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Abstract

A proof system is a protocol between a prover and a verifier over a common input in
which an honest prover convinces the verifier of the validity of true statements. Motivated
by the success of decentralized cryptocurrencies, exemplified by Bitcoin, the focus of this
thesis will be on proof systems which found applications in some sustainable alternatives
to Bitcoin, such as the Spacemint and Chia cryptocurrencies. In particular, we focus on
proofs of space and proofs of sequential work.

Proofs of space (PoSpace) were suggested as more ecological, economical, and egali-
tarian alternative to the energy-wasteful proof-of-work mining of Bitcoin. However, the
state-of-the-art constructions of PoSpace are based on sophisticated graph pebbling lower
bounds, and are therefore complex. Moreover, when these PoSpace are used in cryptocur-
rencies like Spacemint, miners can only start mining after ensuring that a commitment
to their space is already added in a special transaction to the blockchain.

Proofs of sequential work (PoSW) are proof systems in which a prover, upon receiving
a statement χ and a time parameter T , computes a proof which convinces the verifier that
T time units had passed since χ was received. Whereas Spacemint assumes synchrony to
retain some interesting Bitcoin dynamics, Chia requires PoSW with unique proofs, i.e.,
PoSW in which it is hard to come up with more than one accepting proof for any true
statement.

In this thesis we construct simple and practically-efficient PoSpace and PoSW. When
using our PoSpace in cryptocurrencies, miners can start mining on the fly, like in Bitcoin,
and unlike current constructions of PoSW, which either achieve efficient verification of
sequential work, or faster-than-recomputing verification of correctness of proofs, but not
both at the same time, ours achieve the best of these two worlds.
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1. Introduction

The blueprint for decentralized cryptocurrencies was laid out by Bitcoin [Nak08]. The
Bitcoin protocol implements a robust public transaction ledger by securely maintaining
a distributed data structure called a blockchain.

A public transaction ledger, which is a public record of transactions, is robust if it
guarantees that transactions get eventually added to it, and once a set of transactions
is added, it is hard to change the transactions or their chronological order, a property
needed to guarantee that a coin can not be spent more than once, a problem known as
double spending.

A blockchain is a data structure maintained and extended in a decentralized and dis-
tributed manner by a network of system participants called miners. We assume that min-
ers receive transactions from a peer-to-peer network in rounds. To extend the blockchain,
a miner bundles some of these transactions into a new block, and produces and publishes
to the network a publicly-verifiable proof attesting the validity of its block, and hence
extending the blockchain. Honest miners add valid blocks to the longest chain in the
blockchain, while the behavior of adversarial miners is arbitrary, and in particular, they
may try to fork the blockchain.

Informally, a blockchain is secure if it is guaranteed to grow, and it grows in such a
way that ignoring the blocks produced in the last few rounds, honest miners have the
same view of the blockchain and their view is an actual chain, and moreover, the honest
miners are assured that the ratio of adversarial blocks in such a chain is locally bounded.
(For a formal treatment of these properties, see [GKL15].)

It is clear that secure blockchains give rise to robust public transaction ledgers. The
challenge a cryptocurrency is then faced with is maintaining a secure blockchain. Bitcoin,
for example, uses proofs of work as the underlying publicly-verifiable proofs needed to ex-
tend the blockchain, and assuming the majority of mining power is honest, the blockchain
is provably secure [GKL15].

A proof of work (PoW), introduced by Dwork and Naor [DN93], is a proof system
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in which a prover P convinces a verifier V that it spent some computation with respect
to some statement χ. A simple PoW can be constructed from a function H(·), where a
proof with respect to a statement χ is simply a salt s such that H(s, χ) starts with t

leading 0’s. If H is modelled as a random function, P must evaluate H on 2t values (in
expectation) before such an s is found.

In the context of Bitcoin, the statement χ is determined by the blockchain and the new
block of transactions, and miners, playing the role of provers P , extend the blockchain
by exhaustively searching for s such that H(s, χ) starts with a number of t zeros, where t

is a dynamic parameter determined based on the rate of added blocks to the blockchain.

Proofs of space (PoSpace) [DFKP15] were suggested as more ecological, economical,
and egalitarian alternative to the energy-wasteful PoW mining of Bitcoin. However, the
state-of-the-art constructions of PoSpace [DFKP15, RD16] are based on sophisticated
graph pebbling lower bounds, and are therefore complex. Moreover, when these PoSpace
are used in cryptocurrencies like Spacemint [PPK+15], miners can only start mining after
ensuring that a commitment to their space is already added in a special transaction to
the blockchain.

Proofs of sequential work (PoSW) [MMV13] are proof systems in which a prover, upon
receiving a statement χ and a time parameter T , computes a proof which convinces the
verifier that T time units had passed since χ was received. Whereas Spacemint assumes
synchrony to retain some interesting Bitcoin dynamics, Chia [chi18] requires PoSW with
unique proofs, i.e., PoSW in which it is hard to come up with more than one accepting
proof for any true statement.

In this thesis we construct simple and practically-efficient PoSpace and PoSW. When
using our PoSpace in cryptocurrencies, miners can start mining on the fly, like in Bitcoin,
and unlike current constructions of PoSW, which either achieve efficient verification of
sequential work [MMV13, CP18], or faster-than-recomputing verification of correctness of
proofs [LW17], but not both at the same time, ours achieve the best of these two worlds.

1.1 Proofs of Space

A proof of space (PoSpace) [DFKP15] is a two-phase protocol between a prover P and
a verifier V , where after an initial phase P holds a file F of size N , whereas V only
needs to store some small value. The running time of P during this phase must be at
least N as P has to write down F which is of size N , and we require that it is not
much more, quasilinear in N at most. On the other hand V must be very efficient, in
particular, its running time can be polynomial in a security parameter, but must be
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basically independent of N .

Then there is a proof execution phase — which typically will be executed many
times over a period of time — in which V challenges P to prove it stored F . The security
requirement states that a cheating prover P̃ which only stores a file F ′ of size significantly
smaller than N either fails to make V accept, or must invest a significant amount of
computation, ideally close to P ’s cost during initialization. Note that we cannot hope
to make it more expensive than that as a cheating P̃ can always just store the short
communication during initialization, and then reconstruct all of F before the execution
phase.

Existing constructions of PoSpace [DFKP15, RD16] are based on pebbling lower
bounds for graphs. These PoSpace provide basically the best security guarantees one
could hope for: a cheating prover needs Θ(N) space or time after the challenge is known
to make a verifier accept. Unfortunately, these PoSpace have a drawback that make them
more difficult to use as a replacement for PoW in blockchains. Concretely, the initializa-
tion phase requires two messages: the first message is sent from the verifier to the prover
specifying a random function f , and the second message is a “commitment” from the
prover to the verifier.1

If such a pebbling-based PoSpace is used as a replacement for PoW in a blockchain
design, the first message can be chosen non-interactively by the miner (who plays the
role of the prover), but the commitment sent in the second message is more tricky. In the
PoSpace-based cryptocurrency Spacemint [PPK+15], this is solved by having a miner put
this commitment into the blockchain itself before it can start mining. As a consequence,
Spacemint lacks the nice property of the Bitcoin blockchain where miners can join the
effort by just listening to the network, and only need to speak up once they find a proof
and want to add it to the chain.

A simple idea for constructing a PoSpace is to have the verifier specify a random
function f : [N ] → [N ] during the initialization phase, and have the prover compute
the function table of f and sort it by the output values.2 Then, during the proof phase,
to convince the verifier that he really stores this table, the prover must invert f on a
random challenge. Unfortunately such an approach fails to give any meaningful security
guarantees due to existing time-memory trade-offs.

In particular, Hellman [Hel80] showed that any permutation over a domain of size N

1 Specifically, the prover computes a “graph labelling" of the vertices of a graph (which is specified by
the PoSpace scheme) using f , and then a Merkle tree commitment to this entire labelling, which must
be sent back to the verifier.

2 f must have a short description, so it cannot be actually random. In practice the prover would specify
f by, for example, a short random salt s for a cryptographic hash function H, and set f(x) = H(s, x).
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can be inverted in time T by an algorithm that is given S bits of auxiliary information
whenever S · T ≈ N (e.g. S = T ≈ N1/2). For functions Hellman gives a weaker attack
with S2 ·T ≈ N2 (e.g., S = T ≈ N2/3). To prove lower bounds, one considers an adversary
who has access to an oracle f : [N ]→ [N ] and can make T oracle queries. The best known
lower bound is S · T ∈ Ω(N) and holds for random functions and permutations.

As a first contribution of this thesis, we rescue the simple approach of constructing
PoSpace based on inverting random functions by constructing functions that bypass Hell-
man’s attack and entertain more favorable space-time tradeoffs. The resulting PoSpace
is simple and more efficient than existing solutions [DFKP15, RD16], and furthermore,
when used in PoSpace-based cryptocurrencies, space miners need not wait until their
commitment to their space is added to the blockchain to start mining.

Specifically, for any constant k we construct a function [N ] → [N ] that cannot be
inverted unless Sk · T ∈ Ω(Nk) (in particular, S = T ≈ Nk/(k+1)). Our construction
does not contradict Hellman’s time-memory trade-off, because it cannot be efficiently
evaluated in forward direction. However, its entire function table can be computed in
time quasilinear in N , which is sufficient for the PoSpace application.

Our simplest construction is built from a random function oracle g : [N ]× [N ]→ [N ]
and a random permutation oracle f : [N ] → [N ] and is defined as h(x) = g(x, x′)
where f(x) = π(f(x′)) with π being any involution without a fixed point, e.g., flipping
all the bits. For this function we prove that any adversary who gets S bits of auxiliary
information, makes at most T oracle queries, and inverts h on an ϵ fraction of outputs
must satisfy S2 · T ∈ Ω(ϵ2N2).

1.2 Proofs of Sequential Work

Publicly verifiable proofs of sequential work (PoSW) introduced by Mahmoody, Moran,
and Vadhan [MMV13] are proof systems in which a prover, upon receiving a statement
χ and a time parameter T , computes a proof ϕ(χ, T ) which is efficiently and publicly
verifiable. The proof can be computed in T sequential steps, but not much less, even by
a malicious party having large parallelism. A PoSW thus serves as a proof that T units
of time had passed since χ was received.

As possible applications for PoSW, [MMV13] lists universally verifiable CPU bench-
marks and non-interactive time-stamping. More recently, there has been a renewed in-
terest in PoSW as they form building blocks for more sustainable blockchains. Chia
(chia.net) is an emerging cryptocurrency that uses both PoSpace and PoSW: To create
a block, a space miner – using disk space it has previously initialized for mining – gen-

chia.net
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erates and publishes a PoSpace σ (the challenge for the proof comes from the previous
block), which is then assigned a quality q(σ). A block is a tuple of such a PoSpace and
a PoSW whose challenge is σ and its time parameter is q(σ). The rationale is that the
proofs of space with best quality are likely to get extended to full blocks first, and thus
will end up in the blockchain.

The construction of Mahmoody, Moran, and Vadhan [MMV13] is not practical as a
prover needs not only T sequential time steps but also linear in T space to compute a
proof. Cohen and Pietrzak [CP18] resolved this issue by constructing a PoSW where the
prover requires just log(T ) space.

A necessary property for blockchain applications of PoSW which is not achieved by
the constructions of [MMV13, CP18] is “uniqueness", which means it is not possible to
compute more than one accepting proof for the same statement.

