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Abstract
In the setting of the fractional quantum Hall effect we study the effects of strong, repulsive
two-body interaction potentials of short range. We prove that Haldane’s pseudo-potential
operators, including their pre-factors, emerge as mathematically rigorous limits of such inter-
actions when the range of the potential tends to zero while its strength tends to infinity. In
a common approach the interaction potential is expanded in angular momentum eigenstates
in the lowest Landau level, which amounts to taking the pre-factors to be the moments of
the potential. Such a procedure is not appropriate for very strong interactions, however, in
particular not in the case of hard spheres. We derive the formulas valid in the short-range
case, which involve the scattering lengths of the interaction potential in different angular
momentum channels rather than its moments. Our results hold for bosons and fermions alike
and generalize previous results in [6], which apply to bosons in the lowest angular momen-
tum channel. Our main theorem asserts the convergence in a norm-resolvent sense of the
Hamiltonian on the whole Hilbert space, after appropriate energy scalings, to Hamiltonians
with contact interactions in the lowest Landau level.

1 Introduction

In a seminal paper [1] on the fractional quantum Hall effect1 F.D.M. Haldane introduced
two-body interaction operators (pseudo-potentials) that have Laughlin’s wave functions [5]
as exact eigenstates. In suitable units the latter are the functions

1 A standard reference on the quantum Hall effect is [2]; see also the reviews [3] and [4].
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�L
m(x1, . . . , xN ) = CN ,m

∏

i< j

(zi − z j )
m

∏

i

e−|xi |2/2 (1.1)

where N ≥ 2 is the particle number, the z j = x (1)
j + ix (2)

j ∈ C with x j = (x (1)
j , x (2)

j ) ∈ R
2

are complex coordinates for the particles moving in a two-dimensional plane perpendicular
to a strong magnetic field, m is a positive integer (even for bosons, odd for fermions), and
CN ,m a normalization factor. The bosonic case, considered in [6] in the lowest angular
momentum channel, is in particular relevant for dilute quantum gases in rapid rotation,
where the rotational velocity takes the role of the magnetic field [7,8].

Haldane’s pseudo-potential operators have the form
∑

i �= j

P
(�)
i j (1.2)

whereP(�)
i j , for a nonnegative integer �, is the projector onto states in the lowest Landau level

(LLL) with relative angular momentum � for a pair i j . Recall that N -particle wave functions
in the LLL are functions in L2(R2N ) of the form

�(x1, . . . , xN ) = ψ(z1, . . . , zN )
∏

i

e−|xi |2/2 (1.3)

with analytic functions ψ . They are the lowest energy eigenfunctions of the magnetic kinetic
energy part H (0) of the Hamiltonian (2.2) introduced below. Such a function has relative
angular momentum � with respect to a pair i j if

ψ(z1, . . . , zN ) = (zi − z j )
�ϕ(z1, . . . , zN ) (1.4)

with ϕ depending on zi and z j only in the combination zi + z j . A general analytic functionψ

can be expanded in powers of the difference variable zi−z j with zi+z j and zk , k �= i, j , fixed,

andP(�)
i, j picks out the �th derivativew.r.t. (zi−z j ) at zero, annihilating the other terms. Hence

P
(�)
i, j can be regarded as a zero-range interaction. In fact, as a quadratic form on states in the

LLLwith relative angular momentum≥ �,P(�)
i, j is formally equal to 2π(2��!)−1��δ(xi −x j )

with � = ∇2 the Laplacian [9,10]. A Laughlin wave function �L
m is a zero energy ground

state of (1.2) for all m ≥ � + 1.
The single-particle Hilbert space L2(R2) splits into Landau levels corresponding to the

eigenvalues 4n, n = 0, 1, . . . of the single particle magnetic kinetic energy (2.1). The full N -
particle Hilbert spaceH = L2(R2N ) (or its antisymmetric or symmetric part, for fermions or
bosons respectively) is a direct sum of the space where all particles are in the lowest Landau
level, denoted LLL as above, and its orthogonal complement, where some particles are in
higher Landau levels.

Contrary to (1.2), bona-fide potentials, defined as multiplication operators by measurable
functions of x ∈ R

2, do not leave the LLL invariant but generate also states in higher Landau
levels. In [1] the pseudo-potentials were obtained by expanding the projection onto the lowest
Landau level of a radial interaction potential v(xi − x j ) into angular momentum eigenstates,
i.e, writing

PLLLv(xi − x j )PLLL =
∑

�≥0

〈ϕ�|v|ϕ�〉P(�)
i, j (1.5)

where PLLL is the projector onto the LLL (in all variables) and

ϕ�(z) = (π�!)−1/2z�e−|z|2/2 (1.6)
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450 R. Seiringer , J. Yngvason

the single-particle angular momentum eigenfunctions in the lowest Landau level.2 In the
simplest case, � = 0, the expansion coefficient is essentially the integral

∫
v (except for a

Gaussian factor), and for higher � it is proportional to the 2�thmoment,
∫
r2� v. It is, however,

clear that this is not viable for very strong interaction potentials, in particular not if v has a
genuine hard core so that all its moments are infinite. In order for (1.5) to be meaningful it
is necessary that the quadratic form domain of the multiplication operator v(xi − x j ) has a
nontrivial intersection with the LLL.

To obtain valid formulas in the limit when the range of the interaction tends to zero but its
strength to infinity, it is necessary to take the kinetic energy operator in higher Landau levels
into account. Indeed, the local structure of wave functions in the LLL is quite restricted due
to analyticity. Wave functions with finer structure, avoiding configurations where a bona fide
interaction potential is very large, must necessarily have components also in higher Landau
levels. Although these components may tend to zero as the range tends to zero, the joint
effects of the kinetic and potential energies at length scales much smaller than the magnetic
length3 will leave a trace in the LLL, and lead in particular to a replacement of

∫
v as the

coupling constant in front of (1.2) by a constant proportional to the s-wave scattering length
of v, as rigorously established in [6].

