cortical layer 2/3 of
rat visual cortex were examined for common excitatory input from the
same layer. Their cell type (E, FS, or NFS) and their connectivity
(connected, unconnected, and bidirectionally connected) was cata-
loged, and the fraction of cells with shared input from a third cell was
recorded over many tested pairs according to their cell type and
connectivity (cf. Fig. 2 in Yoshimura and Callaway 2005 and Fig. 3
in Yoshimura et al. 2005). This led to a set of probabilities Pexp that
described the expected frequency of triplet motifs with specific cel-
lular compositions in the network. In this data set, one of the recorded
neurons was always excitatory, and the second was an E, FS, or NFS
neuron, so no data were available for some of the categories (E ¡ FS,
FS ¡ FS, FS ¡ NFS, NFS ¡ FS, and NFS ¡ NFS).

To extract the same information from our models, we drew random
pairs of neurons for each known category. The number of presynaptic
neurons they shared, divided by the total number of inputs, led to the
same probability estimate Pmod for triplet motifs as reported in
Yoshimura and Callaway (2005) and Yoshimura et al. (2005).

To measure the similarity of the connection probability Pmodel of
the model networks and Pexp of the experimental data, we computed

the root mean square error, RMSE � �Q�1�q�1
Q �Pexp.

q �Pmodel
q �2,

between the probabilities Pmodel of all Q � 9 reported connection
categories (cf. Table 1).

Test stimulus and response similarity. To investigate the dynamic
behavior of our networks, we emulated recent experiments (Aver-
mann et al. 2012) in which an in vitro optogenetic stimulation protocol
was used to evoke spikes in a transfected population of excitatory
neurons. The maximum amplitude xi of the poststimulus subthreshold
voltage responses of randomly chosen neurons near the stimulation
site were binned into MRH for each cell type 	. Pooled over many
trials, these histograms describe the probability Pexp

	 (xi) with which a
maximum response amplitude can be expected to occur. We aimed to
mimic these experiments as closely as possible by stimulating 25
random excitatory neurons of our model networks to emit a single
spike. We recorded the responses from 10 independently initialized
simulations and constructed the corresponding MRH and thus
Pmodel

	 (yi) for each cell type (see Fig. 5). Varying the number of
spike-emitting neurons introduced noisy variations in the shape of the
response histograms that could not explain the experimental
distributions.

To quantify the similarity of model and experimental response
distributions, we calculated for each neuron type 	 (E, FS, or NFS) the
log-probability that the experimental response x̂i could have been
model response ŷi. Assuming statistical independence between trials,
this log-likelihood is given by

l	 � �
i

log Pmodel�xi� (8)

Initially we used the sum � � �E � �FS � �NFS over all neuron types
as a single value to describe the similarity of the MRHs in the
experimental data and in the model. We also used �E and �FS

separately (see Fig. 6), and we used �NFS (see Fig. 7).
Impact of single parameters. We used two-tailed Student’s t-tests

to analyze whether a given parameter change (from d � 0 to d � 5,
or from � � 0 to � � 1) had a significant effect on the similarity of the
network models to the experimental data. For every parameter, we
separated the results of the complete parameter sweep into two
populations in which this parameter of interest was one of the two
possible values. We called a parameter “crucial” if the populations of
RMSE scores from these models where different at the 	0.05 signif-
icance level. In a second iteration, we fixed all crucial parameters at
their optimal value and excluded all models with nonoptimal crucial
parameters from further analysis. We then reanalyzed the resulting
subspace in the same way as above to reveal additional crucial
parameters. This procedure was reiterated until no more crucial
parameters were found. For the structural analysis (see Fig. 3), we
found all but one (din

E¡FS) crucial parameter in the first iteration. Note
that *din

E¡NFS failed Bonferroni confirmation (see explanation below)
and was thus marked with an asterisk. For the analysis of step II (see
Fig. 6), crucial parameters were revealed in the following order:
�out

E¡FS, �in
E¡E, and �in

E¡FS were found to be crucial in the first iteration,
and �out

E¡E in the second. Note that *dout
FS¡FS, found in the third, and

*�out
FS¡FS, found in the fourth iteration failed Bonferroni confirmation

(see below). The crucial parameters found in step III (see Fig. 7) were
both found in the first iteration of analysis.