A simple PoSW construction that is unique is a hash chain, where on input x = x0 one
outputs as proof xT which is recursively computed as xi = H(xi−1) for a hash function H.
This is a terrible PoSW as verification requires also T hashes. At least one can parallelize
verification by additionally outputting some q intermediate values x0, xT/q, x2T/q, . . . , xT .
Now the proof can be verified in T/q time assuming one can evaluate q instantiations of
H in parallel: for every i ∈ [q], verify that HT/q(x(i−1)T/q) = xiT/q.

Lenstra and Weselowski [LW17] suggest a construction called “sloth”, which basically
is a hash chain but with the additional property that it can be verified with a few hundred
times less computation than what is required to compute it. The construction is based
on the assumption that computing square roots in a field Fp of size p is around log(p)
times slower than the inverse operation, which is just squaring. A typical value would be
log(p) ≈ 1000.

As a second contribution of this thesis, we construct a new PoSW in the random
permutation model which is almost as simple and efficient as [CP18]. Our construction is
based on skip lists, and (unlike [CP18] but like [LW17]) has the property that generating
the PoSW is a reversible computation. This property allows us to “embed" sloth in this
PoSW and the resulting object is a PoSW where verifying sequential work is as efficient
as in [CP18], while verifying (the stronger property) that the correct output has been
computed is as efficient as in [LW17].

Now assume a malicious party wants to disrupt the mining process by flooding the
network with wrong and/or malleated proofs (wrong means they won’t pass verification,
malleated means they pass verification, but are not computed using the honest PoSW
algorithm). If one uses the PoSW from [CP18], wrong proofs are not a problem as they
can be rejected extremely efficiently. But malleable proofs are a problem, as those cannot
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be detected much more efficiently than basically recomputing the entire PoSW. On the
other hand, when using sloth there are no malleated proofs (only the correct proof will
pass verification), but rejecting wrong proofs is significantly more expensive than that of
[CP18], though still much cheaper than computing the proof. Using our construction one
can use the efficient verification to reject all wrong proofs as in [CP18], and only when
one observes two or more distinct proofs that pass this efficient verification one falls back
on the sloth-like verification procedure.



2. Proofs of Space

2.1 Overview

A proof of space (PoSpace) as defined in [DFKP15] is a two-phase protocol between a
prover P and a verifier V , where after an initial phase P holds a file F of size N , whereas
V only needs to store some small value. The running time of P during this phase must
be at least N as P has to write down F which is of size N , and we require that it is
not much more, quasilinear in N at most. V on the other hand must be very efficient,
in particular, its running time can be polynomial in a security parameter, but must be
basically independent of N .

Then there’s a proof execution phase — which typically will be executed many times
over a period of time — in which V challenges P to prove it stored F . The security
requirement states that a cheating prover P̃ who only stores a file F ′ of size significantly
smaller than N either fails to make V accept, or must invest a significant amount of
computation, ideally close to P ’s cost during initialization. Note that we cannot hope
to make it more expensive than that as a cheating P̃ can always just store the short
communication during initialization, and then reconstruct all of F before the execution
phase.

A simple idea for constructing a PoSpace is to have the verifier specify a random
function f : [N ] → [N ] during the initialization phase, and have the prover compute
the function table of f and sort it by the output values.1 Then, during the proof phase,
to convince the verifier that he really stores this table, the prover must invert f on a
random challenge. Unfortunately such an approach fails to give any meaningful security
guarantees due to existing time-memory trade-offs.

In particular, Hellman [Hel80] showed that any permutation over a domain of size N

can be inverted in time T by an algorithm that is given S bits of auxiliary information

1 f must have a short description, so it cannot be actually random. In practice the prover would specify
f by, for example, a short random salt s for a cryptographic hash function H, and set f(x) = H(s, x).
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whenever S · T ≈ N (e.g. S = T ≈ N1/2). For functions Hellman gives a weaker attack
with S2 ·T ≈ N2 (e.g., S = T ≈ N2/3). To prove lower bounds, one considers an adversary
who has access to an oracle f : [N ]→ [N ] and can make T oracle queries. The best known
lower bound is S · T ∈ Ω(N) and holds for random functions and permutations.

2.1.1 Our Results

We rescue the simple approach of constructing PoSpace based on inverting random func-
tions by constructing functions that bypass Hellman’s attack and entertain more favor-
able space-time tradeoffs. The resulting PoSpace is simple and more efficient than existing
solutions [DFKP15, RD16], and furthermore, when used in PoSpace-based cryptocurren-
cies, space miners need not wait until their commitment to their space is added to the
blockchain to start mining.

Constructing PoSpace from inverting random functions seemed impossible [DFKP15]
due to Hellman’s time-memory trade-offs [Hel80]. For Hellman’s attacks to apply, one
needs to be able to evaluate the function efficiently in forward direction. However, we ob-
serve that for functions to be used in the simple PoSpace outlined above, the requirement
of efficient computability can be relaxed in a meaningful way: we only need to be able to
compute the entire function table in time linear (or quasilinear) in the size of the input
domain. We construct functions satisfying this relaxed condition for which we prove lower
bounds on time-memory trade-offs beyond the upper bounds given by Hellman’s attacks.

Our most basic construction of such a function gf : [N ]→ [N ] is based on a function
g : [N ]× [N ]→ [N ] and a permutation f : [N ]→ [N ]. For the lower bound proof g and
f are modelled as truly random, and all parties access them as oracles. The function is
now defined as gf (x) = g(x, x′) where f(x) = π(f(x′)) for any involution π without fixed
points. For concreteness we let π simply flip all bits, denoted f(x) = f(x′). Let us stress
that f does not need to be a permutation – it can also be a random function2 – but we’ll
state and prove our main result for a permutation as it makes the analysis cleaner. In
practice — where one has to instantiate f and g with something efficient — one would
rather use a function, because it can be instantiated with a cryptographic hash function

2 If f is a function, we do not need π; the condition f(x) = π(f(x′)) can be replaced with simply f(x) =
f(x′), x ̸= x′. Note than now for some x there’s no output gf (x) at all (i.e., if ∀x′ ̸= x : f(x) ̸= f(x′)),
and for some x there’s more than one possible value for gf (x). This is a bit unnatural, but such a gf

can be used for a PoSpace in the same way as if f were a permutation.
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like SHA-3 or (truncated) AES,3 whereas we do not have good candidates for suitable
permutations (at the very least f needs to be one-way; and, unfortunately, all candidates
we have for one-way permutations are number-theoretic and thus much less efficient).

In Theorem 2 we state that for gf as above, any algorithm which has a state of size S

(that can arbitrarily depend on g and f), and inverts gf on an ϵ fraction of outputs, must
satisfy S2T ∈ Ω(ϵ2N2). This must be compared with the best lower bound known for
inverting random functions (or permutations) which is ST = Ω(ϵN). We can further push

3-wise

2-wise
collisions

S2T = N 2

ST = N

max{S, T} = N

logS

log T

2
3 logN

3
4 logN

logN

1

logN1

S3T = N 3

Figure 2.1: Illustration of lower bounds. Green: the ST = Ω(N) lower bound for inverting
random permutations or functions. Blue: the ideal bound where either T or S is Ω(N)
as achieved by the pebbling-based PoSpace [DFKP15, RD16] (more precisely, the bound
approaches the blue line for large N). Red: the lower bound S2T = Ω(N2) for T ≤ N2/3

for our most basic construction as stated in Theorem 2. Brown: the restriction T ≤ N2/3

on T we need for our proof to go through can be relaxed to T ≤ N t/(t+1) by using t-wise
collisions instead of pairwise collisions in our construction. The brown arrow shows how
the bound improves by going from t = 2 to t = 3. Orange: we can push the S2T = Ω(N2)
lower bound of the basic construction to SkT = Ω(Nk) by using k − 1 levels of nesting.
The orange arrow shows how the bound improves by going from k = 2 to k = 3.

the lower bound to SkT ∈ Ω(ϵkNk) by “nesting" the construction; in the first iteration of
this nesting one replaces the inner function f with gf .4 These lower bounds are illustrated
in Figure 2.1.
3 As a concrete proposal, let AESn : {0, 1}128×{0, 1}128 → {0, 1}n denote AES with the output truncated

to n bits. We can now define f, g by a random key k ← {0, 1}128 as f(x) = AESn(k, 0∥x∥0128−n−1) and
g(x) = AESn(k, 1∥x∥0128−2n−1). As in practice n will be something like 30− 50, which corresponds to
space (which is ≈ n · 2n bits) in the Gigabyte to Petabyte range. Using AES with the smallest 128 bit
blocksize is sufficient as 2n≪ 128.

4 The dream version would be a result showing that one needs either S = Ω(N) or T = Ω(N) to invert.
Our results approach this as k grows showing that S = T = Ω(Nk/(k+1)) is required.
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We do not give a proof for the general construction, as the proof for the general
construction does not require any new ideas, but just gets more technical. We also expect
the basic construction to be already sufficient for constructing a secure PoSpace. Although
for gf there exists a time-memory trade-off S4T ∈ O(N4) (say, S = T ≈ N4/5), which is
achieved by “nesting" Hellman’s attack,5 we expect this attack to only be of concern for
extremely large N .6

A caveat of our lower bound is that it only applies if T ≤ N2/3. We do not see how
to break our lower bound if T > N2/3, and the restriction T ≤ N2/3 seems to be mostly
related to the proof technique. One can improve the bound to T ≤ N t/(t+1) for any t by
generalizing our construction to t-wise collisions. One way to do this – if f is a permutation
and t divides N – is as follows: let g : [N ]t → [N ] and define gf (x) = g(x, x1, . . . , xt−1)
where for some partition S1, . . . , SN/t, |Si| = t of [N ] the values f(x), f(x1), . . . , f(xt−1)
contain all elements of a partition Si and x1 < x2 < . . . < xt−1.

2.1.2 A Simple PoSpace that Fails

Probably the first candidate for a PoSpace scheme that comes to mind is to have —
during the initalization phase — V send the (short) description of a “random behaving"
function f : [N ]→ [N ] to P , who then computes the entire function table of f and stores
it sorted by the outputs. During proof execution V will pick a random x ∈ [N ], and then
challenge P to invert f on y = f(x).7

An honest prover can answer any challenge y by looking up an entry (x′, y) in the
table, which is efficient as the table is sorted by the y’s. At first one might hope this
provides good security against any cheating prover; intuitively, a prover who only stores
≪ N log N bits (i.e., uses space sufficient to only store≪ N output labels of length log N)
will not have stored a value x ∈ f−1(y) for most y’s, and thus must invert by brute force
which will require Θ(N) invocations to f . Unfortunately, even if f is modelled as a truly
5 Informally, nesting Hellman’s attack works as follows. Note that if we could efficiently evaluate gf (·),

we could use Hellman’s attack. Now to evaluate gf we need to invert f . For this make a Hellman table
to invert f , and use this to “semi-efficiently" evaluate gf (·). More generally, for our construction with
nesting parameter k (when the lower bound is SkT ∈ Ω(Nk)) the nested Hellman attack applies if
S2kT ∈ O(N2k).

6 The reason is that for this nested attack to work, we need tables which allow to invert with very high
probability, and in this case the tables will store many redundant values. So the hidden constant in the
S4T ∈ O(N4) bound of the nested attack will be substantial.

7 Instead of storing all N tuples (x, f(x)) (sorted by the 2nd entry), which takes 2N log N bits, one can
compress this list by almost a factor 2 using the fact that the 2nd entry is sorted, and another factor
≈ 1 − 1/e ≈ 0.632 by keeping only one entry whenever there are multiple tuples with the same 2nd
entry, thus requiring ≈ 0.632N log N bits.
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random function, this intuition is totally wrong due to Hellman’s time-memory trade-offs,
which we’ll discuss in the next section.