In the present paper we generalize the analysis in [6] to include all angular momentum
channels. This allows in particular also to treat fermions, where only odd angular momenta
occur. To account for the fact that strong, short range interactions may create states with
arbitrarily large energy in ever higherLandau levels it is convenient to consider convergence of
operators in resolvent sense.An elegantway to achieve this uses the concept of	-convergence
[13] which involves resolvents of operators. The resolvents of Hamiltonians with strong
interaction suppress states with very high energy and eventually, in the limit considered, only
states in the LLL survive.

Ourmain theorem states that after suitable �-dependent energy scaling the fullHamiltonian
converges in this sense to a Hamiltonian in the lowest Landau level with the pseudo-potential
interaction operator (1.2) and a definite coupling constant. Generalizing the � = 0 case, the
coupling constant is determined by the �-wave scattering length of v, which can be obtained
from a variational principle. It is essential here to note that the effective Hamiltonian in the
LLL is not obtained by projecting the original Hamiltonian onto the LLL. The effective cou-
pling constants are renormalized by properly taking into account the behavior of the system
at length scales much shorter than the magnetic length. In the limit of zero range/infinite
strength one obtains a Hamiltonian that operates within the LLL with the renormalized cou-
pling constants.

In contrast to [6] we shall mainly focus on strictly two-dimensional systems for simplicity,
but in Sect. 4 we discuss the modifications that are necessary to apply our results to three-
dimensional systems with a confining potential in the third direction. To keep the proofs
simple and transparent, we do not keep track of the N -dependence of our estimates but rather
regard the particle number as fixed. Quantitative, N -dependent estimates as derived in [6]
for � = 0 would also be possible with some additional work. The estimates in [6] are far
from optimal, however, and we leave it as an open problem to improve these estimates and
generalize them to � ≥ 1.

2 The term “pseudo-potentials” is often used for the expansion coefficients in (1.5) rather than the projection
operators (1.2).
3 The magnetic length for a charge e in a field of strength B is

√
�/eB. In our units � = e = 1 and B = 2,

so the magnetic length is 1/
√
2.
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Our results establish the Laughlin functions (1.1) as exact ground states of magnetic
Hamiltonians with interactions through a rigorous limit procedure. We emphasize, however,
that this procedure requires a strong interaction potential of short range. In theoretical studies
of Bose-Einstein condensation in dilute atomic gases [11,12], the interactions between atoms
andmolecules are oftenmodeled by strong repulsive potentials, even as hard spheres, of range
much smaller than the mean particle distance. Such models are prime examples to which our
results apply, the � = 0 case for bosons treated in [6] being the simplest one. The role of the
magnetic field may here be taken over by the angular velocity of a system in rapid rotation
[7,8].

In quantum Hall physics for electrons, on the other hand, the dominant interaction is the
Coulomb interaction between the particles (in addition to external potentials modeling traps
and impurities) and is thus of a different character than in the examples just mentioned.
Numerical studies indicate that Laughlin states may have large overlap with true ground
states in quantum Hall settings (see, e.g., [2], Sect. 8.7), and, in fact, Haldane’s expansion
(1.5) applied to a Coulomb potential produces terms that decrease rapidly with increasing �.
So far, no rigorous justification for the pseudo-potential description in the Coulomb case is
known, however.

2 Model andMain Results

On L2(R2), define the operator h ≥ 0 as

h = (−i∇ − x⊥)2 − 2 (2.1)

where x⊥ = (−x (2), x (1)) for x = (x (1), x (2)) ∈ R
2. It is simply the magnetic Laplacian for

magnetic field B = 2, with its ground state energy shifted to zero, having spectrum 4N∪{0}.
The particle mass has been set to 1/2 and Planck’s constant to 1. For v ≥ 0 radial and of
compact support, and N ≥ 2, define the N -particle Hamiltonian

Ha = H (0) +
∑

1≤i< j≤N

va(|xi − x j |) (2.2)

onH = L2(R2N ), where H (0) = ∑N
i=1 hi is the N -particle magnetic kinetic energy operator

and
va(r) = a−2v(r/a) (2.3)

for a > 0. This scaling appears naturally in our choice of units, reflecting the fact that −∇2

scales like the square of an inverse length. For short-range interactions, the scattering length
is the natural parameter measuring their strength, and the scattering length of va equals a
times the one of v. We are interested in the regime where a is much smaller than the magnetic
length, which is O(1) in our units, i.e., we consider the case a � 1. In particular, the strength
a−2 of the interaction is much larger than the energy gap between Landau levels.4

We assume that v is a non-negative measurable function of compact support, but we don’t
need to assume that v is integrable; in particular, it is allowed to have a hard core, i.e., be
infinite on a set of positive measure. Functions in the domain of the Hamiltonian then vanish

4 Alternatively, we could consider the system for a fixed v (corresponding to the choice a = 1) and subject
to a magnetic field B > 0. Via a rescaling of lengths, the resulting Hamiltonian is then unitarily equivalent to
B/2 times H√

B/2. In other words, the parameter a in (2.2) has the physical interpretation of the ratio of the
scattering length of the interaction potential to the magnetic length.
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452 R. Seiringer , J. Yngvason

on the corresponding set in configuration space. It is not necessary to restrict to symmetric
or anti-symmetric functions, our analysis is valid on the whole Hilbert spaceH = L2(R2N )

and applies equally to bosons and fermions.
We introduce the sequence of closed subspaces

H ⊃ B0 ⊃ B1 ⊃ . . . (2.4)

where B� for � ≥ 0 consists of � ∈ H of the form

�(x1, . . . , xN ) = e− 1
2

∑N
i=1 |xi |2ϕ(z1, . . . , zN )

∏

i< j

(zi − z j )
� (2.5)

with ϕ : C
N → C analytic. Here we identify z j ∈ C with x j = (x (1)

j , x (2)
j ) ∈ R

2 via z j =
x (1)
j +ix (2)

j . Note thatB0 coincideswith the LLL, i.e., the kernel of H (0).We also note that for
large N all normalized wave functions inB� have a remarkable incompressibility property:
their one-particle density, suitably averaged, is everywhere bounded above by (π�)−1 [14–
16].