To ensure statistical rigor, we retested all parameters against
Bonferroni-corrected significance values pB � �⁄N, where � � 0.05 is
a conservative single trial significance level, and the correction factor
N � 14, 28, 6 for steps I, II, and III, respectively. The three crucial
parameters that failed their Bonferroni confirmation (*din

E¡NFS,
*dout

FS¡FS, and *�out
FS¡FS) are marked with parentheses in Table 2 and

Fig. 2 and asterisks (*) throughout the text. Table 2 summarizes the
results of our analysis.

High-dimensional parameter analysis. To visualize the high-
dimensional parameter space of our investigation, we used CBDR
(LeBlanc et al. 1990; Peng 2005; Taylor et al. 2006), often also
referred to as dimensional stacking. This technique stacks high-
dimensional result spaces into two-dimensional images by sequen-
tially nesting pairs of parameters into quadrants of the next pair.
Through ranking the order of dimensions by how much they affect
the result space, and nesting them according to their rank, with the
biggest affecters on the outside, CBDR can reveal the underlying
structure of the space itself and visualize which dimensions have
the biggest impact on the result. To read a CBDR plot, one should
first consider the outer dimensions of each plot, because they
represent dimension along which the greatest change was ob-
served. The impact of a parameter can thus be also assessed by the
level at which it is nested.

Reciprocity. Reciprocity R was defined as the probability of two
neurons to be connected to each other (Song et al. 2005). In the
uniform random case, this can be determined by calculating R � p2

where p is the connection probability. In the adjusted networks, we
measured reciprocity by simply counting the number of bidirectional
connections, and dividing by the number of possible connections, MPRE

� MPOST, with population sizes MPRE and MPOST, respectively. Al-
though Song et al. (2005) and Perin et al. (2011) were able to supply the
probabilities for motifs with and even more participant neurons, the sheer

Table 4. Global weight distribution parameters

Connection � �2

E-E �9.57 0.96
E-FS �8.56 0.53
E-NFS �9.94 0.78
FS-E �9.29 0.83
FS-FS �8.72 0.32
FS-NFS �8.17 0.75
NFS-E �9.36 0.77
NFS-FS �9.27 0.36
NFS-NFS �10.07 0.02

Parameters of the lognormal distribution used to determine synaptic weights
for all connections.
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magnitude of the combinatorial possibilities in our networks prevented us
from looking for these motifs in realistic time frames.

Small-world-ness. We determined the small-world-ness (Watts and
Strogatz 1998) of our networks by calculating a small-world-ness
value (Humphries and Gurney 2008),

S �
Ctest

Crand
*

Lrand

Ltest
(9)

for each tested network, compared to a uniform random network.
Here, L is the average shortest path length between any two cells
in a network and C is the clustering coefficient, determined by
dividing the number of existing connections of each neuron by the
number of possible connections and averaging over the entire
population. A small-world network is characterized by a higher
average clustering coefficient and a lower average shortest path
length than a uniform random network. Thus networks with S � 1
can be considered small-world networks.

RESULTS

Theoretical work on neuronal networks began long before
the publication on motifs and fine structure of their architec-
ture, when all that was known was that their connectivity is
sparse. The most parsimonious description of connectivity that
only depends on the one known statistic (the sparseness) is an
“Erdos-Rényi network” (Erdos and Rényi 1961), i.e., a uniform
random network. It has long been suspected that such uniform

random network architectures do not accurately describe
the architecture of real cortical networks. Here, we tested the
uniform random connectivity hypothesis by comparing the
structure and the dynamical response properties of thousands
of independently generated network architectures with two
experimental data sets. We considered a neural network with
excitatory (E), as well as fast spiking (FS), and nonfast spiking
(NFS) inhibitory neurons. We controlled the statistics of each
connection type individually while keeping the overall connec-
tivity constant (see METHODS) and could thus assess the impact
of our statistical manipulations on the similarity of model and
experiment (Fig. 1).

