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Abstract 

 
The plant hormone auxin plays indispensable roles in plant growth and development. 

An essential level of regulation in auxin action is the directional auxin transport within cells. 

The establishment of auxin gradient in plant tissue has been attributed to local auxin 

biosynthesis and directional intercellular auxin transport, which both are controlled by 

various environmental and developmental signals. It is well established that asymmetric auxin 

distribution in cells is achieved by polarly localized PIN-FORMED (PIN) auxin efflux 

transporters. Despite the initial insights into cellular mechanisms of PIN polarization obtained 

from the last decades, the molecular mechanism and specific regulators mediating PIN 

polarization remains elusive. In this thesis, we aim to find novel players in PIN subcellular 

polarity regulation during Arabidopsis development. We first characterize the physiological 

effect of piperonylic acid (PA) on Arabidopsis hypocotyl gravitropic bending and PIN 

polarization. Secondly, we reveal the importance of SCFTIR1/AFB auxin signaling pathway in 

shoot gravitropism bending termination. In addition, we also explore the role of myosin XI 

complex, and actin cytoskeleton in auxin feedback regulation on PIN polarity. 

In Chapter 1, we give an overview of the current knowledge about PIN-mediated auxin 

fluxes in various plant tropic responses. In Chapter 2, we study the physiological effect of PA 

on shoot gravitropic bending. Our results show that PA treatment inhibits auxin-mediated 

PIN3 repolarization by interfering with PINOID and PIN3 phosphorylation status, ultimately 

leading to hyperbending hypocotyls. In Chapter 3, we provide evidence to show that the 

SCFTIR1/AFB nuclear auxin signaling pathway is crucial and required for auxin-mediated PIN3 

repolarization and shoot gravitropic bending termination. In Chapter 4, we perform a 

phosphoproteomics approach and identify the motor protein Myosin XI and its binding 

protein, the MadB2 family, as an essential regulator of PIN polarity for auxin-canalization 

related developmetal processes. In Chapter 5, we demonstrate the vital role of actin 

cytoskeleton in auxin feedback on PIN polarity by regulating PIN subcellular trafficking.  

Overall, the data presented in this PhD thesis brings novel insights into the PIN polar 

localization regulation that resulted in the (re)establishment of the polar auxin flow and 

gradient in response to environmental stimuli during plant development.  
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1 PIN-polarization dependent auxin transport in plant tropic response 

Huibin Han, Maciek Adamowski, Linlin Qi, Jiří Friml  

Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria 

1.1 Introduction 

Plants are unable to move in response to environmental stimulus. Instead, plants have 

evolved a robust system of tropic responses, to quickly adapt their growth in the changing 

local environment. Tropisms are directional growth adaptions to light (phototropism), gravity 

(gravitropism), obstacles (obstacle avoidance), salinity (halotropism), and water 

(hydrotropism). Phototropism is light-dependent growth that enable plants to react to the 

changes in light direction by bending shoot towards the light source, or root away from it (de 

Wit et al., 2016; Harmer and Brooks, 2018). Gravitropism orients plant growth direction along 

the gravity vector, so that root grows down, and shoot grows up, in order to correctly position 

of the plant body and obtain resources for organ development (Rakusová et al., 2015). 

Obstacle avoidance helps plant roots to reorient growth when encountering obstacles in soil 

(Lee et al., 2019). Halotropism and hydrotropism enable plants to sense salinity and water 

potential in the local environment and direct root growth accordingly (Dietrich, 2018; Harmer 

and Brooks, 2018).  

In most tropic responses, cell to cell directional auxin movement is the main 

mechanism for maintaining the asymmetric auxin gradient and differential cell elongation. It 

is well established that asymmetric auxin distribution in plant tissues is achieved by polarly 

localized PIN auxin efflux carriers (Petrášek et al., 2006; Wiśniewska et al., 2006). The influx 

carriers, AUXIN-RESISTANT1/LIKE AUX1 (AUX1/LAX) (Band et al., 2014), and some B subclass 

of ATP-binding cassette (ABCB) efflux carriers (Geisler and Murphy, 2006) also contribute to 

the polar auxin flow. Several studies support the notion that PIN-mediated directional auxin 

flow is crucial for plant phototropism (Friml et al., 2002; Ding et al., 2011), root and shoot 

gravitropism (Friml et al., 2002; Abas et al., 2006; Kleine-Vehn et al., 2010; Rakusová et al., 

2011), obstacle avoidance (Lee et al., 2019), halotropism (Galvan-Ampudia et al., 2013), and 

maybe also for hydrotropism (Nakajima et al., 2017).  

In this review, we assess PIN-mediated polar auxin transport in phototropism, 

gravitropism, obstacle avoidance, halotropism and hydrotropism. We also discuss the 

underlying molecular mechanisms of PIN polarity switch in these tropic responses. We also 



 
 

discuss the upstream signals controlling tropisms, and the interactions between distinct tropic 

responses.  

1.2 PIN-mediated polar auxin fluxes during tropic responses 

Light is an essential environmental source for plant development. Plants can detect 

light quality, intensity and direction, resulting in cellular responses to optimize growth and 

survival (Chen et al., 2004). Light-mediated phototropic bending was first observed in dark-

grown seedlings of oat (Avena sativa) and canary grass (Phalaris canariensis), and this 

phenomenon was termed as phototropism (Darwin, 1880). The early experiments indicated 

that during phototropism, an unknown signal moves from the irradiated side of the seedling 

to the shaded side, and triggers the differential growth, and thus bending (Darwin, 1880; 

Went, 1928). Later, the plant hormone auxin was identified as the mobile signal responsible 

for plant phototropism (Kogl and Haagen-Smits, 1931). Together with this early work, the 

Cholodny-Went hypothesis was established to explain the plant phototropic response 

(Christie and Murphy, 2013). A key concept embedded within the Cholodny–Went hypothesis 

is that of polar auxin transport. Several studies confirmed the lateral auxin movement during 

phototropism, but the mechanism remained unknown for a long time (Briggs et al., 1957; 

Briggs, 1963; Pickard and Thimann, 1963).  

Later, the auxin exporters of the PIN family have been suggested to mediate polar 

auxin transport during phototropism (Friml et al., 2002; Ding et al., 2011). Among the PINs, 

PIN3 is the major player mediating lateral auxin flow during phototropism (Ding et al., 2011). 

By default, PIN3 displays an apolar localization in endodermal cells of etiolated hypocotyls. 

However, upon unilateral blue light stimulation, PIN3 gradually polarizes towards to the 

shaded hypocotyl side, and is stabilized at the shaded side of endodermal cells (Figure 1A; 

Ding et al., 2011). Thus, the asymmetric distribution of PIN3 directs auxin flow to the shaded 

side of the hypocotyl, as can be visualized by an auxin response reporter (Ding et al., 2011). 

In de-etiolated Arabidopsis seedlings, the red/far red (R/FR) light receptor, phytochrome B 

(phyB) regulates phototropism by modulating auxin biosynthesis and transport (Figure 1B; 

Goyal et al., 2016). Recently, UV-B light was also observed to induce a phototropic response 

in the Arabidopsis stem via the UVR8 receptor, through effects on auxin responses and 

transport (Figure 1B; Vanhaelewyn et al., 2019). However, it is not known whether PIN-

mediated auxin transport is involved in UVB- or R/FR-induced phototropic response. 
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Figure 1. PIN-mediated auxin fluxes during plant tropic response. 
(A) PIN3-mediated auxin movement during shoot phototropism. In etiolated hypocotyls, PIN3 polarizes gradually 
to shaded hypocotyl side and is stabilized at inner side of endodermal cells upon unilateral blue light stimulation. 
The asymmetric PIN3 distribution then directs auxin movement to shaded side, and hypocotyl bends to the light 
direction.  
(B) In de-etiolated hypocotyls or in stem, UV-B or R / FR light illumination also induce phototropic response. 
However, it is not known whether PIN polarizes to the shaded side. Blue dashed line indicates PIN polarization 
to lateral side of endodermal cells.  
(C) PIN-mediated auxin movement during root phototropic response. Upon blue light stimulation, PIN3 polarizes 
to shaded side in columella cells resulted in an asymmetric distribution of PIN3. PIN2 is differentially distributed 
between the vacuole and the plasma membrane at the irradiated and shaded sides of the root. As a result, auxin 
is asymmetric accumulated at the shaded root side, root grows away from light direction.  
(D) PIN-mediated auxin transport during gravitropism. In etiolated shoot, PIN3 polarizes to outer side of 
endodermis cells at lower shoot side upon gravity stimulation, and auxin moves from upper side to lower side, 
resulted in auxin accumulation at lower side and shoot grows upwards. In root, PIN3 polarizes to lower side of 
columella cells; PIN2 abundance at upper side of root is decreased, while it becomes increased at the lower root 
side. Thus, the change of PIN3 polarity in columella cells and PIN2 abundance at epidermal cells leading to auxin 
accumulation at lower side and root grows downwards.  
(E) Auxin asymmetric distribution in root obstacle avoidance. Two different bending events are observed during 
root obstacle avoidance. In the first bending response, auxin (The red) accumulates at concave side. In the 
second bending response, auxin accumulates at convex side. However, it is not clear which PIN protein mediates 
this two different auxin movements. Red arrow indicates auxin transport direction. 
(F) PIN2-mediated auxin asymmetric distribution during Halotropism. Salinity induces an internalization of PIN2 
at the side of the root facing the higher salt concentration, and through this mechanism, the differential PIN2 
distribution redirects auxin flow to the root side without salt. Subsequently, the root grows away from a high 
salt concentration. Green line indicates PIN2 at epidermal cells. Red arrow indicates auxin transport direction. 
(G) Auxin distribution in hydrotropism. Auxin (The red) is asymmetric distributed at lower water potential side,   
root grows away from high water potential. However, the auxin symmetric distribution in root hydrotropism is 
controversial. Blue solid line indicates PIN3 distribution in endodermal cells; green line indicates PIN2 at 
epidermal cells; red arrow indicates auxin transport direction. EN: endodermal cells. Red arrow indicates auxin 
transport direction. 

Compared to the positive response to light in the shoot, the root exhibits a negative 

phototropic response, thereby avoiding a suboptimal environment (Figure 1C; Kutschera and 

Briggs, 2012). Blue light-mediated reorientation of root growth requires a local response in 



 
 

the transition zone of the root meristem, and utilizes auxin efflux transporters in the root tip 

to establish an asymmetric auxin accumulation (Wan et al., 2012; Zhang et al., 2013). Light 

illumination inhibits the PIN2 vacuolar degradation, resulting in the accumulation of PIN2 at 

the plasma membrane (Wan et al., 2012). Thus, PIN2 is differentially distributed between the 

vacuole and the plasma membrane at the irradiated and shaded sides of the root, leading to 

a differential auxin distribution across the organ (Wan et al., 2012). In turn, PIN3 is by default 

apolar in the root columella cells, but upon blue light illumination it polarizes to the outer 

lateral membrane, also contributing to the accumulation of auxin at the shaded side and 

direction growth away from light (Zhang et al., 2013). Thus, light influences PIN3 polarization 

or PIN2 abundance at the plasma membrane to control polar auxin movement in root 

negative phototropism (Figure 1C).  

Similarly to light, gravity also modulates plant growth, rendering root to grow 

downwards and shoot upwards. The asymmetric auxin distribution between the opposite 

sides of a gravistimulated shoot or root is also achieved via differential PIN subcellular 

distribution, resulting in organ bending (Friml et al., 2002; Abas et al., 2006; Kleine-Vehn et 

al., 2010; Rakusová et al., 2011; Baster et al., 2013). The strong agravitropic root phenotype 

of the pin2 mutant indicates that PIN2 is the main player mediating auxin transport in root 

gravitropism (Abas et al., 2006; Baster et al., 2013). Upon gravity stimulation, the abundance 

of PIN2 in the epidermis of the upper root side is decreased, while it becomes increased at 

the lower root side. Thus, this asymmetric abundance of PIN2 causes a polar auxin movement 

to the lower root side, and root grows downwards (Abas et al., 2006; Baster et al., 2013). In 

addition to PIN2, PIN3 and PIN7 also participate in root gravitropism. By default, these 

transporters both are localized at the plasma membrane in columella cells in an apolar 

manner. Following gravistimulation, PIN3 and PIN7 polarize to the bottom side of columella 

cells, thus driving auxin flow from the upper side to the lower side of columella cells (Figure 

1D; Kleine-Vehn et al., 2010). Thus, gravity-induced PIN polarization in columella cells and PIN 

abundance at the plasma membrane of epidermal cells are essential for asymmetric auxin 

distribution during root gravitropism. 

In etiolated hypocotyls, PIN3 is the key player redirecting auxin flow for shoot 

gravitropism (Rakusová et al., 2011). PIN3 exhibits an apolar distribution in hypocotyl 

endodermal cells. Following gravistimulation, PIN3 relocates to the lower side of endodermal 

cells, presumably redirecting auxin flow to the lower hypocotyl side, and initiating hypocotyl 
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bending (Figure 1D; Rakusová et al., 2011). Additionally, PIN4 and PIN7 contribute to polar 

auxin transport in the absence of PIN3 (Rakusová et al., 2011). 

Root growth is directed down through gravitropism to acquire nutrients and water 

and anchor the plant body in the soil. However, root reorients its growth when encountering 

obstacles (Massa and Gilroy, 2003; Lee et al., 2019). A recent study shows that PIN-mediated 

polar auxin transport promotes root bending during obstacle avoidance (Figure 1E; Lee et al., 

2019). During obstacle avoidance, an asymmetric auxin distribution is detected between the 

concave and convex root sides (Lee et al., 2019). However, it is hard to distinguish which PIN 

protein is specifically affected to direct auxin flow during obstacle avoidance, even though 

the pin2 mutant shows a clear bending defect as well as a defective auxin distribution (Lee et 

al., 2019).  

