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Supplementary material for “Particle density mobility edge”

In this supplementary material we present additional data and details of the methods used in the main text.

First, we show data for additional probes of ETH breakdown such as entanglement entropy. After this we present

benchmarks of our time-evolving block decimation simulation of dynamics. Finally, we explore the behavior of the

mutual IPR defined in the main text.

I. LOCALIZATION LENGTH AND
PARAMETER CHOICE

The dynamics generated by the constrained Hamilto-
nian, Eq. (1), strongly depends on the choice of the hop-
ping parameters t1,2. In order to choose the most suitable
parameters for the study of MBME in particle density, we
explore localization lengths for a single particle ξSP and
for one pair of particles ξP. These localization lengths
are evaluated using ED. We calculate the infinite-time
average of the occupation number at each site for an ini-
tial state where either a single particle or a single pair
are initialized at the first site of the chain. We extract
the localization lengths ξSP (ξP) from an exponential fit
of the density curve 〈ni〉 .

Resulting values of ξP,SP for fixed t1 = 0.5 and dif-
ferent disorder values and different values of hopping t2
are shown in Fig. S1. The single particle hopping local-
ization length (dashed line in Fig. S1) does not depend
on t2, and becomes smaller than one lattice spacing for
W & 4. The pair localization length is monotonously
increasing with t2 at fixed value of disorder strength, W .
Our aim is to have ξP in the range between 2 and 5. In
this regime, the half-filling case is expected to be delocal-
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Figure S1. The localization length decreases, as expected,
with the disorder strength for all the values of t2. For every
constrained hopping amplitude t2 it is possible to locate the
region of disorder where we expect to see a MBME in parti-
cle density as the area among the two dashed lines. As the
curve crosses the first dashed line, systems with typical par-
ticle spacing 5 will be localized. Nevertheless denser states
will still be delocalized, having smaller distance among par-
ticles. Data were obtained on a lattice of length L = 50 and
averaged over 5000 disorder realizations.

ized, while at lower densities ν ∼ 1/5, when the typical
distance between pairs is large, we expect MBL phase.
This motivates the choice t2 = 2, since at this value of t2
ξP(W ) approaches 2 at disorder strength around W ∼ 6.
We note that we avoided further increase of t2 to keep the
model away from the constrained limit: in the case when
t2 dominates over t1, the model would approximately re-
duce to a kinematically constrained model that has many
disconnected sectors in the Hilbert space.

In order to rule out the presence of strong finite size
effects, we studied the density of state in individual dis-
order realizations. In the regime when t2 � t1 the strong
finite size effects would give rise to the presence of the
mini-bands and the DOS would become non-monotonous
with numerous peaks corresponding to mini-band struc-
ture [30]. Figure S2 confirms that at our choice of pa-
rameters even individual disorder realizations have a rel-
atively smooth density of states with Gaussian envelope,
thus ruling out the presence of strong finite size effects.

II. ED PROBES OF LOCALIZATION

While in the main text we focused on the two values of
filling, ν = 1/2 and 1/5, here we demonstrate the density
dependence of critical disorder. For this purpose we cal-
culate the average ratio of level spacings rav for a single
system size L = 18 at varying values of density. Fig-
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Figure S2. The DOS from single disorder realizations show a
relatively smooth behavior and a Gaussian shape, thus con-
firming the absence of strong finite size effects. DOS refers
to a chain with L = 20 and ν = 1/4. Disorder strength is
W = 5.0. Green, blue and orange curves correspond to dif-
ferent disorder realizations, while the black dashed line shows
disorder-averaged DOS.
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Figure S3. The sharp difference of rav obtained for different
ν at the same disorder W clearly shows the MBME in our
model. Interestingly, the mobility edge curve Wc(ν) is not
symmetric, but is peaked around ν = 2/3, implying that the
states with the maximum number of pairs for fixed size are
the hardest to localize. The data is obtained for a system of
size L = 18, using shift-invert method with 10 − 103 states
from the middle of the spectrum and 5 × 104 − 103 disorder
realizations.

ure S3 allows to estimate the dependence of the critical
disorder on the filling, ν. At low densities (ν < νc(W ))
states have rav approaching value characteristic for Pois-
son distribution of level spacings. In contrast, for dense
configurations (ν > νc(W )) the level spacing ratio is close
to GOE prediction.

