Simplified Game of Life: Algorithms and
Complexity

Krishnendu Chatterjee

Institute of Science and Technology, Klosterneuburg, Austria

Rasmus Ibsen-Jensen
University of Liverpool, UK

Ismaél Jecker
Institute of Science and Technology, Klosterneuburg, Austria

Jakub Svoboda

Institute of Science and Technology, Klosterneuburg, Austria

—— Abstract

Game of Life is a simple and elegant model to study dynamical system over networks. The model

consists of a graph where every vertex has one of two types, namely, dead or alive. A configuration
is a mapping of the vertices to the types. An update rule describes how the type of a vertex is
updated given the types of its neighbors. In every round, all vertices are updated synchronously,
which leads to a configuration update. While in general, Game of Life allows a broad range of update
rules, we focus on two simple families of update rules, namely, underpopulation and overpopulation,
that model several interesting dynamics studied in the literature. In both settings, a dead vertex
requires at least a desired number of live neighbors to become alive. For underpopulation (resp.,
overpopulation), a live vertex requires at least (resp. at most) a desired number of live neighbors to
remain alive. We study the basic computation problems, e.g., configuration reachability, for these
two families of rules. For underpopulation rules, we show that these problems can be solved in
polynomial time, whereas for overpopulation rules they are PSPACE-complete.

2012 ACM Subject Classification Theory of computation

Keywords and phrases game of life, cellular automata, computational complexity, dynamical systems
Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.22

Related Version A full version of the paper is available at https://arxiv.org/abs/2007.02894.

Funding Krishnendu Chatterjee: The research was partially supported by the Vienna Science and
Technology Fund (WWTF) Project ICT15-003.
Ismaél Jecker: This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under the Marie Sktodowska-Curie Grant Agreement No. 754411.

1 Introduction

Game of Life is a well-known model to study dynamics over networks. We consider the
classical model of Game of Life and study two simple update rules for which we establish
algorithms and computational complexity. We start with a description of dynamical systems,
then explain Game of Life and our simplified rules, and finally state our main results.

Dynamical systems. A dynamical system describes a set of rules updating the state of the
system. The study of dynamical systems and computational questions related to them is
a core problem in computer science. Some classic examples of dynamical systems are the
following: (a) a set of matrices that determine the update of the state of the dynamical
system [4, 14]; (b) a stochastic transition matrix that determines the state update (the
classical model of Markov chains) [11]; (c) dynamical systems that allows stochastic and
? Krishnendu Chatt?rjee, Rasmus Ib.sen-Jensen, Ismaél Jecker, and Jakub Svoboda;
5v icensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Kral’; Article No. 22; pp. 22:1-22:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.MFCS.2020.22
https://arxiv.org/abs/2007.02894
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2

Simplified Game of Life: Algorithms and Complexity

non-deterministic behavior (aka Markov decision processes) [9, 15, 1]; and so on. To study
dynamics over networks the two classical models are Game of Life [10, 3] and cellular
automata [20].

Game of Life. Game of Life is a simple yet elegant model to study dynamical systems
over networks. The network is modeled as a graph where every vertex has one of two types,
namely, dead or alive. A configuration (or state of the system) is a mapping of the vertices to
the types. An update rule describes how the type of a vertex is updated given the types of its
neighbors. In every round, all vertices are updated synchronously, leading to a configuration
update. In Game of Life, the update rules are deterministic, hence the configuration graph is
deterministic. In other words, from each starting configuration, the updates lead to a finite
path followed by a cycle in the configuration graph. While in Game of Life the successor of a
state only depends on its number of neighbors of each type, in the more general model of
cellular automata the update rule can also distinguish among the positions of the neighbors.

Simplified rules. While the update rules in Game of Life are quite general, in this work,

we focus on two simplified rules, namely, underpopulation rules and overpopulation rules:
Underpopulation rule. According to an underpopulation rule, a dead vertex becomes alive
if it has at least i live neighbors, and remains dead otherwise; a live vertex remains alive
if it has at least i, live neighbors, and becomes dead otherwise.
Owverpopulation rule. According to an overpopulation rule, a dead vertex becomes alive if
it has at least ig live neighbors, and remains dead otherwise; a live vertex remains alive if
it has at most ¢; live neighbors, and becomes dead otherwise.

See Section 2 for the formal details of the definition, and a detailed comparison of our setting

with cellular automata, and Conway’s original Game of Life.

Motivation. While we consider simpler rules, we study their effect on any type of graph,
contrary to cellular automata that focus on grids. This allows us to model several complex
situations studied in the literature. For example, the underpopulation rule models the spread
of ideas, where a person adopts a new idea only if sufficiently many neighbors adopt it, or
study bandwagon effects where an item is considered useful if sufficiently many neighbors
use it. In contrast, the overpopulation rule models anti-coordination effects where the goal
is to avoid a popular pub, or model snob effects where individuals discard a fashion if too
many neighbors have adopted it. See Section 3 for further details.