On the spaceB�, we define the operators

h� =
∑

i< j

D
(�)
i j (2.6)

where D(�) is for � ≥ 0 defined via the quadratic form for a two-particle wave function

�(x1, x2) = e− 1
2 (|x1|2+|x2|2)ϕ(z1, z2)(z1 − z2)� as

〈�|D(�)�〉 =
∫

R2
e−2|x |2 |ϕ(z, z)|2dx (2.7)

and D
(�)
i j acts on an N -particle wave function in B� like D(�) w.r.t. the variables zi , z j if

the others are fixed. Note thatD(�)
i j is a bounded operator; in fact, by comparing expectation

values and using (1.6), one sees that

D
(�)
i j = (π�!)−1P

(�)
i j (2.8)

onB�, with the previously introduced projectionP
(�)
i j on states with relative angular momen-

tum � for a pair i j . Hence h� is equal to (1.2) onB�, up to the factor (π�!)−1. Moreover, the
kernel of h� coincides with B�+1, the domain of h�+1.

Nextwedefine the relevant scattering parameters in arbitrary angularmomentumchannels,
generalizing the approach to the s-wave scattering length in [12, App. C] and [17]. For � ∈ N,
� ≥ 1, define b� via the variational principle

b� = 1

4π�
min

{∫

R2
|x |2� (|∇ f (x)|2 + 1

2v(|x |)| f (x)|2) dx : lim|x |→∞ f (x) = 1

}
. (2.9)

We denote the minimizer by f�. It is radially symmetric, satisfies 0 ≤ f� ≤ 1, and f�(|x |) =
1 − b�/|x |2� for x outside the support of v, i.e., |x | > R0. In particular, b� = R2�

0 for hard
discs. The variational equation (zero-energy scattering equation in the � channel) for the
minimizer reads, with r = |x |,

− f ′′
� (r) − (2� + 1)r−1 f ′

�(r) + 1
2v(r) f�(r) = 0. (2.10)
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For � = 0 the zero energy scattering solution is not bounded but rather grows logarithmically
at infinity. We take R > R0 and define the s-wave scattering length b0 as in [17] by

4π

ln(R2/b20)
= min

{∫

R2

(|∇ f (x)|2 + 1
2v(|x |)| f (x)|2) dx : f (x) = 1 for |x | ≥ R

}
.

(2.11)
As shown in [17], b0 is independent of R; for hard discs b0 = R0.

If v is replaced by va then, by a change of variables in the integrals (2.9) and (2.11), one
sees that b� is replaced by a2�b� for � ≥ 1 and b0 by ab0.

With these definitions, our main result can be formulated as follows.

Theorem 1 For any � ≥ 1, the operator a−2�Ha converges to 8π�b�h� in strong resolvent
sense as a → 0, i.e., for any μ > 0 and ψ ∈ H = L2(R2N )

lim
a→0

(μ + a−2�Ha)
−1ψ = (μ + 8π�b�h�)

−1P�ψ (2.12)

strongly in L2(R2N ), where P� denotes the projection onto B� ⊂ H. Moreover, for � = 0,
ln(1/a2)Ha converges in the same sense to 8πh0.

Remark 1 In Theorem 1 we assume that the interaction potential v is not identically zero. If
it is, we have b� = 0 for all �, and (2.12) trivially holds with P� replaced by P0 in this case.

Remark 2 If one introduces a coupling parameter, i.e., replaces v by λv for λ > 0, one can
explore, in addtion, the regimes of weak and strong coupling. In case v is suitably regular
and λ � 1, the parameters b� are to leading order given by their Born approximation,
b� ≈ (8π�)−1λ

∫
r2�v, corresponding to the choice f ≡ 1 in (2.9). That is, for weak

potentials, one recovers the moments of v as the pre-factors of the pseudo-potentials, as
predicted by first-order perturbation theory. In the limit of strong coupling λ � 1, on the
other hand, one obtains the scattering parameters of hard spheres, solely determined by their
diameter.

The result in Theorem 1 can be interpreted as follows. States in H with energy of order
a2� are, for small a, necessarily close to states in B�, and are described by an effective
Hamiltonian h�. On the kernel of h�, one can zoom in further by looking at energies of order
a2�

′
for some �′ > �, and find a new effective Hamiltonian h�′ . In the limit a → 0, one thus

obtains an infinite cascade of effective Hamiltonians in the corresponding energy windows.
See Fig. 1 for an illustration.

Theorem 1 readily implies that, for any hermitian bounded operator K on H that is
independent of a,

a−2�Ha + K
a→0−−−→ 8π�b�h� + P�K P� (2.13)

in strong resolvent sense, and this generalizes to suitable unbounded K . One could consider
an additional interaction potential, for instance of Coulomb type, in which case P�K P� is

a linear combination of the operators
∑

i �= j P
(�′)
i j as in (1.5), but with the sum restricted to

angular momenta �′ ≥ �. If one adds a confining potential, it is not difficult to show that
the convergence in (2.13) holds actually in the norm-resolvent sense, i.e., the operator norm
of the difference between the resolvents of the left and right side of (2.13) tends to zero as
a → 0. In fact, the resolvents are in this case compact operators and (μ+a−2�Ha +K )−1 ≤
(μ + H (0) + K )−1 for any a ≤ 1 and μ > −inf specK , where we used the assumption
that v is non-negative. One readily checks that strong- and norm-resolvent convergence are
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Fig. 1 Sketch of the spectrum in the fermionic case. States with energy of order a2 are described by the
effective Hamiltonian h1 on the LLL. Zooming in on its kernel, one finds h3 as an effective Hamiltonian,
describing states with energy of order a6, and so forth

equivalent for a sequence of non-negative operators that are dominated by a fixed compact
operator.

