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Abstract

The projection methods with vanilla inertial extrapolation step for variational
inequalities have been of interest to many authors recently due to the improved
convergence speed contributed by the presence of inertial extrapolation step.
However, it is discovered that these projection methods with inertial steps
lose the Fejér monotonicity of the iterates with respect to the solution, which
is being enjoyed by their corresponding non-inertial projection methods for
variational inequalities. This lack of Fejér monotonicity makes projection
methods with vanilla inertial extrapolation step for variational inequalities
not to converge faster than their corresponding non-inertial projection meth-
ods at times. Also, it has recently been proved that the projection methods
with vanilla inertial extrapolation step may provide convergence rates that
are worse than the classical projected gradient methods for strongly convex
functions. In this paper, we introduce projection methods with alternated
inertial extrapolation step for solving variational inequalities. We show that
the sequence of iterates generated by our methods converges weakly to a so-
lution of the variational inequality under some appropriate conditions. The
Fejér monotonicity of even subsequence is recovered in these methods and
linear rate of convergence is obtained. The numerical implementations of our
methods compared with some other inertial projection methods show that
our method is more efficient and outperforms some of these inertial projec-
tion methods.
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1 Introduction

Let H denote a real Hilbert space with scalar product 〈·, ·〉 and induced norm ‖ · ‖.
Consider C as a nonempty, closed and convex subset of H and A : C → H a
continuous mapping. The variational inequality problem (for short, VI(A,C)) is
defined as: find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1)

We shall denote by S the set of solutions of VI(A,C) (1). Several applications of
VI(A,C) (1) are discussed in [2, 4, 18, 25, 26, 27, 32].

A point x ∈ C is a solution of VI(A,C) (1) if and only if (see [18] for the details)

x = PC(x− γAx), γ > 0 and rγ(x) := x− PC(x− γAx) = 0.

This led to the introduction of fixed point approach to solve VI(A,C) (1) ((see, e.g.,
[16, 27, 36]).

If A is η-strongly monotone and L-Lipschitz-continuous, then the sequence generated
by gradient-projection method

xn+1 = PC(xn − λAxn) (2)

converges to a solution of VI(A,C) (1) if the step-size λ ∈ (0, 2η
L2 ). The gradient-

projection method (2) fails if A is monotone. For example, take C = R2 and A a
rotation with π

2
angle. Then A is monotone and L-Lipschitz-continuous and (0, 0) is

the unique solution of VI(A,C) (1). However, {xn} generated by gradient-projection
method (2) satisfies the property ‖xn+1‖ > ‖xn‖ for all n.

In [28], Korpelevich introduced the extra-gradient method, which is:


x1 ∈ C,
yn = PC(xn − λnAxn)
xn+1 = PC(xn − λnAyn), n ≥ 1,

(3)

where λn ∈ (0, 1
L

). It is shown in [28] that {xn} converges to a solution of VI(A,C)
(1) when A is monotone and L-Lipschitz-continuous. Similar results are found in
[1, 8, 11, 17, 20, 21, 35, 38, 42, 44].

A question of interest in projection method for of VI(A,C) (1) is how to minimize
the number of projections per iterations in extra-gradient method (3). This is be-
cause if PC does not have a closed form formula, then a minimization problem has
to be solved twice per iteration in implementing extra-gradient method (3). In such
situation, the efficiency of the extra-gradient method (3) is affected. This has led
to introducing some projection methods with one projection per iteration in solving
VI(A,C) (1).
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In [12], Censor et al. introduced the subgradient extragradient method: x1 ∈ H,
yn = PC(xn − λnAxn),
Tn := {w ∈ H : 〈xn − λnAxn − yn, w − yn〉 ≤ 0},
xn+1 = PTn(xn − λnAyn).

(4)

Censor et al. [12] proved that {xn} generated by (4) converges weakly to a solution
of VI(A,C) (1) under some appropriate conditions on {λn}.

Recently, Maingé and Gobinddass [30], motivated by Malitsky [31] introduced the
following iterative method for solving VI(A,C) (1): choose δ ∈ (0, 1], λ−1 ∈ (0,∞)
and x1, x0 ∈ C {

yn = xn + λn
δλn−1

(xn − xn−1),
xn+1 = PC(xn − λnAyn),

(5)

and showed that {xn} generated by (5) converges weakly to a solution of VI(A,C)
(1) when A is monotone and L-Lipschitz-continuous. The method (5) requires one
projection PC onto C and no further projections onto the half-space unlike (4).

When A is pseudo-monotone and L-Lipschitz-continuous in VI(A,C) (1), Ceng et
al. [9] introduced the following method (here, we take αn = 0 and Sn = the identity
mapping in [9, Theorem 3.1]):

x1 ∈ C,
yn = PC(xn − λnAxn),
zn = PC(xn − λnAyn),
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
find xn+1 ∈ Cn such that
〈xn − xn+1 + en − σnAxn+1, xn+1 − x〉 ≥ −εn, ∀x ∈ Cn,

(6)

where {en} is an error sequence, {σn} ⊂ (0, 1
L

) and {εn} ⊂ [0,∞). The in-
tuition of the last step of (6) comes from the approximate proximal methods.
Ceng et al. [9] showed that {xn} generated by (6) converges weakly to a solu-
tion of VI(A,C) (1) and under the condition (see Yao and Postolache [45] also) that
0 ≤ lim infn→∞〈Axn, z − xn〉,∀z ∈ C. This method (6) of Ceng et al. [9] requires
computations of projection twice per iteration.

The extragradient method (3) and subgradient extragradient method (4) are men-
tioned for a brief history lesson of our introduction. Equation (5) and (6) are men-
tioned as methods with weaknesses (lack of convergence proof for pseudo-monotone
for (5) and two projection steps for (6)). Methods from [14, 15, 39, 41] are com-
pared against our proposed methods because they only require one projection per
step and are proven to converge for pseudo-monotone problems. Now, we give some
discussion on the methods proposed in [14, 15, 41].
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1.1 Contributions and Related Work

He [19] introduced the projection and contraction method for solving VI(A,C) (1):
yn = PC(xn − λAxn),
dn = xn − yn − λ(Axn − Ayn),
xn+1 = xn − γηndn,

(7)

where γ ∈ (0, 2) and {ηn} is given by

ηn =

{
〈xn−yn,dn〉
‖dn‖2 , dn 6= 0

0, dn = 0.