Basic computational problems. We study two basic computational problems for the un-
derpopulation and overpopulation rule. The first computational problem is the configuration
reachability question which asks, given an initial configuration and a target configuration,
whether the target configuration is reachable from the initial configuration. The second
computational problem is the long-run average question, which asks, given an initial con-
figuration, what is the long-run average of the number of live vertices. Note that in the
configuration graph, any initial configuration is the source of a finite path followed by a cycle.
The long-run average question asks about the average number of live vertices in the cycle.

Our contributions. Our main contributions are algorithms and complexity results for the
two families of rules. First, for the underpopulation rules, we present polynomial time
algorithms for both computational problems for all graphs. Thus, we identify a simple update
rule in Game of Life, that can model several interesting scenarios, for which we present

K. Chatterjee, R. Ibsen-Jensen, |. Jecker, and J. Svoboda

efficient algorithms. Second, for the overpopulation rules, we show that both computational
problems are PSPACE-complete. Note that the PSPACE upper bound holds for general

update rules for Game of Life, hence the main contribution is the PSPACE hardness proof.

Moreover, we show that the PSPACE hardness even holds for regular graphs with a constant
degree. Note that the difference between underpopulation and overpopulation is minimal (one
inequality reversed), yet we show that while efficient algorithms exist for underpopulation
rules, the computational problems for overpopulation rules are intractable.

2 Preliminaries

Given a finite alphabet A, we denote by A* the set of finite sequences of elements of A,
and by A“ the set of infinite sequences of elements of A. The elements of A* and A“ are
called words over A. The length of a word w = ajasas... € A* U A is its number of letters,
denoted |w| € NU {+o00}. A factor of w is a sequence of consecutive letters of w. For every
0 <i < j <|wl|, we denote by wli, j] the factor a;1a;42...a; of w.

A (finite) graph is a pair G = (V, E) composed of a finite set of vertices V and a set of edges
E CV x V that are pairs of vertices. A walk of G is a sequence p = s1, 82,53... € VU V¥
such that each pair of consecutive vertices is an edge: (s;,8;41) € E for every 1 <i < |p|. A
(simple) path is a walk whose vertices are all distinct. A (simple) cycle is a walk in which
the first and last vertices are identical, and all the other vertices are distinct. A graph is
called undirected if its set of edges is symmetric: (s,t) € F < (t,s) € E. Two vertices of an
undirected graph are called neighbors if they are linked by an edge.

2.1 Configurations and update rules

A configuration of a graph is a mapping of its vertices into the set of states {0,1}. We say
that a vertex is dead if it is in state 0, and alive if it is in state 1. An update rule R is a
set of deterministic, time-independant, and local constraints determining the evolution of
configurations of a graph: the successor state of each vertex is determined by its current state
and the states of its neighbors. We define an update rule formally as a pair of functions: for
each g € {0, 1}, the state update function ¢, maps any possible neighborhood configuration to
a state in {0, 1}. The successor state of a vertex in state ¢ with neighborhood in configuration
¢y, is then defined as ¢4(c,,) € {0,1}.

In this work, we study the effect on undirected graphs of update rules definable by state
update functions that are symmetric and monotonic (configurations are partially ordered by
comparing through inclusion their subsets of live vertices). In this setting, a vertex is not
able to differentiate its neighbors, and has to determine its successor state by comparing the
number of its live neighbors with a threshold. These restrictions give rise to four families of
rules, depending on whether ¢y and ¢; are monotonic increasing or decreasing. We study
the two families corresponding to increasing ¢q, the two others can be dealt with by using
symmetric arguments.

Underpopulation. An underpopulation (update) rule R (ig,i1) is defined by two thresholds:
ig € N is the minimal number of live neighbors needed for the birth of a dead vertex, and
71 € N is the minimal number of live neighbors needed for a live vertex to stay alive. Formally,
the successor ¢4(m) of a vertex currently in state ¢ € {0,1} with m € N live neighbors is

[0ifm < _ 0t m <ig;
(bo(m)_{ 1if m > do. ¢1(m)_{ Lifm > .

This update rule is symmetric and monotonic.

22:3

MFCS 2020

22:4

Simplified Game of Life: Algorithms and Complexity

Overpopulation. An overpopulation (update) rule R~ (ig,41) is defined by two thresholds:
19 € N is the minimal number of live neighbors needed for the birth of a dead vertex, and
i1 € N is the maximal number of live neighbors allowing a live vertex to stay alive. Formally,
the successor ¢,(m) of a vertex currently in state ¢ € {0,1} with m € N live neighbors is

[0ifm <ip; _f 0ifm > g
(Z)O(m)_{ 1if m > . ¢1(m)_{ 1ifm <iq.

This update rule is symmetric and monotonic.