Apart from the normal development, auxin is also involved in stress responses 

(Blakeslee et al., 2019). Salinity, a devastating abiotic stress, affects root growth (Liu et al., 

2015), root gravity response (Sun et al., 2008), and auxin distribution (Hu et al., 2019; Wang 

et al., 2019). The phenomenon where the root grows away from a high salt concentration is 

termed as halotropism (Galvan-Ampudia et al., 2013). Salinity induces an internalization of 

PIN2 at the side of the root facing the higher salt concentration, and through this mechanism, 

the differential PIN2 distribution redirects auxin flow to the root side without salt. 

Subsequently, root grows away from a high salt concentration (Figure 1F; Galvan-Ampudia et 

al., 2013). However, the other PINs, such as PIN1 and PIN3, as well as the influx transporter 

AUX1, play dispensable roles in halotropism (Galvan-Ampudia et al., 2013). It has also been 

proposed that PIN regulators play essential roles in halotropism (van den Berg et al., 2016; 

Han et al., 2017). 

Besides salinity in the local environment, water potential in the local environment also 

influences root growth. Roots mediate water uptake from soil and have developed a robust 

adaptive response called hydrotropism in order to sense different water potentials in the local 

environment and then direct root growth accordingly (Figure 1G; Dietrich, 2018; Harmer and 

Brooks, 2018). Pharmacological studies indicate that auxin transport is required for 

hydrotropism in some species, but not in Arabidopsis (Shkolnik et al., 2016; Nakajima et al., 

2017; Morohashi et al., 2017). In Arabidopsis, auxin transport inhibitors TIBA and NPA don’t 

interfere with hydrotropism, and the auxin response reporters remain unaffected during the 

root hydrotropic response (Shkolnik et al., 2016). However, the putative cucumber PIN 



 
 

orthologue, CSPIN5, may direct auxin flow in hydrotropism (Morohashi et al., 2017). Even 

though polar auxin transport is not necessary in Arabidopsis root hydrotropism, the auxin 

response components are required (Dietrich, 2018). Additionally, abscisic acid (ABA) has been 

shown to play an essential role in hydrotropism by modulating PIN2 expression level and auxin 

transport (Xu et al., 2013).  

To sum up, the accumulated evidence supports the notion that PIN-mediated polar 

auxin transport is crucial for most tropic responses and instances of organ bending (Figure 

1A- 1G). However, in some cases, the involvement of polar auxin transport is inconclusive and 

requires further examination. 

1.3 Subcellular PIN trafficking and kinase-mediated PIN phosphorylation 
for PIN polarity switches in tropisms 

PIN-mediated auxin transport is vital for plant tropic responses, but how is the 

subcellular localization of PIN proteins controlled to establish auxin fluxes? Accumulating 

evidence supports the subcellular PIN trafficking (Figure 2) and kinase-mediated PIN 

phosphorylation (Figure 3) as conserved mechanisms that enable rapid changes in PIN 

polarities and redirections of auxin movement during tropic responses. 

PIN proteins are thought to dynamically cycle between the plasma membrane and 

endosomal compartments in a process termed endocytic recycling. The exocytotic step of 

endocytic recycling is inhibited by the fungal toxin Brefeldin A (BFA) (Figure 2; Geldner et al., 

2001, 2003; Friml, 2010). BFA inhibits some of the ADP-ribosylation factor guanine-nucleotide 

exchange factors (ARF-GEFs), which are essential for vesicle formation and other aspects of 

the endomembrane system function. The ARF-GEF GNOM has been identified as the target 

of BFA-mediated inhibition of PIN trafficking (Geldner et al., 2003). It has been observed that 

BFA treatment interferes with gravity- or light-mediated PIN polarization, resulting in 

defective organ bending (Kleine-Vehn et al., 2010; Ding et al., 2011; Rakusová et al., 2011). 

However, BFA-resistant GNOMM696L mutant shows a normal PIN polarization and bending 

response to gravity or light (Kleine-Vehn et al., 2010; Ding et al., 2011; Rakusová et al., 2011). 

These observations indicate that GNOM-mediated PIN trafficking is essential for PIN polarity 

switches in tropisms. Interestingly, MIZ2/GNOM-mediated trafficking has been also reported 

to play important roles in root hydrotropism, albeit by a mechanism distinct from its role in 

polar auxin transport (Miyazawa et al., 2009).  
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Figure 2. Simplified model of PIN subcellular trafficking. 
Plasma membrane (PM) localized PINs are undergoing endocytic trafficking. Subcellular PIN trafficking is 
mediated by the BFA-sensitive target GNOM or clathrin-mediated endocytosis (CME). PINs undergo trafficking 
through multivesicular body (MVB) for degradation in the lytic vacuole. MVB, multivesicular body; EE, early 
endosome; TGN, trans-Golgi network; GA, Golgi apparatus. 

As part of endocytic recycling, PIN proteins undergo continuous internalization from 

plasma membrane via Clathrin-Mediated Endocytosis (CME) (Dhonukshe et al., 2007). The 

vesicular clathrin coat is composed of Clathrin Heavy Chain (CHC) and Clathrin Light Chain 

(CLC) proteins. The chc or clc mutants display strong defects in PIN trafficking, PIN polar 

localization, auxin distribution and tropic responses (Kitakura et al., 2011; Wang et al., 2013; 

Zhang et al., 2017). The dominant-negative chc1 mutant exhibits an agravitropic root and 

hypocotyl with an altered PIN localization and auxin distribution (Kitakura et al., 2011). The 

loss-of-function clc2 clc3 double mutant exhibits a defective light-mediated PIN3 

repolarization, as well as reduced phototropic bending (Zhang et al., 2017). In addition, the 

clc2 clc3 double mutant also shows a reduced root gravitropic bending and defective PIN2 

trafficking (Wang et al., 2013). Furthermore, clathrin-mediated PIN2 endocytosis is crucial for 

the asymmetric auxin distribution associated with halotropism (Galvan-Ampudia et al., 2013).  

With these observations in mind, it must be noted that clathrin coats are involved not 

only in endocytosis, but also in the formation of vesicles participating in other trafficking 

events, specifically in the vacuolar pathway and potentially, in some forms of exocytosis 

(Robinson and Pimpl, 2014). In turn, the ARF-GEF GNOM has also been implicated in 

endocytosis (Naramoto et al., 2010). Thus, in some instances it is difficult to conclude 

precisely by which means the factors discussed above contribute to the PIN polarity control. 



 
 

Nonetheless, PIN trafficking is clearly required for PIN relocations and subsequent formation 

of auxin gradients during tropic responses.  

Additional observations in support of the relocation of PIN proteins by means of 

endocytic recycling during tropisms come from studies of PIN trafficking focused on a process 

termed transcytosis, defined as the movement of a protein cargo from one polar domain, to 

another (Kleine-Vehn et al., 2008). It has been observed that in gravistimulated roots or 

hypocotyls, inhibition of protein synthesis does not affect gravity-induced PIN3 polarization 

to the bottom cell side, suggesting that PIN3 is indeed translocated from the preexisting PIN 

pools. (Kleine-Vehn et al., 2010; Rakusová et al., 2011). Thus, it is suggested that transcytosis 

of PINs is an essential step for rapid modulation of auxin transport in tropisms. 

Beside the importance of PIN trafficking for the control of its polarity during tropisms, 

kinase-mediated PIN phosphorylation has also been suggested as a regulatory mechanism for 

PIN polarity regulation (Barbosa et al., 2018). Phosphorylation of PIN proteins at the central 

hydrophilic loop is sufficient to modulate PIN polarity and polar auxin transport (Michniewicz 

et al., 2007; Huang et al., 2010; Zhang et al., 2010; Ganguly, et al., 2012). Several protein 

kinase families, such as the AGCVIII family, Mitogen-Activated Protein Kinase (MAPK) family, 

and the Ca2+/calmodulin-dependent protein kinase-related kinase (CRK) family, 

phosphorylate PIN proteins and control PIN polarity or transport activity during plant 

development (Figure 3; Barbosa et al., 2018). 

 

Figure 3. Summary of kinase-mediated PIN phosphorylation sites. 
Multiple phosphorylation sites are uncovered in PIN hydrophilic loop. D6PKs phosphorylate S1 to S5 sites. 
PID/WAGs phosphorylate S1 to S3 sites. MPK4/MPK6 phosphorylates T227, T248, T286 sites. MPK3/MPK6 
phosphorylates S337. CRK5 phosphorylates unknown site. 

Among the AGCVIII kinase family, PINOID (PID) and its paralogs WAG1 and WAG2 are 

well studied in PIN polarity regulation. PID and WAGs directly phosphorylate PINs at three 

conserved serine site S1-S3, and this phosphorylation triggers PIN polarity changes (Figure 3A; 

Friml et al, 2004; Huang et al., 2010; Dhonukshe et al., 2010). PID loss-of-function or gain-of-
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function mutants exhibit defective PIN polarizations as well as bending defects in response to 

light (Ding et al., 2011). The PID gain-of-function mutant displays a strong defects in hypocotyl 

bending and PIN3 polarization (Rakusová et al., 2011). Hence, PID-mediated PIN3 

phosphorylation is essential for establishing auxin gradient during phototropic and gravitropic 

responses (Rakusová et al., 2011; Ding et al., 2011; Grones et al., 2018). Additionally, Protein 

Phosphatase 2A (PP2A) mediates PIN de-phosphorylation is also vital for root gravitropism 

(Sukumar et al., 2009).  

Another group of AGCVIII kinases, D6 Protein Kinase (D6PK) and D6 Protein kinase-

Likes (D6PKLs) have also been implicated in polar auxin transport regulation. Loss of D6PK and 

D6PKLs activity lead to typical auxin-related phenotypes that correlated with altered polar 

auxin transport (Willige et al., 2013; Zourelidou et al., 2014; Barbosa et al., 2016; Weller et al, 

2017). D6PK phosphorylates PIN protein at serines S1-S3 and two additional serine sites S4 

and S5 and this phosphorylation is independent of the PID kinase (Figure 3; Zourelidou et al., 

2014; Barbosa et al., 2018). D6PK phosphorylates PIN proteins, but in contrast to PID, do not 

affect their polarity (Willige et al., 2013). Instead, D6PK regulates PIN transport activity 

(Willige et al., 2013; Zourelidou et al., 2014). This reduced PIN transport capacity in d6pk or 

d6pkl mutants correlates with defective gravitropic and phototropic responses (Willige et al., 

2013; Barbosa et al., 2016; Weller et al, 2017).  

In addition, the Arabidopsis 3-Phosphoinositide-Dependent Protein Kinase1 (PDK1) 

and PDK2, which also belong to the AGCVIII kinase family, have been shown to modulate the 

activity of PID and D6PK (Zegzouti et al., 2006; Armengot et al., 2016; Tan et al., 2020), 

indicating another layer in PIN polarity and activity regulation. To sum up, AGCVIII family 

kinases likely have both different and partially overlapping functions in regulating PIN polarity 

and auxin transport during tropisms. 

MAPK cascades play essential roles in plant growth and development (Xu and Zhang, 

2015). Auxin activates unknown MAPKs in the root (Mockaitis and Howell, 2000), and MAPKs 

repress auxin signaling (Kovtun et al., 1998), indicating an interaction between auxin and 

MAPKs. The bushy and dwarf1 (bud1) gain-of-function of MAP KINASE KINASE7 (MKK7) 

mutant displays a defective hypocotyl gravitropic bending (Dai et al., 2006). MPK6 has been 

shown to be the substrate of MKK7 (Jia et al., 2016). MKK7-MPK6 cascade directly 

phosphorylates Ser 337 of PIN1, a conserved phosphorylation site present in PIN3 at site S317 

(Jia et al., 2016). However, there is not much evidence linking PIN3 polarity regulation to the 



 
 

MKK7-MPK6 cascade during shoot gravitropic response. It is also known that T227, T248 and 

T286 in the PIN hydrophilic loop can be phosphorylated by MPK6 (Dory et al., 2018). The three 

threonines are part of TPRXS (N/S) motifs in the S1-S3 phosphorylation sites, pointing at a 

possible link between AGCVIII and MAPK kinases in the regulation of PIN polarity via 

phosphorylation (Barbosa et al., 2018).  

A rapid transient increase of Ca2+ concentration in the root is observed upon auxin 

treatment (Monshausen et al., 2011) and after gravity stimulation (Tatsumi et al., 2014). 

Increasing of Ca2+ level suppresses the PIN1 gain-of-function phenotypes and leads to defects 

in basal PIN1 localization (Zhang et al., 2011), suggesting a possible involvement of Ca2+ 

signaling pathway in PIN polarity regulation. The Ca2+/Calmodulin-Dependent Kinase-Related 

Kinase 5 (CRK5) may be one possible protein that can translate Ca2+ levels into altered PIN 

polarity in root gravitropism (Rigó et al., 2013). CRK5 phosphorylates PIN2 hydrophilic loop in 

vitro, and this defective phosphorylation of PIN2 in crk5 mutant explains the delayed root 

gravitropic response (Rigó et al., 2013). CRK5 is able to phosphorylate the hydrophilic loop of 

PIN3 in vitro as well (Baba et al., 2019). However, the phosphorylation site for CRK5 on PINs 

is unknown.  

1.4 Integration of different environmental cues into PIN polarity switches 
to initiate tropisms 

Plants employ different means to regulate and maintain PIN polarities and auxin 

gradients. One unanswered question is how plants integrate the environmental signal into 

PIN polarity switches to initiate tropic responses. 