The goal of this work is to save this elegant and simple approach towards constructing
PoSpace. As discussed before, for our function gf : [N ] → [N ] (defined as gf (x) =
g(x, x′) where f(x) = f(x′)) we can prove better lower bounds than for random functions.
Instantiating the simple PoSpace with gf needs some minor adaptions. V will send the
description of a function g : [N ]× [N ]→ [N ] and a permutation f : [N ]→ [N ] to P . Now
P first computes the entire function table of f and sorts it by the output values. Note
that with this table P can efficiently invert f . Then P computes (and sorts) the function
table of gf (using that gf (x) = g(x, f−1(f(x))). Another issue is that in the execution
phase V can no longer compute a challenge as before – i.e. y = gf (x) for a random x –
as it cannot evaluate gf . Instead, we let V just pick a random y ∈ [N ]. The prover P
must answer this challenge with a tuple (x, x′) s.t. f(x) = f(x′) and g(x, x′) = y (i.e.,
gf (x) = y). Just sending the preimage x of gf for y is no longer sufficient, as V is not
able to verify if gf (x) = y without x′.

This protocol has a significant soundness and completeness error. On the one hand,
a cheating prover P̃ who only stores, say 10%, of the function table, will still be able to
make V accept in 10% of the cases. On the other hand, even if gf behaves like a random
function, an honest prover P will only be able to answer a 1 − 1/e fraction (≈ 63%) of
the challenges y ∈ [N ], as some will simply not have a preimage under gf .8

When used as a replacement for PoW in cryptocurrencies, neither the soundness nor
the completeness error are an issue. If this PoSpace is to be used in a context where one
needs negligible soundness and/or completeness, one can use standard repetition tricks to
amplify the soundness and completeness, and make the corresponding errors negligible.9

When constructing a PoSpace from a function with a domain of size N , the space
the honest prover requires is around N log N bits for the simple PoSpace outlined above
(where we store the sorted function table of a function f : [N ]→ [N ]), and roughly twice
that for our basic construction (where we store the function tables of gf : [N ]→ [N ] and
f : [N ] → [N ]). Thus, for a given amount N ′ of space the prover wants to commit to,
it must use a function with domain N ≈ N ′/ log(N ′). In particular, the time-memory

8 Throwing N balls in N bins at random will leave around N/e bins empty, so gf ’s outputs will miss
N/e ≈ 0.37 ·N values in [N ].

9 To decrease the soundness error from 0.37 to negligible, the verifier can ask the prover to invert gf on
t ∈ N independent random challenges in [N ]. In expectation gf will have a preimage on 0.63·t challenges.
The probability that – say at least 0.5 · t – of the challenges have a preimage is then exponentially (in
t) close to 1 by the Chernoff bound. So if we only require the prover to invert half the challenges, the
soundness error becomes negligible.
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trade-offs we can prove on the hardness of inverting the underlying function translate
directly to the security of the PoSpace.

2.1.3 Hellman’s Time-Memory Trade Offs

Hellman [Hel80] showed that any permutation p : [N ] → [N ] can be inverted using an
algorithm that is given S bits of auxiliary information on p and makes at most T oracle
queries to p(·), where (Õ below hides log(N)O(1) factors)

S · T ∈ Õ(N) e.g. when S = T ≈ N1/2 . (2.1)

Hellman also presents attacks against random functions, but with worse parameters. A
rigorous bound was only later proven by Fiat and Naor [FN91] where they show that
Hellman’s attack on random functions satisfies

S2 · T ∈ Õ(N2) e.g. when S = T ≈ N2/3 . (2.2)

Fiat and Naor [FN91] also present an attack with worse parameters which works for any
(not necessarily random) function, where

S3 · T ∈ Õ(N3) e.g. when S = T ≈ N3/4 . (2.3)

The attack on a permutation p : [N ] → [N ] for a given T is easy to explain: Pick
any x ∈ [N ] and define x0, x1, . . . as x0 = x, xi+1 = p(xi), let ℓ ≤ N − 1 be minimal
such that x0 = xℓ. Now store the values xT , x2T , . . . , x(ℓ mod T )T in a sorted list. Let us
assume for simplicity that ℓ − 1 = N , so x0, . . . , xℓ−1 cover the entire domain (if this is
not the case, one picks some x′ not yet covered and makes a new table for the values
x0 = x′, x1 = p(x0), . . .). This requires storing S = N/T values. If we have this table,
given a challenge y to invert, we just apply p to y until we hit some stored value xiT ,
then continue applying p to x(i−1)T until we hit y, at which point we found the inverse
p−1(y). By construction this attack requires T invocations to p. The attack on general
functions is more complicated and gives worse bounds as we do not have such a nice cycle
structure. In a nutshell, one computes several different chains, where for the jth chain
we pick some random hj : [N ] → [N ] and compute x0, x1, . . . , xn as xi = f(hj(xi−1)).
Then, every T ’th value of the chain is stored. To invert a challenge y we apply f(h1(·))
sequentially on input y up to T times. If we hit a value xiT we stored in the first chain, we
try to invert by applying f(h1(·)) starting with x(i−1)T .10 If we do not succeed, continue
with the chains generated by f(h2(·)), f(h3(·)), . . . until the inverse is found or all chains
are used up. This attack will be successful with high probability if the chains cover a
large fraction of f ’s output domain.

10 Unlike for permutations, there’s no guarantee we’ll be successful, as the challenge might lie on a branch
of the function graph different from the one that includes x(i−1)T .
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2.1.4 Samplability is Sufficient for Hellman’s Attack

One reason the lower bound for our function gf : [N ]→ [N ] (defined as gf (x) = g(x, x′)
where f(x) = f(x′)) does not contradict Hellman’s attacks is the fact that gf cannot be
efficiently evaluated in forward direction. One can think of simpler constructions such as
g′f (x) = g(x, f−1(x)) which also have this property, but observe that Hellman’s attack
is easily adapted to break g′f . More generally, Hellman’s attack does not require that
the function can be efficiently computed in forward direction, it is sufficient to have
an algorithm that efficiently samples random input/output tuples of the function. This
is possible for g′f as for a random z the tuple f(z), g(f(z), z) is a valid input/output:
g′f (f(z)) = g(f(z), f−1(f(z)) = g(f(z), z). To adapt Hellman’s attack to this setting –
where we just have an efficient input/output sampler σf for f – replace the f(hi(·))’s in
the attack described in the previous section with σf (hi(·)).

2.1.5 Lower Bounds

De, Trevisan and Tulsiani [DTT10] (building on work by Yao [Yao90], Gennaro-Trevisan
[GT00] and Wee [Wee05]) prove a lower bound for inverting random permutations, and in
particular show that Hellman’s attack as stated in (2.1) is optimal: For any oracle-aided
algorithm A, it holds that for most permutations p : [N ] → [N ], if A is given advice
(that can arbitrarily depend on p) of size S, makes at most T oracle queries and inverts
p on ϵN values, we have S · T ∈ Ω(ϵN). Their lower bound proof can easily be adapted
to random functions f : [N ] → [N ], but note that in this case it is no longer tight, i.e.,
matching (2.2). Barkan, Biham, and Shamir [BBS06] show a matching S2 · T ∈ Ω̃(N2)
lower bound for a restricted class of algorithms.

2.1.6 Proof Outline

The starting point of our proof is the S · T ∈ Ω(ϵN) lower bound for inverting random
permutations by De, Trevisan and Tulsiani [DTT10] mentioned in the previous section.

The high level idea of their lower bound proof is as follows: Assume an adversary A
exists, which is given an auxiliary string aux, makes at most T oracle queries and can
invert a random permutation p : [N ]→ [N ] on an ϵ fraction of [N ] with high probability
(aux can depend arbitrarily on p). One then shows that given (black box access to)
Aaux(·) def= A(aux, ·) it is possible to “compress" the description of p from log(N !) to
log(N !)−∆ bits for some ∆ > 0. As a random permutation is incompressible (formally
stated as Fact 1 in Section 2.2 below), the ∆ bits we saved must come from the auxiliary
string given, so S = |aux| ⪆ ∆.
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To compress p, one now finds a subset G ⊂ [N ] where (1) A inverts successfully, i.e.,
for all y ∈ p(G) = {p(x) : x ∈ G} we have Ap

aux(y) = p−1(y) and (2) A never makes a
query in G, i.e., for all y ∈ G all oracle queries made by Ap

aux(y) are in [N ] − G (except
for the last query which we always assume is p−1(y)).

The compression now exploits the fact that one can learn the mapping G→ p(G) given
aux, an encoding of the set p(G), and the remaining mapping [N ]−G→ p([N ]−G). While
decoding, one recovers G → p(G) by invoking Ap

aux(·) on all values p(G) and answering
all oracle queries using the mapping [N ]−G→ p([N ]−G) where the first query outside
[N ]−G will be the right value by construction.

Thus, we compressed by not encoding the mapping G → p(G), which will save us
|G| log(N) bits, however we have to pay an extra |G| log(eN/|G|) bits to encode the set
p(G), so overall we compressed by |G| log(|G|/e) bits, and therefore S ≥ |G| assuming
|G| ≥ 2e. Thus the question is how large a set G can we choose. A simple probabilistic
argument, basically picking values at random until it is no longer possible to extend G,
shows that we can always pick a G of size at least |G| ≥ ϵN/T , and we conclude S ≥ ϵN/T

assuming T ≤ ϵN/2e.

In the proof of De et al., the size of the good set G will always be close to ϵN/T ,
no matter how Aaux actually behaves. In this paper we give a more fine-grained analysis
introducing a new parameter Tg.

The Tg parameter. Informally, our compression algorithm for a function g : [N ]→
[N ] goes as follows: Define the set I = {x : Ag

aux(g(x)) = x} of values where Ag
aux inverts

g(I), by assumption |I| = ϵN . Now we can add values from I to G as long as possible,
every time we add a value x, we “spoil" up to T values in I, where we say x′ gets spoiled
if Ag

aux(g(x)) makes oracle query x′, and thus we will not be able to add x′ to G in the
future. As we start with |I| = ϵN , and spoil at most T values for every value added to
G, we can add at least ϵN/T values to G.

This is a worst case analysis assuming Ag
aux really spoils close to T values every time

we add a value to G, but potentially Ag
aux behaves nicer and on average spoils less. In the

proof of Lemma 1 we take advantage of this and extend G as long as possible, ending up
with a good set G of size at least ϵN/2Tg for some 1 ≤ Tg ≤ T . Here Tg is the average
number of elements we spoiled for every element added to G.

This does not help to improve the De et al. lower bound, as in general Tg can be as
large as T in which case our lower bound S · Tg ∈ Ω(ϵN) coincides with the De at al.
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S · T ∈ Ω(ϵN) lower bound.11 But this more fine-grained bound will be a crucial tool to
prove the lower bound for gf .

Lower Bound for gf . We now outline the proof idea for our lower bound S2 · T ∈
Ω(ϵ2N2) for inverting gf (x) = g(x, x′), f(x) = f(x′) assuming g : [N ] × [N ] → [N ]
is a random function and f : [N ] → [N ] is a random permutation. We assume an
adversary Ag,f

aux exists which has oracle access to f, g and inverts gf : [N ] → [N ] on a
set J = {y : gf (Af,g

aux(y)) = y} of size J = |ϵN |.

If the function table of f is given, gf : [N ] → [N ] is a random function that can be
efficiently evaluated, and we can prove a lower bound S · Tg ∈ Ω(ϵN) as outlined above.

At this point, we make a case distinction, depending on whether Tg is below or above
√

T .

If Tg <
√

T our S · Tg ∈ Ω(ϵN) bound becomes S2 · T ∈ Ω(ϵ2N2) and we are done.