A convenient choice is the harmonic oscillator potential K = ∑N
i=1 |xi |2, which acts

as P�K P� = (N + L)P�, with L = ∑N
i=1(zi∂zi − z̄i∂z̄i ) = ∑N

i=1 zi∂zi the total angular
momentum operator in the LLL. Indeed, �δ�m = 〈ϕ�, Lϕm〉 = 〈ϕ�, (|z|2−1)ϕm〉 using (1.6).
In particular, for any λ > 0 and � ≥ 1 we have

a−2�Ha + λ

N∑

i=1

|xi |2 a→0−−−→ 8π�b�h� + λ(N + L)P� (2.14)

in norm-resolvent sense. This extends to � = 0 in the same way as explained in Theorem 1.
The right side of (2.14) is the sum of two commuting operators on B�, which we write

for short as
γ h� + λL (2.15)

with L = (N + L)P� and γ, λ > 0, and we consider the joint spectrum of the commuting
operators h� and L. For a fixed eigenvalue of L we have a finite dimensional space on which
h� has nonnegative eigenvalues, and the situation is analogous to the discussion of the Yrast
curve (see [6, Fig. 1] for a sketch). This curve is the (convex hull of the) boundary of the
joint spectrum. By varying the ratio λ/γ we can adjust the value(s) of the angular momentum
where the energy is minimal and thereby change the ground state(s) of (2.15). Indeed, the
ground state is determined by the point(s) where a line with slope −λ/γ touches the joint
spectrum. For fixed γ and λ small enough (depending on the spectral gap of h�) the unique
ground state equals the Laughlin state �L

�+1, where h� has eigenvalue 0. It is separated from
other states with the same or less angular momentum by a spectral gap since the state space
is finite dimensional, but the size of the gap might a-priori depend on the particle number N .
It is an important, but still unproved, conjecture in FQHE physics that this gap has a strictly
positive lower bound independent of N (see, e.g., [16]). For λ large enough the unique ground
state of (2.15) is the Laughlin wave function �L

� , where h� is strictly positive but L takes its
minimal value in B�.
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The norm-resolvent convergence in (2.14) implies convergence of eigenvalues and corre-
sponding eigenvectors, and hence we can conclude the following corollary:

Corollary 1 Fix � ≥ 1. For λ > 0 small enough, the ground state of Ha + a2�λ
∑N

i=1 |xi |2
converges in L2(R2N ) to �L

�+1 as a → 0. For � = 0 this holds with a2� replaced by
(ln(1/a2))−1.

These results hold on the whole Hilbert space H = L2(R2N ) without symmetry con-
straints. When restricting to the bosonic and fermionic subspaces, respectively, we have
B�−1 = B� for � even (bosons) or � odd (fermions), hence it is natural to restrict to such
� depending on the symmetry. The unique ground state of the right side of (2.14) is now
�L

�+2 for small λ. In particular, Corollary 1 holds with�L
�+1 replaced by�L

�+2 in the bosonic
subspace for even �, and in the fermionic subspace for odd �.

Remark 3 Our results can be extended to a system in three spatial dimensions with an addi-
tional confinement in the third direction. This will be detailed in Sect. 4, thereby generalizing
a corresponding result for the special case � = 0 in [6].

3 Proof of Theorem 1

3.1 Gamma Convergence

It is well known that strong resolvent convergence of operators is equivalent to	-convergence
of the corresponding quadratic forms in both weak and strong topologies (see [13, Sec. 13]).
Hence we find it convenient to reformulate Theorem 1 in terms of 	-convergence.

We define the functions Fa : H → [0,∞] as
Fa(�) = ‖√Ha�‖2 (3.1)

(with the understanding that Fa equals+∞ if� is not in the form domain of Ha). Moreover,
for � ≥ 0, define G(�) : H → [0,+∞] as

G(�)(�) =
{

〈�|h��〉 if � ∈ B�

+∞ otherwise.
(3.2)

Theorem 1 is an immediate consequence of the following Proposition.

Proposition 1 For any � ≥ 1, the function a−2�Fa 	-converges to 8π�b�G(�) as a → 0 both
in the strong and weak topology on H. That is, for � ≥ 1,

(1) for any sequence {an}n∈N of positive numbers with limn→∞ an = 0, and any sequence
{�n}n∈N in H with �n⇀� ∈ H as n → ∞,

lim inf
n→∞ a−2�

n Fan (�n) ≥ 8π�b�G
(�)(�) . (3.3)

(2) for any � ∈ H and any sequence {an}n∈N of positive numbers with limn→∞ an = 0,
there exists a sequence {�n}n∈N in H with �n → � ∈ H as n → ∞ such that

lim
n→∞ a−2�

n Fan (�n) = 8π�b�G
(�)(�) . (3.4)

For � = 0, the same holds with a−2� replaced by ln(1/a2), and �b� replaced by 1.
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Note that (3.3) holds for all weakly converging sequences, while the convergence in (2) is
strong, hence indeed there is 	-convergence in both topologies. The proof of Proposition 1
will be given in the remainder of this section.We discuss the case � ≥ 1 in detail, and indicate
the modifications for � = 0 in the last Subsect. 3.5.