Figure S3 reveals that the most delocalized filling is
ν = 2/3, which corresponds to the case when the best
packing of pairs in the chain, ••◦••◦· · · , can be achieved.
At this filling the Poisson values of rav would be achieved
beyond the upper limit of the considered disorder range.
Decreasing particle density away from this value causes
earlier onset of localization. For instance, fixing disorder
value W = 6.5 we observe that ν = 1/2 and ν = 1/5 are
situated well in delocalized and localized regions.

In addition to the level statistics indicator presented in
the main text, we studied other commonly used probes of
ergodicity. In particular, Fig. S4 illustrates the behavior
of bipartite entanglement entropy for different disorder
strengths and different fillings. On the one hand, the fi-
nite size scaling of entanglement entropy of eigenstates in
the middle of the spectrum shows that for ν = 1/5 and
disorder W > Wc ∼ 6 the entanglement is consistent
with area-law. On the other hand, the entanglement of
dense systems, ν = 1/2, does not show a similar behav-
ior. The finite size scaling, indeed, shows no crossing
at these disorder values, thus suggesting volume-law of
entanglement entropy for ν = 1/2.

A. Energy Density MBME

In this section we briefly discuss the presence of many-
body mobility edge in energy density in a single density

1 2 3 4 5 6 7 8
W

0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
/L

L = 10

L = 15 L = 20

L = 10 L = 12

L = 14

L = 16

Figure S4. The behavior of half-chain entanglement entropy
shows very distinct behavior for dilute (blue-shaded curves)
and dense (red-shaded curves) states. The crossing in the
dilute states implies that they entered the MBL phase, and
thus have area-law entanglement entropy. On the other hand,
dense states do not show a similar crossing in this range of
disorder, suggesting that they are still in the ergodic phase.
The data are obtained with shift-invert method for 10 − 103

eigenstates in the middle of the spectrum and averaged over
5× 104 − 5× 103 disorder realizations.

sector of the Hamiltonian Eq. (1). Given the U(1) sym-
metry, we would expect that a fixed filling sector presents
MBME in energy density, similarly to the case of the ran-
dom field XXZ spin chain. In the middle of the spectrum
the density of states is large and eigenstates may remain
delocalized, while at the same disorder strength the states
at the edges of the many-body spectrum are localized.

To explore the eventual presence of MBME in energy
density in the half filling sector, we studied the energy
resolved level spacing ratio rAv(ε,W ). The results, dis-
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Figure S5. The plot, presenting the energy resolved level
spacing ratio for L = 16 in the half filling sector, shows clear
evidence of MBME. In the center of the band rav approaches
the GOE value, while at large and small energy density it is
close to the Poisson value. Furthermore, the MBME curves
obtained for smaller systems seem to converge at increasing
system size, thus suggesting the persistence of the MBME in
the thermodynamic limit. The plot was obtained averaging
over n = 104, 2 × 103, 5 × 102, 102 disorder realizations for
increasing system size from L = 10 to L = 16.
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Figure S6. (a-b) Deviation of ground state fidelity from 1 in Trotter time evolution, F (t, δt), shows power-law behavior both
in time and in time-step, as expected. The data is obtained at density ν = 1/5, system size L = 20 and disorder W = 6.5 for a
particular disorder realization. The plots for other disorder realizations are qualitatively similar. (c-d) The comparison between
ED and TEBD time evolution reveals that the most effective way to increase accuracy of TEBD is to decrease the time-step δt.
Indeed, the change in the truncation between ε = 10−9 and ε = 10−12 does not have much effect on the the difference between
density profiles of exact diagonalization and TEBD. At the same time, the decrease of time step brings the local density profile
closer to ED results. The density profiles are calculated by propagating uniform density wave (c) and uniform pair-density
wave (d) initial states to time t = 500 for a particular disorder realization with L = 20, ν = 1/5, W = 6.5.

played in figure S5, show evidence of many-body mobility
edge; the level spacing ratio, as a function of the energy
density ε = E−Emin

Emax−Emin
, where Emin and Emax are the

ground state and the most excited state respectively, in-
creases from the Poisson to the GOE value as ε goes
from the lower edge to the center of the spectrum and
decreases again from the center to the upper edge. This
variation is such that at a fixed disorder strength the
low and high energy states are localized, while the cen-
ter of the band is delocalized, thus defining a many-body
mobility edge. The scaling of the MBME curves for dif-
ferent system size shows signs of convergence, suggesting
stability of the MBME in the thermodynamic limit.

