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A Model for Soap Film Dynamics with Evolving Thickness

SADASHIGE ISHIDA*, PETER SYNAK*, IST Austria
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TOSHIYA HACHISUKA, The University of Tokyo
CHRIS WOJTAN, IST Austria

Fig. 1. Our model simulates the evolution of soap films, leading to detailed advection patterns (left) and interplays between draining, evaporation, capillary
waves, and ruptures in a foam (right).

Previous research on animations of soap bubbles, films, and foams largely
focuses on the motion and geometric shape of the bubble surface. These
works neglect the evolution of the bubble’s thickness, which is normally re-
sponsible for visual phenomena like surface vortices, Newton’s interference
patterns, capillary waves, and deformation-dependent rupturing of films in
a foam. In this paper, we model these natural phenomena by introducing the
film thickness as a reduced degree of freedom in the Navier-Stokes equations
and deriving their equations of motion. We discretize the equations on a non-
manifold triangle mesh surface and couple it to an existing bubble solver. In
doing so, we also introduce an incompressible fluid solver for 2.5D films and
a novel advection algorithm for convecting fields across non-manifold sur-
face junctions. Our simulations enhance state-of-the-art bubble solvers with
additional effects caused by convection, rippling, draining, and evaporation
of the thin film.
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1 INTRODUCTION
This paper concerns the animation of soap films, bubbles, and foams.
These natural phenomena exhibit fascinating and beautiful com-
plexity in their geometry, dynamics, and color. Interestingly, the
influence of fluid forces cascades all the way down to their sur-
face appearance — surface tension and body forces change the
film’s curvature and thickness, and the film thickness in turn causes
swirling interference patterns when it interacts with light. The
typical approach to animating these phenomena is to first use a
surface-tension solver to simulate dynamic foams while holding
the thickness constant, and then retroactively model a noisy film
thickness in a surface shader during the rendering step. However,
we argue that several interesting phenomena are missed by not
directly simulating the evolution of the film thickness. In particular,
dynamic film thickness is responsible for the appearance of swirling
vortices, ripple patterns, gravity-dependent thickness variation, as
well as the bursting of bubbles and thus the ultimate shape of large
foam structures.
In this paper, we propose to model soap film thickness within

a bubble simulation. We introduce the film thickness as a reduced
degree of freedom in the Navier-Stokes equations and derive the
relevant equations of motion. These thickness dynamics result in
a physical model for film advection, mass conservation, draining,
evaporation, and surface tension ripples. We discretize the equations
on a non-manifold triangle mesh surface and couple it to an existing
bubble solver [Ishida et al. 2017]. We use the resulting simulation
framework to reproduce the aforementioned thickness-dependent
natural phenomena, as illustrated in Figure 1. Our contributions
are:
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• Equations of motion describing time evolution of both surface
deformation and film thickness in a compatible manner.

• An extension of semi-Lagrangian advection algorithms to non-
manifold geometry.

• A pressure projection scheme for compressible fields that en-
ables local conservation of mass.

• A computational scheme of the above equations that allows
simulation of thin-film turbulence, draining, capillary waves,
and evaporation.

2 RELATED WORK
This section first provides a background on bubble physics. After-
ward, we review the computer graphics literature on the simulation
of bubbles, segueing into techniques for simulating the geometry
and motion of thin films.

2.1 Background
Bubbles and foams are nearly incompressible liquids which evolve
according to surface tension and pressure forces [Chomaz 2001;
Couder et al. 1989]. The surface tension causes bubbles to minimize
their film area subject to a volume constraint imposed by the en-
closed air, so mathematicians often reduce the problem of finding a
soap film’s equilibrium geometry to that of Plateau’s problem for
enclosing a given volume with a surface of minimal area [Eppstein
2012; Hutchings et al. 2002; Weaire and Phelan 1994]. This minimal
surface idea led to several popular tools for numerically minimizing
surfaces, such as the Surface Evolver of Brakke [1992].
However, we argue that geometry is not the only interesting

part of bubble physics. The thickness of a bubble also evolves ac-
cording to the Navier-Stokes equations, causing intricate swirl pat-
terns in the presence of convective currents [Seychelles et al. 2008].
The thickness also evolves according to the gravity and pressure
forces, leading to rainbow-like patterns oriented with the body
force [Atkins and Elliott 2010; Gil et al. 2019], and an eventual struc-
tured rupturing of bubbles in a foam as the top bubbles thin out
faster than the bottom ones [Saye and Sethian 2013].

2.2 Bubble Animation
In computer graphics, soap bubbles were first modeled as static
geometry [Glassner 2000a], with rainbow-like colors resulting from
thin-film interference [Belcour and Barla 2017; Glassner 2000b;
Huang et al. 2020; Iwasaki et al. 2004]. Researchers often model
the dynamics of many small bubbles using particles [Busaryev et al.
2012; Cleary et al. 2007; Greenwood and House 2004; Hong et al.
2008; Langlois et al. 2016], typically assuming that each bubble is
a sphere with a variable radius. Volumetric simulation can model
extremely deformable bubbles [Kim et al. 2007; Saye and Sethian
2013; Zheng et al. 2006], but these methods often require extreme
care to avoid accidental topology changes (rupturing films) or mass-
conservation errors (shrinking bubbles). Patkar et al. [2013] modeled
bubbles that transition between particles and volumes.
To avoid the modeling errors associated with each of these ex-

tremes, many researchers choose to model bubbles as a surface
enclosing a given volume. Early work on this problem use mass-
spring networks to model a collection of bubbles [Durikovic 2001]

and individual giant bubbles [Kim et al. 2015]. Advances in triangle
mesh topology processing tools [Brochu and Bridson 2009; Campen
and Kobbelt 2010; Pavić et al. 2010; Wojtan et al. 2009, 2010; Zhou
et al. 2016], especially the Los Topos algorithm [Da et al. 2014], paved
the way for simulating more complicated foam structures with non-
manifold intersections. Da et al. [2015] introduced a new method for
evolving the triangle mesh by modeling soap films as vortex sheets.
Their method enforces the incompressibility of the air phase and
the preservation of circulation by using divergence-free vorticity
primitives as simulation degrees of freedom. Ishida et al. [2017], on
the other hand, enforced an integral constraint on the air phase
to preserve volume, and developed a geometric flow for surface
tension computation. Their approach does not guarantee circula-
tion preservation, but it is more computationally efficient than Da
et al.’s N-body vortex solver. These mesh-based surface tracking
tools have also proven useful for animating liquid surfaces [Brochu
et al. 2010; Da et al. 2016; Thürey et al. 2010; Yu et al. 2012; Zhang
et al. 2012] and even stratified fluids [Brochu et al. 2012]. Zhu et al.
[2014] introduced a hybrid method for combining many of the ideas
above (particles, meshes, and volumes) to efficiently simulate bub-
bles and liquids by tailoring the relevant simulation primitives to
their physical dimension.