In [15], Dong et al. proposed the following inertial projection and contraction
method for VI(A,C) (1):

wn = xn + αn(xn − xn−1),
yn = PC(wn − λAwn),
dn = wn − yn − λ(Awn − Ayn),
xn+1 = wn − γηndn,

(8)

where wn = xn + αn(xn − xn−1) is the inertial step and {ηn} is given by

ηn =

{
〈wn−yn,dn〉
‖dn‖2 , dn 6= 0

0, dn = 0,

0 ≤ αn ≤ αn+1 ≤ α < 1 with σ, δ > 0 such that

(a) δ > α2(1+α)+ασ
1−α2 ; and

(b) 0 < γ ≤ 2[δ−α[α(1+α)+αδ+σ]]
δ[1+α(1+α)+αδ+σ]

. Under conditions (a) and (b), Dong et al. [15]

showed that {xn} generated by (8) converges weakly to a solution of VI(A,C) (1).

When the inertial factor {αn} is chosen such that 0 ≤ αn ≤ ᾱn, where

ᾱn =

{
min

{
α, εn
‖xn−xn−1‖

}
, xn 6= xn−1

α, otherwise

with α ∈ [0, 1) and
∑∞

n=1 εn <∞, appropriate convergence results of (8) to a solution
of VI(A,C) (1) have been obtained in [14, 41]. The results in [14, 15, 41] all extend
the result of He [19] when αn = 0 and they have been shown numerically to improve
the speed of convergence of the projection and contraction method studied in [7, 19].

In all the inertial projection methods proposed in [14, 15, 41], it is seen that the
Fejér monotonicity of ‖xn − x∗‖, x∗ ∈ S is lost and this makes {xn} generated by
the methods in [14, 15, 41] to move or swing back and forth around S. This further-
more makes these methods sometimes not converge faster than their counterpart
non-inertial methods.

It is our aim in this paper to propose an inertial projection method in which Fejér
monotonicity of ‖xn − x∗‖, x∗ ∈ S is regained to some extent. We show that {xn}
generated by our proposed method converges to a point in S under some mild
assumptions. In simple terms, our contributions in this paper are:
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• We propose a projection-type algorithm with alternated inertial step which
requires one evaluation of projection onto the feasible set C per iteration.
The inertial extrapolation step proposed is different from the famous vanilla
inertial extrapolation step proposed in [14, 15, 41] for solving VI(A,C) (1).
Our method is particularly useful in cases when computation of projection
onto the feasible set is difficult.

• Our proposed method for solving VI(A,C) (1) assumes the operator is pseudo-
monotone and therefore more applicable than the methods in [29, 31]) where
A is assumed to be monotone.

• In our proposed algorithm, the inertial factor αn ≥ 1 is possible. This is
not allowed in many other proposed projection-type methods with inertial
extrapolation step in the literature, where αn < 1 (see, for example, [14, 15,
41]). Therefore, our proposed method brings novelty and state of the art
contributions to inertial projection-type method for solving VI(A,C) (1).

• Linear convergence, a priori and a posteriori error estimates of generated se-
quences are given in the special case when A is strongly-pseudo-monotone.

• We give some carefully designed computational experiments to show that our
proposed method is efficient and outperforms some related inertial projection-
type methods.

Organization of the paper: Some definitions and results are given in Section 2. Some
discussions about our proposed methods are given in Section 3. The proof of global
convergence of our algorithms are given in Section 4 and the linear convergence
analysis is given in Section 5. We give numerical implementations in Section 6. We
end the paper with some remarks in Section 7.

2 Preliminaries

Definition 2.1. A mapping A : H → H is called

(a) η-strongly monotone on H if there exists a constant η > 0 such that 〈Ax −
Ay, x− y〉 ≥ η‖x− y‖2, for all x, y ∈ H;

(b) monotone on H if 〈Ax− Ay, x− y〉 ≥ 0 for all x, y ∈ H;

(c) δ-pseudo-monotone on H if there exists δ > 0 such that 〈Ay, x − y〉 ≥ 0 ⇒
〈Ax, x− y〉 ≥ δ‖x− y‖2, x, y ∈ H;

(d) pseudo-monotone on H if, for all x, y ∈ H, 〈Ay, x−y〉 ≥ 0⇒ 〈Ax, x−y〉 ≥ 0;

(e) L-Lipschitz-continuous on H if there exists a constant L > 0 such that ‖Ax−
Ay‖ ≤ L‖x− y‖ for all x, y ∈ H.

(f) sequentially weakly continuous if for each sequence {xn} we have: {xn} con-
verges weakly to x implies {Axn} converges weakly to Ax.
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Remark 2.2. Note that (a) implies (b), (a) implies (c), (c) implies (d) and (b)
implies (d) in the above definitions. Furthermore, if (c) is satisfied, then VI(A,C)
(1) has a unique solution.

Definition 2.3. Let C be a nonempty, closed and convex subset of H. PC is called
the metric projection of H onto C if, for any point u ∈ H, there exists a unique
point PCu ∈ C such that

‖u− PCu‖ ≤ ‖u− y‖ ∀y ∈ C.

PC satisfies (see, e.g., [5])

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 ∀x, y ∈ H. (9)

Furthermore, PCx is characterized by the properties

PCx ∈ C and 〈x− PCx, PCx− y〉 ≥ 0 ∀y ∈ C. (10)

This characterization implies that

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 ∀x ∈ H,∀y ∈ C. (11)

Lemma 2.4. The following statements hold in H:

(i) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2 for all x, y ∈ H;

(ii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉 for all x, y ∈ H

(iii) ‖αx+βy‖2 = α(α+β)‖x‖2+β(α+β)‖y‖2−αβ‖x−y‖2, ∀x, y ∈ H,∀α, β ∈ R.

Lemma 2.5. ([33, Lem. 2.2]) Suppose A is pseudo-monotone in VI(A,C) (1). Then
S is closed, convex and M(A,C) = S, where M(A,C) := {x ∈ C : 〈Ay, y − x〉 ≥
0, ∀y ∈ C}.

We remark that the definition of M(A,C) in Lemma 2.5 differs from the definition of
S in VI(A,C) (1). Observe that this change is necessary when considering pseudo-
monotone rather than monotone variational inequalities. Using Definition (1) would
make all fixed points solutions to the variational inequalities. For example, consider
VI(A,C) where A = d/dx[− cos(x)] with C = [−π, π].

Definition 2.6. A sequence {xn} in H is said to converge weakly to p ∈ H if

∀z ∈ H, lim
n→∞
〈xn, z〉 = 〈p, z〉.

Lemma 2.7. ([37]) Let C be a nonempty set of H and {xn} be a sequence in H
such that the following two conditions hold:
(i) for any x ∈ C, limn→∞ ‖xn − x‖ exists;
(ii) every sequential weak cluster point of {xn} is in C.
Then {xn} converges weakly to a point in C.
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Definition 2.8. A sequence {xn} is Fejér monotone with respect to a set S if each
point in the sequence is not strictly farther from any point in S than its predecessor.
In other words,

‖xn+1 − z‖ ≤ ‖xn − z‖,∀z ∈ S.