3.2 Dyson Lemma

We start with the following Dyson Lemma, so named because Dyson proved a first estimate
of this type in 1957 [18] to obtain a lower bound on the energy of a hard core Bose gas.
Subsequently this was extended in several ways, see [17,19,20] and, for the present context,
in particular [6]. Lemma 4 in [6] is stated and proved for � = 0, but since in that paper only
the three-dimensional case was considered, we shall need an extra discussion for � = 0 here,
cf. Sec. 3.5.

We again identify x = (x (1), x (2)) ∈ R
2 with z = x (1) + ix (2) ∈ C, and write ∂z̄ =

1
2 (∂x (1) + i∂x (2) ), ∂z = 1

2 (∂x (1) − i∂x (2) ).

Lemma 1 For any � ≥ 1 and R > aR0, and any y ∈ C, we have
∫

|z−y|<R
e−|z|2 (

4|∂z̄ϕ(x)|2 + 1
2va(|z − y|)|ϕ(x)|2) dx

≥ 4π�b�a
2�e|y|2−R2

∣∣∣∣
1

2π i

∮

|z−y|=R
e−z ȳ ϕ(x)

(z − y)�+1 dz

∣∣∣∣
2

(3.5)

where dz stands for the complex line element.

Note that if ϕ is analytic and vanishes like κ(z − y)� as z → y for some κ ∈ C, the right
side is proportional to |κ|2e−|y|2 .

Proof For R > aR0, consider the expression

A =
∫

|z|<R
z̄�

[
4 (∂z f (x)) (∂z̄ϕ(x)) + 1

2va(|z|) f (x)ϕ(x)
]
dx (3.6)

where f (x) = f�(x/a) with f� the minimizer in (2.9). The Cauchy–Schwarz inequality and
the fact that |∂z f | = 1

2 |∇ f | (since f is real) imply that

|A|2 ≤
∫

|x |<R
|x |2� (|∇ f (x)|2 + 1

2va(|x |)| f (x)|2
)
dx

×
∫

|x |<R

(
4|∂z̄ϕ(x)|2 + 1

2va(|x |)|ϕ(x)|2) dx . (3.7)

The term in the first line is bounded above by 4π�b�a2�, hence
∫

|x |<R

(
4|∂z̄ϕ(x)|2 + 1

2va(|x |)|ϕ(x)|2) dx ≥ |A|2
4π�b�a2�

. (3.8)

Integrating by parts and using the variational equation (2.10) for f (and the fact that f is
radial), we also have

A =
∫

|z|<R
|z|2�

[
4 (∂z f (x))

(
∂z̄ z

−�ϕ(x)
)

+ 1
2va(|z|) f (x)z−�ϕ(x)

]
dx

= 4π�b�a
2� 1

2π i

∮

|z|=R

ϕ(x)

z�+1 dz. (3.9)
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We conclude that
∫

|x |<R

(
4|∂z̄ϕ(x)|2 + 1

2va(|x |)|ϕ(x)|2) dx ≥ 4π�b�a
2�

∣∣∣∣
1

2π i

∮

|z|=R

ϕ(x)

z�+1 dz

∣∣∣∣
2

. (3.10)

To bring this into the desired form, we bound for y ∈ C

∫

|x |<R
e−|z+y|2 (

4|∂z̄ϕ(x)|2 + 1
2va(|x |)|ϕ(x)|2) dx

= e−|y|2
∫

|x |<R
e−|z|2 (

4|∂z̄e−z ȳϕ(x)|2 + 1
2va(|x |)|e−z ȳϕ(x)|2

)
dx

≥ e−|y|2−R2
∫

|x |<R

(
4|∂z̄e−z ȳϕ(x)|2 + 1

2va(|x |)|e−z ȳϕ(x)|2
)
dx

≥ 4π�b�a
2�e−|y|2−R2

∣∣∣∣
1

2π i

∮

|z|=R
e−z ȳ ϕ(x)

z�+1 dz

∣∣∣∣
2

. (3.11)

In particular, changing variables from z to z − y, Eq. (3.5) follows.

By averaging the bound (3.5) over R, we obtain as an immediate corollary
∫

|z−y|<R
e−|z|2 (

4|∂z̄ϕ(x)|2 + 1
2va(|z − y|)|ϕ(x)|2) dx

≥ 4π�b�a
2�e|y|2

∫ ∞

0
e−r2ρ(r)

∣∣∣∣
1

2π i

∮

|z−y|=r
e−z ȳ ϕ(x)

(z − y)�+1 dz

∣∣∣∣
2

dr (3.12)

for any non-negative function ρ supported on [aR0, R] with ∫
ρ = 1. We shall choose ρ

bounded, supported on [R/2, R], and independent of a; an explicit choice is ρ(r) = 2/R for
R/2 < r < R, and 0 otherwise. As long as a < R/(2R0), (3.12) holds for this choice of ρ.

3.3 Lower Bound

We now turn to the proof of part (1) of Prop. 1 and establish the lower bound (3.3). We
start by noting that, for any � ∈ L2(R2) of the form �(x) = e−|x |2/2ϕ(x), we have the
representation

〈�|h�〉 = 4
∫

R2
e−|x |2 |∂z̄ϕ(x)|2 dx (3.13)

where we denote ∂z̄ = 1
2 (∂x (1) + i∂x (2) ) as above. This representation, in combination with

(3.12), implies the lower bound

a−2�Fa(�) ≥ 4π�b�

N∑

i �= j

∫

R2(N−1)
e−∑N

k,k �=i, j |xk |2χi,R(x1, . . . , � xi , . . . , xN )

×
∫ ∞

0
e−r2ρ(r)

∣∣∣∣∣
1

2π i

∮

|zi−z j |=r
e−zi z̄ j ϕ(x1, . . . , xN )