2.3 Thin Film Simulation
With the exceptions of Saye and Sethian [2013], which requires
a highly detailed volumetric simulation, and the concurrent work
of Huang et al. [2020], which simulates iridescent patterns on a
spherical bubble, all of the film animation methods described above
assume trivial dynamics within the soap film itself. The recent foam
simulation advances of Da et al. [2015] and Ishida et al. [2017], for
example, effectively assume that the soap film is infinitesimally thin
and has no influence on the foam evolution.

On the contrary, we are particularly interested in film thickness
dynamics and the visual effects it can create. In this direction, several
researchers proposed efficient and detailed simulations for advecting
a scalar field along a surface, but they either assume static triangle
meshes [Azencot et al. 2014; Shi and Yu 2004; Stam 2003] or perfect
spheres [Hill and Henderson 2016; Huang et al. 2020]. Researchers
have also investigated wave equations [Bojsen-Hansen et al. 2012;
Thürey et al. 2010; Yang et al. 2016], shallow water equations [Angst
et al. 2008; Wang et al. 2007], thin plate equations [Yu et al. 2012],
and water wave dynamics [Kim et al. 2013] on moving surfaces.

More recently, researchers in computer graphics derived discrete
governing equations for viscous film dynamics [Azencot et al. 2015b;
Vantzos et al. 2018]. Similar to mathematical models for soap film
dynamics [Schwartz and Roy 1999], this method employs the “lu-
brication approximation” [Oron et al. 1997; Reynolds 1886] which
reduces the dimensionality of the Navier-Stokes equations based
on a small length-scale assumption. This direction comes closest to
our goals, as it models surface tension and draining due to gravity
by evolving a scalar thickness function. However, previous work
on thin-film simulation in computer graphics is limited to highly
viscous dynamics on static, manifold surface geometry. In contrast,
we seek to simulate lively, convective dynamics of thin films cou-
pled with a dynamically evolving bubble solver with non-manifold
surface junctions.
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Table 1. Symbols

Symbol Meaning
𝑆 surface representing film center
ℎ thickness of film
𝑆u surface representing upper air-liquid interface
𝑆 l surface representing lower liquid-air interface
𝒙 3D position of a liquid particle
𝒙u 3D position of a particle on 𝑆u

𝒙 l 3D position of a particle on 𝑆 l

𝒏 surface normal of 𝑆
𝒏u surface normal of 𝑆u

𝒏l surface normal of 𝑆 l

Γ vertical line segment connecting 𝑆u and 𝑆 l
𝑿 average position of 𝒙 over Γ
𝑝 pressure at a point in the liquid
𝑃 pressure integrated over Γ
𝐻 mean curvature of 𝑆
𝐻u mean curvature of 𝑆u

𝐻 l mean curvature of 𝑆 l
𝜎 surface tension coefficient
𝜌 density coefficient

𝑐evap evaporation rate per unit time

3 SOAP FILM DYNAMICS WITH VARYING THICKNESS
In this section, we derive equations describing the evolution of soap
film thickness. We start by introducing a thin-film assumption into
the Navier-Stokes equations, which reduces the film thickness to a
single scalar function at each point on the surface. We ultimately
arrive at three differential equations describing the film evolution:
one for normal motions, one for tangential motions, and one for
evolving the thickness of the film.

3.1 Definitions and Setting
Motion. We suppose that the motion of fluid in the films is gov-

erned by the inviscid Navier-Stokes equations (Euler equations)
with surface tension:

𝜌
𝐷 ¤𝒙
𝐷𝑡

= −2𝜎 (𝛿𝑆u𝐻u𝒏u + 𝛿𝑆 l𝐻
l𝒏l) − ∇𝑝 + 𝑓 (1)

∇ · ¤𝒙 = 0 (2)

where ¤𝒙 is velocity, 𝑝 is pressure, 𝑓 is a body force, and 𝜎 is surface
tension strength; 𝐻u, 𝐻 l and 𝒏u, 𝒏l are the mean curvatures and
normals on the air-liquid interface 𝑆u and liquid-air interface 𝑆 l;
and 𝛿𝑆u , 𝛿𝑆 l are the Dirac delta functions that vanish outside 𝑆u, 𝑆 l.
(We use the notation u and l to distinguish between the “upper”
and “lower” interfaces, and we list the remainder of out notation in
Table 1.) The surface tension acts only on the two interfaces while
the pressure and its spatial gradient are defined everywhere else.
We assume that 𝑝 is twice differentiable everywhere except on the
interfaces, and takes a constant value in each air region separated
by the films, similar to Ishida et al. [2017].

Fig. 2. Our representation of soap films by the surfaces 𝑆, 𝑆u and 𝑆 l as
embeddings of 𝐴 ∈ R2 into R3. 𝑆u and 𝑆 l represent the interfaces between
air and liquid.

Geometry. We model liquid films as an evolving height field on
surfaces embedded in three-dimensional Euclidean space. A surface
is a smooth map

𝑆 : 𝐴 −→ R3 (3)

where 𝐴 is a connected subset of R2. For each 𝑆 (𝑎, 𝑏) ∈ R3, we
define local coordinates given by the local basis

𝒆𝑧 := 𝑆𝑎 × 𝑆𝑏/|𝑆𝑎 × 𝑆𝑏 | = 𝒏 (4)
𝒆𝑥 := 𝑆𝑎/|𝑆𝑎 | (5)
𝒆𝑦 := 𝒆𝑧 × 𝒆𝑥 (6)

where 𝑆𝑎 and 𝑆𝑏 are partial derivatives of 𝑆 by 𝑎 and 𝑏, and 𝒏 is the
normal. Neighboring points of 𝑆 can now be parameterized with
the local coordinates 𝑥,𝑦, 𝑧 associated with 𝒆𝑥 , 𝒆𝑦, 𝒆𝑧 .