III. MPS SIMULATIONS OF QUENCH
DYNAMICS

In our MPS simulation, we time evolve dilute states in
large systems L ≥ 30 up to time Tmax = 500. For this
we use the time-evolving block decimation (TEBD) algo-
rithm with a fourth-order Trotter evolution based on the
ITensor library [34]. The main parameter involved in the
time evolution algorithm is the time step δt used to split
the unitary evolution into a sequence of gates. The error

related to the finite size of the time step in the p-th order
Trotter expansion grows as δtp. The other source of error
is the finite cutoff, ε, that governs the truncation of sin-
gular values in the singular value decomposition (SVD).

While the instantaneous errors related to the trunca-
tion and finite time step are known, understanding the
propagation of these errors with time and their possi-
ble interference is challenging. First we tested TEBD
algorithm by evolving the ground state of the same
model. Provided that the time evolution is numerically
exact, the overlap between the TEBD-evolved ground
state, |ψ0(t)〉 = UTEBD(t) |GS〉 and the exact time evo-
lution of the ground state, |GS(t)〉 = e−ıE0t |GS〉, is
supposed to give the identity 〈ψ0(t)|GS(t)〉 = 1 at all
times. For the fourth-order Trotterization the behavior
of F = 1 − | 〈ψ0(t)|GS(t)〉 | is known to be proportional
to (δt)8. The numerical results plotted in Fig. S6(a),
confirm these expectations.

Next, we performed a benchmarking of TEBD algo-
rithm against ED time evolution for several disorder re-
alizations and simulation parameters. An illustration of
such benchmarking is shown in Fig. S6(c) and (d). In
particular, we observed that time step δt = 0.05 and cut-
off ε = 10−9 result in a good agreement between ED and
TEBD dynamics. Smaller values of δt, ε would improve
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Figure S7. The normalized absolute value of the energy differ-
ence from the initial energy ∆E(t) = |〈H(t)〉 − E(0)|/|E(0)|
remains very small for both the density wave, blue curve,
and the non-uniform, red curve, configurations, confirming
the good accuracy of our numerical simulations beyond the
ED benchmark. The larger deviation displayed by the non-
uniform configuration is understood as a result of the pres-
ence of the bubble in the lattice, that increases entanglement
growth. The results here shown are obtained averaging over
100 disorder realizations, for the system sizes, L = 30, and
initial states described in the main text.

the agreement but would result in a dramatic slowdown
of the evolution time. Therefore, we decided to use these
parameters in the simulations presented in the main text.

When larger system sizes are involved, as it is the
case for the simulations actually used in the main text,
comparison with exact results is not available. There-
fore, other indicators for the accuracy must be stud-
ied. Among these, energy conservation through the time
evolution is a straightforward probe. The energy de-
viation ∆E(t) = |E(0) − E(t)|/E(0), where E(t) =

〈ψ(t)| Ĥ |ψ(t)〉, allows to control the propagation of the
error during the Trotter time evolution. In Fig. S7 we
show the results for ∆E(t) in the two quenches presented
in the main text, for L = 30. The two plots highlight
that the average energy deviation is very small in both
configurations. In spite of that, a clear difference can be
observed among the two quenches, noticing that the non-
uniform state has larger error. This is probably due to
the enhanced entanglement caused by the presence of the
bubble in the lattice. Nevertheless, ∆E(t) remains very
small even at long times, thus confirming the reliability
of our long-time numerical simulations.

In all the simulations performed using ITensor [34], we
used the U(1) symmetry implementation. In particular,
to obtain the numerical results presented in Fig. 2(a) and
(d) we set the maximum bond dimension to be 500 and
3000 respectively. As the histograms in Fig. S8 show, all
the disorder realizations remained well below the maxi-
mum threshold. This fact ensures that we have a control
on the error encountered in the evolution, in contrast to
time evolution with TDVP with fixed bond dimension,
where error estimation is more challenging [51].