Definition 2.9. Suppose a sequence {xn} in H converges in norm to x∗ ∈ H. We

say that {xn} converges to x∗ R-linearly if lim supn→∞ ‖xn−x∗‖
1
n < 1. We say that

{xn} converges to x∗ Q-linearly if there exists µ ∈ (0, 1) such that ‖xn+1 − x∗‖ ≤
µ‖xn − x∗‖ for all sufficiently large n. It is well known that Q-linear convergence
implies R-linear convergence, but the reverse implication is not true.

3 Proposed Methods

In this section, we introduce our projection-type method with alternated inertial
extrapolation step and give some discussions.

Assumption 3.1. In this section and the next, let us assume that the following
assumptions are satisfied:

(a) The feasible set C is a nonempty, closed, and convex subset of H.

(b) A : H → H is pseudo-monotone, sequentially weakly continuous and L-
Lipschitz-continuous.

(c) The solution set S of VI(A,C) (1) is nonempty.

Assumption 3.2. For the first proposed method, we assume that the iterative
parameters satisfy these conditions:

(a) γ ∈ (0, 2)

(b) 0 ≤ αn ≤ α < 2−γ
γ

(c) λ ∈ (0, 1
L

)

Now, our first proposed method is introduced.
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Algorithm 1 Inertial Projection Method with Fixed Step-size

1: Choose the iterative parameters αn, γ and λ such that Assumption 3.2 hold. Let
x0, x1 ∈ H be given starting points. Set n := 1.

2: Compute

wn =

{
xn, n = even
xn + αn(xn − xn−1), n = odd.

and

yn := PC(wn − λAwn). (12)

If ‖wn − yn‖ = 0 or ‖Ayn‖ = 0, STOP. Otherwise
3: Compute

dn = wn − yn − λ(Awn − Ayn), ∀n ≥ 1. (13)

4: Compute

xn+1 = wn − γηndn, n ≥ 1, (14)

where {ηn} is given by

ηn =

{
〈wn−yn,dn〉
‖dn‖2 , dn 6= 0

0, dn = 0.

5: Set n← n+ 1, and go to 2.

Remark 3.3.
(a) We give some intuition for Step 3 (Equation 13) of Algorithm 1. This step
can be considered a weighted average of (wn − yn ∼ λAwn) and a hypothetical
(w′n − y′n ∼ λAw′n) where w′n = wn − λAwn and y′n = yn − λAyn. This looks similar
to Heun’s method or ”improved” Euler from numerical methods for ODEs (please
see [40, page 328] for more details).

(b) From Algorithm 1, we have that xn ∈ H and yn ∈ C. In Step 4 of Algorithm 1,
ηn is the vector projection of (wn − yn) onto the direction dn. Thus, large steps
in the direction dn are only taken if dn and the vanilla projected gradient direction
agree.

(c) Algorithm 1 requires, at each iteration, only one projection onto the feasible set
C and it is different from other methods in [8, 9, 10, 11, 13, 29, 45] where more than
one projection per iteration is needed.

(d) Our proposed Algorithm 1 allows the inertial factor αn ≥ 1 (e.g., take γ = 1
2
)

which is not allowed in many other proposed projection-type methods with inertial
extrapolation step in the literature, where αn < 1 (see, for example, [14, 15, 41]).
In fact, in our method, one can choose αn > 1 (when γ < 1). This brings novelty

8



and state of the art contributions to inertial projection-type methods for solving
VI(A,C) (1) in terms of empirical convergence rate (as confirmed by the numerical
examples in Section 6). ♦

In the case when the Lipschitz constant L of A is not available, we propose the
following method with adaptive step-size.

Algorithm 2 Inertial Projection Method with Adaptive Step-size

1: Choose the iterative parameters αn, γ such that Assumption 3.2 (a)-(b) hold,
µ ∈ (0, 1) and λ1 > 0. Let x0, x1 ∈ H be given starting points. Set n := 1.

2: Compute

wn =

{
xn, n = even
xn + αn(xn − xn−1), n = odd.

and

yn := PC(wn − λnAwn), (15)

where

λn+1 =

{
min

{
µ‖wn−yn‖
‖Awn−Ayn‖ , λn

}
, Awn 6= Ayn

λn, otherwise.
(16)

If ‖wn − yn‖ = 0 or ‖Ayn‖ = 0, STOP. Otherwise
3: Compute

dn = wn − yn − λn(Awn − Ayn), ∀n ≥ 1. (17)

4: Compute

xn+1 = wn − γηndn, n ≥ 1, (18)

where {ηn} is given by

ηn =

{
〈wn−yn,dn〉
‖dn‖2 , dn 6= 0

0, dn = 0.

5: Set n← n+ 1, and go to 2.

Remark 3.4. Note that by (16), λn+1 ≤ λn, ∀n ≥ 1. Also, observe in Algorithm
2 that if Awn 6= Ayn, then

µ‖wn − yn‖
‖Awn − Ayn‖

≥ µ

L

‖wn − yn‖
‖wn − yn‖

=
µ

L

which implies that 0 < min
{
λ1,

µ
L

}
≤ λn ∀n ≥ 1. This means that lim

n→∞
λn exists.

Thus, there exists λ > 0 such that lim
n→∞

λn = λ.
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4 Convergence Analysis

Next, we show that the sequence {xn} generated by our Algorithm 1 and Algorithm 2
converges weakly to a point in S under Assumptions 3.1 and 3.2. To achieve this,
we first establish some lemmas below.

Lemma 4.1. Suppose {xn} is generated by Algorithm 1. Then under under Assump-
tions 3.1 and 3.2, {x2n} is Fejér monotone with respect to S and lim

n→∞
‖x2n − x∗‖

exists, where x∗ ∈ S, the solution set of VI(A,C) (1).

Proof. Choose x∗ ∈ S. Then

x2n+2 = w2n+1 − γη2n+1d2n+1,

d2n+1 = w2n+1 − y2n+1 − λ(Aw2n+1 − Ay2n+1)

and

η2n+1 =

{
〈w2n+1−y2n+1,d2n+1〉

‖d2n+1‖2 , d2n+1 6= 0

0, d2n+1 = 0.