We define a thickness field by a height function

ℎ : 𝐴 −→ R. (7)

To represent a thin film, we define two maps

𝑆u := 𝑆 + 1
2
ℎ𝒏, (8)

𝑆 l := 𝑆 − 1
2
ℎ𝒏. (9)

They represent the upper boundary and the lower boundary of the
liquid, which correspond to the interfaces of air-liquid and liquid-
air respectively as in Figure 2. We denote the normals of 𝑆u and
𝑆 l by 𝒏u and 𝒏l. We assume that ℎ and ∇𝑠ℎ are small (no steep
slopes on the film surface). Both assumptions are valid for soap
films as their surfaces are measured to be smooth [Gao et al. 2012].
Accordingly, we can approximate 𝒏u and 𝒏l by 𝒏, which implies
𝒏u ≈ 𝒏l ≈ (0, 0, 1) in local coordinates.
Similar to previous work [Saye and Sethian 2013; Schwartz and

Roy 1999], our equations of motion assume that the film’s thickness
is far smaller than its other length scales. However, as our primary
goal is for animation rather than physics, we play rather liberally
with the traditional “thin-film” approximations in order to get an
efficient discretization that meets our goals. We occasionally em-
ploy small length-scale approximations through the course of our
derivation, but we do not take the ideas to their Stokes-flow limit
in order to retain lively fluid flows. Our main strategy will be to
consider integrated quantities along the film’s normal direction,
rather than treating every point within the film independently. To
integrate over a column of water, we first define the integration
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domain running from one side of the film to the other:

Γ𝑎,𝑏 (𝑧) :=
{
𝑆 (𝑎, 𝑏) + 𝑧𝒏(𝑎, 𝑏) : 𝑧 ∈

[
−ℎ(𝑎, 𝑏)

2
,
ℎ(𝑎, 𝑏)

2

]}
. (10)

with end points 𝒙u (𝑎, 𝑏) := Γ𝑎,𝑏 (ℎ/2) and 𝒙 l (𝑎, 𝑏) := Γ𝑎,𝑏 (−ℎ/2). We
denote the average of position 𝒙 over the normal-oriented column
Γ𝑎,𝑏 ( [−ℎ/2, ℎ/2]) as

𝑿 :=
1
ℎ

∫
Γ𝑎,𝑏 ( [−ℎ/2,ℎ/2])

𝒙 𝑑𝛾 . (11)

where 𝛾 is the Lebesgue measure on Γ𝑎,𝑏 ( [−ℎ/2, ℎ/2]). We use 𝑋 to
denote 𝑆 represented under the local coordinates. For the sake of
brevity, we henceforth omit indices 𝑎, 𝑏 and the integration domain,
unless otherwise stated.
In the following subsections, we separately discuss the overall

normal and tangential motion of the film, and then we discuss how
the film’s thickness evolves over time.

3.2 Normal Acceleration
We exploit the relation

𝜌

∫
Γ

𝐷 ¤𝒙
𝐷𝑡

𝑑𝛾 = 𝜌ℎ
𝐷 ¤𝑿
𝐷𝑡

. (12)

For normal acceleration, we need to take only the 𝑧-component of
the derivative into account. We use subscript 𝑧 to denote normal
components and subscript 𝑥𝑦 to denote tangential components. By
integrating Equation 1 along Γ, we obtain

𝜌

∫
Γ

𝐷 ¤𝒙𝑧
𝐷𝑡

𝑑𝛾 =

∫
Γ
−2𝜎 (𝛿𝑆u𝐻u𝒏u𝑧 + 𝛿𝑆 l𝐻

l𝒏l𝑧) −
𝜕𝑝

𝜕𝑧
+ 𝑓𝑧 𝑑𝛾

= −𝜎 (∇2
𝑠𝑢𝑆

u + ∇2
𝑠𝑙
𝑆 l)𝑧 −

∫
𝛾

𝜕𝑝

𝜕𝑧
𝑑𝛾 + ℎ𝑓𝑧 (13)

due to the property of the Dirac delta function and the equiva-
lences 2𝐻u𝒏u = ∇2

𝑠𝑢
𝑆u and 2𝐻 l𝒏l = ∇2

𝑠𝑙
𝑆 l (where ∇2

𝑠 is the Laplace-
Beltrami operator on a surface 𝑆). Employing the thin film approxi-
mation, we assume that the body force is roughly constant from one
side of the film to the other, and we assume the sum ∇2

𝑠𝑢
𝑆u + ∇2

𝑠𝑙
𝑆 l

is approximately equal to 2∇2
𝑠𝑆 .

For the pressure termwe consider three domains: Γ({ℎ2 }), Γ({
−ℎ
2 }),

and the open interval ( −ℎ2 , ℎ2 ). For the end points Γ({
ℎ
2 }) and Γ({

−ℎ
2 }),

we follow Ishida et al’s [2017] approach and have∫
Γ ( { ℎ2 })

∇𝑝 𝑑𝛾 =

(
lim
𝒙↓𝒙u

𝑝 (𝒙) − lim
𝒙↑𝒙u

𝑝 (𝒙)
)
𝒏u (14)

and ∫
Γ ( { −ℎ

2 })
∇𝑝 𝑑𝛾 =

(
lim
𝒙↓𝒙 l

𝑝 (𝒙) − lim
𝒙↑𝒙 l

𝑝 (𝒙)
)
𝒏l (15)

by considering a small domain around Γ({ℎ2 }) and Γ({ −ℎ2 }), and
taking the infinitesimal limits. For the open interval Γ( −ℎ2 , ℎ2 ), it
follows ∫

Γ ( ( −ℎ2 ,ℎ2 ))

𝜕𝑝

𝜕𝑧
𝑑𝛾 = lim

𝜖→0

∫
Γ ( ( −ℎ2 +𝜖,ℎ2 −𝜖))