Basic computational problems. To gauge the complexity of an update rule, we study two
corresponding computational problems. Formally, given an update rule R and a graph G,
the configuration graph C(G,R) is the (directed) graph whose vertices are the configurations
of G, and whose edges are the pairs (¢, ¢’) such that the configuration ¢’ is successor of ¢
according to the update rule R. Note that C(G, R) is finite since G is finite. Moreover, since
the update rule R is deterministic, every vertex of the configuration graph is the source of a
single infinite walk composed of a finite path followed by a cycle.

The configuration reachability problem, denoted REACH, asks, given a graph G, an initial

configuration ¢y, and a final configuration ¢, whether the walk in C(G, R) starting from

cyr eventually visits cp.

The long-run average problem, denoted AvG, asks, given a threshold § € [0,1], a graph G,

and an initial configuration c¢;, whether § is strictly smaller than the average ratio of live

vertices in the configurations that are part of the cycle in C(G, R) reached from c;.

2.2 Comparison to other models

We show similarities and differences between our update rules and similar models.

Cellular automata. Cellular automata study update rules defined on (usually infinite) grid
graphs [20]. Compared to the setting studied in this paper, more rules are allowed since
neither symmetry nor monotonicity is required, yet underpopulation and overpopulation
rules are not subcases of cellular automata, as they are defined for any type of graph, not
only grids. To provide an easy comparison between the update rules studied in this paper
and some well-studied cellular automata, we now define Rule 54 and Rule 110 (according to
the numbering scheme presented in [19]) using the formalism of this paper.

1. Rule 54 [5, 13] coincides with the overpopulation rule R~ (1,0) applied to the infinite
unidimensional linear graph. A dead vertex becomes alive if one of its neighbors is alive,
and a live vertex stays alive only if both its neighbors are dead. Formally, the successor
¢q(m) of a vertex currently in state ¢ € {0,1} with m € {0, 1,2} live neighbors is

0if m = 0; [0ifm>1;
d’O(m)_{ 1if m > 1. d’l(m)_{ 1if m = 0.

This update rule is symmetric and monotonic. It can be used to model logical gates [13],
and is conjectured to be Turing complete.

2. Rule 110 [8] is defined over the infinite unidimensional linear graph. A dead vertex copies
the state of its right neighbor, and a live vertex stays alive as long as at least one of its
neighbors is alive. Formally, the successor ¢4(¢, r) of a vertex currently in state ¢ € {0,1}
with left neighbor in state ¢ € {0,1} and right neighbor in state r € {0,1} is

0if ¢ =r=0;
1 otherwise.

bolur) =15 d1(t,r) = {

This update rule is monotonic, but not symmetric. It is known to be Turing complete.

K. Chatterjee, R. Ibsen-Jensen, |. Jecker, and J. Svoboda

Game of Life. Game of Life requires update rules that are symmetric, but not necessarily
monotonic. The most well known example is Conway’s Game of Life [10, 3], that has been
adapted in various ways, for example as 3-D Life [2], or the beehive rule [21]. Conway’s
game of life studies the evolution of the infinite two-dimensional square grid according to the
following update rule: a dead vertex becomes alive if it has exactly three live neighbors, and
a live vertex stays alive if it has two or three live neighbors. Formally, the successor ¢,(m)
of a vertex currently in state ¢ € {0,1} with m € N live neighbors is

[0iftm#£3; _J 0ifm ¢ {2,3}
¢0(m)—{ 1ifm = 3. ¢1(m)_{ 1ifm€{2,3}.

This update rule is symmetric, but not monotonic. It is known to be Turing complete [3].

3 Motivating Examples

Our dynamics can represent situations where an individual (a vertex) adopts a behavior (or
a strategy) only if the behavior is shared by sufficiently many neighboring individuals. Then,
the underpopulation setting corresponds to behaviors that are abandoned if not enough
neighbors keep on using it, while the overpopulation setting models behaviors that are
dropped once they are adopted by too many. We present several examples.

3.1 Underpopulation

Innovation. The problem of spreading innovation is considered in [16, 17]. Initially, a small

group of people starts using a new product and if others see it used, they adopt the innovation.

In our setting this corresponds to the underpopulation model. The question of determining
whether the innovation gets to some key people can be formalised as the configuration
reachability problem REACH, and predicting how many people will eventually be using the
innovation amounts to solve the long-run average problem AvaG. Similar questions are asked
in [18], where the authors study how opinions form.

Positive feedback. In the paper [12], the bandwagon and Veblen effects are described.

These consider a fact that the demand for an item increases with the number of people using
that item. Under this hypothesis, determining the demand corresponds to solve Ava for an
underpopulation rule. Many more examples, for example, how people behave depending on
what their friends do, can be found in [7]. Anything from emotions to obesity can spread
through a network, usually following small modifications of the underpopulation rule.

3.2 Overpopulation

Anticoordination. Imagine that you want to go mushroom hunting. You enjoy the peaceful
walk in the forest and love the taste of fried wild mushrooms, or mushroom soup. Mushrooming
is a solitary activity and if too many of your neighbors decide to go mushrooming too, they
annoy you, and you find fewer mushrooms in already searched forest. So, if you were not
mushrooming the day before you can get convinced that the mushrooms are growing by some
neighbors that show you baskets full of delicious mushrooms. However, if you decide to go
and see too many people there, you get discouraged and do not go the next day.