We examined the impact of changing the distribution of the
number of incoming synaptic connections a given neuron
receives (the “distribution of in-degrees,” adjusted by din) and
the distribution of the number of outgoing synapses (the
“distribution of out-degrees,” adjusted by dout). In a uniform
random network (d � 0, see METHODS), these distributions are
typically narrow (Fig. 1E, gray histogram), so that every
neuron sends and receives roughly the same number of syn-
apses. By skewing these degree distributions (d � 0), we could
create networks in which some of the neurons received (or
sent) a large number of synaptic inputs and others received/sent
only few (Fig. 1E, blue histogram). Since we controlled the
total number of synapses in the network, we guaranteed con-

Fig. 2. Steps of the analysis. We considered 18 structural and 18 weight parameters in our parameter search, symbolized as blue and red squares, respectively,
at top left. We proceeded in 4 consecutive analysis steps, shown along the horizontal axis of the schematic. During each step we tested a limited number of
parameters, shown in color in the second row, labeled “tested.” Afterwards, we sorted the tested parameters into “noncrucial” and “crucial” (3rd and 4th row,
respectively), depending on whether a parameter had a significant effect on the similarity of the model to the experimental data sets. Crucial parameters are listed
in the lower margins. Check marks indicate which parameters confirm the random architecture hypothesis, and crosses mark the parameters for which the null
hypothesis was falsified. Step I comprised 10 structural parameters. Step II comprised 2 structural and 8 weight parameters. In step III we tested the effect of
2 structural and 4 weight parameters, and in step IV we tested the remaining 4 structural and 6 weight parameters. We found 15 crucial parameters, 3 of which
failed Bonferroni confirmation (marked with asterisks in the margin).

1806 BIASED NETWORK ARCHITECTURES HARMONIZE EXPERIMENT AND MODEL

J Neurophysiol • doi:10.1152/jn.00629.2013 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Inst of Sci & Tech Austria (081.223.014.210) on July 16, 2020.



stant global sparseness for all our models, but let the number of
synapses per neuron become heterogeneous, so that the con-
nectivity structure at the cellular level could vary notably
between different network models.

We also aimed to examine the shape of local weight corre-
lations in the pre- and postsynaptic populations, �in and �out. In
uniform random networks (� � 0), there were no correlations
between the individual synaptic weights onto or from a specific
neuron. We could induce correlations by adjusting all incom-
ing or outgoing synapses of a given neuron by a common
scaling factor, drawn independently from a distribution that
was normalized to ensure that the global weight distributions
were kept equal to those measured by Avermann et al. (2012)
(see METHODS). Some neurons could thus send or receive
synapses with a very similar strength that differed notably from
the average synaptic weight of all network synapses.

In our networks with three distinct cell populations, and
consequently nine unique connection types, these four possible
manipulations (din, dout, �in, and �out) led to a 36-dimensional
parameter space that could not be examined exhaustively by
current techniques in reasonable times. Instead, we used a
multilayered boot-strap approach (Fig. 2). First, we investi-
gated the variables that affected the structure of the network. In
step I (Fig. 3), we generated network architectures with one of
only two possible degree distributions. Narrow, binomial (d �
0) distributions were used to create networks in which all
neurons had similar numbers of incoming or outgoing syn-
apses, and the network’s sparseness was thus uniform. Expo-
nentially decaying, skewed (d � 5) in- and out-degree distri-
butions caused some neurons to have many incoming or
outgoing synapses, while others had very few. This high
variance of the number of connections per neuron created
heterogeneous sparsity within the network while global con-
nection probabilities remained unchanged. We examined the
effect of changing these parameters for connections E ¡ E,
E ¡ FS, E ¡ NFS, NFS ¡ E, FS ¡ E. We excluded all
inhibitory to inhibitory connections (FS ¡ FS, FS ¡ NFS,
NFS ¡ FS, NFS ¡ NFS) for which we had no experimental
data. To compare the resulting architectures to experimental
findings, we determined the connection probability of ran-
domly drawn triplets as described in Yoshimura and Callaway
(2005) and Yoshimura et al. (2005) and calculated the RMSE
between results in the experiment and model (see METHODS).