𝜕𝑝

𝜕𝑧
𝑑𝛾

= lim
𝒙↑𝒙𝑢

𝑝 (𝒙) − lim
𝒙↓𝒙𝑙

𝑝 (𝒙) (16)

from the definition of improper integral and the fundamental theo-
rem of calculus. Applying 𝒏u ≈ 𝒏l ≈ 𝒏 and summing these integrals
together, we get the integral over the entire domain:∫

Γ

𝜕𝑝

𝜕𝑧
𝑑𝛾 = lim

𝒙↓𝒙u
𝑝 (𝒙) − lim

𝒙↑𝒙𝑙
𝑝 (𝒙)=: Δ𝑝. (17)

This is the pressure difference through the film surface. We thus
obtain

𝐷 ¤𝑿𝑧

𝐷𝑡
= − 1

𝜌ℎ

(
2𝜎∇2

𝑠𝑆 + Δ𝑝
)
+ 𝑓𝑧

𝜌
(18)

This is the equation responsible for deforming the surface geometry
by the means of normal acceleration — it moves the surface based
on surface tension (curvature), air pressure on both sides of the film,
and external forces. This equation is identical to Ishida et al. [2017],
except that it accounts for spatially varying thickness ℎ.

3.3 Tangential Acceleration
In the tangential direction, we have

𝜌

∫
Γ

𝐷 ¤𝒙𝑥𝑦
𝐷𝑡

𝑑𝛾 =

∫
Γ
−2𝜎 (𝛿𝑆u𝐻u𝒏u𝑥𝑦 + 𝛿𝑆 l𝐻

l𝒏l𝑥𝑦) − ( 𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
)𝑝 + 𝑓𝑥𝑦 𝑑𝛾

= −2𝜎 (𝐻u𝒏u𝑥𝑦 + 𝐻 l𝒏l𝑥𝑦) − ( 𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
)
∫
Γ
𝑝 𝑑𝛾 + ℎ𝑓𝑥𝑦

(19)

based on the twice differentiability of 𝑝 by 𝑥,𝑦. Applying 𝒏u ≈ 𝒏l ≈
𝒏 and the fact that the tangent component of the normal is zero, we
obtain

𝐷 ¤𝑿𝑥𝑦

𝐷𝑡
= −∇𝑠𝑃

𝜌ℎ
+
𝑓𝑥𝑦

𝜌
(20)

where ∇𝑠 is the surface gradient and 𝑃 :=
∫
Γ 𝑝𝑑𝛾 is the integrated

pressure over the water column Γ. This equation is responsible
for flows along the surface geometry — the material derivative on
the left hand side advects tangential velocities based on pressure
gradients (enforcing mass conservation) and external forces (like
gravity or wind).

3.4 Thickness Evolution
We note that the thickness at a point 𝑆 (𝑎, 𝑏) is

ℎ(𝑎, 𝑏) = 𝒙u𝑧 (𝑎, 𝑏) − 𝒙 l𝑧 (𝑎, 𝑏) . (21)

The normal forces acting on the points 𝒙u (𝑎, 𝑏) and 𝒙 l (𝑎, 𝑏) are
𝐷 ¤𝒙u𝑧
𝐷𝑡

=

∫
Γ ( { ℎ2 })

𝐷 ¤𝒙𝑧
𝐷𝑡

𝑑𝛾

= −𝜎∇2
𝑠𝑢𝑆

u
𝑧 + lim

𝒙↑𝒙𝑢
𝑝 (𝒙) − lim

𝒙↓𝒙𝑢
𝑝 (𝒙) + 𝑓𝑧 (22)

and

𝐷 ¤𝒙 l𝑧
𝐷𝑡

=

∫
Γ ( { −ℎ

2 })

𝐷 ¤𝒙𝑧
𝐷𝑡

𝑑𝛾

= −𝜎∇2
𝑠𝑙
𝑆 l𝑧 + lim

𝒙↑𝒙𝑙
𝑝 (𝒙) − lim

𝒙↓𝒙𝑙
𝑝 (𝒙) + 𝑓𝑧 (23)
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from Equation 14 and 15. Plugging these into Equation 21, and
approximating ∇2

𝑠𝑙
𝑆 l − ∇2

𝑠𝑢
𝑆u with ∇2

𝑠ℎ, we obtain

𝐷 ¤ℎ
𝐷𝑡

=
1
𝜌

(
𝜎∇2

𝑠ℎ −𝑄

)
(24)

where 𝑄 is the difference between the pressures outside of the film
compared to the pressure inside:

𝑄 = lim
𝒙↓𝒙𝑢

𝑝 (𝒙) + lim
𝒙↑𝒙𝑙

𝑝 (𝒙)︸                      ︷︷                      ︸
external pressure

−
(
lim
𝒙↑𝒙𝑢

𝑝 (𝒙) + lim
𝒙↓𝒙𝑙

𝑝 (𝒙)
)

︸                         ︷︷                         ︸
internal pressure

. (25)

Equation 24 determines the evolution of film thickness ℎ — ignor-
ing the 𝑄 term for a moment, this is an advected wave equation for
ℎ; it describes how the thickness flows along the film, and it is re-
sponsible for capillary (surface tension) waves. The𝑄 term squeezes
the film when the external pressure exceeds the outside, and it is
generally responsible for volume conservation of the thickness field
ℎ, just as pressure acts to preserve fluid volume in a typical incom-
pressible flow solver. When it reaches equilibrium, this equation
becomes the sum of the Young-Laplace equation for the upper and
the lower boundary, which describes the balance between the sur-
face tension force and the pressure jump through the interface. We
note that in our implementation, the Laplace-Beltrami operator ∇2

𝑠ℎ

is defined both on manifold and non-manifold geometry, following
the technique proposed by Ishida et al. [2017].

3.5 Pressure
The past three sections described a reduced model for Equation 1 in
terms of normal accelerations, tangential accelerations, and thick-
ness propagation. However, we have not yet described how to com-
pute the pressures.
We first describe how to compute the pressure jump term Δ𝑝 in

Equation 18. Δ𝑝 is effectively a correction term resulting from the
conservation of volume for each air bubble. We incorporate this
term following Ishida et al. [2017], by off-setting the surface with
the amount Δ𝑑 in the normal direction such that the air bubbles
preserve volume.