This behavior is called anticoordination and was described in [6], it more generally
describes optimal exploitation of resources. The questions here are: does some set of people
go mushroom hunting, how many people will be mushroom hunting? The overpopulation
closely corresponds to this with REACH and AvG answering the questions.

22:5

MFCS 2020

22:6

Simplified Game of Life: Algorithms and Complexity

@0 OO __ 00
| — | @ ®
0Tzl

Figure 1 Evolution of a graph under the underpopulation rule R*(2,2). Live vertices are gray.

Snob effect. Many items are desirable because they are expensive, or unique. This behavior
was observed in [12]. People start doing something, but if too many people do it, it loses
appeal. For instance fashion works this way for all of us: People get inspired by what they
see, but if too many people wear the same outfit, they change it.

4 Underpopulation: PTIME Algorithm

In this section, we study underpopulation rules: a vertex comes to life if it has sufficiently
many living neighbours, and then still requires enough living neighbours to stay alive. Our
main result is as follows:

» Theorem 1. For every underpopulation rule, the reachability and long-run average problems
are decidable in polynomial time.

The above result depends on two key propositions. Let us start by having a look at an
example. Figure 1 presents successive configurations of a graph where each vertex requires
at least 2 living neighbours in order to be alive in the next step. The resulting behaviour is
quite simple: after the initial step, the graph keeps on oscillating between two configurations:
the middle vertex has reached a stable state, and the other vertices alternate between being
dead and alive. We show that the behaviour of graphs following underpopulation rules can
actually never be much more complicated than this. First, no huge cycle of configurations
can happen.

» Proposition 2. For every ig,i1 € N and every undirected graph G, the configuration graph
C(G,R™*(io,i1)) admits no simple cycle of length bigger than two.

Moreover, a cycle is always reached early in the process.

» Proposition 3. For every ig,i1 € N and every undirected graph G, the configuration graph
C(G,R™(io,i1)) admits no simple path of length 2|E| + 2(ig + i1 + 1)|V| + 4 or more.

We now present the proof of Theorem 1, by showing that Proposition 3 yields a polynomial
time algorithm for both REACH and AvG.

Proof of Theorem 1. Since underpopulation rules are deterministic, once a vertex is repeated
in a walk in C(G, R (ig,%1)), no new configuration can be visited. Therefore, Proposition 3
bounds polynomially the number of configurations reachable from an initial configuration.
Since computing the successor of a configuration and checking the equality of configurations
can both be done in polynomial time, we obtain the following polynomial time algorithms
solving REACH and AVG: first, we list all the configurations reachable from the initial
configuration, then we check if the final configuration is part of it, respectively if the rate of
live vertices in the reached loop is higher than the required threshold. |

The remainder of this section is devoted to the proof of Propositions 2 and 3. Let us
fix an underpopulation rule R (ig,41), a graph G = (V, E), and an initial configuration of
G. Our proofs rely on a key lemma that sets a bound on the number of times a vertex of

K. Chatterjee, R. Ibsen-Jensen, |. Jecker, and J. Svoboda

G switches its state between two configurations separated by two time steps. We begin by
introducing some technical concepts and notations, then we state our key lemma (Subsection
4.1). Afterwards, we proceed with the formal proofs of Propositions 2 and 3 (Subsection 4.2).

4.1 Key Lemma

We begin by introducing some auxiliary notation, and then we state our key lemma.

Histories. The history of a vertex s € V is the infinite word 75 € {0,1}* whose letters are
the successive states of s. For instance, in the setting depicted in Figure 1, the histories are:

7 =1(10)* 7 =(10)Y 73=01* 74 =(10)* 5= (01)%

The state of vertex 3 stabilises after the first step, and the other four vertices end up
oscillating between two states. The proofs of this section rely on counting, in the histories
of G, the number of factors (sequence of consecutive letters) matching some basic regular

expressions. In order to easily refer to these numbers, we introduce the following notations.
Let us consider the alphabet {0,1, 7}, where ? is a wildcard symbol matching both 0 and 1.

Given an integer m € N and a word y € {0,1,7}* of size n < m, we denote by [y],, € N the
number of factors of the prefixes 75[0,m], s € V, that match the expression y. Formally,

[Ylm = [{(5,9) € V x NJi + n < m,7[i,i +n] =y}

Key Lemma. We show that we can bound the number of state switches of the vertices of
G between two configurations separated by two time steps.

» Lemma 4. For every m > 3, the equation [170],, + [071],, < 2|E|+ 2(ig + 41 + 1)|V| holds.

Proof sketch. The basic idea is that the current state of a vertex s € V indirectly contributes
to s having the same state two steps in the future: let us suppose that s is alive at time
i € N. Then s contributes towards making its neighbours alive at time ¢ + 1, which in turn
contribute towards making their own neighbours, including s, alive at time ¢ 4+ 2. This idea
can be formalised by studying in details the number of occurrences of diverse factors in the
histories of G.