(zi − z j )�+1 dzi

∣∣∣∣∣

2

dr
N∏

j, j �=i

dx j

(3.14)

for �(x1, . . . , xN ) = e− 1
2

∑N
i=1 |xi |2ϕ(x1, . . . , xN ), where

χi,R(x1, . . . , � xi , . . . , xN ) =
∏

j<k, j,k �=i

θ(|x j − xk | − 2R) (3.15)
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458 R. Seiringer , J. Yngvason

restricts the integration to the set where |x j − xk | ≥ 2R for all j, k �= i .
We claim that the quadratic form defined on the right side of (3.14) is bounded. In fact,

by a simple Cauchy–Schwarz inequality, using that �zi z̄ j = 1
2 (|zi |2 + |z j |2 − |zi − z j |2),

∣∣∣∣∣
1

2π i

∮

|zi−z j |=r
e−zi z̄ j ϕ(x1, . . . , xN )

(zi − z j )�+1 dzi

∣∣∣∣∣

2

≤ er
2

2πr2�+1

∮

|zi−z j |=r
e−|xi |2−|x j |2 |ϕ(x1, . . . , xN )|2|dzi | , (3.16)

which after integration over r and x j implies that

∫ ∞

0
e−r2ρ(r)

∫

R2

∣∣∣∣∣
1

2π i

∮

|zi−z j |=r
e−zi z̄ j ϕ(x1, . . . , xN )

(zi − z j )�+1 dzi

∣∣∣∣∣

2

dr dx j

≤ 1

2π

∫

R4
e−|xi |2−|x j |2 |ϕ(x1, . . . , xN )|2 ρ(|xi − x j |)

|xi − x j |2�+1 dxi dx j . (3.17)

In particular, as a bounded quadratic form, the right side of (3.14) is weakly lower semicon-
tinuous.

Now given a sequence an → 0 and �n⇀�, we obtain from the bound above and weak
lower semicontinuity

lim inf
n→∞ a−2�

n Fan (�n)

≥ 4π�b�

N∑

i �= j

∫

R2(N−1)
e−∑N

k,k �=i, j |xk |2χi,R(x1, . . . , � xi , . . . , xN )

×
∫ ∞

0
e−r2ρ(r)

∣∣∣∣∣
1

2π i

∮

|zi−z j |=r
e−zi z̄ j ϕ(x1, . . . , xN )

(zi − z j )�+1 dzi

∣∣∣∣∣

2

dr
N∏

j, j �=i

dx j (3.18)

where �(x1, . . . , xN ) = e− 1
2

∑N
i=1 |xi |2ϕ(x1, . . . , xN ). Consider first the case when � ∈ B�.

Then ϕ is analytic and of the form ϕ(x1, . . . , xN ) = ϕ̃(z1, . . . , zN )
∏

i< j (zi − z j )� for some

analytic ϕ̃. Writing ϕ(x1, . . . , xN ) = ξi j (z1, . . . , zN )(zi − z j )�, we have

1

2π i

∮

|zi−z j |=r
e−zi z̄ j ϕ(x1, . . . , xN )

(zi − z j )�+1 dzi = e−|z j |2ξi j (z1, . . . , z j , . . . , z j , . . . , zN ) (3.19)

in this case. Hence the right side of (3.18) equals

4π�b�

∫ ∞

0
e−r2ρ(r)dr

N∑

i �= j

∫

R2(N−1)
e−∑N

k,k �=i, j |xk |2e−2|z j |2χi,R(x1, . . . , � xi , . . . , xN )

× |ξi j (z1, . . . , z j , . . . , z j , . . . , zN )|2
N∏

j, j �=i

dx j . (3.20)

We have
∫
e−r2ρ(r)dr ≥ e−R2

, which goes to 1 as R → 0. Moreover, by dominated
convergence, we can replace χi,R by 1 in the limit R → 0, and conclude that

lim
R→0

(3.20) = 4π�b�

∑

i �= j

〈�|D(�)
i j �〉 = 8π�b� G

(�)(�). (3.21)
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Since R > 0 was arbitrary, this yields the desired lower bound.
Next, consider the case when � ∈ B�′ for some �′ < �, but � /∈ B�′+1 (and hence,

in particular, � /∈ B�). In this case, we can apply the bound (3.18) with � replaced by �′,
to conclude that lim infn→∞ a−2�

n Fan (�) = +∞, as desired. Here we use the fact that the
kernel of h�′ equalsB�′+1, hence � is not in the kernel.

Finally, consider the case � /∈ B0. Then we can simply drop the interaction for a
lower bound, and conclude that lim infn→∞ Fan (�n) ≥ ‖√H (0)�‖2 > 0. In particular,
lim infn→∞ a−2�

n Fan (�n) = +∞ for any � ≥ 1. This concludes the proof of the lower
bound for � ≥ 1.

3.4 Upper Bound

We shall now prove part (2) of Prop. 1. Given the lower bound (3.3) we already established,
we only need to prove (3.4) as an upper bound. It clearly suffices to consider the case� ∈ B�.
In the opposite case � /∈ B�, the energy tends to infinity and we can simply take �n = �

for all n, and use the lower bound (3.3).
For � ∈ B�, we consider the sequence

�n(x1, . . . , xN ) = �(x1, . . . , xN )
∏

i< j

f (xi − x j ) (3.22)

where f (x) = fn,�(x) = f�(x/an), with f� the minimizer in (2.9). Since f is bounded
and converges pointwise to 1 as an → 0, �n → � by dominated convergence. Using the
representation (3.13), we have

Fan (�n) =
∫

R2N
|�(x1, . . . , xN )|2

⎡

⎣4
N∑

i=1

|∂z̄i S|2 + 1
2

∑

i< j

van (|xi − x j |)|S|2
⎤

⎦
N∏

j=1

dx j

(3.23)
for S(x1, . . . , xN ) = ∏

i< j f (xi − x j ). Since S is real, |∂z̄i S| = 1
2 |∇i S|. Moreover, since

0 ≤ f ≤ 1, we can bound |S|2 ≤ f (xi − x j )2 for any pair i �= j , as well as

N∑

i=1

|∇S|2 ≤
∑

i �= j

|∇ f (xi − x j )|2 +
∑

i �= j �=k

|∇ f (xi − x j )||∇ f (xk − x j )|. (3.24)