Next, we describe how to compute the integrated pressure 𝑃 for
Equation 20. Conservation law form of ℎ gives us

𝜕ℎ

𝜕𝑡
= −∇𝑠 · (ℎ ¤𝑿𝑥𝑦). (26)

We then execute steps exactly analogous to those typically used to
enforce incompressibility in a fluid solver with a first-order operator
splitting approach [Stam 1999]. After computing external forces and
advection in Equation 20, and numerically integrating it with a time
step Δ𝑡 , we are left with

¤𝑿𝑥𝑦 (𝑡 + Δ𝑡) = ¤̃𝑿𝑥𝑦 (𝑡) −
Δ𝑡

𝜌ℎ
∇𝑠𝑃 (𝑡), (27)

where ¤̃𝑿𝑥𝑦 is the “dirty” velocity before enforcing the conservation
law. We then multiply by ℎ, take the divergence of both sides, and

plug it into Equation 26 to get:

Δ𝑡

𝜌
∇2
𝑠𝑃 = ∇𝑠 · (ℎ ¤̃𝑿𝑥𝑦) +

𝜕ℎ

𝜕𝑡
(28)

which is our new Poisson equation for enforcing our film incom-
pressibility constraint. This equation is almost exactly the same as
a typical 2D incompressibility solver for triangle meshes, except
that it allows mass to transfer between tangential motions ¤̃𝑿𝑥𝑦 and
normal motions 𝜕ℎ

𝜕𝑡 . Thus, the tangent velocity field after enforcing
the constraint ¤𝑿𝑥𝑦 will be compressible; it will exhibit sinks and
sources wherever the film thickness ℎ expands and contracts.

We note that our global projection technique is starkly different
from related work on thin films [Azencot et al. 2015b; Saye and
Sethian 2013, 2016], which embed mass conservation into a PDE for
viscous film evolution. Instead, our solver preserves lively vortices
in the tangential velocity field, which are useful for visual effects in
computer animation.

Finally, the pressure term𝑄 in Equation 24 should in principle be
used for two-way coupling between the film and the surrounding air.
It should cause the film to expand or thicken the film based on the
balance between internal liquid pressure and the surrounding air
pressure, while simultaneously enforcing volume conservation of
the liquid. However, because our underlying foam solver [Ishida et al.
2017] treats air pressure as constant per bubble, the external pressure
in𝑄 (Equation 25) is simply a constant term per connected film com-
ponent. This simplified air model leads to only subtle mass-transfer
effects due to differences in pressure at non-manifold junctions. We
ultimately decided that these coupling effects were too subtle for
our purposes.

However,𝑄 can still be useful for enforcing volume conservation
within the film. Just like any advection-projection solver, our incom-
pressibility solver described above may be susceptible to numerical
drift and cannot exactly preserve film mass for finitely large time
steps. We use𝑄 to compensate for measurable drifts in total volume
— following the geometric volume conservation approach of Müller
[2009], we implement 𝑄 as a global mass correction at the end of
each time step by scaling up film thickness such that the total mass
per connected component is exactly preserved when desired.

3.6 Evaporation and Bursting Bubbles
Now that we have explicit control over the film thickness, we can
also incorporate approximate evaporation effects. Current evapora-
tion models feature a complex interdependence of pressure and heat
transfer [Ahmed and Pandey 2019]. For our purposes, we found it
sufficient to heuristically model evaporation by simply reducing the
film thickness at a constant rate: ℎ −= 𝑐evapΔ𝑡 .
We model film bursting by simply deleting a manifold surface

region, similar to the simulations of Da et al. [2015]. However, in-
stead of randomly deleting films, we delete a film when its thickness
ℎ falls below a critical threshold at some point on the surface. To
approximate the effect of surface tension retracting a burst film, we
compute the mass of the burst film and distribute a fraction of it to
the neighboring bubbles by increasing ℎ in the elements along the
film boundary.
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4 IMPLEMENTATION
Each time step of our implementation must numerically integrate
Equations 18, 20, 28, and 24. We integrate the normal accelera-
tion (Equation 18) in a Lagrangian reference frame; we integrate
tangential acceleration (Equation 20) in an Eulerian reference frame
by adding body forces, computing advection, and then enforcing
the conservation law (Equation 28); and we evolve thickness (Equa-
tion 24) using an Eulerian discretization of advection and wave
dynamics. These steps are outlined in Algorithms 1, 2, and 3. We
will use notations 𝐿 and 𝐸 to distinguish motions evaluated in La-
grangian frame and in Eulerian frame. The total velocity is therefore
expressed as ¤𝑿 = ¤𝑿𝐿 + ¤𝑿𝐸 .

4.1 Discretization
We use a triangle mesh to represent surfaces. Each triangle stores a
tangential velocity, and each vertex stores a thickness value simi-
lar to a staggered grid [Shi and Yu 2004]. For differential operators,
we use the discretized divergence of de Goes et al. [2016] and the
discretized Laplacian of Ishida et al. [2017].

Our implementation uses LosTopos [Da et al. 2014] to track evolu-
tion and topology changes of a non-manifold triangle mesh. At the
end of each time step, we supply LosTopos with proposed trajecto-
ries for the vertices of the mesh. LosTopos then performs remesh-
ing while handling topology changes via operations such as edge
splitting, edge collapse, T1 rearrangement processes, and vertex
snapping, and returns a watertight mesh satisfying the proposed
trajectories as nearly as possible. To adjust this newmesh to our sim-
ulation, we linearly interpolate quantities on newly created vertices
and triangles from their neighbors, while forcing local liquid vol-
ume (area times thickness) to remain unchanged. We use first-order
symplectic Euler time integration.
We note that we can attach films to wire boundaries by con-

straining their degrees of freedom. We constrain vertex positions to
remain fixed on the boundary, and we set components of velocity
and ∇𝑠ℎ which are perpendicular to the boundary equal to zero.