Our analysis showed that the uniform random network
architecture (Fig. 1B) often employed by modeling studies
produces an RMSE � 0.07. In other words, uniform random
networks on average displayed 7% more or fewer triplet motifs
than could be found in experiments, with maximum underes-
timation of 14% for the occurrence of (at least) monodirec-
tionally connected EEE triplets (Table 1). By changing the in-
and out-degree distributions of all mentioned connection types
independently, we could observe that the statistics of outgoing
E connection caused the biggest changes of the RMSE, but the
optimal configuration of parameters was different for each
target population (Fig. 3).

For excitatory-excitatory connections (E ¡ E), a high vari-
ance of both the in- and the out-degree distributions (din

E¡E �
5 and dout

E¡E � 5, respectively) produced the best connectivity
statistics and reduced the error of EEE triplet motif occurrence
by 
12%. Other changes produced improvements on the order
of 
2%, but the cumulative changes decreased the RMSE

between model and experimental data to 0.04. To achieve this,
the excitatory to fast-spiking connections (E ¡ FS) required
high variance only of the distribution of in-degrees (din

E¡FS �
5) but a narrow distribution of the out-degrees (dout

E¡FS � 0)
connectivity. The connections to NFS neurons (E ¡ NFS)
were best described by uniform random connectivity (lower
RMSE were achieved with dout

E¡NFS � 0 and *din
E¡NFS � 0). It

should be noted that *din
E¡NFS failed Bonferroni confirmation

(cf. DISCUSSION). The only connection from inhibitory cells that
had a significant effect on the RMSE was NFS ¡ E, which
produced smaller RMSE values when connection numbers
were drawn randomly, i.e., from a narrow distribution of
synapses per neuron (din

NFS¡E � 0). The other parameters of the
two inhibitory-excitatory connections (and thus din

FS¡E, dout
FS¡E,

and dout
NFS¡E) had virtually no impact on the RMSE value so

that several different network architectures produced very
similar results (see red box in Fig. 3C). The effect of all
parameters is summarized in Table 2.

In addition to the comparison to the above data sets by
Yoshimura et al. (2005), we also calculated the reciprocity of
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Fig. 3. Step I: structural parameter exploration. A: network diagram as in Fig.
1. Connection types that were investigated in step I are shown in black.
B: schematic of possible connectivity combinations with uniform or skewed in-
or out-degree connectivity. C: clutter based dimension reordering (CBDR) plot
of the RMSE scores (the root mean square error between the observed
connection probabilities in experiment and model) of various parameter
combinations. CBDR nests parameters into consecutive squares, ranked by
their impact on the RMSE value, and helps to visualize important parameters
as well as the region of best results (red outline). The blue arrow at top left
points at the parameter combination that resulted in standard uniform random
networks. Crucial parameters are marked with bullet points.
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our model networks (see METHODS and Fig. 4A). We could thus
also compare them to the fine structure of 30 experimentally
observed networks in layer 5 of acute visual cortical slices from
rats aged postnatal day (P)12 to P20 by Song et al. (2005) and in
layer 5 of acute somatosensory cortex slices from rats aged P14 to
16 (Perin et al. 2011). Because of the experimentally available
data, we focused exclusively on the in- and out degree of E ¡ E
connections. When those two crucial parameters were set to their
optimal values (dout

E¡E � din
E¡E � 5), the resulting reciprocity was

measured at 0.059, surprisingly similar to the experimentally
reported value of 0.054 (Song et al. 2005; Perin et al. 2011). All
other combinations of parameter values [dout

E¡E � 0, din
E¡E � 5],

[dout
E¡E � 5, din

E¡E � 0], and [dout
E¡E � din

E¡E � 0] resulted in
reciprocity values of 0.14, similar to the expected probability of
0.135 calculated from monodirectional connections. Conse-
quently, the RMSE between model networks and the data of
Yoshimura et al. (2005) had the smallest values when the reci-
procity of the model network was high (Fig. 4B).