During shoot phototropism, the blue light receptors phototropins sense blue light at 

the upper part of the shoot and initiate shoot phototropic bending (Preuten et al., 2013; 

Liscum et al. 2014). It has been assumed that the signal transducer Non-phototropic 

Hypocotyl 3 (NPH3) integrates the light signal and lateral auxin gradient establishment during 

shoot phototropic response (Haga et al., 2005, 2015; Christie et al., 2018). An observation of 

no asymmetric auxin distribution in rice nph3/cpt mutant upon blue light illumination further 

supports the essential role of NPH3 for auxin gradient formation during phototropism (Haga 

et al., 2005). NPH3 is localized at plasma membrane and interacts with phototropin1, and the 

interaction is transiently disrupted by light (Haga et al., 2015). Light illumination also induces 

NPH3 internalization from the plasma membrane to cytoplasm microdomain aggregates 

(Haga et al., 2015). This phototropin1-driven NPH3 subcellular localization switch correlates 
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with the phosphorylation status of NPH3 (Pedmale and Liscum, 2007). In darkness, NPH3 is 

phosphorylated, while it becomes rapid dephosphorylated upon light illumination (Pedmale 

and Liscum, 2007). The reversible light-induced phototropin1-NPH3 interaction, NPH3 

subcellular localization changes, and phosphorylation, are proposed to be parts of a signaling 

mechanism that determines the PIN-mediated lateral auxin distribution in phototropism, 

Even though, there is no direct evidence to show PIN polarization defects in nph3 mutant 

(Haga et al., 2005, 2015; Pedmale and Liscum, 2007; Christie et al., 2018). Notable, Light-

induced PIN2 asymmetric distribution at plasma membrane requires NPH3 function during 

root phototropic response (Wan et al., 2012). Moreover, etiolated seedlings lacking the 

Phytochrome Interacting Basic Helix-Loop-Helix Factors (PIFs) display reduced NPH3 

dephosphorylation and altered auxin distribution (Sun et al., 2013; Sullivan et al., 2019), 

providing additional clues for the mechanisms of PIN polar localization and auxin distribution 

in phototropism. Besides, phototropin1 also interacts with the ATP-Binding Cassette B19 

(ABCB19) and phosphorylates ABCB19 (Christie et al., 2011). The phosphorylated ABCB19 

protein exhibits a reduced auxin efflux transport activity. Thereby, the increased auxin is 

subsequently channeled by PIN3 to elongation zone (Christie et al., 2011). Light also represses 

the transcription level of PID, contributing to PIN3 polarization during phototropism (Ding et 

al., 2011). However, D6PK kinases do not affect light-induced de-phosphorylation of NPH3, 

but repress PIN3 phosphorylation and activity leading to a defective phototropic response 

(Willige et al., 2013). Thus, light-induced the phosphorylation gradient via NPH3, PID, and 

D6PKs is crucial for PIN polarization and activity, which suggested to be part of the mechanism 

driving lateral auxin distribution during phototropism (de Wit et al., 2016). 

It is well known that plants sense gravity via statoliths, starch-filled organelles present 

in root columella cells and shoot endodermal cells (Vandenbrink and Kiss, 2019). Following 

gravity stimulation, statoliths settle to the gravity direction, thus providing directional 

information to plants. The settling of statoliths triggers biochemical cascade to initiate 

asymmetric auxin distribution, resulting in the differential root or shoot growth. Some 

evidences support that the plant cell cytoskeleton, lipids, and the Translocon on the outer 

chloroplast membrane complex (TOC) play essential roles in gravity signal transduction 

(Vandenbrink and Kiss, 2019). The J-domain protein Altered Response to Gravity 1 (ARG1) and 

its paralog ARG1-Like 2 (ARL2) are expressed in root statocytes (gravity sensing cells), and 

ARG1 and ARL2 mutation causes a defective gravity sensing and PIN polarization (Guan et al., 



 
 

2003; Harrison and Masson, 2008). It has been suggested that root gravitropism depends on 

Negative Gravitropic Response of Root (NGR) protein, also referred as LAZY1-like (LZY) protein 

(Taniguchi et al., 2017). The ngr1,2,3/lzy2,3,4 triple mutant shows a normal starch 

sedimentation, but PIN3 polarizes to the upper root side after gravity stimulation, thus root 

grows upwards (Ge and Chen, 2019). The LAZY protein is localized at the plasma membrane 

of columella cells (Furutani et al., 2020). After gravity stimulation, the LAZY protein polarizes 

to bottom columella cell side, and then recruits the RLD proteins (RCC1-like Domain) to form 

a complex (Furutani et al., 2020). This LAZY-RLD complex then guides PIN polarization and 

auxin flow (Furutani et al., 2020). Thus, gravity-sensing cell localized LAZY1-RLD protein 

complex bridges the gap between the sedimentation of amyloplasts and gravity-induced polar 

auxin movement (Furutani et al., 2020). In shoot, isolation of a series of shoot gravitropism 

(sgr) mutants provide vital insights into the function of actin cytoskeleton in shoot gravity 

sensing and PIN polarity regulation (Fukaki et al., 1996, 1998; Yamauchi et al., 1997; Yano et 

al., 2003; Morita et al., 2006; Nakamura et al., 2011). Those newly identified genes contribute 

to the understanding of the transition between gravity sensing and PIN-mediated auxin 

transport.  

Great efforts have been made to understand the mechanism of salt perception and 

signal transduction. Phosphatidic acid, a minor membrane phospholipid, is essential for plant 

growth and development in response to salinity (Wang et al., 2019). Phosphatidic acid binds 

to PID and enhances PID-dependent PIN2 phosphorylation under salt treatment (Wang et al., 

2019). Inhibition of phosphatidic acid generation also alters PIN localization and the 

halotropic response (Korver et al., 2019). Phosphatidic acid has also been shown to modulate 

CME (Antonescu et al., 2010). Hence, it is likely that plants sense the changes of phosphatidic 

acid, and then recruit PID or CME to modulate PIN-mediated auxin distribution during the 

halotropic response. 

  A considerable amount of research has been carried out to explore where and how 

plants sense the water gradient in the root. Identification of key genes in hydrotropism 

provide some new insights (Eapen et al., 2003; Kobayashi et al., 2007; Miyazawa et al., 2009; 

Saucedo et al., 2012; Dietrich et al., 2018). A novel report suggests that the root elongation 

zone senses the water gradient, leading to the differential growth of the cortex cells (Dietrich 

et al., 2017). The mizu-kussei 1 (miz1) mutant shows a reduced hydrotropic response, and 

MIZ1 plays roles in sensing water potential at the early phase of hydrotropism (Kobayashi et 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Korver%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=31430837


13 
 

al., 2007; Dietrich et al., 2017). Furthermore, the role of water uptake and transport in root 

hydrotropism was explored. It has been shown that the Plasma membrane intrinsic proteins 

(PIPs), a subfamily of plasma membrane located aquaporin channels, contribute to water 

transport, root hydraulic conductivity and hydrotropism (Sutka et al., 2011; Li et al., 2014; 

Dietrich et al., 2018). Thus, a hypothetical model for water potential perception is proposed 

(Dietrich et al., 2017, 2018). In this model, MIZ1 senses the water potential (Kobayashi et al., 

2007; Dietrich et al., 2017), and low water potential affects membrane presence or activity of 

PIPs (Dietrich et al., 2018). The altered aquaporin activity or presence results in an alteration 

of hydraulic conductivity or ABA concentration, ultimately leading to differential cell 

elongation and root bending. Meanwhile, MIZ2/GNOM is required for rapid cycling of PIPs 

and the interaction between PIPs and Receptor-Like Kinases (RLKs) to maintain the aquaporin 

activity and presence during hydrotropism (Dietrich et al., 2018). 

1.5 Auxin feedback on PIN polarity to terminate shoot gravitropic bending  

Plants sense and transduce environmental clues to initiate tropic growth. 

Interestingly, the hypocotyl bending response is terminated by a mechanism involving a 

feedback control of auxin on PIN polarity (Rakusová et al., 2016). In this model, auxin 

accumulated at the lower hypocotyl side triggers PIN3 repolarization to the inner side of 

endodermal cells, as such leading to a symmetric PIN distribution, and restoration of 

symmetric auxin distribution, across the organ. This auxin-mediated feedback on PIN 

repolarization requires SCFTIR1/AFB auxin signaling pathway (Han et al., 2020), PIN endocytosis 

by CME, GNOM-mediated trafficking, PID-mediated phosphorylation (Rakusová et al., 2016) 

and actin cytoskeleton (Rakusová et al., 2019). Thus auxin feedback mechanism ensures fine-

tuning of auxin fluxes for terminating asymmetric growth during gravitropic response. 

1.6 Interactions among different tropisms 

Plants are exposed to an intricate environment, and have to balance the cellular 

actions in response to various environmental cues for an adaptive growth. Several studies 

have been carried out to dissect the interactions among different tropisms, aiming to 

understand plant adaptive growth in a more natural environment. 

Light plays predominant roles in hypocotyl tropic growth. Light-grown plants have to 

integrate light and gravity signal to guide growth. Several studies demonstrate that light 

inhibits the shoot gravitropic response to promote phototropism through different light 



 
 

receptors (Lariguet and Fankhauser, 2004; Ohgishi et al., 2004; Kim et al., 2011). The multiple 

blue light receptor mutant displays random negative gravitropism, indicating that light is 

important to maintain a proper gravitropism (Lariguet and Fankhauser, 2004; Ohgishi et al., 

2004). Red light illumination inhibits shoot gravitropism by triggering a conversion of gravity-

sensing endodermal amyloplasts into chloroplastic plastids in a manner that dependents on 

phytochromes and PIFs (Kim et al., 2011). These plastids lacking a gravity sensing function 

resulted in a reduced gravitropic response (Kim et al., 2011). Light also modulates the actin 

cytoskeleton organization via the Rice Morphology Determinant (RMD) protein to control 

statolith mobility and auxin distribution, and thus negatively regulating gravitropism (Song et 

al., 2019). In summary, based on the available data, light promotes phototropism though 

inhibition of gravitropism by modulating gravity sensing or actin organization. 

An interaction between salinity and gravitropism has been described, in which NaCl 

treatments lead to a reduced root gravitropic bending curvature (Sun et al., 2008). This salt-

induced reduction of root gravitropic response correlates with a rapid degradation of the 

amyloplasts, and with a repression of PIN2 endocytic recycling and degradation in an ion 

gradient sensing pathway-dependent manner (Sun et al, 2008). In turn, light has been 

suggested to attenuate root halotropism by preventing the perception of salinity gradient by 

an unknown mechanism (Yokawa et al., 2014). 

In order to maintain the hydrotropic growth, roots have to overcome gravitropism. It 

has been revealed that a moisture gradient or water stress trigger reductions in the starch 

content and rapid degradation of amyloplasts in root columella cells (Takahashi et al., 2003). 

This mechanism partially helps root overcome gravitropism to promote hydrotropism. In turn, 

the phospholipase encoding protein PLDζ2 participates in root hydrotropism through a PIN2-

mediated suppression of root gravitropism (Taniguchi et al., 2010). Furthermore, light also 

influences hydrotropic growth. Seedlings grown in light or dark behave differently during a 

hydrotropic response (Moriwaki et al., 2012). Dark-grown seedlings show a reduced 

hydrotropic curvature compared to light-grown seedlings, and it was proposed that this is due 

to the regulation of subcellular localization and expression of MIZ1 in the root cap by light 

(Moriwaki et al., 2012).  

 Overall, the research summarized above provides valuable insights into the molecular 

and cellular mechanisms of interactions among various tropic responses under a complicated 

https://www.frontiersin.org/articles/10.3389/fpls.2014.00718/full#B85
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environment. However, the role of PIN-mediated polar auxin transport in these interactions 

awaits further investigation.  

1.7 Concluding remarks and future perspectives 

Tropisms, reorientations of plant growth in response to environmental stimuli, are 

robust adaptive features for plants to coordinate their growth with the changing 

environment. In most cases, PIN-mediated asymmetric auxin distribution plays an 

indispensable role in maintaining the auxin gradient at the stimulated organs. Polar auxin 

fluxes determined by PIN polarity switches and the regulation of PIN abundance are intricate 

and conserved mechanisms in tropic responses. The application of new tools and approaches 

expand our understanding of the molecular mechanisms of PIN polarizations under various 

environmental stimuli.  

The PIN-mediated cell-to-cell polar auxin movement is required for organ bending or 

growth in most tropic responses. However, the signaling pathways which plants employ to 

activate the PIN polarity switches, or to modulate PIN abundance by altering PIN trafficking 

pathways, are still not well understood. Moreover, how these multi-level regulations, 

including specific trafficking and phosphorylation events, are integrated during these 

processes, is not fully answered. Multidisciplinary approaches utilizing genetics, biochemistry, 

advanced imaging tools and other cutting-edge techniques will be helpful for a better 

understanding of PIN polarity regulation in tropisms in future studies. 

Under natural environment, plants are subject to multiple and sometimes conflicting 

environmental cues to regulate their growth. To gain the optimum fitness under complicated 

environment, plants need to integrate the different environmental clues to coordinate the 

cellular response and growth. The question of how plants coordinate a response to these 

often conflicting stimuli is a particularly interesting one. Elucidating the mechanisms by which 

complicated PIN polarity regulations resulting from distinct tropic stimuli are integrated will 

greatly help us to understand how plants adapt to the changing environment.   