The more complicated case is when Tg ≥
√

T where we show how to use the existence
of Af,g

aux to compress f instead of g. Recall that Tg is the average number of values that
got “spoiled" while running the compression algorithm for gf , that means, for every value
added to the good set G, Af,g

aux made on average Tg “fresh" queries to gf . Now making
fresh gf queries isn’t that easy, as it requires finding x, x′ where f(x) = f(x′). We can
use Af,g

aux which makes many such fresh gf queries to “compress" f : when Af,g
aux makes two

f queries x, x′ where f(x) = f(x′), we just need to store the first output f(x), but won’t
need the second f(x′) as we know it is f(x). For decoding we also must store when exactly
Af,g

aux makes the f queries x and x′, more on this below.

Every time we invoke Af,g
aux for compression as just outlined, up to T outputs of f may

get “spoiled" in the sense that Af,g
aux makes an f query that we need to answer at this

point, and thus it is no longer available to be compressed later.

As Af,g
aux can spoil up to T queries on every invocation, we can hope to invoke it at

least ϵN/T times before all the f queries are spoiled. Moreover, on average Af,g
aux makes Tg

fresh gf queries, so we can hope to compress around Tg outputs of f with every invocation
of Af,g

aux, which would give us around Tg · ϵN/T compressed values. This assumes that a
large fraction of the fresh gf queries uses values of f that were not spoiled in previous
invocations. The technical core of our proof is a combinatorial lemma which we state and
prove in Section 2.5, which implies that it is always possible to find a sequence of inputs
to Af,g

aux such that this is the case. Concretely, we can always find a sequence of inputs

11 Note that for the adversary as specified by Hellman’s attack against permutations as outlined in Sec-
tion 2.1.3 we do have Tg = T , which is not surprising given that for permutations the De at al. lower
bound matches Hellman’s attack.
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such that at least Tg · ϵN/32T values can be compressed.12

2.2 Notation and Basic Facts

We use brackets like (x1, x2, . . .) and {x1, x2, . . .} to denote ordered and unordered sets,
respectively. We’ll usually refer to unordered sets simply as sets, and to ordered sets as
lists. [N ] denotes some domain of size N , for notational convenience we assume N = 2n

is a power of two and identify [N ] with {0, 1}n. For a function f : [N ] → [M ] and a set
S ⊆ [N ] we denote with f(S) the set {f(S[1]), . . . , f(S[|S|])}, similarly for a list L ⊆ [N ]
we denote with f(L) the list (f(L[1]), . . . , f(L[|L|])). For a set X , we denote with x← X
that x is assigned a value chosen uniformly at random from X .

Fact 1 (from [DTT10]). For any randomized encoding procedure Enc : {0, 1}r×{0, 1}n →
{0, 1}m and decoding procedure Dec : {0, 1}r × {0, 1}m → {0, 1}n where

Prx←{0,1}n,ρ←{0,1}r [Dec(ρ, Enc(ρ, x)) = x] ≥ δ

we have m ≥ n− log(1/δ).

Fact 2. If a set X is at least ϵ dense in Y , i.e., X ⊂ Y , |X| ≥ ϵ|Y |, and Y is
known, then X can be encoded using |X| · log(e/ϵ) bits. To show this we use the inequality(

n
ϵn

)
≤ (en/ϵn)ϵn, which implies log

(
n
ϵn

)
≤ ϵn log(e/ϵ).

2.3 A Lower Bound for Functions

The following theorem is basically from [DTT10], but stated for functions rather than
permutations.

Theorem 1. Fix some ϵ ≥ 0 and an oracle algorithm A which on any input makes at
most T oracle queries. If for every function f : [N ] → [N ] there exists a string aux of
length |aux| = S such that

Pry←[N ]
[
f(Af

aux(y)) = y
]
≥ ϵ

then
T · S ∈ Ω(ϵN) . (2.4)

12 The constant 32 here can be decreased with a more fine-grained analysis, we opted for a simpler proof
rather than optimising this constant.
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Theorem 1 follows from Lemma 1 below using Fact 1 as follows: in Fact 1 let δ = 0.9
and n = N log N , think of x as the function table of a function f : [N ] → [N ]. Then
|Enc(ρ, aux, f)| ≥ N log N − log(1/0.9), together with the upper bound on the encoding
from (2.6) this implies (2.4). Note that the extra assumption that T ≤ ϵN/40 in the
lemma below does not matter, as if it is not satisfied the theorem is trivially true. For
now the value Tg in the lemma below is not important and the reader can just assume
Tg = T .

Lemma 1. Let A, T, S, ϵ and f be as in Theorem 1, and assume T ≤ ϵN/40. There are
randomized encoding and decoding procedures Enc, Dec such that if f : [N ] → [N ] is a
function and for some aux of length |aux| = S

Pry←[N ]
[
f(Af

aux(y)) = y
]
≥ ϵ

then
Prρ←{0,1}r [Dec(ρ, Enc(ρ, aux, f)) = f ] ≥ 0.9 (2.5)

and the length of the encoding is at most

|Enc(ρ, aux, f)| ≤ N log N  
=|f |

− ϵN

2Tg

+ S + log(N) (2.6)

for some Tg, 1 ≤ Tg ≤ T .

Proof of Lemma 1. The Encoding and Decoding Algorithms. In Algorithms 1 and 2,
we always assume that if Af

aux(y) outputs some value x, it makes the query f(x) at some
point. This is basically w.l.o.g. as we can turn any adversary into one satisfying this by
making at most one extra query. If at some point Af

aux(y) makes an oracle query x where
f(x) = y, then we also w.l.o.g. assume that right after this query A outputs x and stops.
Note that if A is probabilistic, it uses random coins which are given as input to Enc, Dec,
so we can make sure the same coins are used during encoding and decoding.

The Size of the Encoding. We will now upper bound the size of the encoding of
G, f(Q′), (|q′1|, . . . , |q′|G||), f([N ]− {G−1 ∪Q′}) as output in line 16 of the Enc algorithm.

Let Tg := |B|/|G| be the average number of elements we added to the bad set B for
every element added to the good set G, then

|G| ≥ ϵN/2Tg . (2.7)

To see this we note that when we leave the while loop (see line 8 of the algorithm Enc)
it holds that |B| ≥ |J |/2 = ϵN/2, so |G| = |B|/Tg ≥ |J |/2Tg = ϵN/2Tg.
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1: Input: A, aux, randomness ρ and a function f : [N ]→ [N ] to compress.
2: Initialize: B, G := ∅, c := −1
3: Throughout we identify [N ] with {0, . . . , N − 1}.
4: Pick a random permutation π : [N ]→ [N ] (using random coins from ρ)
5: Let J := {y : f(Af

aux(y)) = y}, |J | = ϵN ▷ The set J where A inverts. If A is
probabilistic, use random coins from ρ.

6: For i = 0, . . . , N − 1 define yi := π(i). ▷ Randomize the order
7: For y ∈ J let the list q(y) contain all queries made by Af (y) except the last query

(which is x s.t. f(x) = y).
8: while |B| < |J |/2 do ▷ While the bad set contains less than half of J

9: c := min{c′ > c : yc′ ∈ {J \B}} ▷ Increase c to the next yc in J \B

10: G := G ∪ yc ▷ Add this yc to good set
11: Invoke Af

aux(yc) and observe its queries
12: B := B ∪ (f(q(yc)) ∩ J) ▷ Add spoiled queries to bad set
13: end while
14: Let G = {g1, . . . , g|G|}, Q = (q(g1), . . . , q(g|G|)), and define Q′ = (q′1, . . . , q′|G|), q′i ⊆

q(gi) to contain only the “fresh" queries in Q by deleting all but the first occur-
rence of every element. E.g. if (q(g1), q(g2)) = ((1, 2, 3, 1), (2, 4, 5, 4)) then (q′1, q′2) =
((1, 2, 3), (4, 5)).

15: Let G−1 = {Af
aux(y) : y ∈ G}

16: Output an encoding of (the set) G, (the lists) f(Q′), (|q′1|, . . . , |q′|G||), f([N ]− {G−1 ∪
Q′}) and (the string) aux.

Algorithm 1: Enc

G: Instead of G we will actually encode the set π−1(G) = {c1, . . . , c|G|}. From this the
decoding Dec (who gets ρ, and thus knows π) can then reconstruct G = π(π−1(G)).
We claim that the elements in c1 < c2 < . . . < c|G| are whp. at least ϵ/2 dense
in [c|G|] (equivalently, c|G| ≤ 2|G|/ϵ). By Fact 2 we can thus encode π−1(G) using
|G| log(2e/ϵ) + log N bits (the extra log N bits are used to encode the size of G

which is required so decoding later knows how to parse the encoding). To see that
the ci’s are ϵ/2 dense whp. consider line 9 in Enc which states c := min{c′ > c :
yc′ ∈ {J \ B}}. If we replace J \ B with J , then the ci’s would be whp. close to ϵ

dense as J is ϵ dense in [N ] and the yi are uniformly random. As |B| < |J |/2, using
J \B instead of J will decrease the density by at most a factor 2. If we do not have
this density, i.e., c|G| > 2|G|/ϵ, we consider encoding to have failed.

f(Q′): This is a list of Q′ elements in [N ] and can be encoded using |Q′| log N bits.
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1: Input: A, ρ and the encoding (G, f(Q′), (|q′1|, . . . , |q′|G||), f([N ]− {G−1 ∪Q′}), aux).
2: Let π be as in Enc.
3: Let (g1, . . . , g|G|) be the elements of G ordered as they were added by Enc (i.e.,

π−1(gi) < π−1(gi+1) for all i).
4: Invoke Af

aux(·) sequentially on inputs g1, . . . , g|G| using f(Q′) to answer Aaux’s oracle
queries. ▷ If A is probabilistic, use the same random coins from ρ as in Enc.

5: Combine the mapping G−1 ∪ Q′ → f(G−1 ∪ Q′) (which we learned in the previous
step) with [N ]−{G−1 ∪Q′} → f([N ]−{G−1 ∪Q′}) to learn the entire [N ]→ f([N ])

6: Output f([N ])

Algorithm 2: Dec

(|q′1|, . . . , |q′|G||): Require |G| log T bits as |q′i| ≤ |qi| ≤ T . A more careful argument
(using that the q′i are on average at most Tg) requires |G| log(eTg) bits.

f([N ]−{G−1 ∪Q′}): Requires (N − |G| − |Q′|) log N bits (using that G−1 ∩Q′ = ∅ and
|G−1| = |G|).

aux: Is S bits long.

Summing up we get

|Enc(ρ, aux, f)| = |G| log(2e2Tg/ϵ) + (N − |G|) log N + S + log N

as by assumption Tg ≤ T ≤ ϵN/40, we get log N − log(2e2Tg/ϵ) ≥ 1, and further using
(2.7) we get

|Enc(ρ, aux, f)| ≤ N log N − ϵN

2Tg

+ S + log N

as claimed.

2.4 A Lower Bound for g(x, f−1(f (x)))

For a permutation f : [N ]→ [N ] and a function g : [N ]× [N ]→ [N ] we define gf : [N ]→
[N ] as

gf (x) = g(x, x′) where f(x) = f(x′) or equivalently gf (x) = g(x, f−1(f(x))

Theorem 2. Fix some ϵ > 0 and an oracle algorithm A which makes at most

T ≤ (N/4e)2/3 (2.8)
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oracle queries and takes an advice string aux of length |aux| = S. If for all functions
f : [N ]→ [N ], g : [N ]× [N ]→ [N ] and some aux of length |aux| = S we have

Pry←[N ]
[
gf (Af,g

aux(y)) = y
]
≥ ϵ (2.9)

then
TS2 ∈ Ω(ϵ2N2) . (2.10)

Now Theorem 2 follows from Lemma 2 below as we’ll prove thereafter.