Cortical networks have been proposed to resemble small-
world networks (Bettencourt et al. 2007; Yu et al. 2008;
Gerhard et al. 2011). We thus wondered if networks with small
RMSE were more similar to small-world networks. Optimizing
the crucial parameters for low RMSE also increased the small-
world-ness value S (see METHODS) of the network from S � 1
for uniform random networks to S � 1.3 for the region of best
results, but there was no direct correlation: high small-world-
ness values did not imply a good network fit (Fig. 4D). In fact,
a high small-world-ness could be achieved by networks with a
wide range of RMSEs. Thus, in our case, high small-world-
ness values of the overall network architecture did not imply
more biologically realistic structures. Notably, there was no
correlation between the over all small-world-ness of the net-
work and the reciprocity value for E ¡ E connections.

By comparing the structure of real cortical and computer-
generated networks with the same measure, we were able to
identify model architectures that matched the experimentally
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Fig. 4. Reciprocity and small-worldness values. A: reciprocity values of E ¡ E connections for every parameter combination, plotted with the same dimensional
stacking order as in Fig. 3. B: scatterplot showing the same network reciprocity values, plotted against their respective RMSE values. C and D: small-world-ness
values for every parameter combination, plotted as in A and B. In A–D, the region of best results is outlined in red. The blue arrow shows the uniform random
network.
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observed connectivity statistics much better (RMSE � 0.04).
However, it was unclear if the resulting network dynamics
would also be comparable to those of real cortical networks. To
investigate this issue, we implemented AdEx integrate-and-fire
mechanisms in each cell, with parameter sets that mimic single
cell dynamics in barrel cortex (see METHODS and Mensi et al.
2012). We set the crucial parameters (as determined in the first
parameter scan) to their appropriate values and set all other,
noncrucial parameters to d � 0, in agreement with the standard
uniform random network paradigm. Synaptic weights were
chosen to globally obey experimentally measured distributions
(Avermann et al. 2012). The weight correlations �in and �out
could be varied for each connection type individually. To
achieve similar weight distributions across all neurons, synap-
tic weights were drawn randomly from a lognormal distribu-
tion (� � 0). In this case the range of synaptic strengths of one
neuron was equal to that of the entire population of synapses.
Alternatively (� � 1), all incoming or outgoing synapses of a
given neuron were adjusted by a common scaling factor that
was itself drawn independently from a log normal distribution.
This led to weight distributions in which a neuron had (incom-
ing or outgoing) synapses of similar strength so that the range
of synaptic strengths onto or from one neuron was smaller than
the range of strengths of the whole population (see METHODS).
In both cases, the global weight distributions were kept equal
to those measured by Avermann et al. (2012).

We investigated the stimulus response properties of the
network with a protocol similar to the experiments performed
in Avermann et al. (2012): We stimulated a subset of 25
excitatory neurons to evoke a single volley of synchronous
spikes and recorded the postsynaptic responses in randomly
chosen cells. The resulting MRH obtained over 10 iterations
(with shuffled parameter sets) were set against the experimen-
tally obtained distributions of each cell type. The similarity of
the responses was quantified by calculating the negative log-
likelihood � of the MRH of the model, given the experimental
result, and summed over all three cell types, presented as
� (�E/�FS/�NFS), the average value followed by the cell type

specific similarity values for easy evaluation. A low value of �
indicated a high similarity between the model response distri-
butions and the experimental response distributions (see METH-
ODS).

We found that the response distributions of the uniform
random model [with � � 154 (67/279/122)], as well as the
structurally optimized model [with � � 116 (64/163/120)] did
not match the experimentally observed subthreshold responses
(Fig. 5). Neither model could account for the long tails of the
experimental MRHs, and while the structurally adjusted model
fared slightly better, both models failed to produce the highly
skewed response distribution of the FS population (Fig. 5, D
and I). In preliminary simulations we confirmed that changing
the number of stimulated cells in each trial (to account for
experimental variability of the optogenetically active cell pop-
ulation) could not account for the observed response distribu-
tions (data not shown). We hypothesized that the mismatch
between experiment and model might be due to the unadjusted
structural parameters like inhibitory-inhibitory connections or
stem from systematic correlations between synaptic weights
originating from or terminating onto the same neuron.