Overall, full understanding of PIN-mediated directional auxin transport in plant tropic 

responses will require not only the unraveling of the complex signaling pathways outlined 

above, but also how these pathways interact with each other. The basic knowledge gained 

from Arabidopsis will provide essential insights to modify crops for better growth and yield in 

adverse environmental conditions. 
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2.1  Introduction 

Gravitropic bending both in root and shoot is initiated by asymmetric distribution of 

the phytohormone auxin (Friml et al., 2002; Rakusová et al, 2015). During gravitropic 

response, the asymmetric auxin distribution is mainly achieved by polarity switch of PIN auxin 

efflux transporters (Friml et al., 2002; Kleine-Vehn et al., 2010; Rakusová et al., 2011). Among 

the PINs, PIN3 plays the central role in hypocotyl gravitropic response (Friml et al., 2002; 

Rakusová et al., 2011, 2016, 2019; Han et al., 2020). PIN3 undergoes two distinct polarization 

events during hypocotyl gravitropism: (i) Following gravistimulation, PIN3 polarizes to the 

lower side of hypocotyl endodermal cells, thus driving auxin flow to and corresponding auxin 

accumulation at the lower hypocotyl side, leading to hypocotyl bending initiation (Rakusová 

et al., 2011). (ii) At the later stage of gravitropic response, PIN3 at the lower side of 

endodermal cells is specifically targeted for lytic degradation in response to higher auxin level, 

resulting in PIN3 symmetrical distribution at both side of endodermal cells. Subsequently, the 

symmetric distribution of auxin is restored and hypocotyl terminates bending (Rakusová et 

al., 2016, 2019; Han et al., 2020). Thus, gravity-induced PIN3 polarization is essential for 

bending initiation (Rakusová et al., 2011), and auxin-mediated feedback on PIN3 re-

localization is vital for bending termination (Rakusová et al., 2016, 2019; Han et al., 2020).  

To date, factors-mediating PIN polarity switch during hypocotyl gravitropism are 

uncovered. Clathrin-Mediated Endocytosis (CME) and the ARF-GEF GNOM-mediated 

constitutive PIN trafficking are involved in intracellular PIN3 polarity regulation (Kleine-Vehn 

et al., 2010; Naramoto et al., 2010; Rakusová et al., 2011, 2016). PINOID (PID) and related 

WAG1 and WAG2 serine/threonine protein kinases activity is also needed for both gravity- 

and auxin-induced PIN3 polarization (Rakusová et al., 2011, 2016). Gravity-induced PIN3 

relocation doesn’t require protein degradation and de novo protein synthesis (Rakusová et 



 
 

al., 2011). However, vacuolar targeting PIN degradation (Baster et al., 2013) is required for 

auxin feedback on PIN3 polarization (Rakusová et al., 2016). Actin cytoskeleton is also 

essential for auxin feedback on PIN3 polarity and bending termination (Rakusová et al., 2019). 

Notably, auxin-mediated PIN3 polarization and bending termination requires the SCFTIR1/AFB 

signaling pathway (Han et al., 2020). Despite these initial insights into cellular mechanisms of 

PIN polarization, the molecular mechanism and specific factors mediating both gravity- and 

auxin-induced PIN3 polarization remain elusive. 

To gain novel insights into PIN3 polarity regulation during shoot gravitropic response, 

we performed a 24 hours hypocotyl bending assay using metabolites or inhibitors derived 

from the phenylpropanoid pathway (Supplementary Figure S1; Vanholme et al., 2012), which 

has been reported to perturb auxin response, transport and biosynthesis (Steenackers et al., 

2016, 2017; Kurepa et al., 2018; Mehmood et al., 2019). Our findings revealed that piperonylic 

acid (PA), an inhibitor of the CINNAMATE-4-HYDROXYLASE (C4H) (Schalk et al., 1998; 

Steenackers et al., 2016), triggered hypocotyl hyperbending in a dose-dependent manner. PA 

treatment inhibited auxin-mediated PIN3 repolarization, resulted in continuous accumulation 

of auxin at the lower side of hypocotyl during shoot gravitropism. As a consequence, 

hypocotyls were hyperbending (Rakusová et al., 2016, 2019).  Genetic mutation of C4H, the 

PA target, also led to similar hypocotyl hyperbending and a defective auxin-mediated PIN3 

repolarization. In addition, lignin perturbation caused by PA treatment or C4H mutation is not 

the basis for the hypocotyl overbending and the defective auxin-mediated PIN3 

repolarization. Metabolic analysis showed that flavonoids act as the downstream target of 

C4H. Exogenous application of quercetin, one of the main flavonoids, recused the defective 

hypocotyl bending and auxin-mediated PIN3 polarization upon PA treatment as well as in the 

c4h mutant. We also demonstreated that PA affected PIN3 phosphorylation status via 

modulating PINOID (PID) kinase phosphorylation. Hence, we introduce a novel physiological 

effect of PA on Arabidopsis shoot gravitropism by modulating PIN polarization dependent 

directional auxin transport. 
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2.2 Results 

2.2.1 Piperonylic acid (PA) causes hypocotyl overbending in a dose-
dependent manner 

As previously reported, metabolites or inhibitors derived from phenylpropanoid 

pathway perturb plant growth by interfering with auxin response, transport and biosynthesis 

(Steenackers et al., 2016, 2017; Kurepa et al., 2018; Mehmood et al., 2019). We thus 

performed a 24 hours bending assay to test their role in shoot gravitropic response 

(Supplementary Figure S1). We uncovered that PA triggered hypocotyl overbending in a dose-

dependent manner (Figure 1A, 1B), and this overbending hypocotyl was not due to a fast 

hypocotyl growth (Supplementary Figure S2A). Similarly, genetic disruption of the PA target, 

CINNAMATE-4-HYDROXYLASE (C4H) (Schalk et al., 1998; Steenackers et al., 2016), also 

resulted in hypocotyl overbending (Figure 1A, 1C). However, other inhibitors or intermediates 

derived from the same pathway showed no obvious effects on hypocotyl bending 

(Supplementary Figure S2B; Van de Wouwer et al., 2016; Steenackers et al., 2016). 

 Inhibition of C4H leads to the accumulation of many products such as Cinnamic acid 

(CA) and p-Coumaric acid (p-CA) (Steenackers et al., 2016). Both cis-CA and trans-CA 

treatment showed no obvious effects on hypocotyl bending (Supplementary Figure S2B), we 

then examined whether p-CA, can complement PA effect on hypocotyl bending. Exogenous 

application of p-CA has no obvious effects on the hypocotyl bending, but it complemented 

the hyperbending hypocotyls triggered by PA treatment as well as the overbending hypocotyl 

of c4h mutant (Supplementary Figure S2C, S2D).  

Taken together, our results reveal the novel physiological effect of PA in Arabidopsis 

hypocotyl gravitropism (Figure 1A - 1C), but upstream compounds of C4H are not the basis 

for PA effect on hypocotyl bending (Supplementary Figure S1; Supplementary Figure S2B). 

Our data also indicates that an unknown downstream metabolite of C4H is responsible for PA 

effect on hypocotyl bending (Supplementary Figure S2C, S2D). 



 
 

 

Figure 1. PA triggers Arabidopsis hypocotyl hyperbending via modulating auxin distribution. 
(A) Represented images of 24 hours gravity stimulated wild type hypocotyl upon DMSO or PA treatment, and 
c4h mutant. Scale bars = 1 cm. (B - C) Quantification of hypocotyl bending angle upon various concentration of 
PA treatment in wild type seedlings (B), and in c4h mutant (C). (D - E) Represented images of DR5rev::GFP signal 
in hypocotyls under DMSO or PA treatment after 6 hours (D) and 24 hour (E) gravity stimulation. Scale bars = 20 
µM. (F) Quantification of GFP signal under DMSO or PA treatment after 6 hours or 24 hours gravity stimulation. 
The ratio was calculated between lower and upper side of hypocotyls. Data are means ± SD, n = 30 – 40 for 
bending angle quantification, n = 15 for DR5rev::GFP signal quantification, *** P < 0.01 or ** P < 0.05 determined 
by Students t-test. Arrow indicates gravity direction. 

2.2.2 PA perturbs auxin distribution in Arabidopsis hypocotyl 

Next, we wondered whether PA perturbs auxin distribution during hypocotyl 

gravitropism (Friml et al., 2002; Rakusová et al, 2011). Thus, we studied PA impact on auxin 

distribution by detecting DR5rev::GFP signal in hypocotyls after gravity stimulation. 

Consistent with previous results (Rakusová et al., 2011), a strong DR5rev::GFP signal was 

detected at the lower side of hypocotyl under DMSO and PA treatment after 6 hours gravity 

stimulation (Figure 1D, 1F). After 24 hours gravity stimulation, the DR5rev::GFP signal was 

almost equal at both side of DMSO treated hypocotyls; whereas a strong DR5rev::GFP signal 

at the lower hypocotyl side was still observed in PA treated hypocotyls (Figure 1E, 1F). 

Collectively, these data supports that PA inhibits auxin asymmetrical distribution at the later 

stage of hypocotyl gravitropic response, leading to hypocotyl overbending (Figure 1A - 1F; 

Rakusová et al., 2016, 2019). 
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2.2.3 PA inhibits auxin- but not gravity-induced PIN3 repolarization 

We next addressed whether the defective auxin distribution triggered by PA 

treatment (Figure 1E, 1F) correlates with a defective PIN3 polarization during hypocotyl 

gravitropism (Rakusová et al., 2011, 2016). We first investigated PA effect on gravity-induced 

PIN3 polarization. Without gravity stimulation, PIN3-GFP symmetrically distributed at both 

side of hypocotyl endodermal cells under PA treatment, thus steady-state PIN3 localization 

was not affected by PA treatment (Supplementary Figure S3A, S3F; Rakusová et al., 2011).  

After 6 hours gravity stimulation, PIN3-GFP polarized to the outer side of endodermal cells at 

lower hypocotyl side following DMSO and PA treatment (Supplementary Figure S3B, S3C, 

S3F), implying that PA treatment didn’t affect gravity-induced PIN3 polarization. After 24 

hours gravity stimulation, a strong PIN3-GFP signal was still detected at the outer side of 

endodermal cells at lower hypocotyl side in PA treated hypocotyls; whereas PIN3-GFP signal 

at the lower side disappeared in DMSO treated hypocotyls (Supplementary Figure S3D, S3E, 

S3G). In addition, PIN3-GFP distributed symmetrically in the c4h mutant without gravity 

stimulation (Supplementary Figure S4A, S4D). We observed a normal gravity-induced PIN3-

GFP polarization after 6 hours gravity stimulation (Supplementary Figure S4B, S4D); but a 

persistence of PIN3-GFP asymmetry, with strong signal at the lower side of hypocotyl 

endodermal cells was observed after 24 hours gravistimulation in c4h mutant (Supplementary 

Figure S4C, S4D). These data indicated that PA interfered with auxin-mediated but not gravity-

induced PIN3 repolarization (Supplementary Figure S3A – S3G; Supplementary Figure S4A – 

S4D).   

We also examined whether PA treatment interferes with exogenous auxin effect on 

PIN polarization. In line with previous results (Rakusová et al., 2016, 2019), exogenous auxin 

treatment induced PIN3-GFP relocation to inner side of endodermal cells (Figure 2A, 2B, 2E). 

However, PA treatment inhibited the auxin-mediated PIN3 repolarization as evident by a 

strong PIN3-GFP signal at the outer side of endodermal cells (Figure 2D, 2E). Similarly, auxin 

failed to induce PIN3-GFP repolarization to inner side of endodermal cells in c4h mutant 

(Figure 2F - 2H). Collectively, these data further supports that PA perturbs auxin-mediated 

PIN3 repolarization. 

As p-CA rescued the defective hypocotyl bending upon PA treatment as well as in c4h 

mutant (Supplementary Figure S2C, S2D). We then tested p-CA effect on PIN3 polarization in 

presence of PA or in c4h mutant. We first studied gravity-induced PIN3 polarization. After 6 



 
 

hours gravity stimulation, a normal gravity-induced PIN3 polarization was observed in 

hypocotyls co-treated with p-CA and PA (Supplementary Figure S5A, S5C) or in p-CA treated 

c4h mutant hypocotyls (Supplementary Figure S6A, S6C). However, the auxin-mediated PIN3 

repolarization was normal in in hypocotyls co-treated with p-CA and PA or in the c4h mutant 

after 24 hours gravity stimulation (Supplementary Figure S5B, S5C; Supplementary Figure S6B, 

S6C). In addition, the inhibitory effect of PA on exogenous auxin treatment induced PIN3 

inner-lateralization was also complemented by adding p-CA (Supplementary Figure S5D – 

S5F). We also observed that the defective exogenous auxin treatment induced PIN3 inner-

lateralization in c4h mutant was also complemented p-CA (Supplementary Figure S6D – S6E).  

Together with these results indicate that PA causes hypocotyl overbending by 

inhibiting auxin-mediated PIN3 repolarization at the later stage of gravitropic response. Our 

data also demonstrate that an unknown downstream metabolite of C4H is needed for the PA 

effect on PIN3 polarization. 

 

Figure 2. PA interferes auxin–mediated PIN3 repolarization.  
(A - D) Represented images of PIN3-GFP in wild type seedlings under DMSO treatment (A), 10 µM of NAA 
treatment (B), 20 µM of PA treatment (C), PA and NAA co-treatment (D).  (E) Quantification of PIN3-GFP signal 
upon PA treatment. The ratio was calculated between inner and outer side of endodermal cells. (F - G) 
Represented images of PIN3-GFP upon DMSO (F) and NAA (G) treatment in c4h mutant.  (E) Quantification of 
PIN3-GFP signal upon NAA treatment in c4h mutant. The ratio was calculated between inner and outer side of 
endodermal cells. Data are means ± SD, n = 15, ** P < 0.05 determined by Students t-test. Scale bars = 20 µm. 
Arrowheads depict PIN3-GFP at outer side of endodermal cells. 
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2.2.4 Defective Lignification is not the basis of PA impact on hypocotyl 
bending and PIN3 repolarization 

It has been reported that PA treatment reduces root lignification and can be restored 

by adding monolignols (Naseer et al., 2012). We wondered whether the reduced lignin 

deposition could be the basis for PA effect on hypocotyl bending and PIN3 polarization. 

Monolignols had no obvious effect on hypocotyl bending (Supplementary Figure S7A). 

Interestingly, the overbending hypocotyls caused by PA treatment or C4H mutation could not 

be restored by adding monolignols (Supplementary Figure S7A; Supplementary Figure S8A). 