4.2 Proof of Proposition 2 and Proposition 3

Using Lemma 4, we are finally able to demonstrate the two results left unproven at the
beginning of this section. First, we prove Proposition 2. Note that the proof only uses the
fact that [170],, + [071],, is bounded, and not the precise bound.

» Proposition 2. For every ig,i1 € N and every undirected graph G, the configuration graph
C(G,R™(io,i1)) admits no simple cycle of length bigger than two.

Proof. Since Lemma 4 bounds the value of [170],, + [0?1],, for every m € N, then for

every vertex s € V', factors of the form 170 or 071 only appear in a bounded prefix of 5.

Therefore, the corresponding infinite suffix only contains factors of the form 171 or 070, which
immediately yields that the periodic part of 7 is of size either 1 or 2. Since this is verified by
every vertex, this shows that under the underpopulation rule R* (ig,41), the graph G either
reaches a stable configuration, or ends up alternating between two configurations. <

22:7

MFCS 2020

22:8

Simplified Game of Life: Algorithms and Complexity

Finally, we prove Proposition 3. This time, we actually need the precise bound exposed
by Lemma 4.

» Proposition 3. For every ig,i1 € N and every undirected graph G, the configuration graph
C(G,R* (io,i1)) admits no simple path of length 2|E| 4 2(io + i1 + 1)|V| + 4 or more.

Proof. We prove that if no cycle is completed in the first 2¢ steps of the process for some
0 < ¢ € N, then the histories of G admit at least 2¢ — 2 factors of the form 170 or 071. Since
[170]2i4+2 + [0?1]2i42 is smaller than 2|E| + 2(ip + 41 + 1)|V| by Lemma 4, this implies that
2i < 2|E| 4 2(ig + i1 + 1)|V| + 2, which proves the lemma.

Let ¢ € N be a strictly positive integer, and let us suppose that no configuration is
repeated amongst the first 2i steps of the process. Let us first focus on the sequence of 7 odd
configurations ¢y, c3, ¢5, . . ., c2;—1 of G. By supposition, no configuration is repeated, hence
for every 1 < j < i —1, at least one vertex has distinct states in the configurations ca;_1
and cg;41. These ¢ — 1 changes either consist in the death of a live vertex, counting towards
the value [170]2;42, or in the birth of a dead vertex, counting towards the value [071]2;42.
Similarly, focusing on the sequence of i even configurations cs, ¢4, Cg, - . . , c2; yields i—1 distinct
occurrences of vertices changing state between two successive positions of even parity, counting
towards the value [170]2;42 + [071]2;42. As a consequence, 2i — 2 < [170]2;42 + [071]2;42,
hence, by Lemma 4, 2i < 2|E| 4 2(ig + ¢1 + 1)|V| + 2, which concludes the proof. <

5 Overpopulation: PSPACE completeness

In this section, we study overpopulation rules: a vertex comes to life if it has sufficiently many
living neighbors, and dies if it has too many living neighbors. Our result is in opposition to
the result of the previous section:

» Theorem 5. The following assertions hold:

For every overpopulation rule, the reachability and long-run average problems are in
PSPACE.

For the specific case R~ (2,1), the reachability and long-run average are PSPACE-hard.

» Remark 6. The first item of Theorem 5 (the PSPACE upper bound) is straightforward.
Our main contribution is item 2 (PSPACE hardness). We present a graph construction
simulating a Turing machine. In addition, our basic construction can be modified to ensure
that we obtain a regular graph of degree 10.

5.1 General idea for hardness

We create a graph and an initial position simulating a polynomial-space Turing machine.
The graph is mostly composed of dead vertices, with some live vertices that carry signals
and store data. The graph is regular and consists of blobs of vertices. One blob corresponds
to one cell of the tape and stores a tape alphabet symbol. Blobs are connected in a row, and
at most a single blob is active at every point in time. The active blob receives a signal that
corresponds to the state of the Turing machine. It computes the transition function using
the received signal and its stored value. The result of the transition function is then used to
(1) modify the content of the blob and (2) send the resulting state to the neighboring blob,
activating it.

K. Chatterjee, R. Ibsen-Jensen, |. Jecker, and J. Svoboda

5L

O

L

Figure 3 Gate computing AND.

I
1 o

I,

gsigie

Figure 4 Storage Unit, signal at I toggles

Figure 2 Signal going throught two con- state of four vertices to the left of O;. Signal
nected wires (We suppose its left end is output at Iz gets to O; only if these four vertices are
of some gadget). alive.