4.2 Advection
We advect velocities originating from normal acceleration in a
Lagrangian manner by integrating Equation 18 and using the re-
sult to update the position and velocity of mesh vertices. We ad-
vect velocities originating from tangential acceleration and thick-
nesses (Equations 20 and 24) using semi-Lagrangian advection
based on the method of Shi and Yu [2004] with an optional second-
order upgrade using BFECC [Kim et al. 2005]. We opted for this
Lagrangian-Eulerian splitting of advection to reduce the frequency
of re-meshing.

We also extend Shi and Yu [2004]’s method for multiple films with
non-manifold junctions. To do so, we first perform standard back-
tracing until the trajectory reaches a non-manifold edge 𝑒 . Adjacent
to 𝑒 are the last backtraced triangle 𝑇0 and two or more backtrace
candidate triangles𝑇1,𝑇2, . . . . For each candidate triangle𝑇𝑖 wemea-
sure the absolute flux through 𝑒 , given by 𝑓 𝑒

𝑖
:= ¤𝑿𝑇𝑖

𝑥𝑦 · 𝒏𝑇𝑖𝑒 , where
¤𝑿𝑇𝑖
𝑥𝑦 is the tangential velocity at𝑇𝑖 and 𝒏𝑇𝑖𝑒 is the edge normal of 𝑒 in

the plane of 𝑇𝑖 , oriented away from 𝑇𝑖 . Assuming the absolute flux
𝑓 𝑒
𝑖
is positive (i.e. liquid is flowing from 𝑇𝑖 towards 𝑇0), we measure

the relative flux 𝑓 𝑟𝑒
𝑖
as the proportion of 𝑓 𝑒

𝑖
to the sum of all positive

fluxes over 𝑒 ,

𝑓 𝑟𝑒𝑖 :=
𝑓 𝑒
𝑖∑

𝑓 𝑒
𝑗
>0 𝑓

𝑒
𝑗

. (29)

For each triangle 𝑇𝑖 with a positive absolute flux, we independently
continue the backtrace through 𝑇𝑖 , therefore generally obtaining
multiple backtrace paths, see Figure 3. When the backtrace is com-
plete, for every path we determine its weight as a product of all the
relative fluxes over non-manifold edges along this path. Summing
up weighted contributions from all the backtrace paths gives us
the final advection velocity. BFECC paths are traced analogously.
Figure 4 shows how film thickness drains downward on a bubble
cluster, advecting through non-manifold junctions. We use direct
sparse Cholesky decomposition for solving our pressure projection
(Equation 28).

Fig. 3. When the semi-Lagrangian backtrace (dotted line) reaches a non-
manifold edge from triangle 𝑇0, we evaluate the flow on the remaining
adjacent triangles𝑇1 and𝑇2. If the velocities on both𝑇1 and𝑇2 indicate that
liquid flows into𝑇0, we split the backtrace (left). If the liquid on𝑇 1 flows
away from𝑇 , while liquid on𝑇2 flows toward𝑇 , we don’t split the path and
only continue the backtrace through𝑇2 (right).

4.3 Deformation Response and Mass Conservation
Since the film deforms over time, we need to properly handle the
changes introduced by deforming local frames. As the mesh de-
forms, we update Eulerian velocity according to the transformation
affecting the deformed triangle. Before deformation occurs, the
Eulerian velocity in its local basis is expressed as ¤𝑿𝐸 = 𝑐1𝑒1 + 𝑐2𝑒2
with triangle edge vectors 𝑒1, 𝑒2 serving as a local basis (generally
not orthogonal or normalized) and real coefficients 𝑐1, 𝑐2. After de-
formation, we update the velocity vector using the same coefficients
𝑐1, 𝑐2 but with the transformed triangle edges 𝑒 ′1, 𝑒

′
2 forming the

transformed local basis. This velocity update compensates for a
dynamically changing metric on the mesh surface due to affine
transformations including non-rigid motions such as scaling and
shearing.
Deformation also affects mass conservation. Considering both

Eulerian and Lagrangian frames, Equation 28 becomes
Δ𝑡

𝜌
∇2
𝑠𝑃 = ∇𝑠 · (ℎ ¤̃𝑿𝑥𝑦,𝐸 ) +

(
𝜕ℎ

𝜕𝑡

)
𝐸

+ ∇𝑠 · (ℎ ¤̃𝑿𝑥𝑦,𝐿) +
(
𝜕ℎ

𝜕𝑡

)
𝐿

. (30)

We apply a first-order time splitting scheme to solve this equation
one term at a time.We address the two Lagrangian terms by ensuring
that liquid volume is conserved while the mesh expands, by locally
rescaling the thickness such that the local volume remains constant:
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ℎnew𝐴new = ℎold𝐴old, where 𝐴 is the Voronoi area of the vertex.
This conservation law during surface deformation effectively sets
the Lagrangian terms to equal zero, leaving us with only the Eulerian
terms for computing 𝑃 .

ALGORITHM 1: Motion caused by normal acceleration

1 Add the surface tension force and external force
¤𝑿 ′
𝐿
(𝑡 ) = ¤𝑿𝐿 (𝑡 ) + 2𝜎∇2

𝑠𝑆
Δ𝑡
𝜌ℎ

+ 𝑓𝑧
Δ𝑡
𝜌

𝑿 ′ (𝑡 ) = 𝑿 (𝑡 ) + Δ𝑡 ¤𝑿 ′
𝐿
(𝑡 )

2 Perform air volume preservation
𝑿 (𝑡 + Δ𝑡 ) = 𝑿 ′ (𝑡 ) + Δ𝑑𝒏
¤𝑿𝐿 (𝑡 + Δ𝑡 ) = ¤𝑿 ′

𝐿
(𝑡 ) + (Δ𝑑/Δ𝑡 )𝒏

ALGORITHM 2: Motion caused by tangential acceleration

1 Add external force and perform advection along ¤𝑿𝐸

¤̃𝑿𝐸 (𝑡 ) = ¤𝑿𝐸 (𝑡 ) + Δ𝑡 ( ¤𝑿𝐸 (𝑡 ) · ∇𝑠 ) ¤𝑿𝐸 (𝑡 ) + Δ𝑡
𝑓𝑥𝑦

𝜌

2 Compute the pressure term
¤𝑿𝐸 (𝑡 + Δ𝑡 ) = ¤̃𝑿𝐸 (𝑡 ) − ∇𝑠𝑃

Δ𝑡
𝜌ℎ

by solving for 𝑃 : Δ𝑡
𝜌

∇2
𝑠𝑃 = ∇𝑠 · (ℎ ¤̃𝑿𝐸 (𝑡 )) + (𝜕ℎ/𝜕𝑡 )𝐸

ALGORITHM 3: Thickness evolution
1 Perform advection along ¤𝑿𝐸

¤̃ℎ𝐸 (𝑡 ) = ¤ℎ𝐸 (𝑡 ) + Δ𝑡 ( ¤𝑿𝐸 (𝑡 ) · ∇𝑠 ) ¤ℎ𝐸 (𝑡 )
ℎ̃ (𝑡 ) = ℎ (𝑡 ) + Δ𝑡 ( ¤𝑿𝐸 (𝑡 ) · ∇𝑠 )ℎ (𝑡 )