We next tested the impact of monolignols on both gravity- and auxin-induced PIN3 

polarization in PA treated hypocotyls or in the c4h mutant. We observed a strong PIN3-GFP 

signal at the outer side of endodermal cells at the lower hypocotyl side by adding monolignols 

to the PA treated hypocotyls (Supplementary Figure S7B, S7D) or in the c4h mutant 

(Supplementary Figure S8B, S8D) after 6 hours gravity stimulation. After 24 hours gravity 

stimulation, the PIN3-GFP signal still retained at the outer side of endodermal cells at the 

lower side of the hypocotyl under PA and monolignols co-treatment (Supplementary Figure 

S7C, S7E) as well as in the c4h mutant (Supplementary Figure S8C, S8D). Additionally, 

monolignols could not rescue auxin-mediated PIN3-GFP repolarization to the inner side of the 

endodermal cells in the presence of PA (Supplementary Figure S7F, S7G, S7H) or in the c4h 

mutant (Supplementary Figure S8E, S8F).  

Based on these observations, we conclude that PA treatment or mutation in C4H 

reduces lignin deposition (Naseer et al., 2012), but this reduced lignin deposition is not the 

basis for the observed hypocotyl overbending or the defective auxin-induced PIN3 

repolarization. 

2.2.5 Phenolic profiling analysis reveals flavonoids as downstream targets 
of C4H 

To further characterize the possible downstream compound of C4H during hypocotyl 

gravitropism, we performed a phenolic profiling of DMSO and PA treated etiolated Col-0 

seedlings with or without 24 hours gravity stimulation by using ultra-high-pressure liquid 

chromatography-mass spectrometry (UHPLC-MS) method (Steenackers et al., 2016). 

Univariate statistical analysis was applied to select peaks with significantly different 

abundance (P < 0.01, 2-fold difference) between DMSO and PA treatment. Without gravity 



 
 

stimulation, a total of 311 peaks were increased in abundance and 211 were reduced in 

abundance. After 24 hours gravity stimulation, 254 peaks were increased and 216 were 

reduced in abundance (Figure 3A). Among the identified peaks, 60 peaks were unique upon 

PA treatment following gravity stimulation, which may reflect a unique response to PA 

treatment during hypocotyl gravity response (Figure 3A). Based on the library, the content of 

flavonoid conjugates showed a significant reduction upon PA treatment (Figure 3B), indicating 

an involvement of flavonoids in PA triggered gravitropism response. The remarkably high 

number of identified unknown metabolites might reflect the developmental shift caused by 

PA treatment during shoot gravitropic response (Figure 3B; Supplementary Tab S1). On the 

other hand, our metabolomic analysis also provides novel insights into the role of 

phenylpropanoid pathway during young seedling development. 

 

Figure 3. Phenolic profiling of PA treated Arabidopsis seedlings after 24 hours gravity stimulation. 
(A) Summary of differential shifts of metabolites upon DMSO and PA treatment with or without gravity 
stimulation. (B) Reduced content of flavonoids upon PA treatment after 24 hours gravity stimulation. P < 0.05 
determined by Students t-test. 

2.2.6 Flavonoid negatively regulates hypocotyl bending and PIN3 
polarization 

It has been reported that flavonoids are an endogenous regulator of auxin transport 

(Brown et al., 2001), and flavonoid mutants show defects in root gravitropism (Buer and 

Muday, 2004; Buer et al., 2013) probably due to a mis-localization of PIN proteins or the 

altered PIN expression level (Peer et al., 2004). Gravity stimulation also increases flavonoid 

content in root (Buer and Muday, 2004). Notably, pin2 mutant is agravitropic with a reduced 

flavonoid content at root elongation zone. Exogenous application of flavonoid partially 

rescues the agravitropic response and auxin distribution of pin2 mutant (Santelia et al., 2008), 
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indicating an involvement of flavonoid during root gravitropism. However, its role in 

hypocotyl gravitropism is unclear. On the other hand, our phenolic profiling analysis revealed 

a decrease of flavonoids concentration after PA treatment (Figure 3B) as well as in the c4h 

mutant (Vanholme et al., 2012), indicating that flavonoids would act as downstream target of 

C4H. To test the hypothesis, we first assessed the flavonoid content in PA treated hypocotyls 

as well as in the c4h mutant hypocotyls with or without gravity stimulation. Our staining result 

showed that flavonoid content was decreased in both PA treated hypocotyls and in the c4h 

mutant hypocotyls without gravity stimulation (Supplementary Figure S9A – S9C, S9G). After 

24 hours gravity stimulation, flavonoid content was increased in DMSO treated hypocotyls, 

but PA treated hypocotyls or the c4h mutant hypocotyls showed no increase of flavonoid 

content (Supplementary Figure S9D – S9F, S9G). These data indicate that the reduced 

flavonoid content could be one reason for the hypocotyl hyperbending of c4h mutant and PA 

treatment.  

Next, we dissected the role of flavonoid in hypocotyl gravitropism by applying 

flavonoid biosynthesis inhibitors and the biosynthesis mutants. Diethyldithiocarbamate acts 

as flavonoid biosynthesis inhibitor targeting FLAVANONE-3-HYDROXYLASE (Forkmann and 

Stotz, 1981, 1984). We transferred 3 days old etiolated seedlings to new plates supplied with 

various concentration of sodium diethyldithiocarbamate trihydrate (SDT) then gravity 

stimulated for 24 hours. Our result showed that SDT treatment caused hypocotyl 

hyperbending in a concentration dependent manner (Supplementary Figure S10A), but SDT 

doesn’t affect hypocotyl growth under our experimental condition (Supplementary Figure 

S10B). Additionally, we observed a similar overbending hypocotyl in tt6 mutant after 24 hours 

gravity stimulation (Supplementary Figure S10C).   

We then examined whether the defective flavonoid biosynthesis would also lead to a 

defective auxin-mediated PIN3 polarization. First, we examined SDT effect on gravity-induced 

PIN3 polarization. PIN3-GFP symmetrically distributed at both side of endodermal cells upon 

SDT treatment without gravity stimulation (Supplementary Figure S10D), and PIN3-GFP 

polarized to the outer side of endodermal cells after 6 hours gravity stimulation under DMSO 

or SDT treatment (Supplementary Figure S10E, S10G). After 24 hours gravistimulation, a 

strong PIN3-GFP signal was still detected at the outer side of endodermal cells under SDT 

treatment but not under DMSO treatment (Supplementary Figure S10F, S10G). Similarly, a 



 
 

normal gravity-induced PIN3-GFP polarization was detected in tt6 mutant (Supplementary 

Figure S10H, S10I, S10K). However, PIN3-GFP still retained at the outer side of endodermal 

cells at the lower side of tt6 mutant hypocotyls after 24 hours gravity stimulation 

(Supplementary Figure S10J, S10K). 

 We also tested SDT effect on auxin-mediated PIN3 polarization. We transferred 3 days 

old etiolated seedlings to new plates supplied with 40 µM of SDT for 2 hours, then co-treated 

the seedlings with 10 µM NAA for another 4 hours. We observed that PIN3-GFP localization 

was retained at the outer side of the endodermal cells when flavonoid biosynthesis was 

inhibited (Supplementary Figure S11A, S11B). Similarly, tt6 mutant also showed a defective 

auxin-mediated PIN3-GFP repolarization upon auxin treatment (Supplementary Figure S11C, 

S11D).  

Overall, inhibition of flavonoid biosynthesis either in biosynthesis mutant or by 

applying chemical inhibitor resulted in hypocotyl hyperbending and defective auxin-mediated 

PIN3 polarization but not gravity-induced PIN3 polarization (Supplementary Figure S10; 

Supplementary Figure S11). These data demonstrates a negative role of flavonoid in auxin 

transport dependent hypocotyl gravitropism.  

2.2.7 Flavonoid is the downstream target of C4H in hypocotyl 
gravitropism 

To exam whether flavonoids play an important role in response to gravity stimuli 

downstream of C4H, we first tested whether the exogenous application of flavonoid can 

rescue PA effect on hypocotyl bending. We transferred 3 days old etiolated seedlings to new 

plates supplied with quercetin and PA, and then gravistimulated the seedlings for 24 hours. 

Concentration up to 40 µM of quercetin did not affect wild type hypocotyl gravitropic bending 

(Supplementary Figure S12A). However, quercetin rescued the overbending hypocotyls 

caused by PA treatment (Supplementary Figure S12A). Quercetin also rescued hyperbending 

hypocotyl of the c4h mutant (Supplementary Figure S12B).  

We next tested whether flavonoid can rewrite PA effect on PIN3 polarization. We 

transferred 3 days etiolated seedlings to new plates supplied with 40 µM of quercetin 

together with 20 µM of PA, then seedlings were gravity stimulated for 6 hours or 24 hours. 

Quercetin had no effect on PIN3-GFP polarization with or without PA after 6 hours gravity 

stimulation (Supplementary Figure S12C, S12D, S12G), whereas quercetin revised the PA 
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effect on PIN3-GFP repolarization after 24 hours gravity stimulation (Supplementary Figure 

12E, S12F, S12G). Quercetin also had no obvious effects on PIN3-GFP polarization in c4h 

mutant after 6 hours gravity stimulation (Supplementary Figure S12H, S12J), but the defective 

auxin-mediated PIN3 polarization was reversed by quercetin in c4h mutant after 24 hours 

gravity stimulation (Supplementary Figure S12I, S12J). 

PA treatment or mutation in the C4H leads to a defective auxin-mediated PIN3 

repolarization (Figure 2A - 2H), we then questioned whether quercetin can also rescue PA 

effect on auxin-mediated PIN3 polarization. In line with the 24 hours gravistimulation results 

(Supplementary Figure S12), quercetin also complemented the defective auxin-mediated 

PIN3 polarization triggered by PA treatment or C4H mutation in presence of exogenous auxin 

treatment (Supplementary Figure S13A – S13D).  

Taken together, DPBA staining reveals a decrease of flavonoids content after gravity 

stimulation upon PA treatment as well as in the c4h mutant (Supplementary Figure S9A – 

S9G). Additionally, exogenous application quercetin recuses the defective hypocotyl bending 

and PIN3 polarization under PA treatment as well as in c4h mutant (Supplementary Figure 

S12; Supplementary Figure S13). This data shows that flavonoids act as downstream target of 

C4H to modulate PIN-mediated polar auxin transport during hypocotyl gravitropism.  

2.2.8 PA affects PIN3 phosphorylation status 

Phosphorylation of PIN proteins at different sites by kinases is crucial for PIN polarity 

and activity regulation. It has been reported that PID and related WAG1 and WAG2 

serine/threonine protein kinases activity contribute to PIN3 polarization during hypocotyl 

gravitropism (Rakusová et al., 2011, 2016; Grones et al., 2018). Flavonoid has been shown to 

bind to PID kinase and inhibits PID autophosphorylation activity (Henrichs et al., 2012). Our 

profiling data and DPBA staining assay showed that flavonoid content was decreased upon 

PA treatment as well as in c4h mutant (Figure 3B; Supplementary Figure S9A – S9G). Hence, 

it is likely that PA would potentially affect PIN3 phosphorylation by modulating flavonoid 

content and PID kinase phosphorylation.  

To test the binding between flavonoid and PID kinase (Henrichs et al., 2012), we 

performed the Drug Affinity Responsive Target Stability (DARTS) assay (Lomenick et al., 2009) 

to further confirm the binding of flavonoid to PID kinase. DARTS assay using extracts of 



 
 

PID::PID-YFP seedlings or the E. coil expressed PID protein revealed that quercetin treatment 

resulted in an obvious protection of PID kinase against pronase (mixture of proteases) 

degradation (Figure 4A, 4B). Hence, our results suggest that flavonoid binds to PID both in 

vivo and in vitro.  

To further explore whether quercetin affects PID kinase activity (Henrichs et al., 2012), 

we carried out an in vitro kinase assay (Zegzouti et al., 2009). We first cloned the PIN3 

hydrophilic loop with His tag (His-PIN3HL), and PID with His tag (His-PID) and expressed them 

in E. coil, then we purified both proteins from E. coil culture. We treated the PID protein or 

the mixture of PID and PIN3HL protein with quercetin and PA at room temperature for 1 hour. 

Our results revealed that quercetin reduced PID activity, but PA increased PID activity. 

However, PA treatment abolished quercetin effect on PID activity (Figure 4C). This reduced or 

increased PID activity also correlated with PID-mediated PIN3 phosphorylation activity (Figure 

4C).  

 

Figure 4. PA promotes PID and PIN3 phosphorylation. 
(A) Flavonoid binds to PID in vivo by DARTS assay. The 7 days old PID::PID-YFP seedlings were collected and PID 
protein was extracted. The PID protein was treated with different concentration of quercetin with or without 
pronase. Then binding intensity was quantified. (B) Flavonoid binds to PID in vitro. The E. coil expressed PID 
protein was treated with different concentration of quercetin with or without pronase. Binding intensity was 
quantified. (C) Kinases assay in vitro. The E. coil expressed PID and PIN3-HL protein was treated with 20 µM of 
PA and 10 µM of quercetin, or the combination for 1 hour, then the luminescence was quantified. (D) PA 
increases PIN3 phosphorylation. The PIN3::PIN3-GFP seedlings were treated with 20 µM PA, 40 µM quercetin or 
the combination for 7 days, then the samples were collected and protein was extracted. The phos-tag botin 
antibody (1 : 1000) was used to detect phosphorylated PIN3 protein. (E) PA increases PID phosphorylation. The 
PID::PID-YFP seedlings were treated with DMSO, 20 µM PA, 40 µM quercetin or PA together with quercetin for 
7 days, then seedlings were harvested and protein was extracted. The PID protein was added to phostag gel to 
detect the PID phosphorylation status. The GFP-HRP (1 : 1000) antibody was used to detect PID protein. 
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Our binding assay and in vitro kinase assay indicate that PA may influence the PIN3 

phosphorylation status (Figure 4A - 4C). To test this, we performed an in vivo PIN3 

phosphorylation assay. We treated PIN3::PIN3-GFP seedlings with DMSO, PA, quercetin or 

the combination for 7 days, whereupon the whole plants were collected for the 

phosphorylation assay. The western blot assay revealed that PIN3 was more phosphorylated 

upon PA treatment (Figure 4D). In addition, PA-triggered PIN3 phosphorylation was inhibited 

by quercetin (Figure 4D). 