We thus have to bound terms of the form

I =
∫

R2N
|�(x1, . . . , xN )|2 {|∇ f (xi − x j )|2 + 1

2van (|xi − x j |)| f (xi − x j )|2
} N∏

l=1

dxl

(3.25)
and

II =
∫

R2N
|�(x1, . . . , xN )|2|∇ f (xi − x j )||∇ f (xk − x j )|

N∏

l=1

dxl (3.26)

for i �= j �= k.
It follows from the definition (2.7) that as a quadratic form on B�

D
(�)
i j = (z̄i − z̄ j )

−�D
(0)
i j (zi − z j )

−�. (3.27)

Moreover, in the notation of [6],
D

(0)
i j = δi j . (3.28)
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Because of (3.27) and (3.28) we can rely on previous results proved in [6] for the case � = 0.
In fact, [6, Lemma 2] implies5 that for � ∈ B0 and radial g ≥ 0

∫

R2N
|�(x1, . . . , xN )|2 g(xi −x j )

N∏

l=1

dxl ≤
∫

R2
g 〈�|δi j�〉+C

∫

R2
g(x)

|x |4
1 + |x |4 dx ‖�‖2

(3.29)
for some constant C > 0, as well as

∫

R2N
|�(x1, . . . , xN )|2g(xi − x j )g(xk − x j )

N∏

l=1

dxl ≤ C

(∫

R2
g

)2

‖�‖2 (3.30)

for i �= j �= k.
We define

g(x) = |x |2�(|∇ f (x)|2 + 1
2van (|x |)| f (x)|2) (3.31)

and write I as ∫

R2N
|�i j (x1, . . . , xN )|2g(xi − x j )

N∏

k=1

dxk (3.32)

where �i j stands for � with a factor (zi − z j )� canceled. Note that by (3.27) we have

〈�i j |D(0)
i j �i j 〉 = 〈�|D(�)

i j �〉 (3.33)

and by (2.9) ∫

R2
g = a2�n 4π�b�. (3.34)

When applying (3.29), the first term gives after summation over i j the desired bound

a2�n 8π�b� 〈�|h��〉. (3.35)

To bound the second term, we note that if v is supported in {|x | ≤ R0} then van is supported
in {|x | ≤ an R0}. Pick an R > R0 and split the integral in the last term in (3.29) into an
integral over {|x | < an R} and a remainder where van = 0. The first part of the integral
is bounded by (

∫
g)R4a4n . For |x | > an R we have f (x) = (1 − a2�n b�/|x |2�) and thus

|∇ f (x)| ∼ a2�n /|x |2�+1 so
∫
|x |>an R

|x |2�|∇ f (x)|2dx ∼ a2�R−2�. With R = a−2/(�+2)
n we

see that the integral is smaller than
∫
g by a factor a4�/(�+2)

n . The whole term I therefore gives
(3.35) as the leading contribution.

A bound on II can be obtained with the aid of (3.30). The resulting bound is of higher
order than

∫
R2 g (in fact, of the order (

∫
R2 g)2) and vanishes upon multiplication by a−2�

n in
the limit an → 0. Altogether we thus obtain

lim sup
n→∞

a−2�
n Fan (�n) ≤ 4π�b�

∑

i �= j

〈�|D(�)
i j �〉 = 8π�b� G

(�)(�). (3.36)

In combination with the lower bound, this concludes the proof of Theorem 1 for � ≥ 1.

5 Lemma 2 in [6] is stated in three dimension, but an inspection of its proof shows that it equally holds in the
two-dimensional case as well.
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3.5 The � = 0 Case

The special feature of the � = 0 case in two dimensions is that the minimizer f0 of (2.11)
depends on R, and the minimal value of (2.11) depends logarithmically on the parameters.
By choosing R appropriately, the basic proof strategy goes through also for � = 0, with only
minor modifications compared to the case � ≥ 1. Effectively, one is lead to the replacement

�b�a
2� → 1

ln(R2/a2b20)
= ln(1/a2)−1(1 + o(1)) (3.37)

with o(1) tending to zero as a → 0 for fixed R. With this replacement the Dyson Lemma
in Eq. (3.5) holds also for � = 0, and the estimates for the lower bound are obtained in the
same way as for � ≥ 1, by first letting a → 0 followed by R → 0.

For the upper bound the trial function f is defined as f0(r/an)where f0 minimizes (2.11)
with the choice R = R′/an for some fixed R′ > 0 independent of n. In particular∇ f (r) = 0
for r ≥ R′. Again letting R′ → 0 after an → 0 (in order for the last term in (3.29) to be
negligible compared to (3.34)), we conclude the upper bound

ln(1/a2n)
−1(1 + o(1)) 8π 〈�|h0�〉 (3.38)

in place of (3.35).