So,

‖x2n+2 − x∗‖2 = ‖w2n+1 − γη2n+1d2n+1 − x∗‖2

= ‖(w2n+1 − x∗)− γη2n+1d2n+1‖2

= ‖w2n+1 − x∗‖2 − 2γη2n+1〈w2n+1 − x∗, d2n+1〉
+γ2η22n+1‖d2n+1‖2. (19)

Note that

〈w2n+1 − x∗, d2n+1〉 = 〈w2n+1 − y2n+1, d2n+1〉+ 〈y2n+1 − x∗, d2n+1〉. (20)

By y2n+1 = PC(w2n+1 − λAw2n+1) and property (10), we get (since x∗ ∈ S)

〈y2n+1 − x∗, w2n+1 − y2n+1 − λAw2n+1〉 ≥ 0. (21)

By the pseudomonotonicity of A:

〈Ay2n+1, y2n+1 − x∗〉 ≥ 0. (22)

〈Ax∗, y2n+1 − x∗〉 ≥ 0 (see Equation (1)) and λ > 0, therefore,

〈λAy2n+1, y2n+1 − x∗〉 ≥ 0. (23)

Adding (21) and (23), we obtain

〈y2n+1 − x∗, w2n+1 − y2n+1 − λAw2n+1 + λAy2n+1〉 ≥ 0.

i.e.,

〈y2n+1 − x∗, d2n+1〉 ≥ 0. (24)
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Combining (20) and (24) gives

〈w2n+1 − x∗, d2n+1〉 ≥ 〈w2n+1 − y2n+1, d2n+1〉. (25)

Put (25) into (19)
(

noting that η2n+1 = 〈w2n+1−y2n+1,d2n+1〉
‖d2n+1‖2

)
:

‖x2n+2 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 − 2γη2n+1〈w2n+1 − y2n+1, d2n+1〉+ γ2η22n+1‖d2n+1‖2

= ‖w2n+1 − x∗‖2 − 2γη2n+1〈w2n+1 − y2n+1, d2n+1〉
+γ2η2n+1〈w2n+1 − y2n+1, d2n+1〉

= ‖w2n+1 − x∗‖2 − γ(2− γ)η2n+1〈w2n+1 − y2n+1, d2n+1〉. (26)

Observe that

η2n+1〈w2n+1 − y2n+1, d2n+1〉 = ‖η2n+1d2n+1‖2

=
1

γ2
‖x2n+2 − w2n+1‖2. (27)

From (26) and (27), we get

‖x2n+2 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 −
(2− γ)

γ
‖x2n+2 − w2n+1‖2. (28)

Now, by Lemma 2.4 (iii), we get

‖w2n+1 − x∗‖2 = ‖x2n+1 + α2n+1(x2n+1 − x2n)− x∗‖2

= ‖(1 + α2n+1)(x2n+1 − x∗)− α2n+1(x2n − x∗)‖2

= (1 + α2n+1)‖x2n+1 − x∗‖2 − α2n+1‖x2n − x∗‖2

+α2n+1(1 + α2n+1)‖x2n+1 − x2n‖2. (29)

By following the same line of argument in obtaining (28), one can show:

‖x2n+1 − x∗‖2 ≤ ‖w2n − x∗‖ −
(2− γ)

γ
‖x2n+1 − w2n‖2

= ‖x2n − x∗‖2 −
(2− γ)

γ
‖x2n+1 − x2n‖2. (30)

Using (30) and (29):

‖w2n+1 − x∗‖2 ≤ (1 + α2n+1)

[
‖x2n − x∗‖2 −

2− γ
γ
‖x2n+1 − x2n‖2

]
−α2n+1‖x2n − x∗‖2 + α2n+1(1 + α2n+1)‖x2n+1 − x2n‖2

= ‖x2n − x∗‖2 − (1 + α2n+1)

(
2− γ
γ
− α2n+1

)
‖x2n+1 − x2n‖2.(31)

Using (31) in (28), we have

‖x2n+2 − x∗‖2 ≤ ‖x2n − x∗‖2 − (1 + α2n+1)

(
2− γ
γ
− α2n+1

)
‖x2n+1 − x2n‖2
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−(2− γ)

γ
‖x2n+2 − w2n+1‖2. (32)

Since α2n ≤ α < 2−γ
γ
, we get from (32) that

‖x2n+2 − x∗‖ ≤ ‖x2n − x∗‖.

This implies that {‖x2n−x∗‖} and {x2n} are bounded. Furthermore, limn→∞ ‖x2n−
x∗‖ exists.

Lemma 4.2. Suppose {xn} and {yn} are generated by Algorithm 1. Then under
under Assumptions 3.1 and 3.2, lim

n→∞
‖x2n − y2n‖ = 0.

Proof. Rearranging (32) and using the fact that ‖x2n − x∗‖ is bounded, we get

lim
n→∞

‖x2n − x2n+1‖ = 0. (33)

Now,

‖d2n‖ = ‖w2n − y2n − λ(Aw2n − Ay2n)‖
≤ ‖w2n − y2n‖+ λ‖Aw2n − Ay2n‖
≤ (1 + λL)‖w2n − y2n‖.

This means

1

‖d2n‖
≥ 1

(1 + λL)‖w2n − y2n‖
. (34)

Now

〈w2n − y2n, d2n〉 = 〈w2n − y2n, w2n − y2n − λ(Aw2n − Ay2n)〉
= ‖w2n − y2n‖2 − 〈w2n − y2n, λ(Aw2n − Ay2n)〉
≥ ‖w2n − y2n‖2 − λL‖w2n − y2n‖2

= (1− λL)‖w2n − y2n‖2. (35)

Using (34) and (35),

‖x2n+1 − w2n‖ = γη2n‖d2n‖ = γ
〈w2n − y2n, d2n〉

‖d2n‖

≥ γ
1− λL
1 + λL

‖w2n − y2n‖. (36)

Using (33) in (36), we get (noting that w2n = x2n)

lim
n→∞

‖x2n − y2n‖ = 0.

We develop the technique in [43] to obtain the following result.
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Lemma 4.3. Assume that {xn} is generated by Algorithm 1. Let p ∈ H denote the
weak limit of the subsequence {x2nk

} of {x2n}. Then p ∈ S.

Proof. Since {x2n} is bounded by Lemma 4.1, then there exits a subsequence {x2nk
} ⊂

{x2n} such that x2nk
⇀ p ∈ H. Using the definition of y2nk

and (10) (noting that
w2n = x2n), we have

〈x2nk
− λAx2nk

− y2nk
, x− y2nk

〉 ≤ 0, ∀x ∈ C,

and so
1

λ
〈x2nk

− y2nk
, x− y2nk

〉 ≤ 〈Ax2nk
, x− y2nk

〉, ∀x ∈ C.