5.2 Basic gadgets

We describe the gadgets used in the construction. Each gadget g has a constant number of
inputs I, I, ..., I. and outputs O1, O3, ..., Oy that receive, respectively send, signals. Each
input I; (output O;) is composed of four vertices that always share the same state. We view
live cells as true and dead cells as false, and denote by I;; € {0,1} (O, € {0,1}) the value
of the input I; (output O;) at time ¢. Each one of our basic gadgets g has an evaluation
time t,, and is determined to realise a function f, : {0,1}¢ — {0,1}¢. Starting from the
inert state (i.e, all the vertices are dead), if the ¢ inputs receive some signal (and no new
parasite signal is received during the next ¢, steps of the process), it computes f, in ¢, steps,
broadcast the result through the d outputs, and then goes back to the inert state. We say
that g computes the function

fo: {0,1}° - {0,137,
(It Iogs ooy Do) = (Ott4t,, O2,t4tys -+ Odtrt,)-

Moreover, for each gadget we suppose that the input is erased after one step, and in turn the
gadget is responsible for erasing its output after one step. Here are the basic gadgets:
The wire transmits a signal. It is evaluated in 2 time steps, has one input I7, and one
output O, satisfying O; 2 = I1+. Several wires can be connected to create a longer
wire. Figure 2 illustrates the inner workings of the wire.
The splitter duplicates a signal. It is evaluated in 2 time steps, has one input /7, and two
outputs Oq, Oy satisfying O1 142 = I1+ and Oz 40 = I 4.
The OR gate computes the logical disjunction. It is evaluated in 4 time steps, has two
inputs I, I, and one output O, satisfying Oy ¢4 = 11 ; V 1o ;.

22:9

MFCS 2020

22:10

Simplified Game of Life: Algorithms and Complexity

The AND gate (Figure 3) computes the logical conjunction. It is evaluated in 4 time
steps, has two inputs I1, I, and one output Oy satisfying Oq 144 = I1+ A Lo .

The NOT gate computes the logical negation. It is evaluated in 4 time steps, has two
inputs (a clock signal is required to activate the gate), and one output O; satisfying
Ot = Iy N1y

To create a Turing machine, we use one more gadget: the storage unit (Figure 4). Contrary
to the previous gadgets, it does not necessarily erase itself after use, and can store one bit of
information that can be sent upon request. Formally, a storage unit has a state S € {0,1},
two inputs I7, I, and one output O;. The first input is used to modify the current state: if
1, + is true, then the storage unit changes its state in four steps. The second input is used to
make the storage unit broadcast its current state: Oy ¢4a = S A Io.

Note that every gadget has a fixed number of vertices.

5.3 Functions

Our basic gadgets compute the basic logical operators. We show that combining them yields
bigger gadgets that can compute any binary function, with a small restriction: it is not
possible to produce a positive signal out of a negative signal. For example, our NOT gate
needs a clock signal to be activated. Therefore, we only consider binary functions that map
to 0 all the tuples starting with a 0.

» Lemma 7. Let ¢ € N. For every function f : {0,1}° — {0,1} mapping to 0 every tuple
whose first component is 0, we can construct a gadget computing f that is composed of O(2°)
basic gadgets, and is evaluated in O(c) steps.

5.4 Simulating the Turing machine

We now show how to simulate a Turing machine with a graph following R~ (2, 1).

» Lemma 8. Let T be a Turing machine. For every input u evaluated by T using C € N
cells of the tape, there exists a bounded degree graph G on O(C) vertices and an initial
configuration cy of G such that T stops over the input u if and only if updating co with the
overpopulation rule R~ (2,1) eventually yields the configuration with only dead vertices

Proof. We suppose that the Turing machine T has a single final state, which can only be
accessed after clearing the tape. We present the construction of the graph G simulating T'
through the following steps. First, we encode the states of T', the tape alphabet, and the
transition function in binary. Then, we introduce the notion of blob, the building blocks
of G, and we show that blobs are able to accurately simulate the transition function of T'.
Afterwards, we approximate the size of a blob, and finally we define G.

Binary encoding. Let T € N be the number of states of T', and T, € N be the size of its
tape alphabet. We pick two small integers s and n satisfying T, < 257! and T, < 2"~ L.
We encode the states of T as elements of {0,1}*, and the alphabet symbols as elements of
{0,1}", while respecting the following three conditions: the blank symbol is mapped to 0",
the final state of T' is mapped to 0°, and all the other states are mapped to strings starting
with 1. Then, with respect to these mappings, we modify the transition function of T to:

F{0,1}° x {0,1}" — {0,1}* x {0,1}* x {0,1}".

K. Chatterjee, R. Ibsen-Jensen, |. Jecker, and J. Svoboda

Instead of using one bit to denote the movement, we use 2s bits to store the state and signify
the movement: if the first s bits are zero, the head is moving right; if the second s bits are
zero, the head is moving left; if the first 2s bits are zero, the computation ended. Moreover,
the last n bits of the image of F' do not encode the new symbol, but the symmetric difference
between the previous and the next symbol: if the i-th bit of the tape symbol goes from y; to
z;, then F outputs d; = y; ® z; (XOR of these two).