4 Extension to Three Dimensions

In this section we shall show analogous results in the three-dimensional case, with a strong
confinement in the third direction. Consider a potential V : R → R such that the Schrödinger
operator−∂2u+V (u)has a ground stateχ ∈ H1(R)with corresponding energy E .On L2(R3),
define h ≥ 0 as

h = (−i∇ + x ∧ e3)
2 + V (x (3)) − 2 − E (4.1)

where e3 = (0, 0, 1) denotes the unit vector in the x3-direction. For v ≥ 0 radial and of
compact support, we define

Ha =
N∑

i=1

hi +
∑

i< j

va(|xi − x j |) (4.2)

on H = L2(R3N ), where va(x) = a−2v(x/a).
The relevant scattering parameters are now given by

b� = 1

4π(2� + 1)
min

{∫

R3
|x |2� (|∇ f (x)|2 + 1

2v(x)| f (x)|2) dx : lim|x |→∞ f (x) = 1

}

(4.3)
for � ∈ N ∪ {0}. The corresponding minimizers f� satisfy 0 ≤ f� ≤ 1, and f�(x) =
1 − b�/|x |2�+1 for |x | > R0. In particular, b� = R2�+1

0 for hard spheres.
We introduce a sequence of closed subspaces

H ⊃ B0 ⊃ B1 ⊃ . . . (4.4)

where B� for � ≥ 0 consists of ψ ∈ H of the form

�(x1, . . . , xN ) = ϕ(z1, . . . , zN )
∏

i< j

(zi − z j )
�

N∏

k=1

χ(x (3)
k )e− 1

2 |zk |2 (4.5)
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with ϕ : C
N → C analytic. We write x = (x (1)

j , x (2)
j , x (3)

j ) and identify (x (1)
j , x (2)

j ) ∈ R
2

with z j = x (1)
j + ix (2)

j ∈ C. Note that againB0 coincides with the kernel of H (0) = ∑N
i=1 hi ,

since for �(x) = e−|z|2/2χ(x (3))ϕ(x),

〈�|h�〉 =
∫

R3
e−|z|2 |χ(x (3))|2

(
4 |∂z̄ϕ(x)|2 + ∣∣∂x (3)ϕ(x)

∣∣2
)
dx . (4.6)

Obviously the spaces B� can be naturally identified with the corresponding spaces in two
dimensions, by simply multiplying functions in the latter spaces by

∏N
k=1 χ(x (3)

k ). In partic-
ular, the operatorsD(�) naturally act onB� in the same way as in the two-dimensional case,
and similarly for h�.

Let c0 = 1 and

c� =
√

π

2

	(1 + �)

	(3/2 + �)
=

�∏

j=1

2 j

2 j + 1
(4.7)

for � ≥ 1. Let also b̃� = b�c�.

Theorem 2 For any � ≥ 0, a−2�−1Ha converges to 8π(2� + 1)b̃�

∫ |χ |4 h� as a → 0 in the
strong resolvent sense, i.e., for any μ > 0 and � ∈ H = L2(R3N )

lim
a→0

(
μ + a−2�−1Ha

)−1
� =

(
μ + 8π(2� + 1)b̃�

∫ |χ |4 h�

)−1
P�� (4.8)

strongly in L2(R3N ), where P� denotes the projection ontoB� ⊂ H.

The proof of Theorem2proceeds along very similar lines as the one in the two-dimensional
case, hence wewill not present it in full detail here.Wemerely point out the main differences.

The relevant pre-factor (2� + 1)b̃� naturally arises through

4π(2� + 1)b̃� = min

{∫

R3
|z|2� (|∇ f (x)|2 + 1

2v(x)| f (x)|2) dx : lim|x |→∞ f (x) = 1

}
(4.9)

with a factor |z|2� in place of |x |2� in (4.3). To see the validity of (4.9), note that for radial
functions f we have

|z|−2�∇|z|2�∇ f = |x |−2�∇|x |2�∇ f (4.10)

hence the minimizer of (4.3) is also the minimizer of (4.9). The factor c� then results from
averaging |z|2� over the unit sphere.

As for Theorem 1, Theorem 2 is proved by showing 	-convergence of the corresponding
quadratic forms. The upper bound follows in the same way as in two dimensions, using (4.9).
Note that by definition

∫

R3N

|�(x1, . . . , xN )|2
|zi − z j |2� δ(xi − x j )

N∏

k=1

dxk =
∫

R

|χ |4 〈�|D(�)
i j �〉 (4.11)

for � ∈ B�, which explains the additional pre-factor
∫ |χ |4.

For the lower bound, the relevant Dyson Lemma reads as follows:
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Lemma 2 For any � ≥ 0 and R > aR0, and any y = (η, y(3)) ∈ C × R ≡ R
3, we have

∫

|x−y|<R
e−|z|2 |χ(x (3))|2 (

4|∂z̄ϕ(x)|2 + |∂x (3)ϕ(x)|2 + 1
2va(|x − y|)|ϕ(x)|2) dx

≥ 4π(2� + 1)b̃�a
2�+1e|η|2−R2

min
|x (3)|<R

|χ(y(3) − x (3))|2

×
∣∣∣∣

1

4πc�R2(�+1)

∫

|x−y|=R
e−zη̄(z̄ − η̄)�ϕ(x)dσ

∣∣∣∣
2

(4.12)

where σ denotes the surface measure on the sphere.

Its proof can be obtained by following the arguments in the two-dimensional case line by
line. Note that if ϕ is independent of x (3) and analytic in z, we have

1

4πc�R2(�+1)

∫

|x−y|=R
e−zη̄(z̄ − η̄)�ϕ(z)dσ = 1

2π i

∮

|z−η|=R
e−zη̄ ϕ(z)

(z − η)�+1 dz (4.13)

where dz is again the complex line element. The right side is independent of R in this
case, and coincides with the corresponding expression in two dimensions. Using that, as an
H1-function, χ is uniformly Hölder continuous, one easily sees that

lim
R→0

∫

R

|χ(t)|2 min|x |<R
|χ(t − x)|2dt =

∫

R

|χ |4. (4.14)

The remainder of the proof of the lower bound then proceeds as in Sect. 3.3.
Assuming the potential V to be confining, i.e., limt→±∞ V (t) = +∞, and adding an

additional confining potential λ
∑N

i=1 |zi |2 in the perpendicular directions, the analogue of
Corollary 1 can be seen to hold in the three-dimensional case as well. The relevant Laughlin
wavefunctions are simply given by (1.1) multiplied by

∏N
k=1 χ(x (3)

k ), the ground state in the
direction of the magnetic field.
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