The space of untested parameters that could affect the
response distributions was still high (36 � 7 � 29) dimen-
sional, so we decided to further subdivide the analysis. Since
the next parameter sweep aimed to explore the subthreshold
voltage responses of the network, only connections from cell
types that contributed spikes to the response were taken into
account here. In preliminary tests (data not shown) we found
that the stimulated excitatory neurons emitted spikes but no
other excitatory neurons fired. Furthermore, we found that FS
neurons emitted spikes in response to the stimulus in a wide
range of parameters (average 4.93 � 3.35 spikes, with 14
spikes maximum), but NFS cells almost never spiked (average
0.08 � 0.17 spikes with 2 spikes maximum). This meant that
NFS neurons did not affect the overall dynamics of the re-
sponse, and we could thus neglect the parameters of the
connections to and from the NFS population for the exploration
of network response distributions.
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Fig. 5. Subthreshold network response distributions A: network diagram as in Fig. 1. All connections are colored gray to indicate their uniform random
connectivity. B: 10 representative voltage traces of each cell type, after stimulation with a channelrhodopsin-like stimulus (color-coded as in A).
C–E: distributions of subthreshold network response amplitudes to a synchronous spike volley in 25 excitatory neurons, measured in excitatory (C), fast-spiking
(D), and nonfast-spiking neurons (E). Outlined histograms are experimental results obtained by channelrhodopsin stimulation. Solid histograms show the
response of a uniform random model. F–J: network diagram, voltage traces, and response distributions as in A–E for the best structurally adjusted network.
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We also excluded the structural parameters in the FS ¡ E
connection: the inhibitory reversal potential of the excitatory
cells (VrevI � �75 mV) was close to the resting membrane
voltage (Vrest � �68.85 mV), so that these synapses were
largely shunting, and preliminary simulations showed that their
effect on maximum subthreshold responses was negligible.
This exclusion step left 10 parameters, namely �in

E¡E, �out
E¡E,

�in
E¡FS, �out

E¡FS, �in
FS¡E, �out

FS¡E, �in
FS¡FS, �out

FS¡FS, din
FS¡FS, and

dout
FS¡FS, to be tested (Fig. 6A). The cumulative similarity scores

� of the resulting 1,024 models (Fig. 6C) revealed only the
parameters of the connection E ¡ FS as crucial. For these
connections, the introduction of input and output correlations
(�in

E¡FS � 1 and �out
E¡FS � 1, cf. Fig. 6C) improved the � score.

When we analyzed the responses of the E and FS populations
separately (Fig. 6, D and E), we uncovered additional crucial
parameters. �E, the similarity measure of only excitatory pop-
ulations, increased when excitatory-excitatory connection
weights were correlated (i.e., �in

E¡FS � 1) and outgoing E ¡ E
connection weights were not correlated (�out

E¡E � 0). Using �FS
to examine only the inhibitory connections showed that
*dout

FS¡FS and *�in
FS¡FS out also had a substantial (although not

Bonferroni-corrected significant) effect on the similarity score.
Both parameters must allow uniform random network connec-
tivity. We could thus identify an additional 6 parameters
(�in

E¡E, �out
E¡E, �in

E¡FS, �out
E¡E, *�out

FS¡FS, and *dout
FS¡FS) as crucial.

In a third parameter scan, we explored the response distri-
bution of the NFS population. We varied only the connections
to the NFS population (Fig. 7B), while keeping the values of
crucial parameters at their better value, and those of non-
crucial parameters uniform random, and thus consistent with
the uniform random connectivity hypothesis. In these sim-
ulations only E ¡ NFS connectivity had an effect on the
NFS population, meaning the incoming weight correlations
had to be high (�in

E¡NFS � 1) and the outgoing weight
correlations low (�out

E¡NFS � 0; Fig. 7).
Finally, in the last step, we constructed model networks in

which all of the hitherto untested parameters were varied (Fig.
7C). We calculated their impact on the similarity to the exper-
imentally observed subthreshold response distributions. We
found that none had significant effects and were thus not
crucial (Fig. 7D).