To test whether the increased PIN3 phosphorylation is caused by an altered PID 

phosphorylation, we then performed an in vivo phosphorylation assay to test PA effect on PID 

phosphorylation. We treated PID::PID-YFP seedlings with DMSO, PA, quercetin or the 

combination for 7 days, then the whole plants were collected. The western bolt assay showed 

that PA treatment leaded to an increase of PID phosphorylation; whereas, quercetin reduced 

the PID phosphorylation (Figure 4E).  

Overall, PA treatment causes a decrease of flavonoids content in the hypocotyl (Figure 

S9A – S9G), resulting in a shift of PID kinase activity (Figure 4A - 4C). Consequently, the altered 

PID kinase phosphorylation triggers an altered PIN3 phosphorylation status (Figure 4D, 4E), 

ultimately leading to defects in auxin-mediated PIN3 repolarization (Grones et al., 2018), and 

hypocotyls are hyperbending. 

2.3 Discussion 

To search novel players in PIN polarity regulation in response to environmental stimuli, 

we carried out a 24 hours bending assay by treating Arabidopsis etiolated seedlings with 

various compounds derived from the phenylpropanoid pathway (Supplementary Figure S1; 

Steenackers et al., 2016, 2017; Kurepa et al., 2018; Mehmood et al., 2019). To this end, we 

introduced an novel physiological effect of PA on Arabidopsis shoot gravitropism. PA is a 

natural molecule extracted from the bark of Paracoto tree, and it acts as an inhibitor of C4H, 

a key enzyme of the phenylpropanoid pathway (Steenackers et al., 2016, 2017). Our detailed 

investigations reveal that PA modulates PIN polarization dependent directional auxin 

transport by modulating flavonoid content and PID kinase phosphorylation.  

We observed that etiolated hypocotyls treated with PA bent more after 24 hours 

gravistimulation and a similar hyperbending hypocotyl was also observed in c4h mutant. It 



 
 

seems that PA had a special effect on hypocotyl gravitropism, because other compounds 

derived from the same pathway had no obvious effects. The asymmetric auxin distribution 

during hypocotyl gravitropism is required for bending (Friml et al., 2002; Rakusová et al., 

2011), the hyperbending hypocotyls caused by PA application indicates a defective auxin 

transport. Indeed, PA application caused a defective auxin distribution at the later stage of 

hypocotyl gravitropic response as manifested by a strong DR5rev::GFP signal at the lower 

hypocotyl side. The polar auxin transport is achieved by the polarly localized PIN efflux 

transporters (Wisniewska et al., 2006). The defective auxin distribution under PA treatment 

in gravitstimulated hypocotyls, suggests that PA would affect PIN3 subcellular polarity, the 

major player in shoot gravitropism (Rakusová et al., 2011, 2016, 2019). The direct evidence 

comes from the PIN3-GFP polarization observations under PA treatment or in c4h mutant 

after gravistimulation or following auxin treatment. PA treatment didn’t affect gravity-

induced PIN3 polarization, but inhibits auxin-mediated PIN3 polarization, resulting in a 

continuous accumulation of auxin at the lower side of the hypocotyl. As a consequence, 

hypocotyls are hyperbending. A similar PIN3 polarization defect was also observed in the c4h 

mutant. Together, these data support that PA and its target C4H play an essential role in 

modulating PIN3-polarization dependent auxin transport in gravity stimulated hypocotyls. 

As the content of many products in phenylpropanoid pathway are changed in the c4h 

mutant (Vanholme et al., 2012), we then evaluated how the carbon flux over this pathway is 

redirected in hypocotyls upon PA treatment following gravity stimulation. To this end, we 

found 60 unique metabolites, differently accumulated upon PA treatment. Among the 60 

compounds, we further confirmed that flavonoids act as downstream target of C4H during 

shoot gravitropism. Flavonoids have been reported as an endogenous auxin transport 

inhibitor, but its action differs from NPA (N-1-Naphthylphthalamic acid). The flavonoid 

biosynthesis mutants show defects in root gravitropism (Buer and Muday, 2004; Buer et al., 

2013) probably due to a mis-localization of PIN proteins or changed PIN expression levels 

(Peer et al., 2004). Our profiling data shows that the flavonoid content is decreased upon PA 

treatment. In addition, the c4h mutant also shows a decreasd flavonoid content (Vanholme 

et al., 2012). Furthermore, inhibition flavonoid biosynthesis resulting in a hyperbending 

hypocotyl with a defective auxin-mediated feedback on PIN3 repolarization. Complementary 

assay by exogenous application of quercetin showed that flavonoids act as downstream target 
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of C4H in hypocotyl gravitropism. Hence, our data showed that flavonoids act as downstream 

of C4H in hypocotyl gravitropism. 

As proposed, flavonoid regulates PID and PP2A activity, which are essential players 

controlling PIN polarity by phosphorylation or de-phosphorylation PINs (Kuhn et al., 2017). 

Indeed, quercetin has been shown to bind to PID and reduce its activity (Henrichs et al., 2012). 

Decrease the content of flavonoids by PA treatment would lead to the change of PID-

mediated PIN3 phosphorylation (Henrichs et al., 2012; Grones et al., 2018). Our binding assay 

further confirms that flavonoid binds to PID kinase. And in vitro kinase assay implies a shift of 

PID and PIN3 phosphorylation status upon PA treatment. Our in vivo assay also reveals that 

PA modulates PIN3 phosphorylation via regulating PID phosphorylation. However, we cannot 

exclude the possibility that PA also affects IAA-oxidase due to the reduced flavonoid content 

(Mathesius, 2001; Jansen et al., 2001) resulting in a shift of free IAA content in cells which will 

perturb the auxin effects on PIN polarity (Rakusová et al., 2016). On the other hand, PDKs (3-

Phosphoinositide-Dependent Protein Kinases) also has been indicated to regulation PID 

activity (Armengot et al., 2016). In addition, other kinases also has been reported to affect 

PIN phosphorylation status or activity to maintain PIN polarity in particular developmental 

processes (Willige et al., 2013; Barbosa et al., 2016; Jia et al., 2016). Hence, we assume that 

PA may have effects on other kinases which may alter PIN polarization and polar auxin 

movement during hypocotyl gravitropism. 

In conclusion, we demonstrate the crucial and novel physiological effect of PA on 

shoot gravitropism by inhibiting PIN-polarization dependent auxin transport. To our 

knowledge, PA is an example of various secondary metabolites that play essential roles in 

response to environmental factors by perturbing polar auxin transport. 

 

 

 

 

 

 

 

 

 



 
 

2.4 Materials and Methods 

Plant material and growth conditions 

The following transgenic and mutant lines were used: Col-0, PIN3::PIN3-GFP (Col-0, Žádníková 

et al., 2010); DR5rev::GFP (Col-0, Friml et al., 2003); PID::PID-YFP (Col-0, Michniewicz et al., 

2007); c4h (Col-0, GABI_753B06); tt6-2 (Col-0, CS2105575). Mutant combinations with 

PIN3::PIN3-GFP were generated through genetic crosses. Seeds were sterilized and were 

sown on plates with half-strength Murashige and Skoof medium with 1% sucrose agar and 

stratified at 4°C for 3 days, and then cultivation at 21°C.  

Gravity stimulation 

To monitor hypocotyl gravitropic responses, plates with 3 days old etiolated seedlings were 

turned 90° and were scanned after 24 hours gravistimulation. Bending angles were measured 

by ImageJ with more than 30 seedlings (NIH; http://rsb.info.nih.gov/ij).  

Chemical treatment for hypocotyl bending angle measurement  

The piperonylic acid (PA, 20 µM), trans-cinnamic acid (trans-CA, 40 µM), cis-cinnamic acid (cis-

CA, 40 µM) and salicylic acid (SA, 40 µM; Steenackers et al., 2016, 2017), p-iodobenzoic acid 

(p-IBA, 40 µM, Van de Wouwer et al., 2016), Coumarin (40 µM),  p-coumaric acid (p-CA, 50 

µM), phenylacetic acid (PAA, 40 µM), 5-(1,3-Benzodioxol-5-yl)-2,4-pentadienoic acid (PIA, 40 

µM),  Umbelliferone (40 µM), Scopoletin (40 µM), sodium diethyldithiocarbamate trihydrate 

(SDT, 5 µM, 10 µM, 20 µM, 40 µM, 60 µM; Sigma), quercetin (40 µM; Sigma), monolignols 

(coniferyl alcohol 50 µM; sinapyl alcohol 50 µM; Sigma) were used at indicated concentration. 

For bending assay, 3 days old etiolated hypocotyls were transferred to new plates with the 

chemicals or combinations at indicated concentration, then seedlings were gravity stimulated 

for 24 hours, bending angle was measured.  

Chemical treatment for PIN3-GFP quantification 

For gravity-induced PIN3-GFP localization, 3 days old etiolated hypocotyls were transferred 

onto new plates with DMSO, PA, quercetin, p-coumaric acid, SDT, monolignols or 

combinations at indicated concentration, then hypocotyls were gravity stimulated for 6 hours 

or 24 hours. The PIN3-GFP signal ratio was calculated between outer side of endodermal cells 

at lower and upper side of horizontally placed hypocotyls after gravity stimulation (Rakusová 

et al., 2019). For auxin-mediated PIN3-GFP localization, 3 days old etiolated hypocotyls were 

transferred onto new plates with DMSO, NAA (10 µM), PA, quercetin, p-CA and SDT, coniferyl 

alcohol and sinapyl alcohol combinations with NAA at the indicated concentration and 

https://www.arabidopsis.org/servlets/TairObject?type=germplasm&id=6531236969
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hypocotyls were incubated in darkness for 4 hours, then PIN3-GFP the ratio was calculated 

between inner and outer side of endodermal cells (Rakusová et al., 2019).  

Flavonoid staining 

3 days etiolated seedlings were transferred to new plates containing 20 µM of PA, and the 

same amount of DMSO, or c4h mutant. The seedlings were kept in darkness for 24 hours with 

or with gravity stimulation. Then seedlings were stained with 2-aminoethyl diphenylborinate 

(DPBA, Sigma) for 15 minutes, and wash with water for 3 times. DPBA stock was prepared as 

described previous (Santelia et al., 2008). The GFP channel was selected to observe 

Kaempferol pattern in hypocotyls where we observe the PIN3-GFP localization at upper part 

of hypocotyls (Rakusová et al., 2019). The fluorescence intensity was quantified using ImageJ. 

Microscopy 

The DR5rev::GFP, PIN3-GFP or flavonoid staining was captured after gravity stimulation or 

auxin treatment by using an inverted Zeiss LSM-700 or LSM-800 microscope. For any single 

experiment, the settings were the same. 

Phenolic profiling analysis by UHPLC-MS 

In brief, 3 days old etiolated seedlings were transferred onto new plates with DMSO or 20 µM 

of PA with or without 24 hours gravity stimulation. Seedlings were collected and phenolic 

profiling analysis was performed using UHPLC-MS as described previously (Steenackers et al., 

2016). The data analysis was performed as described previously (Steenackers et al., 2016). 

In vivo PIN3 phosphorylation  

PIN3::PIN3-GFP seedlings were grown on plates with DMSO, 20 µM of PA, 40 µM of quercetin,  

PA together with quercetin for 7 days. The whole plants were collected for phosphorylation 

assay. Samples were ground with liquid nitrogen, then protein extraction buffer (50 mM Tris-

HCl, pH = 7.5; 1 protease inhibitor and 1 phosStop pill (Roche), 150 mM NaCl) was added and 

mixed well. Samples were centrifuged at 16000 g, for 20 minutes at 4 °C. The supernatant was 

removed and the sediment  were re-suspended with detergent buffer (50 mM Tris-HCl, pH = 

7.5; 150 mM NaCl, 1 protease inhibitor and 1 phosStop pill (Roche); 0.5% Triton-100; 0.5% 

NP40) and mixed well. The re-suspended samples were centrifuged at 13000 g, for 20 minutes 

at 4 °C. The supernatant was collected and protein level was determined with Bio-Rad 

Bradford reagent. 300 µg of protein was incubated with 50 µl of anti-GFP beads (MACS 

Molecular) for 1 hour to concentrate the PIN3 protein. Next, protein samples were mixed with 

preheated elution buffer at 95 °C, and loaded to Bio-Rad mini protean gel (10 %). After 
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electrophoresis, proteins were transferred to the PVDF membrane using Bio-Rad turbo 

transfer pack. Membrane was incubated with anti-GFP HRP antibody (MACS Molecular, 

1:1000) over night at 4 °C to visualize the PIN3 protein in all treatment. For phosphorylation 

assay, the same membrane was incubated with the Phos-tag biotin antibody (1: 1000, BTL-

111, Wako) at least 2 hours at room temperature. HRP activity was detected by the 

Supersignal Western Detection Reagents (Thermo Scientific) and imaged with a GE Healthcare 

Amersham 600RGB system.  