Constructing blobs. As we said at the beginning, the graph G is obtained by simulating
each cell of the tape with a blob, which is a gadget storing a tape symbol, and that is able,
when receiving a signal corresponding to a state of T', to compute the corresponding result
of the transition function. The main components of a blob are as follows.

Memory: n storage units (s1, Sa, ..., S,) are used to keep in memory a tape symbol
a€{0,1}" of T.

Receptor: 2s inputs (I, Iz, ..., Iss) are used to receive states ¢ € {0,1}% of T either
from the left or from the right.

Transmitter: 2s outputs (O1, Oa, ..., Os;) are used to send states g € {0,1}* of T either

to the right or to the left.

Transition gadget: using Lemma 7, we create a gadget computing each of the 2s + n
output bits of F'. These gadgets are then combined into a bigger gadget gr that evaluates
them all separately in parallel, and computes the transition function F'. Note that gp is
composed of O((n + $)2""¢) basic gadgets, and its evaluation time is O(n + s).

Blobs are connected in a row to act as a tape: for every 1 < i < s, the output O; of
each blob is connected to the input I; of the blob to its right, and the output O,; of each
blob is connected to the input I54; of the blob to its left. When receiving a signal, the blob
transmits the received state and the tape symbol stored in memory to the transition gadget
gr, which computes the corresponding transition, and then apply its results. We now detail
this inner behavior. Note that when a gadget is supposed to receive simultaneously a set of
signals coming from different sources, it is always possible to add wires of adapted length to
ensure that all the signals end up synchronized.

Simulating the transition function. In order to simulate the transition function of T, a

blob acts according to the three following steps:

1. Transmission of the state. A blob can receive a state either from the left (through inputs
I, I, ..., 1) or from the right (through inputs Is11, Isyo,...,Ia), but not from both

sides at the same time, since at every point in time there is at most one active state.

Therefore, if for every 1 < i < s we denote by x; the disjunction of the signals received
by I; and I.;, then the resulting tuple (x1,xo,...,x5) is equal to the state received as
signal (either from the left or the right), which can be fed to the gadget gr. Formally, the
blob connects, for all 1 < ¢ < s, the pair I;, Isy; to an OR gate whose output is linked to
the input I; of gp.

2. Transmission of the tape symbol. Since the first component of any state apart from the
final state is always 1, whenever a blob receives a state, the component x; defined in the
previous paragraph has value 1. The tape symbol (y1,y2, ..., yn) currently stored in the
blob can be obtained by sending, for every 1 < i < n, a copy of x1 to the input I3 of the
storage unit s;, causing it to broadcast its stored state y;. The tuple can then be fed to
the gadget gr. Formally, the blob uses n splitters to transmit the result of the OR gate
between I; and I,41 to the input I of each storage unit. Then, for every 1 < i < n, the
output O; of the storage unit s; is connected to the input I,4; of gp.

22:11

MFCS 2020

22:12

Simplified Game of Life: Algorithms and Complexity

3. Application of the transition. Upon receiving a state and a tape symbol, g computes the
result of the transition function, yielding a tuple (r1,72,...,7s45). The blob now needs
to do two things: send a state to the successor blob, and update the element of the tape.
Connecting the output O; of gr to the output O; of the blob for every 1 < i < 2s ensures

that the state is sent to the correct neighbor: the values (r1,r2,...,rs) are nonzero if the
head is supposed to move to the right, and the outputs O1,Os, ..., Oy of the blob are
connected to the right. Conversely, (rs41,7st2,...,72s) is nonzero if the head is supposed

to move to the left, and the outputs Osy1,Os42, ..., of the blob are connected to the
left.

Finally, connecting the output Oss4; of gr to the input I of s; for all 1 <4 < n ensures
that the state is correctly updated: this sends the signal d; to the input I; of the storage
unit s;. Since d; is the difference between the current bit and the next, the state of s;
will change only if it has to.

Size of a blob. To prepare the signal for the transition function and to send the signal to
another blob, only O(n + s) basic gadgets and O(n) steps are needed. As a consequence,
the size of a blob is mainly determined by the size of the transition gadget gr: one blob
is composed of O((n + $)2"%¢) basic gadgets of constant size, and evaluating a transition
requires O(n + s) steps. Since n and s are constants (they depend on T, and not on the
input u), the blob has constant size. Moreover, all the basic gadgets used in the construction
have bounded degree, so the blob also has bounded degree.