Lemma 2. Fix some ϵ ≥ 0 and an oracle algorithm A which makes at most T ≤
(N/4e)2/3 oracle queries. There are randomized encoding and decoding procedures Encg, Decg

and Encf , Decf such that if f : [N ] → [N ] is a permutation, g : [N ] × [N ] → [N ] is a
function and for some advice string aux of length |aux| = S we have

Pry←[N ]
[
gf (Af,g

aux(y)) = y
]
≥ ϵ

then

Prρ←{0,1}r [Decg(ρ, f, Encg(ρ, aux, f, g)) = g] ≥ 0.9 (2.11)

Prρ←{0,1}r [Decf (ρ, g, Encf (ρ, aux, f, g)) = f ] ≥ 0.9 . (2.12)

Moreover for every ρ, aux, f, g there is a Tg, 1 ≤ Tg ≤ T , such that

|Encg(ρ, aux, f, g)| ≤ N2 log N  
=|g|

− ϵN

2Tg

+ S + log N (2.13)

and if Tg ≥
√

T

|Encf (ρ, aux, f, g)| ≤ log N !  
=|f |

−ϵNTg

64T
+ S + log N . (2.14)

We first explain how Theorem 2 follows from Lemma 2 using Fact 1.

Proof of Theorem 2. The basic idea is to make a case analysis; if Tg <
√

T we compress
g, otherwise we compress f . Intuitively, our encoding for g achieving (2.13) makes both
f and g queries, but only g queries “spoil" g values. As the compression runs until all g

values are spoiled, it compresses better the smaller Tg is. On the other hand, the encoding
for f achieving (2.12) is derived from our encoding for g, and it manages to compresses
in the order of Tg values of f for every invocation (while “spoiling" at most T of the f

values), so the larger Tg the better it compresses f .

Concretely, pick f, g uniformly at random and assume (2.9) holds. By a union bound
for at least a 0.8 fraction of the ρ, (2.11) and (2.12) hold simultaneously. Consider
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any such good ρ, which together with f, g fixes some Tg, 1 ≤ Tg ≤ T as in the state-
ment of Lemma 2. Now consider an encoding Encf,g where Encf,g(ρ, aux, f, g) outputs
(f, Encg(ρ, aux, f, g)) if Tg <

√
T , and (g, Encf (ρ, aux, f, g)) otherwise.

• If Tg <
√

T we use (2.13) to get

|Encf,g(ρ, aux, f, g)| = |f |+ |Encg(ρ, aux, f, g)| ≤ |f |+ |g| − ϵN/2Tg + S + log N

and now using Fact 1 (with δ = 0.8) we get

S ≥ ϵN/2Tg − log N − log(1/0.8) > ϵN/2
√

T − log N − log(1/0.8)

and thus TS2 ∈ Ω(ϵ2N2) as claimed in (2.10).

• If Tg ≥
√

T then we use (2.14) and Fact 1 and again get S ≥ ϵNTg/64T − log N −
log(1/0.8) which implies (2.10) as Tg ≥

√
T .

1: Input: A, ρ, aux, f, g

2: Compute the function table of gf : [N ]→ [N ], gf (x) = g(x, x′) where f(x) = f(x′).
3: Invoke Egf

← Enc(A, gf , aux, ρ)
4: Let g′ be the function table of g([N ]2) = g(1, 1)∥ . . . ∥g(N, N), but with the N entries

(x, x′) where f(x) = f(x′) deleted.
5: Output Egf

, g′, aux.

Algorithm 3: Encg

1: Input: A, ρ, f and the encoding (Egf
, g′, aux) of g.

2: Invoke gf ← Dec(A, ρ, aux, Egf
).

3: Reconstruct g from g′ and gf (this is possible as f is given).
4: Output g([N ]2)

Algorithm 4: Decg
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1: Input: A, ρ, aux, f, g

2: Invoke Egf
← Enc(A, gf , aux, ρ) ▷ Compute the same encoding of gf as Encg did.

3: For G ∈ Egf
, let Gf ⊂ G, Gf = {z1, . . . , z|Gf |} be as defined in proof of Lemma 2.

4: Initialize empty lists Lf , Tf , Cf := ∅.
5: for i = 1 to |Gf | do
6: Invoke Af,g

aux(zi). ▷ Using random coins from ρ if A is probabilistic.
7: For each pair of f queries x, x′ (made in this order during invocation) where

f(x) = f(x′) and neither f(x′) nor f(x) is in Lf ∪ Cf , let (t, t′) be the indices
(1 ≤ t < t′ ≤ T ) specifying when during invocation these queries were made. Append
(t, t′) to Tf and append f(x′) to Cf .

8: Append all images of oracle queries to f made during invocation of Af,g
aux(zi) to

Lf , except if the value is in Lf ∪ Cf . ▷ Append the images of all fresh f queries
which were not compressed.

9: end for
10: Let L−1

f (similarly C−1
f ) contain the inputs corresponding to Lf , i.e., add x to L−1

f

when adding f(x) to Lf .
11: Output an encoding of Gf , the list of values of f queries Lf , the list of tuples Tf and

the remaining outputs f([N ] − {L−1
f ∪ C−1

f }) which were neither in the list Lf nor
compressed.

Algorithm 5: Encf

1: Input: A, ρ, aux, g and encoding (Gf , Lf , Tf , f([N ]− {L−1
f ∪ C−1

f })) of f .
2: Let Gf = {z1, . . . , z|Gf |}.
3: for i = 1 to |Gf | do
4: Invoke A(·),g

aux (zi) reconstructing the answers to the first oracle (which should be f)
using the lists Lf and Tf .

5: end for
6: For L−1

f , C−1
f as in Encf , we have learned the mapping (L−1

f ∪C−1
f )→ f(L−1

f ∪C−1
f ).

Reconstruct all of f([N ]) by combining this with f([N ]− (L−1
f ∪ C−1

f )).
7: Output f([N ])

Algorithm 6: Decf

Proof of Lemma 2. The Encoding and Decoding Algorithms. The encoding and
decoding of g are depicted in Algorithms 3 and 4, and those of f in Algorithms 5 and 6.
The adversary Af,g

aux(·) can make up to T queries in total to its oracles f(·) and g(·).
We will assume that whenever a query g(x, x′) is made, the adversary made queries
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f(x) and f(x′) before. This is basically without loss of generality as we can turn any
adversary into one adhering to this by at most tripling the number of queries. It will also
be convenient to assume that Af,g

aux only queries g on its restriction to gf , that is, for all
g(x, x′) queries it holds that f(x) = f(x′), but the proof is easily extended to allow all
queries to g as our encoding will store the function table of g on all “uninteresting" inputs
(x, x′), f(x) ̸= f(x′) and thus can directly answer any such query.

As in the proof of Lemma 1, we do not explicitly show the randomness in case A is
probabilistic.

The Size of the Encodings. We will now upper bound the size of the encodings
output by Encg and Encf in Algorithms 3 and 5 and hence prove (2.13) and (2.14).

Now (2.13) follows almost directly from Theorem 1 as our compression algorithm Encg

for g : [N ]× [N ]→ [N ] simply uses Enc to compress g restricted to gf : [N ]→ [N ], and
thus compresses by exactly the same amount as Enc.

It remains to prove an upper bound on the length of the encoding of f by our algorithm
Encf as claimed in (2.14). Recall that Enc (as used inside Encg) defines a set G such that
for every y ∈ G we have that Af,g

aux(y) inverts, i.e., gf (Af,g
aux(y)) = y and it never makes a gf

query x where gf (x) ∈ G. Recall that Tg in (2.13) satisfies Tg = ϵN/2|G|, and corresponds
to the average number of “fresh" gf queries made by Af,g

aux(·) when invoked on the values
in G.

Encf invokes Af,g
aux(·) on a carefully chosen subset Gf = (z1, . . . , z|Gf |) of G (to be

defined later). It keeps lists Lf , Cf and Tf such that after invoking Af,g
aux(·) on Gf , Lf ∪Cf

holds the outputs to all f queries made. Looking ahead, the decoding Decf will also
invoke Af,g

aux(·) on Gf , but will only need Lf and Tf (but not Cf ) to answer all f queries.

The lists Lf , Tf , Cf are generated as follows. On the first invocation Af,g
aux(z1) we ob-

serve up to T oracle queries made to g and f . Every g query (x, x′) must be preceded
by f queries x and x′ where f(x) = f(x′). Assume x and x′ are the queries number
t, t′ (1 ≤ t < t′ ≤ T ). A key observation is that by just storing (t, t′) and f(x), Decf

will later be able to reconstruct f(x′) by invoking Af,g
aux(z1), and when query t′ is made,

looking up the query f(x) in Lf (its position in Lf is given by t), and set f(x′) = f(x).
Thus, every time a fresh query f(x′) is made we append it to Lf , unless earlier in this
invocation we made a fresh query f(x) where f(x′) = f(x). In this case we append the
indices (t, t′) to the list Tf . We also add f(x′) to a list Cf just to keep track of what
we already compressed. Encf now continues this process by invoking Af,g

aux(·) on inputs
z2, z3, . . . , z|Gf | ∈ Gf and finally outputs and encoding of Gf , an encoding of the list of
images of fresh queries Lf , an encoding of the list of colliding indices Tf , aux, and all
values of f that were neither compressed nor queried.
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In the sequel we show how to choose Gf ∈ G such that |Gf | ≥ ϵN/8T and hence it
can be encoded using |Gf | log N + log N where the extra log N is used to encode |Gf |.
We also show that |Tf | ≥ |Gf | · Tg/4 and furthermore that we can compress at least one
bit per element of Tf . Putting things together we get

|Encf (ρ, aux, f, g)| ≤ |f | − |Gf |(Tg/4− log N) + S + log N .

And if log N ≤ Tg/8, we get (2.14), i.e.,

|Encf (ρ, aux, f, g)| ≤ |f | − ϵNTg/64T + S + log N .

Given G such that |G| ≥ ϵN/2Tg, the subset Gf can be constructed by carefully
applying Lemma 3 which we prove in Section 2.5. Let (X1, . . . , X|G|), (Y1, . . . , Y|G|) be
two sequences of sets such that Yi ⊆ Xi ⊆ [N ] and |Xi| ≤ T such that Yi and Xi

respectively correspond to g and f queries in |G| consecutive executions of Af,g
aux(·) on

G.13 Given such sequences Lemma 3 constructs a subsequence of executions Gf ⊆ G

whose corresponding g queries (Yi1 , . . . , Yi|Gf |) are fresh. As a g query is preceded by two
f queries, such a subsequence induces a sequence (Zi1 , . . . , Zi|Gf |) of queries that are not
only fresh for g but also fresh for f . Furthermore, such a sequence covers y · |I|/16T where
y = |I|/|G| is the average coverage of Yi’s and I ⊆ [N ] is their total coverage.

However, Lemma 3 considers a g query (x, x′) ∈ Yi to be fresh if either x /∈ ∪i−1
j=1Xj

or x′ /∈ ∪i−1
j=1Xj, i.e., if at least one of x, x′ is fresh in the ith execution, then the pair

is considered fresh. For compressing f both x, x′ need to be fresh. To enforce that and
apply Lemma 3 directly, we apply Lemma 3 on augmented sets X1, . . . , X|G| such that
whenever Xi, Yi are selected, the corresponding Zi contains exactly |Zi|/2 pairs of queries
that are fresh for both g and f . We augment Xi as follows. For every Xi and every f

query x made in the ith step, add f−1(f(x)) to Xi. This augmentation results in Xi such
that |Xi| ≤ 2T as originally we have |Xi| ≤ T .