Hence,

1

λ
〈x2nk

− y2nk
, x− y2nk

〉+ 〈Ax2nk
, y2nk

− x2nk
〉 ≤ 〈Ax2nk

, x− x2nk
〉, ∀x ∈ C. (37)

Fixing x ∈ C and letting k → ∞ in (37), we get (noting limk→∞ ‖x2nk
− y2nk

‖ = 0
by Lemma 4.2), we obtain

0 ≤ lim inf
k→∞

〈Ax2nk
, x− x2nk

〉, ∀x ∈ C. (38)

Let us choose a decreasing sequence {εk} ⊂ (0,∞) such that lim
k→∞

εk = 0. For each

εk, we denote by Nk the smallest positive integer such that〈
Ax2nj

, x− x2nj

〉
+ εk ≥ 0 ∀j ≥ Nk, (39)

where the existence of Nk follows from (38). Since {εk} is decreasing, then {Nk} is
increasing. Also, for each k, Ax2Nk

6= 0 and, setting

v2Nk
=

Ax2Nk

‖Ax2Nk
‖2
,

one gets 〈Ax2Nk
, v2Nk

〉 = 1 for each k. Then by (39), we have for each k

〈Ax2Nk
, x+ εkv2Nk

− x2Nk
〉 ≥ 0.

By the fact that A is pseudo-monotone, we get

〈A(x+ εkv2Nk
), x+ εkv2Nk

− x2Nk
〉 ≥ 0. (40)

Since {x2nk
} converges weakly to p as k → ∞ and A is sequentially weakly con-

tinuous on H, we have that {Ax2nk
} converges weakly to Ap. Suppose Ap 6= 0

(otherwise, p ∈ S). Then by the sequentially weakly lower semicontinuity of norm,
we get

0 < ‖Ap‖ = lim inf
k→∞

‖Ax2nk
‖.

Since {xNk
} ⊂ {xnk

} and εk → 0 as k →∞, we get

0 ≤ lim sup
k→∞
‖εkv2Nk

‖ = lim sup
k→∞

( εk
‖Ax2nk

‖

)
13



≤ lim supk→∞ εk
lim infk→∞ ‖Ax2nk

‖
≤ 0

‖Ap‖
= 0,

and this means limk→∞ ‖εkv2Nk
‖ = 0. Passing the limit k →∞ in (40), we get

〈Ax, x− p〉 ≥ 0.

In view of Lemma 2.5, this implies p ∈ S.

Theorem 4.4. Suppose {xn} is generated by Algorithm 1. Then under under As-
sumptions 3.1 and 3.2, {xn} converges weakly to a point in S.

Proof. Since {x2n} is bounded by Lemma 4.1, then {x2n} has weakly convergent
subsequences. Suppose p ∈ H denotes the weak limit of such a subsequence {x2nk

}
of {x2n}. By Lemma 4.3, we have p ∈ S. Also, by Lemma 4.1, we get lim

n→∞
‖x2n− p‖

exists. It now follows from Lemma 2.7 that the whole sequence {x2n} converges
weakly to a point in S. Suppose {x2n} converges weakly to p ∈ S and {x2n}
converges weakly to q ∈ S. Then

‖p− q‖2 = 〈p− q, p− q〉
= 〈p, p− q〉 − 〈q, p− q〉
= lim

n→∞
〈x2n, p− q〉 − lim

n→∞
〈x2n, p− q〉

= lim
n→∞
〈x2n − x2n, p− q〉 = 0.

Thus, the weak limit p is unique. By definition, we have that for all z ∈ H,

lim
n→∞
〈x2n − p, z〉 = 0.

Furthermore, by (33), we have for all z ∈ H,

|〈x2n+1 − p, z〉| = |〈x2n+1 − p+ x2n − x2n, z〉|
≤ |〈x2n − p, z〉|+ |〈x2n+1 − x2n, z〉|
≤ |〈x2n − p, z〉|+ ‖x2n+1 − x2n‖‖z‖ → 0, n→∞.

Therefore, {x2n+1} converges weakly to p in S. Hence, {xn} converges weakly to a
point p ∈ S.

The following remarks are in order.

Remark 4.5.
(a) Our results in Lemma 4.1, Lemma 4.2, Lemma 4.3 and Theorem 4.4 still hold
when λ > 0 in Algorithm 1 is replaced with λn such that

0 < inf
n≥1

λn ≤ sup
n≥1

λn <
1

L
.

(b) In the convergence analysis in this paper, we do not assume that condition

0 ≤ lim inf
n→∞

〈Axn, z − xn〉,∀z ∈ C

14



assumed by Ceng et al. [9] and Yao and Postolache [45] for VI(A,C) (1) with A
being pseudo-monotone. Also, there is one computation of projection per iteration
in our proposed methods unlike Ceng et al. [9] and Yao and Postolache [45], where
their methods involved twice computations of projection per iterations. This is an
improvement over the results [9, 45].

(c) The assumptions imposed on the iterative parameters given in Assumption 3.2
appear simpler and easier than the assumption imposed on inertial projection method
introduced by Dong et al. [15]. Also we do not need the inertial factor {αn} to be
monotone nondecreasing in our result.

(d) Lemma 4.1 proves that our proposed method produces the Fejér monotonicity
of iterates with respect to the solution unlike the other inertial projection methods
in [14, 15, 41] and other related papers.

In the light of above Remark 3.4, we give the following result.

Theorem 4.6. Let {xn} be generated by Algorithm 2. Then under Assumptions 3.1
and 3.2 (a)-(b), {xn} converges weakly to a point in S.

Proof. Let x∗ ∈ S . Replacing λ with λn in Lemma 4.1, one can easily obtain that
{x2n} is Fejér monotone with respect to S and lim

n→∞
‖x2n − x∗‖ exists. Furthermore,

by Algorithm 2, we get

‖d2n‖ = ‖w2n − y2n − λ2n(Aw2n − Ay2n)‖
≤ ‖w2n − y2n‖+ λ2n‖Aw2n − Ay2n‖

≤
(

1 +
λ2nµ

λ2n+1

)
‖w2n − y2n‖.

So,

1

‖d2n‖
≥ 1(

1 + λ2nµ
λ2n+1

)
‖w2n − y2n‖

. (41)

Also, using similar ideas as in (35), we get

〈w2n − y2n, d2n〉 = 〈w2n − y2n, w2n − y2n − λ2n(Aw2n − Ay2n)〉
= ‖w2n − y2n‖2 − 〈w2n − y2n, λ2n(Aw2n − Ay2n)〉
≥ ‖w2n − y2n‖2 − λ2n‖Aw2n − Ay2n‖‖w2n − y2n‖

≥ ‖w2n − y2n‖2 −
λ2nµ

λ2n+1

‖w2n − y2n‖2

=
(

1− λ2nµ

λ2n+1

)
‖w2n − y2n‖2. (42)

By (41) and (42), we get

‖x2n+1 − w2n‖ = γη2n‖d2n‖

= γ
〈w2n − y2n, d2n〉

‖d2n‖
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≥ γ
[(1− λ2nµ

λ2n+1

)
(

1 + λ2nµ
λ2n+1

)]‖w2n − y2n‖. (43)

By (33), we get from (43) (noting that limn→∞ λn = λ and w2n = x2n)

lim
n→∞

‖x2n − y2n‖ = 0.