Constructing G. Now that we have blobs that accurately simulate the transition function
of T, constructing the graph G simulating the behavior of T over the input u is easy: we
simply take a row of C blobs (remember that C' € N is the number of tape cells used by
T to process u). Since the size of a blob is constant, G is polynomial in C. We define the
initial configuration of G by setting the states of the |u| blobs on the left of the row to the
letters of u, and setting the inputs I; to I of the leftmost blob to the signal corresponding
to the initial state of T as if it was already in the process. As explained earlier, the blobs
then evolve by following the run of T'. If the Turing machine stops, then its tape is empty
and the final state is sent. Since in G the final state is encoded by 0° and the blank symbol
is encoded by 07, this results in G reaching the configuration where all the vertices are dead.
Conversely, if T runs forever starting from the input u, there will always be some live vertices
in G to transmit the signal corresponding to the state of T'. |

Proof of Theorem 5. By Lemma 8, we can reduce any problem solvable by a polynomially
bounded Turing machine into REACH, asking whether the configuration with only dead
vertices is reached, or into AvG, asking whether the long-run average is strictly above 0. <«

6 Conclusion

In this work, we identify two simple update rules for Game of Life. We show (in Section 3)
that these simple rules can model several well-studied dynamics in the literature. While we
show that efficient algorithms exist for the underpopulation rule, the computational problems
are PSPACE-hard for the overpopulation rule. An interesting direction for future work would
be to consider whether for certain special classes of graphs (e.g., grids) efficient algorithms
can be obtained for the overpopulation rule.

K. Chatterjee, R. Ibsen-Jensen, |. Jecker, and J. Svoboda

—— References

10

11

12

13

14

15
16
17
18
19

20
21

C. Baier and J-P. Katoen. Principles of Model Checking. MIT Press, 2008.

Carter Bays. Candidates for the game of life in three dimensions. Complex Systems, 1(3):373—
400, 1987.

Elwyn R Berlekamp, John H Conway, and Richard K Guy. Winning Ways for Your Mathem-
atical Plays, Volume 4. AK Peters/CRC Press, 2004.

Vincent D Blondel, Olivier Bournez, Pascal Koiran, and John N Tsitsiklis. The stability of
saturated linear dynamical systems is undecidable. Journal of Computer and System Sciences,
62(3):442-462, 2001.

Nino Boccara, Jamil Nasser, and Michel Roger. Particlelike structures and their interactions
in spatiotemporal patterns generated by one-dimensional deterministic cellular-automaton
rules. Physical Review A, 44(2):866, 1991.

Arthur W. Brian. Inductive reasoning and bounded rationality. American Economic Review,
84(2):406-11, 1994. doi:10.1109/4235.771167.

Nicholas A. Christakis and James H. Fowler. Connected: The Surprising Power of Our
Social Networks and How They Shape Our Lives — How Your Friends’ Friends’ Friends Affect
Everything You Feel, Think, and Do. New York: Little, Brown Spark, 2009.

Matthew Cook. Universality in elementary cellular automata. Complexr systems, 15(1):1-40,
2004.

J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.
Martin Gardener. Mathematical games: The fantastic combinations of John Conway’s new
solitaire game" life,". Scientific American, 223:120-123, 1970.

J.G. Kemeny, J.L. Snell, and A.W. Knapp. Denumerable Markov Chains. D. Van Nostrand
Company, 1966.

Harvey Leibenstein. Bandwagon, snob, and Veblen effects in the theory of consumers’ demand.
The Quarterly Journal of Economics, 64(2):183-207, 1950. doi:10.2307/1882692.

Genaro Juarez Martinez, Andrew Adamatzky, and Harold V McIntosh. Phenomenology of
glider collisions in cellular automaton rule 54 and associated logical gates. Chaos, Solitons &
Fractals, 28(1):100-111, 2006.

Joél Ouaknine, Amaury Pouly, Jodo Sousa-Pinto, and James Worrell. On the decidability
of membership in matrix-exponential semigroups. Journal of the ACM (JACM), 66(3):1-24,
2019.

M.L. Puterman. Markov Decision Processes. John Wiley and Sons, 1994.

Everett M. Rogers. Diffusion of innovations. Free Press of Glencoe, 1962.

Thomas Valente. Network models of the diffusion of innovations. Computational & Mathemat-
ical Organization Theory, 2:163-164, January 1995. doi:10.1007/BF00240425.

Duncan Watts and Peter Dodds. Influentials, networks, and public opinion formation. Journal
of Consumer Research, 34:441-458, February 2007. doi:10.1086/518527.

Stephen Wolfram. Statistical mechanics of cellular automata. Reviews of modern physics,
55(3):601, 1983.

Stephen Wolfram. Cellular automata and complexity: collected papers. CRC Press, 2018.
Andrew Wuensche. Self-reproduction by glider collisions: the beehive rule. Alife9 proceedings,
pages 286-291, 2004.

22:13

MFCS 2020

https://doi.org/10.1109/4235.771167
https://doi.org/10.2307/1882692
https://doi.org/10.1007/BF00240425
https://doi.org/10.1086/518527

	Introduction
	Preliminaries
	Configurations and update rules
	Comparison to other models

	Motivating Examples
	Underpopulation
	Overpopulation

	Underpopulation: PTIME Algorithm
	Key Lemma
	Proof of Proposition 2 and Proposition 3

	Overpopulation: PSPACE completeness
	General idea for hardness
	Basic gadgets
	Functions
	Simulating the Turing machine

	Conclusion