In vivo PID phosphorylation assay  

PID::PID-YFP seedlings were grown on plates with DMSO, 20 µM of PA, 40 µM of quercetin,  

PA together with quercetin for 7 days. The whole plants were collected for phosphorylation 

test. Samples were ground with liquid nitrogen, then protein extraction buffer was added as 

described for PIN3::PIN3-GFP phosphorylation. 300 µg of PID protein was incubated with 50 

µl of anti-GFP beads (MACS Molecular) for 90 minutes to concentrate the PID protein. Next, 

protein samples were mixed with preheated elution buffer at 95 °C, and loaded to Bio-Rad 

mini protean gel (10 %) or 12.5 % phostag gel (Wako). After electrophoresis, proteins were 

transferred to the PVDF membrane using Bio-Rad turbo transfer pack or wet transfer. 

Membrane was incubated with anti-GFP HRP antibody (MACS Molecular, 1:1000) over night 

at 4 °C to visualize the PID protein in all treatment. HRP activity was detected by the 

Supersignal Western Detection Reagents (Thermo Scientific) and imaged with a GE Healthcare 

Amersham 600RGB system.  

Recombinant protein expression and purification  

The pET28a-PIN3HL and pET28a-PID was expressed in E. coil. Strain BL21 (DE3) and protein 

expression was induced by adding 1 mM IPTG (Isopropyl β-D-1-Thiogalactopyranoside, 16°C, 

12 h) ) to the cultured cells. The protein was purified using His PurTM Ni-NTA Resin (Thermo 

Fisher) following the instructions. The purified protein was stored at 4°C for further analysis. 

Drug Affinity Responsive Target Stability (DARTS) assay  

The DARTS assay to test the binding of flavonoid to PID was performed as previously reported 

(Kania et al,. 2018). The 7 days old PID::PID-YFP seedlings were used for total protein 

extraction. The sample were ground in liquid nitrogen, re-suspended in protein extraction 

buffer (25 mM Tris-HCl, pH 7.5; 150 mM NaCl; 0.1% IGEPAL CA-630, Roche cOmplete protease, 

and one phosStop) with a 1:2 (w/v) ratio, and spun down to discard the cell debris. After 

quantifying the protein concentration (Quick Start™ Bradford Reagent, Bio-Rad), the cell 
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lysate was aliquoted and incubated with 0, 50 μM or 500 μM quercetin respectively for 30 

min at 25°C, mixing at a low speed. The treated extracts  or E. coil expressed PID protein were 

further aliquoted, and mixed with different concentrations of Pronase (Roche) in Pronase 

buffer (25 mM Tris-HCl, pH 7.5; 150 mM NaCl). After incubation at 25°C for 30 min, the 

proteolytic digestion was terminated by adding protease inhibitor cocktail (cOmplete, Roche) 

and the samples were kept on ice for 10 min. The protein samples were then analysed by 

Western blot. PID protein was detected by an anti-GFP HRP antibody (MACS Molecular, 

1:1000) or anti-His antibody (1:600). HRP activity was detected by the Supersignal Western 

Detection Reagents (Thermo Scientific) and imaged with a GE Healthcare Amersham 600RGB 

system.  

In vitro PID kinase activity assay 

10 µl of purified PID-His and PIN3HL protein or the mixture of both protein was incubated 

with DMSO, 10 µM of quercetin, and 20 µM PA with 100 µM ATP kinase buffer or without ATP 

for 1 hour at room temperature. Then the kinase assay was performed following the ADP-Glo 

kit instructions (ADP-GloTM kinase Assay kit, Promega; Zegzouti et al., 2009). The 

Spectrophotometer Biotek SynergyH1 platereader was used to measure the luminescence. 

Statistical analysis 

Values that significantly differ from each other are indicated in figures according to Student’s 

t-test, ** P < 0.05 or *** P < 0.01. 
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provided the chemicals, c4h mutant seed, helpful discussions, and performed the UHPLC-MS 

experiment and analyzed data. H. H. and J. F. wrote the article with all inputs from other 
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2.6 Supplementary Figures 

 
Supplementary Figure S1. The map of the phenylpropanoid pathway in plants. The map was refered to 
Vanholme et al., 2012. 

 

 
Supplementary Figure S2. PA effects on hypocotyl bending is independent of CA.  
(A) Quantification of hypocotyl length upon DMSO and PA treatment.  
(B) Quantification of bending angle of wild type hypocotyls upon 40 µM of DMSO, Coumarin, MDCA, 
pIBA, SA, trans-CA, cis-CA, PAA, PIA, Umbelliferone, Scopoletin treatment.  
(C) Combined effects of p-CA and PA on hypocotyl bending in wild type.  
(D) Quantification of bending angle upon p-CA treatment in c4h mutant.  
Data are means ± SD, n = 30 – 40. ** P < 0.05 determined by Students t-test. 
 



 
 

 
Supplementary Figure S3. PA doesn’t affect gravity-induced PIN3 polarization.  
(A- E) Confocal images of PIN3-GFP localization upon PA treatment without gravity stimulation (A), 6 hours 
gravity stimulation upon DMSO treatment (B) and PA treatment (C); 24 hours gravity stimulation upon DMSO 
treatment (D) and PA treatment (E).  (F - G) Quantification of PIN3-GFP signal of wild type hypocotyls upon PA 
treatment after 6 hours (F) or 24 hours (G) gravity stimulation. The PIN3-GFP signal ratio was calculated at outer 
side of endodermal cells between lower and upper hypocotyl side. Data are means ± SD, n = 15, ** P < 0.05 
determined by Students t-test. Scale bars = 20 µm. Arrowheads indicate PIN3-GFP at outer side of endodermal 
cells. Arrow indicates gravity direction. 
 

 
Supplementary Figure S4. Normal gravity-induced PIN3 polarization in c4h mutant.  
 (A - C) Confocal images of PIN3-GFP localization in c4h mutant without gravity stimulation (A), 6 hours (B) or 24 
hours (C) gravity stimulation.  (D) Quantification of PIN3-GFP signal after 6 hours or 24 hours gravity stimulation 
in c4h mutant. The PIN3-GFP signal ratio was calculated at outer side of endodermal cells between lower and 
upper hypocotyl side. Data are means ± SD, n = 15, ** P < 0.05 determined by Students t-test. Scale bars = 20 
µm. Arrowheads indicate PIN3-GFP at outer side of endodermal cells. Arrow indicates gravity direction. 

 

 



47 
 

 
Supplementary Figure S5. p-CA rescues defective auxin-mediated PIN3 polarization upon PA treatment. 
(A - B) Combined effect of p-CA and PA on PIN3-GFP localization after 6 hours (A) and 24 hours (B) gravity 
stimulation. (C) Quantification of PIN3-GFP upon PA and p-CA co-treatment after 6 hours or 24 hours gravity 
stimulation. The ratio was calculated at outer side of endodermal cells between lower and upper hypocotyl side. 
(D - E) Confocal images of PIN3-GFP localization under p-CA and NAA treatment (D) and under co-treatment with 
p-CA, PA, and NAA. (F) Quantification of PIN3-GFP upon PA, NAA, and p-CA co-treatment. The ratio was 
calculated between inner and outer side of endodermal cells. Data are means ± SD, n = 15, ** P < 0.05 
determined by Students t-test. Scale bars = 20 µm. Arrowheads indicate PIN3-GFP at outer side of endodermal 
cells. Arrow indicates gravity direction. 
 
 
 
 
 
 
 
 
 
 



 
 

 
Supplementary Figure S6. p-CA rescues defective auxin-mediated PIN3 polarization in c4h mutant. 
(A - B) Effect of p-CA on PIN3-GFP localization after 6 hours (A) and 24 hours (B) gravity stimulation in c4h mutant.  
(C) Quantification of PIN3-GFP signal upon p-CA treatment after 6 hours or 24 hours gravity stimulation in c4h 
mutant. The ratio was calculated at outer side of endodermal cells between lower and upper hypocotyl side. (D) 
Combined effect of p-CA and NAA on PIN3-GFP localization in c4h mutant. (F) Quantification of PIN3-GFP under 
p-CA and NAA co-treatment in c4h mutant. The ratio was calculated between inner and outer side of endodermal 
cells. Data are means 
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Supplementary Figure S7. Lignin perturbation is not the basis for PA effects on hypocotyl bending and PIN3 
polarization.  
(A) Combined effect of monolignols (50 μM of each coniferyl alcohol and sinapyl alcohol) and PA on wild type 
hypocotyl bending. Bending angle was measured after 24 hours gravity stimulation. Data are means ± SD, n = 30 
- 40, *** P < 0.01 determined by Students t-test. (B - C) Combined effect of monolignols and PA on PIN3-GFP 
localization after 6 hours (B) and 24 hours (C) gravity stimulation.  (D - E) Quantification of PIN3-GFP upon 
monolignols and PA treatment after 6 hours (D) and 24 hours (E) gravity stimulation. The ratio was calculated at 
outer side of endodermal cells between lower and upper hypocotyl side. Data are means ± SD, n = 15, ** P < 
0.05 determined by Students t-test. (F - G) Combined effect of monolignols, PA, NAA on PIN3-GFP localization.  
(H) Quantification of PIN3-GFP upon monolignols, PA, NAA treatment. The ratio was calculated between inner 
and outer side of endodermal cells. Data are means ± SD, n = 15, ** P < 0.05 determined by Students t-test. Scale 
bars = 20 µm. Arrowheads indicate PIN3-GFP at outer side of endodermal cells. Arrow indicates gravity direction. 

 
 
 
 
 
 
 
 



 
 

 
 
 
 

 
Supplementary Figure S8. Lignin perturbation is not the basis for the defective hypocotyl bending and PIN3 
polarization in c4h mutant. 
(A) Effects of monolignols on c4h mutant hypocotyl bending. Bending angle was quantified after 24 hours gravity 
stimulation. Data are means ± SD, n = 30 - 40. (B - C) Effects of monolignols on PIN3-GFP localization in c4h 
mutant 6 hours gravity stimulation (B) and 24 hours gravity stimulation (C).  (D) Quantification of PIN3-GFP signal 
upon monolignols treatment in c4h mutant after 6 hours or 24 hours gravity stimulation. The ratio was calculated 
at outer side of endodermal cells between lower and upper hypocotyl side. Data are means ± SD, n = 15, ** P < 
0.05 determined by Students t-test. (E) Combined effects of monolignols and NAA on PIN3-GFP localization in 
c4h mutant. (F) Quantification of PIN3-GFP signal upon monolignols and NAA co-treatment in c4h mutant. The 
ratio was calculated between inner and outer side of endodermal cells. Data are means ± SD, n = 15, ** P < 0.05 
determined by Students t-test. Scale bars = 20 µm. Arrowheads indicate PIN3-GFP at outer side of endodermal 
cells. Arrow indicates gravity direction. 
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Supplementary Figure S9. PA treatment reduces flavonoid content in hypocotyl. 
(A - C) Confocal images of showing flavonoid in hypocotyls under DMSO treatment (A), PA treatment (B) and in 
c4h mutant (C) without gravity stimulation. (D - F) Confocal images of showing flavonoid in hypocotyls under 
DMSO treatment (A), PA treatment (B) and in c4h mutant (C) after 24 hours gravity stimulation. (G) 
Quantification of flavonoid content in hypocotyls under DMSO and PA treatment, or in c4h mutant. Data are 
means ± SD, n = 15, ** P < 0.05 determined by Students t-test. Scale bars = 20 µm. Arrow indicates gravity 
direction. 
 
 
 
 
 



 
 

 
Supplementary Figure S10. Inhibition of flavonoid biosynthesis doesn’t affect gravity-induced PIN3 
polarization.  
 (A) Quantification of SDT effect on wild type hypocotyl bending after 24 hours gravity stimulation. Data are 
means ± SD, n = 30 - 40, ** P < 0.05 determined by Students t-test. (B) Quantification of SDT effect on hypocotyl 
growth. Data are means ± SD, n = 30 - 40. (C) Quantification of hypocotyl bending in tt6 mutant after 24 hours 
gravity stimulation. Data are means ± SD, n = 30 - 40, ** P < 0.05 determined by Students t-test. (D - F) Effects 
of SDT on PIN3-GFP localization in wild type without gravity stimulation (D), 6 hours (E) or 24 hours (F) gravity 
stimulation. (G) Quantification of PIN3-GFP signal upon SDT treatment. PIN3-GFP intensity was calculated at 
outer side of endodermal cells between lower and upper side of hypocotyl. Data are means ± SD, n = 15, ** P < 
0.05 determined by Students t-test. (H - J) PIN3-GFP localization in tt6 mutant without gravity stimulation (H), 6 
hours (I) and 24 hours (J) gravity stimulation. (K) Quantification of PIN3-GFP signal in tt6 mutant. PIN3-GFP 
intensity was calculated at outer side of endodermal cells between lower and upper side of hypocotyl. Data are 
means ± SD, n = 15, ** P < 0.05 determined by Students t-test. Scale bars = 20 µm. Arrowheads depict PIN3-GFP 
at outer side of endodermal cells. Arrow indicates gravity direction 
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Supplementary Figure S11. Inhibition of flavonoid inhibits auxin-mediated PIN3 repolarization. 
(A) Combined effects of NAA and SDT on PIN3-GFP localization. (B) Quantification of PIN3-GFP signal upon NAA 
and SDT co-treatment. PIN3-GFP intensity was calculated between inner and outer side of endodermal cells. 
Data are means ± SD, n = 15, ** P < 0.05 determined by Students t-test.  (C) PIN3-GFP localization in tt6 mutant 
under DMSO and NAA treatment. (D) Quantification of PIN3-GFP signal upon DMSO and NAA treatment in tt6 
mutant. PIN3-GFP intensity was calculated between inner and outer side of endodermal cells. Data are means ± 
SD, n = 15, ** P < 0.05 determined by Students t-test. Scale bars = 20 µm. Arrowheads depict PIN3-GFP at outer 
side of endodermal cells.  