IV. ADDITIONAL RESULTS FROM QUENCH
DYNAMICS

In the main text we discussed dynamics in quenches
that begin from a uniform state or a bubble joined to a
more dilute remainder. Below we present details for the
quenches in presence of bubble. In addition, we discuss
the dynamics resulting from the initial state containing
density wave of particle pairs.

A. Pair density and entanglement dynamics in
presence of a bubble

Since particle pairs are the most mobile objects, we
consider the pair density in quenches that are initialized
with the bubble (see Fig. 2(d),(g) in the main text). The
pair density is of special interest in these quenches as in
Ref. [18] suggested that the instability of the system is
ascribed to the ability of the bubble to move. In our
model the bubble consists of several pairs, thus motion
of the bubble throughout the system would imply the
spreading of pairs.

The pair density defined as 〈nini+1〉 measured at late
or infinite times is shown in Fig. S9. In the dense case
the late time pair density profile supports delocalization:
at late times the density of pairs becomes homogeneous
throughout the formerly more dilute region of the system.
We note, that the pair density is not a conserved quantity,
and it can increase in the process of unitary dynamics.

In contrast, for the dilute case the pair density profile
has a pronounced exponential tail away from the initial
ergodic region. This shows that pairs spreading away
from the initial bubble do not delocalize when encoun-
tering additional particles on their way. Indeed, while the
late time pair density profile has small peaks around the
initial position of particles, these peaks are not very pro-
nounced. In addition, the study of the pair density profile
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Figure S8. The histogram representing the maximum bond
dimension of different disorder realizations show that the
threshold values of 500 and 3000 for the uniform density wave
(left) and bubble states (right) were never saturated in our
simulations.
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Figure S9. The finite size scaling of the pair density 〈nini+1〉
shows opposite trend for the dense and dilute cases. The red-
shaded curves represent ν = 1/2 configurations: increasing
the system size (from yellow to dark red) the pair density be-
comes more uniform and approaches the thermal value, hence
in the thermodynamic limit the probability of finding a pair
far from the bubble is almost the same as finding it in the bub-
ble. On the contrary, blue curves (ν = 1/5) show exponential
vanishing of the pair density and, furhtermore, increasing sys-
tem size (from light blue to dark blue) the density decreases,
suggesting that at the thermodynamic limit there will be no
pair outside the thermal region. Data were obtained with ED,
Krylov (Tmax = 1000) and TEBD (Tmax = 500) algorithms
averaging over 100 disorder samples for the largest MPS sim-
ulations (L = 20, 30), 3 × 104, 104, 5 × 103 and 103 for ED
(from L = 10 to L = 16) and over 103 for Krylov algorithm
(L = 18).

in the uniform density wave at ν = 1/5 reveals an almost
constant behavior, centered around 〈nini+1〉 ∼ 10−3,
which corresponds to the values reached at the end of the
exponential tail in the system with L = 30 in Fig. S9.

Next, we focus on understanding different contribu-
tions to entanglement growth. Exploiting the U(1) sym-
metry of our model and following Refs. [38, 39], we split
the von Neumann entanglement entropy into a config-
uration and a particle transport contributions. Indeed,
due to conservation of the total number of bosons the
full reduced density matrix ρ must have a block-diagonal
form. Individual blocks within ρ can be written as pnρ

(n),
where pn gives the probability to have n particles in the
susbsystem A and ρ(n) is normalized as tr ρ(n) = 1. Us-
ing such representation of the reduced density matrix we
can split the full entropy into SvN = SC + Sn as:

SvN = − tr ρ log ρ = −
∑
n

pn tr ρ(n) log
(
pnρ

(n)
)

= −
∑
n

pn log pn −
∑
n

pn tr ρ(n) log ρ(n)

= Sn + SC .

(S1)

In this way the entanglement growth is split into two
contributions: one coming from the particle transport,
and another originating from dephasing between different
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Figure S10. The different contributions to the entanglement
entropy of the bubble show that the overall behavior of the
von Neumann entropy is faster than logarithmic. Neverthe-
less this behavior can be ascribed to the sole configurational
entropy SC , while the particle transport contributes to the
purely logarithmic growth. The curves are obtained through
Krylov evolution up to Tmax = 1000 averaged over 1000 dis-
order realizations for L = 18 and W = 6.5.

configurations with the same particle number. Interest-
ingly, Fig. S10 shows that while the overall entanglement
entropy grows faster than logarithmic, this is due only to
the configuration part (yellow curve) and the entangle-
ment due to particle transport has logarithmic growth.
The logarithmic growth of Sn is consistent with the log-
arithmic particle transport presented in Fig. 2(h) in the
main text and with other transport measures presented
in the next section. We identify this behavior as a hall-
mark of MBME, and note that it happens on long, yet
experimentally accessible timescales t ∼ 50(~/t1).