In two additional control steps we explored the local
neighborhood of all crucial, nonrandom parameters
(Fig. 8). Starting with the fully adjusted network, we first
tested each parameter individually for a larger range of
values (Fig. 8, B and C). Similar to our initial test scans, we
found that the chosen parameter values produced consis-
tently good results for the chosen parameter values. We then
performed an additional 2,187 simulations in which the
crucial, nonuniform random parameters were varied be-
tween three values (din, dout � {4, 5, 6}, and �in, �out � {0.8,
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1, 1.2}), but similarity values did not improve substantially
for any combination of parameters (Fig. 8D).

Although the 36-dimensional parameter space we explored
remained vastly undersampled (in fact, we only tested 4.5 *
10�6% of all possible parameter combinations), we were able
to find a parameter combination that produced substantially
better results than the random uniform network. The response
distributions of the fully adjusted network (Fig. 9, F–J) show
a higher similarity to the biologically measured MRH with
an average negative log-likelihood value of 106 (63/151/
102) [compare with 154 (67/279/122) for uniform random
networks; Fig. 5] and visually a much better fit as well,
indicating a more plausible network architecture for stereo-
typically generated networks of layer 2/3. These structurally
and weight adjusted networks also performed better than
networks that were only adjusted in the synaptic weight
correlations [� � 111 (67/163/104); Fig. 9, A–E], indicating
that both structure and weight statistics must be altered from
the initially assumed uniform random structure.

DISCUSSION

Our results confirm that uniform random networks are not
able to accommodate the connectivity patterns found in bio-
logical experiments (Yoshimura and Callaway 2005; Yo-
shimura et al. 2005). To bring a network model into better
agreement with these datasets, it was necessary to change the
structure of specific in- and out-degree distributions (d � 5 for
din

E¡E, din
E¡FS, and dout

E¡E) so that these connection types became
heterogeneous in the number of connections per neuron. We
found that other connection parameters (din

NFS¡E, dout
E¡FS,

dout
E¡NFS, *din

E¡NFS, and *dout
FS¡FS) also affected the similarity

measure between model and experimental data significantly,
but those had to remain at the value (d � 0) that guaranteed
uniform random connectivity.

Neither networks with uniform random connectivity nor the
structurally adjusted architecture could reproduce the dynamic
responses to a stimulus protocol similar to in vitro channelrho-
dopsin stimulation experiments published in the recent past
(Avermann et al. 2012). To reconcile the network’s dynamical
behavior with those experiments, we had to further adjust local
weight correlations �. These manipulations changed the weight
of existing synapses cell-wise by a common factor, without
affecting the global weight statistics or the connectivity struc-
ture. We found highly cell-type specific connectivity require-
ments: all excitatory connections required correlations in the
input weights (� � 1 for �in

E¡E, �in
E¡FS, and �in

E¡NFS), and the
excitatory output weights onto fast-spiking neurons (�out

E¡FS)
also had to be correlated cellwise to match biological measure-
ments. Additionally, we found parameters that needed to re-
main at the value for uniform random networks (� � 0 for
�out

E¡E, �out
E¡NFS, and *�out

FS¡FS).
The crucial parameters that affected network dynamics as

described here are almost exclusively connections from the
excitatory population to other cell populations, and two of the
other parameters, *dout

FS¡FS and *�out
FS¡FS (in addition to

*din
E¡NFS, which alters synapse distributions that originate from

E neurons) are weakly significant, i.e., they fail the more
conservative Bonferroni-corrected significance levels. This
may hint at a systematic error in our dataset, likely due to the
stimulus we used. The synchronous volley of spikes in the
excitatory population in an otherwise silent network may have
had a larger impact on excitatory connections because it

Fig. 7. Steps III and IV: parameter scan for NFS connections. A: network diagram as in Fig. 1. Connection types that were investigated in step III are shown in black.
B: similarity value �NFS of all parameter combinations of step III for the nonfast-spiking population, sorted with CBDR. The red outline shows the region of best results.
Crucial parameters are marked with bullet points. C: network diagram as in Fig. 1. Connection types that were investigated in step IV are shown in black. D: similarity
value � of all parameter combinations of step IV for the nonfast-spiking population, sorted with CBDR. No crucial parameters could be identified.
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naturally favored excitatory activity. Any other, nonexcitatory
contribution to the poststimulus response can be understood as
a disynaptic echo of the original stimulus. By design of the
experiment, such echoes are less likely to have a significant
impact on the observed dynamics. In the future it may become
possible to include data in which a similar channelrhodopsin
stimulus is delivered to the FS or NFS neurons, or in a
perpetually active, in vivo or in vivo-like network state. In such
scenarios, the wiring requirements for inhibitory neurons
would likely become more prominent.