The remaining part of the proof follows the same arguments as in Lemma 4.3 and
Theorem 4.4.

5 Linear Convergence

In a special case when the operator A in VI(A,C) (1) is δ-strongly pseudo-monotone,
then Step 3 and Step 4 in Algorithm 1 and Algorithm 2 are not needed to obtain
convergence. We propose the following method for the case when A is δ-strongly
pseudo-monotone.

Algorithm 3 Inertial Projection Method for Strongly Pseudo-monotone

1: Define q := 1√
1+λ(2δ−λL2)

, where 0 < λ < 2δ
L2 . Choose the iterative parameter α

such that 0 ≤ α ≤ 1−q
1+q

. Let x0, x1 ∈ H be given starting points. Set n := 1.
2: Compute

wn =

{
xn, n = even
xn + α(xn − xn−1), n = odd.

and

xn+1 = PC(wn − λAwn). (44)

3: Set n← n+ 1, and go to 2.

Our focus here is to give theoretical linear rate of convergence of our proposed
Algorithm 3. Using Algorithm 3, we have the following result

Theorem 5.1. Suppose {xn} is generated by Algorithm 3. If A is δ-strongly pseudo-
monotone on H, then {xn} converges at least R-linearly to the unique solution x∗

of VI(A,C) (1) and

‖xn − x∗‖ ≤

{
‖x2−x∗‖

q
q

n
2 , n = even

‖x2−x∗‖
q

q
n−1
2 , n = odd

Proof. By Algorithm 3, we have

xn+1 = PC(wn − λAwn),∀n ≥ 1

and by (10), we get

〈wn − λAwn − xn+1, u− xn+1〉 ≤ 0,∀u ∈ C. (45)
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In particular, from (45), we obtain

〈wn − λAwn − xn+1, x
∗ − xn+1〉 ≤ 0.

Thus,
2〈wn − xn+1, x

∗ − xn+1〉 ≤ 2λ〈Awn, x∗ − xn+1〉. (46)

Since x∗ ∈ S, we get 〈Ax∗, y − x∗〉 ≥ 0,∀y ∈ C. Using the strong pseudo-
monotonicity of A, we have 〈Ay, y−x∗〉 ≥ δ‖y−x∗‖2,∀y ∈ C. Using Cauchy-schwarz
inequality, the Lipschitz continuity of A and the inequality 2ab ≤ a2 + b2, a, b ∈ H,
we get

2λ〈Awn, x∗ − xn+1〉 = −2λ〈Axn+1, xn+1 − x∗〉
+2λ〈Awn − Axn+1, x

∗ − xn+1〉
≤ −2λδ‖xn+1 − x∗‖2 + 2λ‖Awn − Axn+1‖‖xn+1 − x∗‖
≤ −2λδ‖xn+1 − x∗‖2 + 2λL‖wn − xn+1‖‖xn+1 − x∗‖
≤ −2λδ‖xn+1 − x∗‖2 + ‖wn − xn+1‖2

+(λL)2‖xn+1 − x∗‖2. (47)

On the other hand, observe that

2〈wn − xn+1, x
∗ − xn+1〉 = ‖wn − xn+1‖2

+‖x∗ − xn+1‖2 − ‖(wn − xn+1)− (x∗ − xn+1)‖2

= ‖wn − xn+1‖2 + ‖xn+1 − x∗‖2 − ‖wn − x∗‖2. (48)

Putting (47) and (48) into (46), we get

‖wn − xn+1‖2 + ‖xn+1 − x∗‖2 − ‖wn − x∗‖2 ≤
−2λδ‖xn+1 − x∗‖2 + ‖wn − xn+1‖2 + (λL)2‖xn+1 − x∗‖2.

Therefore, for all n ≥ 1,[
1 + λ(2δ − λL2)

]
‖xn+1 − x∗‖2 ≤ ‖wn − x∗‖2. (49)

Thus,

‖xn+1 − x∗‖2 ≤
1[

1 + λ(2δ − λL2)
]‖wn − x∗‖2

= q2‖wn − x∗‖2,∀n ≥ 1. (50)

Now,

‖w2n+1 − x∗‖2 = ‖x2n+1 + α(x2n+1 − x2n)− x∗‖2

= ‖(1 + α)(x2n+1 − x∗)− α(x2n − x∗)‖2

= (1 + α)‖x2n+1 − x∗‖2 − α‖x2n − x∗‖2

+α(1 + α)‖x2n+1 − x2n‖2. (51)
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Putting n = 2n in (50), we obtain

‖x2n+1 − x∗‖2 ≤ q2‖w2n − x∗‖2 = q2‖x2n − x∗‖2. (52)

Again putting n = 2n+ 1 in (50) and using both (51) and (52), we have

‖x2n+2 − x∗‖2 ≤ q2‖w2n+1 − x∗‖2

= q2
[
(1 + α)‖x2n+1 − x∗‖2 − α‖x2n − x∗‖2 + α(1 + α)‖x2n+1 − x2n‖2

]
≤ q2

[
q2(1 + α)‖x2n − x∗‖2 − α‖x2n − x∗‖2 + α(1 + α)‖x2n+1 − x2n‖2

]
≤ q2

[
q2(1 + α)‖x2n − x∗‖2 − α‖x2n − x∗‖2 + α(1 + α)(‖x2n+1 − x∗‖+ ‖x2n − x∗‖)2

]
≤ q2

[
q2(1 + α)‖x2n − x∗‖2 − α‖x2n − x∗‖2 + α(1 + α)(1 + q)2‖x2n − x∗‖2

]
= q2

[
q2(1 + α)− α + α(1 + α)(1 + q)2

]
‖x2n − x∗‖2

≤ q2‖x2n − x∗‖2. (53)

By (53), we have

‖x2n+2 − x∗‖ ≤ q‖x2n − x∗‖
≤ q2‖x2n−2 − x∗‖
...