Applying Lemma 3 on Y1, . . . , Y|G| and such augmented sets X1, . . . , X|G| yields Gf

such that the total number of fresh colliding queries is of size at least

y · |I|
16 · 2T

= ϵN

|G|
· ϵN

32T
= ϵNTg

16T
.

Therefore the total number of fresh colliding pairs, or equivalently |Tf |, is ϵNTg/32T

as claimed. Furthermore, Lemma 3 guarantees that |Gf | ≥ ϵN/8T .14

13 Here is how these sets are compiled. Note that if q is an f query then q ∈ [N ], and if q is a g query
then q ∈ [N ]2. In the ith execution, both Xi, Yi are initially empty and later will contain only elements
in [N ]. Therefore for each query q, if q = (x, x′) is a g query we add two elements x and x′ to Yi, and
if q = x is an f query we add the single element x to Xi. Furthermore as a g query (x, x′) is preceded
by two f queries x, x′, then Yi ⊆ Xi, and as the max number of queries is T we have |Xi| ≤ T .

14 |Gf | corresponds to ℓ in the proof of Lemma 3.
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What remains to show is that for each colliding pair in Tf we compress by at least one
bit. Recall that the list Tf has exactly as many entries as Cf . However entries in Tf are
colliding pairs of indices (t, t′) and entries in Cf are images of size log N . Per each entry
(t, t′) in Tf we compress if the encoding size of (t, t′) is strictly less than log N . Here is
an encoding of Tf that achieves this. Instead of encoding each entry (t, t′) as two indices
which costs 2 log T and therefore we save one bit per element in Tf assuming T ≤

√
N/2,

we encode the set of colliding pairs among all possible query pairs. Concretely, for each
z ∈ Gf we obtain a set of colliding indices of size at least Tg/4. Then we encode this set
of colliding pairs Tg/4 among all possible pairs15, which is upper bounded by T 2, using

log
(

T 2

Tg/4

)
≤ Tg

4 log 4eT 2

Tg

bits, and therefore, given that Tg ≥
√

T and T ≤ (N/4e)2/3, we have that log N −
log 4eT 2/Tg ≥ 1 and therefore we compress by at least one bit for each pair, i.e., for each
element in Tf , and this concludes the proof.

2.5 A Combinatorial Lemma

In this section we state and prove a lemma which can be cast in terms of the following
game between Alice and Bob. For some integers n, N, M , Alice can choose a partition
(Y1, . . . , Yn) of I ⊆ [N ], and for every Yi also a superset Xi ⊇ Yi of size |Xi| ≤M . The goal
of Bob is to find a subsequence 1 ≤ b1 < b2 < . . . < bℓ such that Yb1 , Yb2 , . . . , Ybℓ

contains
as many “fresh" elements as possible, where after picking Ybi

the elements ⋃i
k=1 Xbk

are
not fresh, i.e., picking Ybi

“spoils" all of Xbi
. How many fresh elements can Bob expect to

hit in the worst case? Intuitively, as every Ybi
added spoils up to M elements, he can hope

to pick up to ℓ ≈ |I|/M of the Yi’s before most of the elements are spoiled. As the Yi are
on average of size y := |I|/n, this is also an upper bound on the number of fresh elements
he can hope to get with every step. This gives something in the order of y · (|I|/M) fresh
elements in total. By the lemma below a subsequence that contains about that many
fresh elements always exists.

Lemma 3. For M, N ∈ N, M ≤ N and any disjoint sets Y1, . . . , Yn ⊂ [N ]
n⋃

i=1
Yi = I , ∀i ̸= j : Yi ∩ Yj = ∅

15 Note that T 2 is an upper bound on all possible pairs of queries, however as we have that t < t′ for each
pair (t, t′), we can cut T 2 by at least a factor of 2. Other optimizations are possible. This extra saving
one can use to add extra dummy pairs of indices to separate executions for decoding. The details are
tedious and do not affect the bound as we were generous to consider T 2 to be the size of possible pairs.
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and supersets (X1, . . . , Xn) where

∀i ∈ [n] : Yi ⊆ Xi ⊆ [N ] , |Xi| ≤M

there exists a subsequence 1 ≤ b1 < b2 < . . . < bℓ ≤ n such that the sets

Zbj
= Ybj

\ ∪k<jXbk
(2.15)

have total size
ℓ∑

j=1
|Zbj
| = |

ℓ⋃
j=1

Zbj
| ≥ y · |I|16M

where y = |I|/n denotes the average size of the Yi’s.

Proof. Let (Ya1 , . . . , Yam) be a subquence of (Y1, . . . , Yn) that contains all the sets of size
at least y/2. By a Markov bound, these large Yai

’s cover at least half of the domain I,
i.e. ⏐⏐⏐∪i∈[m]Yai

⏐⏐⏐ > |I|/2 . (2.16)

We now choose the subsequence (Yb1 , . . . , Ybℓ
) from the statement of the lemma as a

subsequence of (Ya1 , . . . , Yam) in a greedy way: for i = 1, . . . , m we add Yai
to the sequence

if it adds a lot of “fresh" elements, concretely, assume we are in step i and so far have
added Yb1 , . . . , Ybj−1 , then we’ll pick the next element, i.e., Ybj

:= Yai
, if the fresh elements

Zbj
= Ybj

\ ∪k<jXbk
contributed by Ybj

are of size at least |Zbj
| > |Ybj

|/2.

We claim that we can always add at least one more Ybj
as long as we haven’t yet

added at least |I|/4M sets, i.e., j < |I|/4M . Note that this then proves the lemma as
ℓ∑

j=1
|Zbj
| ≥

ℓ∑
j=1
|Ybj
|/2 ≥ ℓy/4 ≥ |I|/4M · y/4 = y|I|/16M .

It remains to prove the claim. For contradiction assume our greedy algorithm picked
(Yb1 , . . . , Ybℓ

) with ℓ < |I|/4M . We’ll show that there is a Yat (with at > bℓ) with

|Yat \ ∪
j
i=1Xbi

| ≥ |Yat|/2

which is a contradiction as this means the sequence could be extended by Ybℓ+1 = Yat .
We have

| ∪ℓ
i=1 Xbi

| ≤ |I|/4M ·M = |I|/4 .

This together with (2.16) implies

| ∪i∈[m] Yai
\ ∪ℓ

i=1Xai
| > | ∪i∈[m] Yai

|/2 .

By Markov there must exist some Yat with

|Yat \ ∪ℓ
i=1Xai

| ≥ |Yat|/2

as claimed.
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2.6 Open Problems

We constructed a family of functions from [N ] to [N ] such that for any adversary that
inverts a uniformly sampled function from this family on an ϵ fraction of images, using
at most T ≤ (N/4e)2/3 forward-direction oracle queries and an advice of size S bits, it
must be the case that

TS2 ∈ Ω(ϵ2N2) . (2.17)

It would be very interesting to prove (2.17) for the full range of parameters, namely
for all T ≤ αN for some constant α ∈ (0, 1). The restriction on T in our result seems
inherent to the encoding we use and we see no reason why it can’t be improved.

Furthermore, we argued that by nesting our construction a constant number of times
k, the bound in (2.17) becomes

TSk ∈ Ω(ϵkNk) . (2.18)

However, the best attacks that we are aware of are still Hellman’s attacks, and for a
nesting parameter k, such attacks result in an upper bound that satisfies

TS2k ∈ O(ϵ2kN2k) . (2.19)

The natural open question here is figuring out the optimal trade-off, by improving either
bounds.





3. Proofs of Sequential Work

3.1 Overview

Timed-release cryptography was envisioned by May [May93] and realized by Rivest,
Shamir, and Wagner [RSW00] in the form of a “time-lock puzzle". For some time pa-
rameter T , such a puzzle can be efficiently sampled together with a solution. However,
solving it requires T sequential computations, and this holds even for parties aided with
massive parallelism. In other words, there are no “shortcuts" to the solution. The appli-
cation envisioned in [RSW00] was “sending a message to the future": generate a puzzle,
derive a symmetric key from the solution, encrypt your message using that key, and
release the ciphertext and the puzzle.

The construction put forward in [RSW00] is in the RSA setting: the puzzle is a tuple
(N, x, T ), where N = p · q is an RSA modulus and x ∈ Z∗N a group element, and the
solution to the puzzle is x2T mod N . Although the solution can be computed efficiently if
the factorization of N is known, it was conjectured to require T sequential squarings given
only N . The assumption that underlies the soundness of the [RSW00] time-lock puzzle is
rather non-standard (which is basically that the puzzle is sound, i.e., there’s no shortcut
in computing the solution) and it is an open problem to come up with constructions
under more standard assumptions.

In a negative result, Mahmoody, Moran, and Vadhan [MMV11] show that there’s no
black-box construction of a time-lock puzzle in the random oracle model. In a subse-
quent work the same authors [MMV13] propose and construct publicly verifiable proofs
of sequential work.

Publicly verifiable proofs of sequential work (PoSW) are proof systems in which a
prover, upon receiving a statement χ and a time parameter T , computes a proof ϕ(χ, T )
which is publicly verifiable. The proof can be computed in T sequential steps, but not
much less, even by a malicious party having large parallelism: soundness implies some
failure probability of malicious provers dedicating α · T parallel time. Verification is con-
sidered efficient if it can be done in time poly-logarithmic in T and a security parameter.
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(We refer the reader to [MMV13] for more formal definition. Due to lack of consensus of
what the right definitions are, in this work we choose to leave the definitions informal,
however we prove precise and unambiguous statements.)

Even though PoSW seem related to time-lock puzzles, they are not directly compa-
rable. In particular, in a PoSW it is not possible to sample the solution together with an
instance. On the positive side, PoSW can be constructed in the random oracle model (or
under a standard model assumption on hash functions called “sequentiality"). They are
publicly verifiable and sampling the challenge is public-coin.

The first construction of efficiently and publicly verifiable PoSW is due to Mahmoody,
Moran, and Vadhan [MMV13]. The construction is however not of practical value as a
prover needs not only T sequential time steps but also linear in T space to compute a
proof. Cohen and Pietrzak [CP18] resolved this issue by constructing PoSW where proofs
can be computed in log(T ) space and T time steps.

A necessary property for blockchain applications of PoSW which is not achieved by
the constructions of [MMV13, CP18] is “uniqueness", which means it is not possible to
compute more than one accepting proof for the same statement.

A simple PoSW construction that is unique is a hash chain, where on input x = x0 one
outputs as proof xT which is recursively computed as xi = H(xi−1) for a hash function H.
This is a terrible PoSW as verification requires also T hashes. At least one can parallelize
verification by additionally outputting some q intermediate values x0, xT/q, x2T/q, . . . , xT .
Now the proof can be verified in T/q time assuming one can evaluate q instantiations of
H in parallel: for every i ∈ [q], verify that HT/q(x(i−1)T/q) = xiT/q.

Lenstra and Weselowski [LW17] suggest a construction which is basically a hash chain
but with the additional property that proofs can be verified with a few hundred times
less computation than what is required to compute it. Their construction, dubbed“sloth”
is based on the assumption that computing square roots in a field Fp of size p is around
log(p) times slower than the inverse operation, which is just squaring. A typical value
would be log(p) ≈ 1000.

Their idea is to simply use a hash chain where the hash function is some permutation
π : Fp → Fp, where Fp is a finite field of size p, followed by taking a square root: that is
xi =

√
π(xi−1). Verification goes as for a standard hash chain, but one computes back-

wards, checking xi−1 = π−1(x2
i ), which – assuming computing π, π−1 is cheap compared to

squaring, and squaring is log(p) times faster than taking square roots – gives the claimed
speedup of ≈ log(p) compared to a simple hash chain. We will call a function like sloth
– where from a given state xi, one can compute the previous state xi−1 – “reversible".