Recent work [40] demonstrated that the logarithmic
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Figure S11. The log-log plot of the entropies discussed in
Eq. (S1) confirms that only the total entropy is growing as a
power-law, while both Sn and Sc grow slower. In particular,
Sn grows as a first degree polynomial in log(t) (dashed green
line) and SC as a second degree polynomial in log(t) (orange
dashed line). The sum of these two behaviors (red dashed
line) agrees with the power-law behavior (dashed blue line).
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growth of the number entropy is expected in the thermal
phase, provided there is particle transport over distances
that increase as a power-law in time, l ∝ tν . 1 The au-
thors also predict a power-law scaling of the configuration
entropy, which we do not observe, as shown in figure S11.
We attribute the slower than power-law growth of config-
uration entanglement to the localized nature of the right
half of the chain, which in turn reduces the number of
possible configurations until the particle transport from
the left half leads to delocalization.

Further analysis of the entanglement dynamics shows
that SvN grows in a power-law fashion SvN ≈ atb, cor-
responding to the dashed blue fit in Fig. S11, over a rel-
evant time interval. On the other hand, both Sn and
Sc behave as polynomials in log(t), of first and second
degree respectively, and their sum (dashed red line) rea-
sonably approximates the power-law behavior of SvN , as

one can expand tb ≈ 1 + b log(t) + b2

2 log2(t).

Finally, to support our interpretation of logarithmic in-
crease of Sn as due to transport, we study the dynamics
of density correlation functions and fluctuations. Fig-
ure S12 presents the dynamics of connected correlation
functions C(i, t) = 〈n̂in̂L/2〉 − 〈n̂i〉〈n̂L/2〉 with respect to
the central site of the chain, the local density fluctua-
tions δni = 〈n̂2i 〉 − 〈n̂i〉2 and the density fluctuations in
the dilute part of the chain δnR = 〈n̂2R〉 − 〈n̂R〉2, where

n̂R =
∑L
i=L/2 n̂i. The logarithmic dynamics of these

quantities is consistent with the behavior of number en-
tropy, thus proving the further support for the existence
of slow transport in the dilute part of the chain.

B. Quench dynamics from a pair density wave state

Below we consider quench from a pair-density wave of
period 2/ν. These configurations accommodate the max-
imal possible number of pairs in the uniform state. Fig-
ure S13 confirms that such state is localized at ν = 1/5
and is relaxing in the dense case. Dense systems display
strong dependence on the system size and increased ten-
dency towards relaxation at larger system sizes, L. In
contrast, at ν = 1/5 the late time density profile has al-
most no dependence on the size of the system. In particu-
lar, even at very large lengths the curves do not approach
the average density represented by the dashed black line.

1 We note, that although the authors of Ref. [40] report unbounded
growth of the number entanglement in the MBL phase, the suc-
cessive work of Luitz and Bar Lev [41] shows that this is due to
rare particle fluctuations around the boundary between the two
subsystems and the growth disappears at large enough system
size.
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Figure S12. Time dynamics of correlation functions (a), lo-
cal density fluctuations (b) and density fluctuations in the
dilute half of the chain (c) all show, after an initial power-law
growth, logarithmic increase with time. In particular, corre-
lations far away from the central site (blue curves, as encoded
in the legend above) show signs of a logarithmic light-cone.
Similarly, local density fluctuations deep in the localized re-
gion present slower dynamics. Finally, panel (c) shows how
increasing disorder slows the growth of the global density fluc-
tuation of the dilute half. These results were obtained with
the Krylov method on system size L = 18 for W = 6.5 (a),
with ED on system size L = 16 and W = 6.5 (b) and for
different disorder values (c), averaging over 200 disorder real-
izations.