2 Add the surface tension force
¤ℎ
𝐸
(𝑡+Δ𝑡 ) = ¤̃ℎ𝐸 (𝑡 ) + 𝜎∇2

𝑠ℎ̃ (𝑡 ) Δ𝑡𝜌
ℎ (𝑡 + Δ𝑡 ) = ℎ̃ (𝑡 ) + Δ𝑡 ¤ℎ

𝐸
(𝑡+Δ𝑡 )

3 Perform liquid volume preservation (Section 3.5)
4 Account for evaporation

ALGORITHM 4: Main algorithm

1 Move constrained vertices based on user input
2 Integrate tangential acceleration (Algorithm 2)
3 Evolve thickness (Algorithm 3)
4 Integrate normal acceleration (Algorithm 1)
5 Update thickness and Eulerian velocity according to deformation
6 Remesh by LosTopos

5 RESULTS
We used our simulator to produce a number of soap-film simula-
tions. We begin by demonstrating the method’s behavior on static
surfaces and validating it against physical experiments. Next, we
showcase the benefits of our method with detailed animations of
soap-film dynamics.

5.1 Demonstrations and Validation
Figures 4 and 5 illustrate how our thin film evolution differs from
typical 2D incompressible Navier-Stokes solvers by simulating the
behavior of a film in the presence of gravity. The film’s thickness,
which is originally constant over the shape, drains downward over
time. In order to concentrate film thickness at the bottom of this
shape, the velocity field needs to exhibit sources and sinks. In con-
trast, 2D incompressible fluid solvers like Shi and Yu [2004] only
allow divergence-free velocity fields on their surfaces, which pro-
hibit these mass concentrations.
As a vertical planar soap film drains downward, its mass thins

at the top and thickens at the bottom. Light interfering with the
the film’s thickness variation creates horizontal bands of rainbows.
The film reaches a steady state when the gravitational forces, the
surface tension forces, and the pressure forces balance; the thick-
ness distribution at equilibrium can be analytically described as an
exponential function in height [Couder et al. 1989]. In Figure 6, we
show how our simulation compares to both a real-world experiment
[Atkins and Elliott 2010] and the analytical solution. To minimize
mesh-dependent bias, we implemented this example on a regular
grid instead of a triangle mesh.
Seychelles et al. [2008] photographed the effects of temperature

change and surfactant concentration gradients on a curved soap film
surface, revealing beautiful convected rainbow patterns. Figure 7
shows a comparison between their experiment and an animation
produced using our algorithm with an empirically chosen thickness
and initial velocity field. The left image in Figure 1 shows subtle
swirls resulting from a high-resolution simulation initialized by a
high-frequency curl-noise pattern.

5.2 Animations
Figure 8 shows a simulation of a large deformed sphere, initial-
ized with a thickness field proportional to height. As the simulation
evolves, we observe both surface deformation tending towards a reg-
ular spherical shape and the varying of color patterns, resulting from
the interplay between surface deformation and thickness evolution.
We compare this result to the identical simulation rendered with
constant thickness in the same figure.
We can also use our soap-film simulation algorithm to animate

clusters of several bubbles. Figure 9 shows a cluster of ten bubbles
bursting and rearranging. We can compare this animation to a simi-
lar one by Da et al. [2015]. We note that our algorithm enhances the
simple bubble rearrangement with slowly convecting interference
patterns as the film drains, and sudden rainbow ripples as the film re-
arranges. Importantly, the bursting in this example is entirely driven
by our thin film solver, not by a random film-deletion strategy.

As we increase the number of bubbles in a cluster, we begin to ap-
proximate complex dynamics found in soap foams. We believe these
foam structures especially highlight the utility of our algorithm,
because they show how all of the subtle film forces work together
to create novel dynamics and visual effects. For example, the right
image in Figure 1 exhibits the following sequence of events in a
foam consisting of one hundred bubbles: first, gravity and advection
cause the film to drain from the top of the foam downward; the
thinner film near the top of the cluster evaporates away and causes
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Fig. 4. Film thickness drains due to gravity on a bubble cluster, creating a
smooth gradient in thickness even across non-manifold junctions. Left: Film
thickness varies from 900nm (yellow) to 500nm (blue) Right: Photorealistic
rendering of these bubbles.
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Fig. 5. A bunny-shaped film draining due to gravity. Top: Film thickness
varies from 1200nm (yellow) to 200nm (blue). Bottom: The corresponding
soap film rendered under white light.
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Fig. 6. The ”Newton pattern” photographed from a real soap film (left) and
a simulated soap film (middle). Our simulation setting includes a vertically
standing square film with side length 10cm and uniform thickness 500nm,
draining with gravity coefficient 9.81m/s2 and surface tension coefficient
10−5 . Plotting the simulated thickness distribution on a logarithmic scale
(right) shows that our simulated result is nearly an exponential function at
the equilibrium state, as predicted.

a bubble to burst; the sudden imbalance from the burst sends capil-
lary waves rippling around the neighboring bubbles; these ripples
sometimes constructively interfere, leading to more thin films and
more bursting; the film then drains again and the process repeats.
Figure 10 shows how foams can be destroyed via deformation.