In this work we construct a new PoSW in the random permutation model which is
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almost as simple and efficient as [CP18]. Our construction is based on skip lists, and (un-
like [CP18] but like [LW17]) has the property that generating the PoSW is a reversible
computation. This property allows us to “embed" sloth in this PoSW and the resulting
object is a PoSW where verifying sequential work is as efficient as in [CP18], while ver-
ifying (the stronger property) that the correct output has been computed is as efficient
as in [LW17].

3.2 Constructing PoSW

3.2.1 Notation

Throughout we denote the time parameter of our construction by N = 2n with n ∈ N and
assume it is a power of 2. We reserve w, t ∈ N to denote two statistical security parameters
where w is the block size (say w = 256) and t denotes the number of challenges: a cheating
prover who only makes N(1 − ϵ) sequential steps (instead of N) will pass verification
with probability (1− ϵ)t. For integers m, m′ we denote with [m, m′] = {m, m+1, . . . , m′},
[m], [m]0 are short for [1, m] and [0, m].

We define 0̃ = n + 1 and for i ≥ 1, ĩ equals 1 plus the number of trailing zeros in the
binary representation of i. For example,

0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃, 8̃, 9̃, . . . = n + 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, . . . .

For σ ∈ {0, 1}w·i let σ(j) denote the jth w-bit block of σ, so σ = σ(1)∥ . . . ∥σ(i), and
σ(i...j) denote σ(i)∥ . . . ∥σ(j).

For a permutation π over ℓ bits string, we denote with π̇ the function over bit stings
of length ≥ ℓ which simply applies π to the ℓ bit prefix of the input, and leaves the rest
untouched. The inverse π̇−1 is defined similarly.

3.2.2 The Sequence σΠ

At the core of our construction is a mapping based on the skip list data structure (see
Figure 3.1). It is built from a set of permutations Π = {πi}i∈[N ]0 , where each πi is over
{0, 1}w·̃i, and defines a sequence of states σΠ = σ0, . . . , σN , σi ∈ {0, 1}(n+1)·w, recursively
as

σ0 = π̇0(0w·(n+1)) and for i > 0 : σi = π̇i(σi−1)
(

= πi(σ(1...̃i)
i−1 )∥σ(̃i+1...(n+1))

i−1

)
.
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ϕ2

ϕ3

ϕ4

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

Figure 3.1: Illustration of the computation of σΠ = (σ0, . . . , σN) with n = 3, N = 2n = 8.
The blocks represent the permutations, whereas the dashed vertical lines represent the
states. Note that the structure of the graph is the same as a skip list with four layers,
where a pointer in layer i ∈ {0, 1, 2, 3} points to the 2i-th element to its right in the list.

0 1 2 3 4 5 6 7 8

Figure 3.2: The graph G8 that corresponds to the computation of σΠ with n = 3.

3.2.3 The DAG GN

It will be convenient to consider the directed acyclic graph (DAG)

GN = (V, E) , V = [N ]0 , E = {(i, j) ∈ V 2 : ∃k ≥ 0 : j − i = 2k, 2k|i}

that is derived from the computation of σΠ as follows: identify the permutation πi with
the node i and add a directed edge (i, j) if in the computation of σΠ part of the output
of πi is piped through directly to πj (see Figure 3.2).

For i ∈ [N −1] we denote with path(i) ⊆ V the shortest path in GN which starts at 0,
ends at N , and passes through node i. For example, in Figure 3.2 path(5) = (0, 4, 5, 6, 8)
and path(4) = (0, 4, 8). It is not hard to check that |path(i)| = n + 3− ĩ, and in particular
it is never longer than n + 2.

3.2.4 Consistent States/Paths

By construction, σi ∈ σΠ satisfies σi = π̇−1
i+1(σi+1), and more generally, for every edge

(i, j) ∈ E and d = min(̃i, j̃)

σ
(d...n+1)
i = (π̇−1

j (σj))(d...n+1).
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We say two strings are consistent for (i, j) if they satisfy this condition.

Definition 1 (Consistent States/Path). αi, αj ∈ {0, 1}(n+1)·w are consistent for edge
(i, j) ∈ E if with d = min(̃i, j̃)

α
(d...n+1)
i = (π̇−1

j (αj))(d...n+1) .

We say α′i ∈ {0, 1}ĩ·w, α′j ∈ {0, 1}j̃·w are consistent if they can be “padded" to consistent
αi, αj as above, which is the case if

α′
(d)
i = π−1(α′j)(d).

We say {αi}i∈path(k) are consistent with path(k) if for every edge (i, j) ∈ path(k) the αi, αj

are consistent.

Note that if αj is computed from αi by applying π̇i+1, . . . , π̇j to αi, then those αi, αj

will be consistent with (i, j), but the converse is not true (except if j = i + 1).

3.2.5 PoSW Construction

The protocol between P ,V on common input N = 2n, w, t is defined as follows

1. V samples χ ← {0, 1}w·n and sends it to P . This χ defines a fresh set of random
permutations Π (cf. Remark 1 below).

2. P computes σ0, . . . , σN and sends ϕ = σN to V .

3. V samples t challenges γ = (γ1, . . . , γt)← [N − 1]t and sends them to P .

4. P sends {σi}i∈path(γj),γj∈γ to V (cf. Remark 2 below).

5. V verifies that {σi}i∈path(γj),γj∈γ are consistent as in Definition 1. If any check fails
output reject, and output accept otherwise.

Remark 1 (Seeding Random Oracles/Permutations). Ideal permutations can be con-
structed from random oracles [CPS08, HKT11, DSKT16] (formally, the ideal permuta-
tion model is indifferentiable from the random oracle model), so we can realize Π in the
standard random oracle model.1 Consider a fixed random oracle H(·) about which a po-
tential adversary has some auxiliary input (i.e., it has queried it on many inputs before,
1 In practice, one could e.g. use χ to sample N + 1 AES keys k0, . . . , kN , and then use AES(ki, ·) :
{0, 1}256 → {0, 1}256 – i.e., AES with a fixed public key – to construct πi, where for ĩ > 1 one would
use domain extension for random permutations to extend the domain to 256 · ĩ bits.
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and stored some information aux). If one samples a random seed χ and uses it as a prefix
to define the function Hχ(x) = H(χ∥x), this Hχ – from the adversary’s perspective – is
a fresh random oracle as long as this seed is just a bit longer than log(|aux|) [DGK17].
Thus, we can also sample a fresh Π by just sending a seed χ.

Remark 2 (P ’s Space Requirement). To avoid any extra computation in step 4., P
would need to store the entire σΠ = {σi}i∈[N ]0 . By using a bit of extra computation, one
can reduce the space requirement (we remark that a similar issue comes up in [CP18]).
Concretely, for some K = 2k, we let P only store σi where 2k|i, thus storing only N/K

states. From this, every state σi can be computed making at most K/2 invocations to Π
(K/2 not K as we can also compute backwards).

3.3 Security Proof

Theorem 3. Consider a malicious prover P̃ which

1. makes at most N−∆ sequential queries to permutations in Π before sending ϕ = σN

(in step 3 of the protocol), and

2. queries the permutations in Π on at most q inputs in total during execution of the
protocol.

Then P̃ will win (i.e., make V output accept) with probability at most

Pr
[
P̃ wins

]
≤ 2q2(n + 2)2

2w
+
(

N −∆
N

)t

. (3.1)

Proof. We define an event bad in Definition 2 below, and can now split the probability
in (3.1) to two terms

Pr
[
P̃ wins

]
≤ Pr

[
P̃ wins and ¬bad

]
+ Pr [bad] .

The theorem then follows from Lemmas 4 and 6 which independently bound these prob-
abilities.

Informally, the event bad holds if P̃ makes a (forward or backward) query to a πi ∈ Π
where some w-bit block of the output collides with some w-bit block used as input or
output to some πj ∈ Π query made in the current or previous parallel queries. This is
somewhat analogous to the “sequentiality" property which is defined for functions (not
permutations) and used in [MMV13, CP18].
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Definition 2 (The Event bad). We describe a query to Π = {πi}i∈[N ]0 by a tuple (i, x, y, b)
where i ∈ [N ]0, x, y ∈ {0, 1}ĩ·w, b ∈ {+,−}. Here (i, x, y, +) denotes a forward query to
πi on input x and output y = πi(x), (i, x, y,−) denotes an inverse query x = π−1

i (y).

Let Q1, Q2, . . . , QN−∆ denote P̃ ’s parallel queries. Without loss of generality we as-
sume that P̃ never makes a redundant query, i.e., it never makes the same query twice,
and never queries πi(x) or π−1

i (y) if a query (i, x, y, ⋆) has already been observed. We use
∼ to denote that two strings (composed of w-bit blocks) contain an identical block

α ∼ α′ ⇐⇒ ∃i, j : α(i) = α′
(j)

.

The event bad holds if we have two queries (i, x, y, b) ∈ Qk, (i′, x′, y′, b′) ∈ Qℓ where k ≤ ℓ

and
b′ = + (so y′ is the output) and y′ ∼ x or y′ ∼ y, or

b′ = − and x′ ∼ x or x′ ∼ y.

Lemma 4.
Pr [bad] ≤ 2q2(n + 2)2

2w
.

To prove Lemma 4 it would be convenient to prove a PRP/PRF-like switching lemma
where the adversary gets oracle access to a permutation and its inverse.

Lemma 5. Let π : {0, 1}w → {0, 1}w be a random permutation and consider an algorithm
Aπ,π−1 with oracle access to π and π−1 that makes exactly q queries in total. Assume that
A does not repeat any queries to π nor any queries to π−1, and that if it queries π at x, it
does not query π−1 at π(x) and vice versa. Let Bw be an oracle that on input x ∈ {0, 1}w

ignores x and simply returns a uniform element in {0, 1}w. Then for any event E over
the output of A, we have

Pr
[
Aπ,π−1 ∈ E

]
≤ Pr

[
ABw,Bw ∈ E

]
+ q(q − 1)

2w

where the first probability is over the choice of π and the randomness of A, and the second
over the randomness of Bw.

Lemma 5 shows that in the analysis one can replace a random permutation and its
inverse oracle with random coin flips. This is very similar to the PRP/PRF switching
lemma: without the inverse oracle, this would be exactly the PRP/PRF switching lemma
if no queries are repeated, because then Bw is identical to a random function. One might
wonder if one could simply replace both π and π−1 with the same random function F ,
since this is very similar to random coin flips. However, that does not work, because the
algorithm might query π and π−1 at the same point x. In this case the algorithm expects
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two different responses with overwhelming probability, while F would return the same
value. This is why we replaced the random function by random coin flips. Equivalently,
one could replace π and π−1 with two different, independent random functions.

of Lemma 5. Let X = (X1, . . . , Xq) be the random variable corresponding to the re-
sponses to the queries of Aπ,π−1 and Y = (Y1, . . . , Yq) the one corresponding to the
responses to the queries of ABw,Bw . We will show that the statistical distance ∆SD(X, Y )
is upper bounded by q(q−1)

2w . The lemma then follows from standard properties of ∆SD.

In the following, we abbreviate the conditional distributions (Xi|X1 = x1, . . . , Xi−1 =
xi−1) as (Xi|(x1, . . . , xi−1)) and similarly for Y . From sub-additivity for joint distributions
(a property of ∆SD), we have

∆SD(X, Y ) ≤
q∑

i=1
max

x=(x1,...,xi−1)
∆SD(Xi|x, Yi|x) .