≤ qn‖x2 − x∗‖, ∀n ≥ 1. (54)

This implies that

‖x2n − x∗‖ ≤
‖x2 − x∗‖

q
qn, ∀n ≥ 1. (55)

Using (55) in (52), we have

‖x2n+1 − x∗‖ ≤ q‖x2n − x∗‖ ≤ ‖x2n − x∗‖

≤ ‖x2 − x∗‖
q

qn, ∀n ≥ 1. (56)

It follows from (55) and (56) that {xn} converges R-linearly to x∗ and the desired
conclusion is obtained.

The following result gives priori and posteriori error estimates of the subsequences
generated by Algorithm 3.

Theorem 5.2. Suppose {xn} is generated by Algorithm 3. If A is δ-strongly pseudo-
monotone, then
(i)

‖x2n+2 − x∗‖ ≤
qn

1− q
‖x2 − x4‖, ∀n ≥ 1

and
‖x2n+2 − x∗‖ ≤

q

1− q
‖x2n − x2n+2‖, ∀n ≥ 1;
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(ii)

‖x2n+1 − x∗‖ ≤
qn−1

1− q
‖x2 − x4‖, ∀n ≥ 1.

and
‖x2n+1 − x∗‖ ≤

q

1− q
‖x2n − x2n+2‖, ∀n ≥ 1.

Proof. Observe that

‖x2n − x∗‖ ≤ ‖x2n − x2n+2‖+ ‖x2n+2 − x∗‖
≤ ‖x2n − x2n+2‖+ q‖x2n − x∗‖, ∀n ≥ 1. (57)

Therefore,

‖x2n − x∗‖ ≤
1

1− q
‖x2n − x2n+2‖, ∀n ≥ 1. (58)

From (54) and (58), we get

‖x2n+2 − x∗‖ ≤ qn‖x2 − x∗‖

≤ qn

1− q
‖x2 − x4‖, ∀n ≥ 1. (59)

By (54) and (58), we get

‖x2n+2 − x∗‖ ≤ q‖x2n − x∗‖
≤ q

1− q
‖x2n − x2n+2‖, ∀n ≥ 1. (60)

Hence, (i) is established.

By (54), we get

q‖x2n − x∗‖ ≤ qn‖x2 − x∗‖, ∀n ≥ 1. (61)

Thus
‖x2n − x∗‖ ≤ qn−1‖x2 − x∗‖, ∀n ≥ 1. (62)

Using (56) and (58), we get

‖x2n+1 − x∗‖ ≤
qn−1

1− q
‖x2 − x4‖, ∀n ≥ 1. (63)

Also, (52) and (58) imply that

‖x2n+1 − x∗‖ ≤ q‖x2n − x∗‖
≤ q

1− q
‖x2n − x2n+2‖. (64)

This establishes (ii).
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Corollary 5.3. Suppose {xn} is generated by Algorithm 3. If A is δ-strongly mono-
tone, then {xn} converges at least R-linearly to the unique solution x∗ of VI(A,C)
(1) and

‖xn − x∗‖ ≤

{
‖x2−x∗‖

q
q

n
2 , n = even

‖x2−x∗‖
q

q
n−1
2 , n = odd

Consequently, the error estimates given in Theorem 5.2 are fulfilled.

Remark 5.4. (a) It has been shown quite recently in [3] that if wn = xn + α(xn −
xn−1),∀n ≥ 1 in Algorithm 3, then linear convergence cannot be guaranteed. This
implies that the convergence rate for projection method with vanilla inertial extrap-
olation step is worse than the projection method without inertial step when the cost
function is strongly-pseudomonotone. In our proposed method in Algorithm 3, we
modify the inertial extrapolation step wn so that linear convergence is obtained.

(b) The results in this section reduce to the results of [24] when α = 0 in Algorithm 3.

(c) Algorithm 3 performs well on a strongly monotone variational inequality by
Theorem 5.1 since every strongly monotone variational inequality is strongly pseudo-
monotone varaiational inequality. ♦

6 Numerical Examples

In this section, we provide many computational experiments and compare our pro-
posed methods considered in Section 3 with some existing methods in the literature.
All codes were written in MATLAB R2019a and performed on a PC Desktop In-
tel(R) Core(TM) i7-6600U CPU @ 2.60GHz 2.81 GHz, RAM 16.00 GB.

In all these examples below, we give numerical comparisons of our proposed Algo-
rithm 1 with the methods of Cholamjiak et.al (Prasit Alg.) in [14], Dong et.al (Dong
Alg.) in [15], Shehu et.al (Shehu Alg.) in [39] and Thong et.al (Thong Alg.) in [41].
In all the numerical implementations, we consider different values of γ ∈ (0, 2).

Example 6.1. Define A : Rm → Rm by

Ax =
(
e−x

TQx + β
)

(Px+ q),

where Q is a positive definite matrix (i.e, xTQx ≥ θ‖x‖2 ∀x ∈ Rm), P is a posi-
tive semi-definite matrix, q ∈ Rm and β > 0. Observe that A is differentiable and
there exists M > 0 such that ‖∇Ax‖ ≤ M,x ∈ Rm. Therefore, by the Mean Value
Theorem A is Lipschitz continuous. Also, A is pseudo-monotone but not monotone
(see, e.g., [6, Example 2.1]). This is a popular numerical example for variational
inequalities with pseudo-monotone cost function. This example shows that the class
of pseudo-monotone variational inequalities properly contains the class of monotone
variational inequalities and has been considered by many authors (see, e.g., [6]).

Take C := {x ∈ Rm|Bx ≤ b}, where B is a matrix of size l∗ ×m and b ∈ Rl∗
+ with

l∗ = 10. Let us take x0 = (1, 1, ..., 1)T and x1 is generated randomly in Rm. We
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choose αn = 2−γ
1.01γ

, µ = 0.05, β = 0.01 and λ1 = 0.5 in Algorithm 2.

In this example, we use the stopping criterion ‖yn − wn‖ < 10−5 and the step-size
{λn} is generated by (16).

Table 1: Example 6.1 Proposed Algorithm 2 with different values of γ

m = 100 m = 200 m = 300 m = 400

γ CPU Iter. CPU Iter. CPU Iter. CPU Iter.

0.25 0.0408 6 0.0811 7 0.1260 7 0.2571 7

0.5 0.0419 6 0.0689 6 0.1055 6 0.2643 7

1 0.1130 6 0.2987 8 0.3234 6 0.4348 6

1.25 0.1075 6 0.2429 7 0.3931 7 0.9591 8

1.5 0.0881 6 0.2094 7 0.3957 7 0.4079 7

Table 2: Example 6.1 Comparison: Proposed Alg. 2, Prasit et.al Alg., Dong et.al
Alg., and Shehu et.al Alg. with γ = 0.6

m = 80 m = 120

CPU (10−2) Iter. CPU (10−2) Iter.