The applied changes to the network architecture are concep-
tually simple because we aimed to find a minimum number of
stereotypical rules that allow easy but accurate reconstruction
of layer 2/3 network models. The architecture of biological
networks is likely more complex than the networks built here
and may not be achievable with our purely stochastic methods
of assigning connections. However, the proposed parameter
changes offer insight into which connections parameters are
affecting network architecture and behavior in a way that
significantly alters their similarity to experimentally observed
facts and guide the search for plasticity rules that ultimately
govern the creation of architecture in real networks.

Although the crucial connection parameters should be taken
into account when building simplified models, it should be
noted that the parameters we introduced here do not necessarily
create the correct, realistic network architectures. We merely
searched for the best response range to a certain search para-
digm (Prinz 2010). For example, our results indicate that an
in-degree distribution with high variance for the E ¡ FS
connections leads to a network with high similarity to experi-
mental measures. This suggests the existence of highly con-
nected (hub neurons) but also of many FS cells with only
sparse excitatory input. Such sparsely connected interneurons
have not been shown to exist in biology. In fact, recent results
show that FS neurons are most often highly connected with
locally very dense excitatory input (Hofer et al. 2011; Packer
and Yuste 2011). One interpretation of our results would be

that the high variance of E ¡ FS does not create high spatial
connectivity directly but rather as an approximation without
the explicit spatial scale with highly connected FS neurons
necessary for the dynamics. The sparsely connected neurons
that are also created by this parameter on the other hand, have
no impact on the dynamics, and can thus be neglected. In fact,
pruning the sparse connections of FS neurons, we find that the
resulting MRHs and similarity measure � in our network do not
change (data not shown).

The accuracy of our results necessarily hinges on the fidelity
with which the experimental data reflect reality. We have
neglected potential slicing artifacts from injury, as well as the
possibility that experimental choices and biases, e.g., the nature
of the stimulus (a single excitatory spike volley), may disad-
vantage the accuracy of certain connection type statistics or
even conceal their involvement in the recorded phenomenon. It
should also be noted that we combined experimental data from
different species and brain regions, namely layer 2/3 rat visual
cortex (Yoshimura and Callaway 2005; Yoshimura et al. 2005)
for structural adjustments and layer 2/3 mouse barrel cortex
(Avermann et al. 2012) to explore the synaptic weights. There
is no a priori reason to assume that these sensory cortices must
obey the same architectural rules. The good agreement of reci-
procity values obtained from layer 5 of visual (Song et al. 2005)
and somatosensory (Perin et al. 2011) cortexes in the rat with our
best network models may hint at the existence of a universal,
canonical cortical microcircuit, but a final verdict is not in sight.

Regardless of the universality of our results, we can say
with certainty that the uniform random connection hypoth-
esis fails to accommodate the specific datasets we tested.
Moreover, we can find a better solution that obeys the
experimental restrictions and produces similar statistics as
observed in the data as it stands at this point in time. With
ever-increasing computational might of the coming decades,
it will become necessary, desirable, and, importantly, pos-
sible to repeat and refine the presented analysis with new
and more complete datasets.
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In summary, we show here that even conceptually simple
experiments that do not aim at revealing network connectivity
like the channelrhodopsin stimulation in Avermann et al.
(2012) can be used to investigate network architecture in a
meaningful way. With the help of computationally inexpensive
extensions we adjusted the architecture of uniform random
networks to reflect biological networks more accurately and
thus provide a framework to construct biological plausible
networks that may help to improve the conclusions of theoret-
ical models in the future. We provide these new and more
plausible network architectures as example files and the code to
construct them online at ModelDB (http://senselab.med.yale.
edu/modeldb/ShowModel.asp?model�156040).
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