V. P AS A FUNCTION OF BUBBLE DISTANCE

In the text we introduced a quantity P(|ψ1〉 , |ψ2〉) that
measures how similar the expansion of ψ1,2 over eigen-
states is. We birefly mentioned that the case where
|ψ1〉 = |ψ2〉 corresponds to the usual participation ratio,
hence we refer to the inverse of P as mutual inverse par-
ticipation ratio (mIPR). The mutual IPR assumes very
different values depending on the nature of the two states:
values of mIPR O(N ) correspond to two vectors that
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Figure S13. The late time density profiles of the pair density
waves at dense, ν = 1/2, and dilute, ν = 1/5, fillings show
very different behavior. (a) Dilute configurations are essen-
tially frozen, and do not approach the thermal density repre-
sented by the black dashed line. (b) In contrast, at ν = 1/2
relaxation is enhanced at larger L. (c) The deviation of late
time density from the thermal value decay exponentially with

system size as e−L/ξ
pair
T with ξpairT ≈ 8.1. In contrast for

ν = 1/5, the residual density remains nearly constant with
system size and näıve fit to the exponential gives an order
of magnitude larger scale, ξdiluteT ≈ 84. Data at ν = 1/5 is
obtained via ED (L = 10, L = 15, and L = 20 with 5 × 104,
104, and 2 × 103 disorder realizations), Krylov time evolu-
tion (L = 25, Tmax = 103 and 103 disorder realizations) and
TEBD (L = 40, Tmax = 300 and 100 disorder realizations).
For ν = 1/2 we used ED (L = 10, 12, 14, and 16 with 3×104,
104, 5 × 103, and 103 disorder realizations) and Krylov time
evolution (L = 18, Tmax = 103, and 103 disorder realizations).

have similar expansion over eigenstates, while very large
values of mIPR imply that the expansion is very differ-
ent. In the main text we analyzed the mIPR between
two product states where the bubble is located at the
left and right end of the system respectively, see Eqs (2)-
(3). Such pair of states corresponds to the maximum
possible displacement of the bubble in the chain. Below

we illustrate the behavior of mIPR between pair of states
which correspond to a smaller bubble displacement.

In our analysis we measure the mIPR, P−1d =
P−1(ψL, ψd), between the following states in the dense
limit (half-filling, L = 12),

|ψL〉 = • • • • • • ◦ ◦ ◦ ◦ ◦ ◦, (S2)

|ψd〉 = ◦ ◦ ◦︸︷︷︸
d

• • • • • • ◦ ◦ ◦ . (S3)

Here we use the bubble that contains all particles to max-
imize the range of achievable displacements. For the di-
lute case, L = 15, we use similar pair of states with
bubble containing 3 particles (ν = 1/5).

In the thermal phase, eigenstates are approximately
given by random vectors in the Hilbert space and
their average overlap with other normalized vectors ap-
proaches the value predicted by random matrix theory,
irrespective of the state or the eigenstate. In the weak
disorder limit, we then expect P−1d to be independent
on the distance between the two bubbles and to have
the same behavior as the conventional IPR: P−1d ∼ N .
This expectation is confirmed by the results presented in
fig. S14(a) and (b) for W = 0.5.

On the other hand, in the MBL phase eigenstates are
not similar to random vectors, but instead are character-
ized by a set of local integrals of motion that have a finite
overlap with the local particle density. Thus, two prod-
uct states with globally different arrangement of particles
are expected to have drastically different expansion over
eigenstates. Therefore, we expect P−1d ∝ exp [d/ξ]. As
presented in figure S14(a) and (b), at strong disorder our
results support this hypothesis for both dilute (a) and
dense (b) states.

At intermediate disorder strength, we observe a quali-
tative difference between dense and dilute cases. Dilute
configurations, Fig. S14(a), show exponential behavior
already at W = 4.5, whereas dense states in Fig. S14(b)
need much stronger disorder to clearly present the same
trend. This result confirms the presence of mobility
edge and is consistent with the observed absence of pair
spreading reported in Figure S9 and also with the finite
size scaling of mIPRs shown in the main text, Fig. 3.

VI. DYNAMICAL PROBE OF THE ABSENCE
OF RESONANCES

The discussion on mutual IPR showed how tunneling
processes are strongly suppressed in the dilute case of our
model. In addition to eigenstates analysis, we also stud-
ied long time dynamics of states with a thermal bubble.
In this way, it was possible to verify whether a bubble
initialized at a certain position can dynamically give rise
to a dense region somewhere else in the chain. In order to
study this process we defined a projector onto the subset
of Hilbert space that has large density in a certain region.