For each particular i we have

∆SD(Xi|x, Yi|x) = 1
2

∑
y∈{0,1}w

|Pr [Xi = y|x]− Pr [Yi = y|x]| .

From the definition of Bw, it is clear that Pr [Yi = y|x] = 2−w for all y ∈ {0, 1}w and
x ∈ ({0, 1}w)i−1. For the other case, notice that any query to π or π−1 fixes a particular
input/output pair. Accordingly, Xi is uniform among the remaining 2w−(i−1) values, no
matter if π or π−1 was queried (recall that no input/output pair is repeated). It follows
that

∆SD(Xi|x, Yi|x) = 1
2

[
i− 1
2w

+ (2w − (i− 1))
(

1
2w − (i− 1) −

1
2w

)]

= i− 1
2w

for any x (in particular, the maximum). Summing over all i yields the final bound.

Note that by a simple hybrid argument, Lemma 5 also holds for families of permuta-
tions, where q is the sum over all queries and w is the minimal input/output length over
all permutations. After applying Lemma 5, the proof of Lemma 4 is almost trivial.

of Lemma 4. Let P̃B denote the prover where for every query (i, x, y, +) we replace y

with a uniformly random string y ← {0, 1}ĩ·w and for every query (i, x, y,−) we replace
x with a uniformly random x← {0, 1}ĩ·w. We apply Lemma 5 to P̃ to obtain

Pr [bad] ≤ Pr
[
bad occurs under P̃B

]
+ q(q − 1)

2w
.

Under P̃ B, the probability that a query collides (in the sense of ∼, c.f. Definition 2) with
a specific string in a specific previous query is at most (n + 1)2/2w, since there are at
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most n + 1 blocks in each string. By union bound, the probability that a query collides
with any of the previous queries is thus at most 2q(n+1)2/2w, since there are two strings
in each query (input and output). Applying a final union bound to all queries we get

Pr
[
bad occurs under P̃B

]
≤ 2q2(n + 1)2

2w
,

which concludes the proof.

Lemma 6. Pr
[
P̃ wins and ¬bad

]
≤
(

N−∆
N

)t

Proof. Let
Q = {(i, x, y) : P̃ made a query πi(x) or π−1

i (y)}

denote all the queries made by P̃ . We define a graph GQ = (VQ, EQ) where VQ = Q,
and we have an edge ((i, x, y), (i′, x′, y′)) ∈ EQ if the states y, x′ are consistent for edge
(i, i′) ∈ GN as in Definition 1. Formally GQ = (VQ, EQ) where VQ = Q and

EQ = {(v, u) ∈ V 2
Q : v = (i, x, y), u = (i′, x′, y′), i′ = i + 2δ, 2δ|i, y(δ+1) = x′(δ+1)} .

Note that the first and last query an honest prover makes while computing σΠ are

β0 := (0, 0w·(n+1), π0(0w·(n+1))) , βϕ := (N, π−1
N (ϕ), ϕ)

where ϕ = σN . We consider a subgraph HN of GQ which is derived as follows. HN contains
the nodes β0, βϕ (let us stress that βϕ is only defined by the ϕ sent by P̃ , and thus can be
different from the σN an honest prover would send). We then recursively add vertices from
GQ to HN , but only vertices which can potentially be used in an accepting opening of a
path (step 4 and 5 in the protocol). This means we can add a node if both its “farthest"
left and right neighbours are already in HN , i.e., add v = (i, x, y) to HN if some nodes
l = (i − 2ĩ−1, x′, y′), r = (i + 2ĩ−1, x′′, y′′) are already in HN and (l, v), (v, r) ∈ EQ. The
exact procedure to compute this HN = prune(GQ, β0, βϕ) as well as a toy example of
GQ, HN are given in Algorithm 7 and Figure 3.3 respectively.

We claim the following points are true under the assumption that the event bad does
not hold

1. There is a path of length |HN | that starts at the source β0 and ends at the sink βϕ.

2. P̃ made at least |HN | sequential queries before sending ϕ.

3. P̃ can output a valid {σ′i}i∈path(j) only for j where a node (j, ⋆, ⋆) is in HN .
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Assuming points 2. and 3., the lemma can be established as follows: As P̃ made ≤ N −∆
sequential queries by assumption, by point 2. we get |HN | ≤ N − ∆. Furthermore, by
point 3. P̃ will succeed to generate {σ′i}i∈path(j) on a random challenge j with probabiliy
≤ |HN |/N ≤ (N − ∆)/N , and thus with probability ≤ ((N − ∆)/N)t on t random
challenges, as claimed in the statement of the lemma.

It remains to prove the three points claimed above.

1. By construction of the pruning algorithm (Alg. 7) during the update step update(ℓ, r),
unless the event bad happens, there will be at most one v ∈ V such that (ℓ, v), (v, r) ∈
E. Assume that there is another such v′ then a diamond structure is formed: there
are paths P0, P1 respectively passing through ℓ, v, r and ℓ, v′, r. Such a structure
triggers the event bad.

2. By the previous point, HN is a path (with extra edges), and any two consecutive
nodes in that path correspond to queries that are consistent (by the way HN is
constructed). The only way to have a sequence of |HN | consistent queries without
triggering bad is to make the corresponding queries sequentially.

3. This follows by observing the following fact. If {σ′i}i∈path(j) is a consistent path,
then all the queries corresponding to this path would have been added to HN (as V
checks that this path is consistent, and a consistent path would be included in HN

by definition of Algorithm 7). This argument only holds if all the queries in this
path were made before P̃ send ϕ, but P̃ might have made some queries leading to
this accepting path only after sending ϕ, in which case the path is not contained
in HN . To cover this case, note that this path must start at β0 and end at βϕ (like
HN), but as it is not contained in HN , it creates a diamond structure (as in point
1. above), which is not possible without triggering the bad event.

3.4 Embedding Sloth

As discussed in the introduction, we propose a reversible PoSW that is almost as efficient
as the construction from [CP18] but achieves a larger time gap between the computation
of the proof and the verification of correctness. To this aim, we embed the sloth hash
function from [LW17] into construction 3.2.5.

The idea underlying sloth is to use the fact that the best known algorithms for com-
puting modular square roots in a field Fp takes ≈ log(p) sequential squarings, whereas
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Figure 3.3: Toy example graphs for GQ and HN = prune(GQ, β0, βϕ). A node vi in HN is
a query of the form (i, xi, yj). In this example β0 = v0, βϕ = v8 = (8, x8, y8 = ϕ).

prune((V, E), β0, βϕ)
1: S, T = ∅ ▷ Global variables; S, T are sets of nodes and edges respectively
2: if (β0, βϕ) ∈ E then
3: S = S ∪ {β0, βϕ}
4: T = T ∪ {(β0, βϕ)}
5: update(β0, βϕ)
6: end if
7: return (V ∩ S, E ∩ T ) ▷ Return the pruned graph

update(ℓ, r)
1: for v ∈ V : (ℓ, v), (v, r) ∈ E do ▷ Unless bad happens there exists at most one v

2: S = S ∪ {v}
3: T = T ∪ {(ℓ, v), (v, r)}
4: update(ℓ, v)
5: update(v, r)
6: end for
7: return

Algorithm 7: Pruning Query Graphs
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verification of the result only takes a single modular squaring. Thus, this gives a good
candidate to build sloth.

For a prime p ≡ 3 mod 4, let Fp denote the finite field with p elements, and F×p its
multiplicative group. We represent elements of Fp canonically in [0, p − 1]. If x ∈ F×p is
a quadratic residue, then there are two square roots y, y′ ∈ F×p , where y′ = p− y, one of
them being even, the other odd. Let +

√
x, −
√

x denote the (unique) even and odd square
root of x, respectively. If x ∈ F×p is not a quadratic residue, then −x is a quadratic residue,
so it makes sense to define a permutation ρ : F×p → F×p as

ρ(x) =

⎧⎪⎨⎪⎩
+
√

x if x is a quadratic residue
−
√
−x otherwise .

Its inverse is defined by

ρ−1(x) =

⎧⎪⎨⎪⎩
x2 if x is even

−x2 otherwise .

Unfortunately, one cannot directly build a hash chain by iterating ρ since reducing
modulo p − 1 in the exponent would yield a much faster computation than sequentially
computing ρ. Lenstra and Wesolowski [LW17] solve this problem by prepending an easily
computable (in both directions) permutation ι on F×p to each iteration of the square
rooting function ρ. Setting τ = ρ ◦ ι, the sloth function is hence defined as τN for some
appropriate chain length N . Verification can be done backwards by the computation
(τN)−1 = (ι−1 ◦ ρ−1)N , which is by a factor log p faster.

Security of sloth is proven [LW17] in the random oracle model: Assuming ι is a random
permutation and that computing the square root of a random square in F×p requires
Ω(log(p)) sequential multiplications, then sloth is inherently sequential.

We now combine the ideas from [LW17] with our construction to achieve an effi-
cient PoSW while preserving the fast verification of correctness obtained by the sloth
construction. Let Π = {πi}i∈[N ]0 be a set of permutations where, for each i ∈ [N ]0,
πi : F×p × {0, 1}w·(̃i−1). We define the sequence σΠ = σ0, . . . , σN with σi ∈ F×p × {0, 1}n·w

recursively as

σ0 = ρ̇ ◦ π0(0w·(n+1))
(
= ρ

(
π0(0w·(n+1))(1)

)
∥π0(0w·(n+1))(2...n+1)

)
, and

∀i > 0 : σi = ρ̇ ◦ π̇i(σi−1)
(

= ρ
(
πi(σ(1...̃i)

i−1 )(1)
)
∥πi(σ(1...̃i)

i−1 )(2...̃i)∥σ(̃i+1...n+1)
i−1

)
.

See Figure 3.4 for an illustration of the computation of σΠ. Thus, using σΠ in our
protocol results in a PoSW that is secure in the random permutation model, almost
as efficient as the construction from [CP18], and at the same time achieves verification
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Figure 3.4: Illustration of the computation of σΠ = (σ0, . . . , σN) with n = 3, N = 2n = 8.

of correctness as efficient as in sloth. When applied to a blockchain, our new PoSW
allows extremely efficient rejection of wrong proofs while additionally providing sloth-like
verification of correctness, which can be used whenever two or more distinct proofs pass
the verification.

3.5 Open Problems

In this work we constructed a new PoSW in the random permutation model where veri-
fying sequential work is as efficient as in [CP18] and verifying (the stronger property of)
correctness is as efficient as in [LW17].

For the application of PoSW in cryptocurrencies, the efficiency of verification of both
sequentiality as well as correctness of the computation are of concern. As for sequentiality,
our construction offers an exponential gap between the work of the prover and that of the
verifier. However, verifying correctness is only log p (say ≈ 1000) faster than recomputing
the proof. Although this constant speedup may be sufficient for some applications, it may
not be for others.

Therefore, the natural open problem is to achieve exponential gaps for both sequen-
tiality and correctness at the same time while also maintaining practicality – the generic
solutions using arguments of knowledge for general sequential functions are only of the-
oretical interest [MMV13].

Subsequent to this work, and indeed motivated by the application of PoSW to cryp-
tocurrencies, a new primitive dubbed Verifiable Delay Functions (VDF), which is a PoSW
with unique solutions, was defined and instantiated [BBBF18, Wes18, Pie18] – the practi-
cal instantiotions among these are based on algebraic assumptions. This effectively solves
the open problem we pose here, yet it opens up a new more ambitious one, namely that
of constructing practical VDFs that are quantum-secure. It would also be interesting to
construct VDFs in the random permutation/oracle model or prove such a (black-box)
construction is impossible.
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