Here, the bubbles are pushed downward against a solid boundary,
causing them to change shape. The volume conservation of the
trapped air causes the surface area to increase, forcing the film to

Fig. 7. Comparison between a real-world swirling soap film experiment by
Seychelles et al. [2008] (left) and our simulation (right). The simulation was
initialized on a sphere with thickness field linearly graded from 1200nm on
the front side to 200nm on the back side. To achieve the swirling motion,
we set the velocity field in clockwise horizontal direction in the upper
hemisphere, counter-clockwise horizontal direction in the lower hemisphere,
and evolve it for several seconds.

Fig. 8. A single large deforming bubble simulated using our model rendered
with variable thickness (left) and with a simplified constant thickness (right).
Note how our result exhibits interference patterns depending on the film’s
height and deformation.

Fig. 9. A cluster of ten bubbles bursting and rearranging, showing color
variations due to convection and capillarity.

Fig. 10. Foam colliding with a boundary causes bubbles to deform (left) and
burst (right).

thin out due to mass conservation. The thin film leads to bursting,
as described above.
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Table 2. Performance timings in seconds per frame. We performed the computations on an Intel Core i7-6850K 3.6GHz CPU.

Scene Figure # Vertices Triangles BFECC Surface Flow
+ Deformation Surface Flow Only Overhead of

Our Method
100 bubble cluster Fig 1 right 25k 53k no 9.14s 0.59s 7%
10 bubble cluster Fig 9 8k 15k no 1.41s 0.06s 4%
Large deforming sphere Fig 8 29k 58k yes 5.93s 1.41s 31%
Sphere patterns Fig 1 left 102k 204k yes N/A 7.46s N/A

We implemented our thin film simulator on top of Ishida et al.
[2017]’s source code for simulating bubble dynamics. The over-
head added by simulating film thickness depends on the choice of
advection scheme. For basic semi-Lagrangian advection, our imple-
mentation added up to 7% to the computation time. When using the
more expensive BFECC advection scheme, our simulation added up
to 31% to the total computation time. See table 2 for more details
on the performance of our prototype implementation. We note that
we have not optimized our implementation for performance; we
believe a parallel implementation will be a simple way to gain a
significant speed-up.

6 DISCUSSION
Modeled phenomena. We believe there are a number of avenues

for improvement in our method. First of all, we would like to make
our derivation more rigorous, so we can determine exactly when it
is a valid simulation regime. Our current model assumes inviscid
flow as in the works of Da et al. [2015, 2016] and Ishida et al. [2017]
which model inviscid behavior and allow users to add heuristic
damping as a tunable parameter. However, since viscosity can af-
fect small scale behaviors, a more consistent treatment may require
that we incorporate viscous forces into our model. The scenarios
in our results feature relatively slow motions, so we neglected ficti-
tious forces resulting from accelerations. We should incorporate air
drag, centrifugal, and Coriolis forces if we wish to model spinning
bubbles more accurately. Additionally, while we calculate vertex ac-
celerations in the normal direction, vertices can still have non-zero
components of velocity in tangential directions. In order to improve
our simulation’s physical realism, we should rigorously model how
vertex tangential velocities and the tangential flow interact with
each other.

We are also interested in more sophisticated models for air-liquid
coupling. We know that air currents can lead to beautiful convective
film vortices [Seychelles et al. 2008], and our heuristic treatment of
the coupling term 𝑄 together with the constant air pressure model
of Ishida et al. [2017] currently forbids coupling with nontrivial air
dynamics. We would also like to explore a more accurate surfac-
tant model, as surface tension gradients can lead to curious visual
phenomena like the Marangoni effect.

Next, we are also interested in incorporating effects from related
work into our model. Notably, we do not actually animate the pro-
cess of a film retracting and tearing apart into droplets when it
bursts, so we would like to incorporate the thin film rupture model
of Zhu et al. [2014].

We also note that our model can be used as a post-process that fol-
lows a simulation of surface deformation. A post-process application
of our algorithm efficiently animates draining-dependent colors and

swirls, but it fails to exhibit thickness-dependent bubble bursting,
and it exhibits subtle differences in normal motions (Equation 18),
where the pressure gradient accelerates thinner films faster than
thicker ones.

Numerical stability, efficiency, and scalability. Our discretization
is not unconditionally stable. As our surface deformation scheme is
essentially equivalent to the previous work [Ishida et al. 2017], it
shares the same numerical stability constraints: the maximal time
step is approximately proportional to the inverse of the maximal
value of the generalized mean curvature, and depends on other
factors such as the stability of the Los Topos surface tracker. Since
our model is independent of the discretization or the surface tracker,
we expect that more robust ones can potentially improve the stability
issue.
We can also make our method more efficient by incorporating

multiple time scales [Saye and Sethian 2016]. Perhaps even a simple
adaptive time-stepping scheme can help us more efficiently model
fast bursting and slow film draining in the same simulation. An-
other direction for further efficiency is investigating applicability
of recently developed surface discretizations [Azencot et al. 2013,
2015a] and numerical solvers for PDEs on evolving surfaces [Dziuk
and Elliott 2013; Olshanskii and Xu 2016; Petras and Ruuth 2016] to
our governing equations.

Finally, we are eager to compute larger scale simulations by par-
allelizing our code and optimizing our solver. We believe that our
solver can be made efficient enough to simulate orders of magnitude
more bubbles; such a simulator may be able to handle enough com-
plexity to begin answering statistical and homogenization questions,
like determining the effective material properties of a foam material.
Wewould also be interested in using our solver as a starting point for
simulating delicious visco-elasto-plastic foam-like materials such as
dough, cream, and baked goods.

Conclusion. We have presented a novel algorithm for animating
soap films with evolving film thickness. We derived our model by
decoupling normal and tangential accelerations, and extracting film
thickness as a key degree of freedom.We then derive three equations
of motion, leading to both large-scale geometric deformations and
small-scale variations in film thickness. We incorporated a number
of effects and forces into our thin film model, namely advection,
external forces, capillary waves, evaporation, and bursting. To do
so, we also introduced a novel 2.5D pressure solver for enforcing
approximate mass conservation of the thin film. Our simulations are
capable of reproducing real-world phenomena like Newton’s pat-
terns, and they are capable of efficiently animating swirling thick-
ness patterns, capillary ripples, and a physically plausible decaying
of foams.
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