S8

2 4 6 8 10 12
d

101

103

105

107

109

1011

1013

1015

P
−

1
d

(a)

W =0.5

W =2.5

W =4.5

W =6.5

W =8.5

W =10.5

1 2 3 4 5 6
d

101

103

105

107

109

1011

1013

1015

P
−

1
d

(b)

W =0.5

W =2.5

W =4.5

W =6.5

W =8.5

W =10.5

Figure S14. The mutual IPR, Id, that quantifies the inverse probability of bubble tunneling d sites, increases exponentially
with d at strong disorder. At weak disorder the mIPR approaches the Hilbert space dimension, N , shown by a dashed line.
In the dilute system in (b), W = 4.5 marks the onset of the exponential growth, suggesting that the thermal bubble is frozen
at its initial position. On the other hand, for ν = 1/2, in (a), the clear exponential behavior emerges only at larger disorder.
Id was calculated for system sizes L = 15 and L = 12 in dilute and dense case respectively and averaged over 104 disorder
realizations.

More specifically, we define

P̂νc(L0, i) =
∑
|φα〉∈C

|φα〉 〈φα| , (S4)

where states |φ〉 are all possible product states that sat-
isfy the condition ν ≥ νc in the region [i, i + L0]. This
projector selects all configurations where the system is lo-
cally above the mobility edge. We notice that P̂νc(L0, i)
takes into account all possible configurations, thus con-
sidering also the entropic factor.

In order to understand what is the minimal required

0 2 4 6 8 10 12
d

10−2

10−1

100

〈P̂
ν c
〉

L =12

L =16

L =20

Figure S15. The late time evolution of 〈Pnc(L0, d)〉 shows ex-
ponential decay for all the system sizes studied (L = 12, 16, 20
at density ν = 1/4). Furthermore, we notice that increasing
the system size the exponential vanishing becomes more se-
vere, suggesting that in the thermodynamic limit there would
be no motion of the bubble at all. These results were obtained
using 104, 5×103 and 103 disorder realizations for the system
sizes from smaller to larger.

size of the region L0, we use the lengthscale extracted
from the decay of ∆n. Fit in Fig. 2(c) in the main text
yields L0 ' 6 ÷ 7, while fit in Fig. S13(c) gives a some-
what larger scale. We define an initial state |ψ0〉 that has
an entangled dense region of size approximately L0 (de-
scribed by a linear superposition of product states |φi〉)
followed by a product state:

|ψ0〉 =
1√
NC

NC∑
i=1

|φi〉 ⊗ |◦ ◦ ◦ • ◦◦〉 . (S5)

Below, we fix the overall density to ν = 1/4 and W =
6.5, which still corresponds to a localized system. The
dense region is obtained as a superposition of different
configurations with N − 1 particles in L0 = 2(N − 1)
sites. The remaining particle is initialized in the middle
of the last segment of the chain. For instance, for L = 16
this results into following initial state:

|ψ0〉 =
1√
NC

[
• • ◦ • ◦◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ +

• ◦ • ◦ •◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ +

• • • ◦ ◦◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ + . . .
]
,

(S6)

where the boxed area contains a dense entangled bubble
and the remainder is in the dilute state.

The initial state |ψ0〉 is then evolved through the
Hamiltonian (1) in a quench protocol. After time evo-
lution up to a maximum time Tmax = 1000, we measure
〈Pνc(L0, d)〉 = 〈ψ(t)| P̂νc(L0, d) |ψ(t)〉, which quantifies
the probability of encountering a bubble shifted by d sites
from the initial position of the bubble.

Finally, averaging over all different product states in
the dilute part of the chain and over disorder we ob-
tain the data in Fig. S15. This plot reveals that the



S9

probability of having a dense (ν > νc) region decays
exponentially with the distance d from its initial loca-
tion. This is in agreement with our long-time TEBD
dynamics, Fig. S9, that reveals localization of individual
pairs. Thus, we conclude that bubble does not spread res-

onantly but rather tunnels throughout the system. More-
over, the finite size scaling analysis shows that increasing
the system size the decay of 〈Pνc(L0, d)〉 with distance d
is enhanced. Therefore in the dilute regime of our model
the bubble remains localized around its initial position.
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