Proposed Alg. 1 5.8005 6 9.2460 6

Prasit et.al Alg. 66.8240 14 103.6800 13

Dong et.al Alg. 20.1870 8 20.8320 8

Shehu et.al Alg. 143.4200 26 258.3300 28
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Figure 1: Example 6.1: γ = 0.25,
m = 100

1 2 3 4 5 6 7 8
10-8

10-6

10-4

10-2

100

102

Figure 2: Example 6.1: γ = 0.5, m = 200
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Figure 3: Example 6.1: γ = 1.25,
m = 300
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Figure 4: Example 6.1: γ = 1.5, m = 400
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Figure 5: Example 6.1 Comparison:
γ = 0.6, m = 80
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Figure 6: Example 6.1 Comparison:
γ = 0.6, m = 120
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Example 6.2. Define Ax = Mx+ q, with M = BTB+S+D, where S,D ∈ Rm×m

are randomly generated matrices such that S is skew-symmetric (hence it does not
arise from an optimization problem), D is a positive definite diagonal matrix (hence
the variational inequalities has a unique solution) and q = 0. Suppose the feasible
set C := {x ∈ Rm|Bx ≤ b}, for some random matrix B ∈ Rm×k and random
vector b ∈ Rk with non-negative entries. The unique solution of VI(A,C) (1) here
is x∗ = {0}. Here, the Lipschitz constant L = ‖M‖, αn = 2−γ

1.01γ
and λn = λ = 1

1.05L

in Algorithm 1. We generate x0, x1 randomly in Rm. We use the stopping criterion
‖xn − x∗‖ < 10−3.

Table 3: Example 6.2 Proposed Algorithm 1 with different values of γ

m = 30 m = 50

γ CPU Iter. CPU Iter.

0.25 10.8625 1026 28.9645 2250

0.5 9.7527 963 25.0423 1944

1 9.7189 858 19.2209 1550

1.25 7.7424 670 15.0703 1242

1.5 7.7202 681 13.9887 1158

Table 4: Example 6.2 Comparison: Alg. 1, Prasit et.al Alg., Shehu et.al Alg. and
Thong et.al Alg. for k = 20

m = 30 m = 50 m = 70

CPU Iter. CPU Iter. CPU Iter.

Proposed Alg. 1 5.1326 549 23.1849 1175 26.2597 1690

Prasit et.al Alg. 6.4600 726 38.6367 1412 29.7394 1988

Shehu et.al Alg. 203.2958 29487 1404.8401 81893 2519.2316 172916

Thong et.al Alg. 66.6438 7696 153.6271 10960 216.6621 13858
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Figure 7: Example 6.2 with different γ:
m = 30
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Figure 8: Example 6.2 with different γ:
m = 50
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Figure 9: Example 6.2
Comparison: m = 30
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Figure 10: Example 6.2
Comparison: m = 50
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Figure 11: Example 6.2
Comparison: m = 70

Example 6.3. Define A ∈ R2×2 by

Ax =

[
0.5x1x2 − 2x2 − 107

−4x1 + 0.1x22 − 107

]
and C = {(x1, x2) ∈ R2 | (x1 − 2)2 + (x2 − 2)2 ≤ 1} Then A is pseudomonotone
but not monotone with Lipschitz constant L = 5 The unique solution of VI(A,C)
(1) is x∗ = (2.707, 2.707)T . We take αn = 2−γ

4γ
and x0, x1 are randomly generated in

Algorithm 1.

We use the stopping criterion ‖xn − x∗‖ < 10−3 for proposed Algorithm 1 with
the different choices of step-size λ ∈ (0, 1

5
) and γ.
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Table 5: Example 6.3 Proposed Algorithm 1 with different values of λ

λ = 0.01 λ = 0.1 λ = 0.15

γ CPU (10−5) Iter. CPU (10−5) Iter. CPU (10−5) Iter.

0.25 27.36 14 13.92 12 28.38 14

0.5 16.04 8 10.16 8 13.60 10

1 7.60 3 9.82 6 9.52 6

1.25 17.23 9 17.08 9 18.43 9

1.5 15.08 15 26.08 15 19.72 15

Table 6: Example 6.3 Comparison: Alg. 1, Prasit et.al Alg., Dong et.al Alg., Shehu
et.al Alg. and Thong et.al Alg. for γ = 0.1

λ = 0.01 λ = 0.1 λ = 0.19

CPU (10−4) Iter. CPU (10−4) Iter. CPU (10−4) Iter.

Proposed Alg. 1 2.836 22 3.225 23 3.499 24

Dong et.al Alg. 4.488 50 6.069 62 6.186 66

Prasit et.al Alg. 91.046 879 94.349 879 139.660 1273

Shehu et.al Alg. 324.940 3378 209.64 2211 340.220 3665

Thong et.al Alg. 43.380 639 92.075 1356 2399.400 13131
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Figure 12: Example 6.3
with different γ: λ = 0.01
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Figure 13: Example 6.3
with different γ: λ = 0.1
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Figure 14: Example 6.3
with different γ: λ = 0.15
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Figure 15: Example 6.3
Comparison: λ = 0.01
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Figure 16: Example 6.3
Comparison: λ = 0.1
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Figure 17: Example 6.3
Comparison: λ = 0.19

We check if the choices of γ affect the efficiency of our methods or whether any
choice of γ suffices in our methods. This is why we give Table 1, Table 3 and
Table 5. We also judge the sensitivity to γ by showing the sensitivity to the other
hyperparameter λ in Table 5 and Table 6. In Example 6.1, the optimum choice of
γ is γ = 0.6 using Algorithm 2. In Example 6.2, the optimum choice of γ is γ = 1.5
using Algorithm 1 with λ chosen close to the Lipschitz constant of the cost function.
The optimum choice of γ is γ = 1 in Example 6.3 for λ ∈ (0, 1

L
) using Algorithm 1.

The performance of Thong et al. is worse in Example 6.1. So, we decided not to
add the numerical results for Thong et al. in Example 6.1.

7 Final Remarks

A projection method with alternated inertial extrapolation step is introduced and
studied in this paper for solving variational inequality problems. The Fejér mono-
tonicity, which is lost in many other projection methods with inertial extrapolation
step is regained to some extent (as it appears to be lost in Figures 7, 8, 12, 15, 16,
and 17, but retained in the others) and convergence analysis of the proposed method
is given under some simpler conditions than other inertial projection methods for
solving variational inequality available in the literature. Another contribution in
this paper is that the inertial factor can be chosen bigger than 1 and this might
make our proposed method converges faster than other inertial projection methods
as shown in our numerical examples. Modifications of our result in solving Nash
equilibrium problems would be studied in the future.
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