 
 
 



 
 

 
Supplementary Figure S12. Flavonoid overcomes PA effects on hypocotyl bending and auxin-mediated PIN3 
polarization. 
(A) Combined effects of PA and quercetin on wild type hypocotyl bending after 24 hours gravity stimulation. 
Data are means ± SD, n = 30 - 40, ** P < 0.05 determined by Students t-test. (B) Effects of quercetin on hypocotyl 
bending in c4h mutant after 24 hours gravity stimulation. Data are means ± SD, n = 30 - 40, ** P < 0.05 
determined by Students t-test. (C - F) Combined effects of quercetin and PA on PIN3-GFP localization after 6 
hours (C, D) or 24 hours gravity stimulation (E, F).    (G) Quantification of PIN3-GFP signal upon quercetin and PA 
co-treatment after 6 hours and 24 hours gravity stimulation. PIN3-GFP intensity was calculated at outer side of 
endodermal cells between lower and upper side of hypocotyl. Data are means ± SD, n = 15, ** P < 0.05 
determined by Students t-test.  (H - I) PIN3-GFP localization under quercetin treatment in c4h mutant after 6 
hours (H) and 24 hours (I) gravity stimulation. (J) Quantification of PIN3-GFP signaling under quercetin treatment 
in c4h mutant after gravity stimulation. The PIN3-GFP intensity was calculated at outer side of endodermal cells 
between lower and upper side of hypocotyl. Data are means ± SD, n = 15, ** P < 0.05 determined by Students t-
test. Scale bars = 20 µm. Arrowheads depict PIN3-GFP at outer side of endodermal cells. Arrow indicates gravity 
direction. 
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Supplementary Figure S13. Flavonoid overcomes PA effects on auxin-mediated PIN3 polarization. 
(A) PIN3-GFP localization under quercetin treatment, quercetin and PA co-treatment, quercetin, PA and NAA co-
treatment. (B) Quantification of PIN3-GFP signal under the co-treatment of PA, quercetin and NAA. The PIN3-
GFP intensity was calculated between inner and outer side of endodermal cells. (C) PIN3-GFP localization under 
quercetin, and co-treatment with NAA in c4h mutant. (D) Quantification of PIN3-GFP signal under quercetin 
treatment in c4h mutant. The PIN3-GFP intensity was calculated between inner and outer side of endodermal 
cells. Data are means ± SD, n = 15, ** P < 0.05 determined by Students t-test. Scale bars = 20 µm. Arrowheads 
depict PIN3-GFP at outer side of endodermal cells.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

3 SCFTIR1/AFB auxin signaling for bending termination during shoot 

gravitropism 

3.1 Introduction 

Gravitropism is a plant adaptive response that involves asymmetric auxin distribution 

(Friml et al., 2002; Rakusová et al., 2015; Su et al., 2017). This auxin asymmetry leading to the 

shoot and root bending, is initiated by the gravity-induced subcellular relocalization of PIN 

auxin transporters (Friml et al., 2002; Kleine-Vehn et al., 2010; Rakusová et al., 2011). Bending 

termination is a much less characterized process, which depends on the re-establishment of 

the symmetrical auxin distribution due to auxin-mediated re-establishment of the symmetric 

PIN localization (Supplementary Figure S1A; Rakusová et al., 2016, 2019). Nonetheless, which 

auxin signaling pathway mediates this auxin feedback on PIN repolarization and bending 

termination is still unknown.  

3.2 Results and discussion 

To evaluate which auxin signaling machinery mediates auxin feedback on PIN3 

repolarization for bending termination, we examined two most characterized auxin 

perception pathways: (i) the nuclear auxin receptors TIR1/AFB, which mediates both 

transcriptional and non-transcriptional responses (Salehin et al., 2015; Fendrych et al., 2016, 

2018); and (ii) the AUXIN BINDING PROTEIN1 (ABP1) pathway with an unclear function (Gao 

et al., 2015; Grones et al., 2015). While abp1 mutant showed a normal hypocotyl gravitropic 

response (Supplementary Figure S1B), the tir1 afb2 afb3 triple hypocotyls were hyperbending 

(Figure 1A), suggesting a defect in termination response. Application of PEO-IAA that 

specifically interferes with auxin binding to TIR1 and inactivates TIR1 pathway (Hayashi et al., 

2008), also triggered hypocotyl hyperbending (Figure 1B). The HS::axr3-1 mutant carries a 

mutation in DII domain of the IAA17/AXR3 protein, a TIR1 co-receptor (Villalobos et al., 2012), 

and is conditionally expressed under a heat shock inducible promoter (Knox et al., 2003). The 

HS::axr3-1 hypocotyls without heat shock induction displayed a normal gravitropic response 

(Supplementary Figure S1C); while after heat shock induction, HS::axr3-1 hypocotyls were 

hyperbending (Figure 1C). These data collectively suggest that TIR1/AFB pathway is required 

for hypocotyl bending termination. 
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Figure 1. Hypocotyl gravitropic bending termination depends on TIR1/AFB signaling.  
(A) Bending kinetics of wild type and tir1 afb2 afb3 hypocotyls. (B) Bending angle of DMSO or 10 µM PEO-IAA 
treated wild type hypocotyls after 24 hours gravistimulation.  (C) Bending angle of heat shock induced HS::axr3-
1 hypocotyls after 24 hours gravistimulation.  (D - F) PIN3-GFP localization after 24 hours gravistimulation. Wild 
type hypocotyls upon DMSO treatment (D) and 10 µM PEO-IAA treatment (E), heat shock induced HS::axr3-1 
hypocotyls (F). (G - H) Quantification of PIN3-GFP intensity. PEO-IAA treated wild type hypocotyls after 24 hours 
gravistimulation (G); heat shock induced HS::axr3-1 hypocotyls after 24 hours gravistimulation (H). The ratio was 
calculated by dividing the PIN3-GFP intensity at outer side of endodermal cells between lower and upper side of 
hypocotyls. Data and error bars represent the mean ± SD. n = 30 - 40 for bending assay, n = 15 for PIN3-GFP 
intensity quantification. ** P < 0.05 determined by Student’s t-test. Arrowheads depict PIN3-GFP at outer side 
of endodermal cells, arrow indicates the gravity direction and hence determines lower and upper side of 
hypocotyl. Scale bar = 20 µm. 

Hypocotyl gravitropic bending is initiated by the sedimentation of amyloplasts in 

hypocotyl endodermal cells followed by the gravity-induced PIN3 polarization to the lower 

cell side (Fukaki et al., 1998; Rakusová et al., 2011). The bending termination involves the re-

establishment of auxin-induced symmetrical PIN3 subcellular distribution at later stages 

(Supplementary Figure S1A; Rakusová et al., 2016, 2019). Therefore, we investigated these 

processes under conditions of compromised TIR1/AFB auxin signaling. Compromised 

TIR1/AFB pathway did not have any obvious impact on amyloplasts sedimentation in 

hypocotyl endodermal cells (Supplementary Figure S2). Next, we analyzed PIN3 polarization. 

Without gravity stimulation, PIN3-GFP is distributed symmetrically at both inner and outer 

side of hypocotyl endodermal cells in the wild type (Rakusová et al 2011), or in HS::axr3-1 

hypocotyls with or without heat shock induction (Supplementary Figure S3A, S3B). After 2 



 
 

hours or 6 hours gravistimulation, PIN3-GFP polarized, as manifested by a stronger PIN3-GFP 

signal at lower sides of endodermal cells in wild type and HS::axr3-1 hypocotyls with or 

without heat shock induction (Supplementary Figure S3C - S3H). Similarly, inhibition of 

TIR1/AFB auxin perception by PEO-IAA significantly affected the transcriptional auxin 

signaling in hypocotyls (Supplementary Figure S4A - S4B), but did not affect gravity-induced 

PIN3 polarization (Supplementary Figure S4C - S4H). Thus, steady state PIN3 localization and 

gravity-induced PIN3 polarization does not strongly depend on the TIR1/AFB signaling 

pathway. 

We then investigated the involvement of TIR1/AFB pathway in the PIN3 repolarization 

at later stages of gravitropic response (Rakusová et al., 2016). After 24 hours gravity 

stimulation, PIN3-GFP repolarized to inner side of endodermal cells at the bottom side of the 

wild type hypocotyl (Figure 1D, 1G; Rakusová et al., 2016, 2019). In contrast, when TIR1/AFB 

pathway was inactivated by PEO-IAA or in the heat shock induced HS::axr3-1 hypocotyls, we 

observed persistence of PIN3-GFP asymmetry, with strong signal at the lower side of 

hypocotyl endodermal cells (Figure 1E - 1H). As expected, we observed a normal PIN3-GFP 

polarization in the non-induced HS::axr3-1 hypocotyls (Supplementary Figure S5A, S5B). 

These observations revealed an involvement of the TIR1/AFB auxin signaling in the re-

establishment of symmetric PIN3 distribution during hypocotyl bending termination. 

Exogenous auxin application also induces PIN3 inner-lateralization, similarly as 

observed at later stages of gravitropic response. As shown previously (Rakusová et al., 2016, 

2019), PIN3-GFP relocated to inner side of endodermal cells after 4 hours of auxin (NAA) 

treatment (Figure 2A, 2B, 2H). In contrast, when TIR1/AFB pathway was inactivated by 

applying PEO-IAA, this relocation did not happen as evidenced by a strong PIN3-GFP signal at 

the outer side of endodermal cells (Figure 2C, 2H). Inactivation of TIR1/AFB pathway in the 

HS::axr3-1 hypocotyls yielded the same result: in the heat shock induced hypocotyls, we 

observed a persisting PIN3-GFP signal at the outer side of endodermal cells after 4 hours NAA 

incubation (Supplementary Figure S6A, S6B, S6E); whereas it disappeared in HS::axr3-1 

hypocotyls without heat shock induction (Supplementary Figure S6C, S6D, S6F). This shows 

requirement of TIR1/AFB pathway for auxin-induced PIN3 relocation. 

To test whether activation of TIR1/AFB is sufficient to mediate PIN3 relocation, we 

used an engineered convex-IAA/concave-TIR1 perception system (Uchida et al., 2018). For the 

concave TIR1 (ccvTIR1) and control TIR1 (cTIR1) auxin perception system, ccvTIR1 is less 
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sensitive to natural IAA, but binds to the synthetic cvxIAA, thus activating auxin response; 

whereas cTIR1 is unable to bind to cvxIAA, thus not activating auxin response, but it responds 

normally to natural IAA. The ccvTIR1 and cTIR1 hypocotyls showed a normal gravity response 

and gravity-induced PIN3 polarization (Supplementary Figure S7A - S7H).  The PIN3-GFP 

localization in ccvTIR1 hypocotyls was normal (Figure 2D, 2I). IAA treatment induced PIN3-

GFP repolarization to the inner side of endodermal cells in wild type hypocotyls (Figure 2I; 

Rakusová et al., 2016) as well as in cTIR1 hypocotyls (Supplementary Figure S8A, S8B, S8D), 

however in the ccvTIR1 hypocotyls the effect was less pronounced (Figure 2E, 2I). On the other 

hand, cvxIAA didn’t induce PIN3-GFP repolarization to inner side of endodermal cells in the 

wild type (Figure 2F, 2J) or cTIR1 hypocotyls (Supplementary Figure S8C, S8D) but induced 

strong PIN3-GFP repolarization to the inner side of endodermal cells in ccvTIR hypocotyls 

(Figure 2G, 2J). These results show that a specific activation of the TIR1/AFB pathway is 

sufficient to repolarize PIN3 in hypocotyl endodermis (Figure 2K). 

In conclusion, we demonstrate that genetic or chemical interference with TIR1/AFB 

signaling interferes with auxin-mediated re-establishment of symmetric PIN3 polarization 

during gravitropic response, leading to shoot overbending. Similarly, TIR1/AFB signaling is 

required for auxin-mediated PIN3 re-polarization. Furthermore, activation of TIR1 pathway 

using synthetic cvxIAA-ccvTIR1 pair is sufficient to induce PIN3 re-polarization. Collectively, 

these observations reveal the essential role of SCFTIR1/AFB auxin signaling pathway in mediating 

auxin feedback on auxin transport directionality for bending termination during plant 

adaptive development. 



 
 

 

Figure 2. TIR1/AFB signaling mediates auxin feedback on PIN3 repolarization.  
(A - G) PIN3-GFP localization in DMSO treated wild type hypocotyls (A), 10 µM NAA treated wild type hypocotyls 
(B), 10 µM PEO-IAA and 10 µM NAA co-treated wild type hypocotyls (C), DMSO treated ccvTIR1 hypocotyls (D), 
10 µM IAA treated ccvTIR1 hypocotyls (E), 10 µM cvxIAA treated wild type hypocotyls (F), 10 µM cvxIAA treated 
ccvTIR1 hypocotyls (G). (H - J) Quantification of PIN3-GFP intensity. Wild type hypocotyls treated with PEO-IAA 
(H); IAA treated ccvTIR1 hypocotyls (I); cvxIAA treated ccvTIR1 hypocotyls (J). The ratio was calculated by dividing 
the PIN3-GFP intensity at inner and outer side of hypocotyl endodermal cells. Data and error bars represent the 
mean ± SD. N = 15, ** P < 0.05 determined by Student’s test. Arrowheads depict PIN3-GFP at outer side of 
endodermal cells. Scale bar = 20 µm. (K) Schematic diagram of auxin receptor TIR1/AFB mediated PIN3 
repolarization for hypocotyl bending termination. At later stage of shoot gravitropism (24 hours), TIR1/AFB 
mediates auxin perception facilitates the repolarization of PIN3 to inner side of endodermal cells at the lower 
hypocotyl side, to equalize auxin distribution and thus terminate the hypocotyl bending. EN: endodermal cells; 
blue lines indicate PIN3 distribution at endodermal cells; blue arrow indicates auxin-TIR1/AFB mediated PIN3 
repolarization from the outer side (blue dashed line) to inner side (blue solid line) at lower side hypocotyl 
endodermal cells; black arrow indicates gravity direction. 
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3.3 Materials and Methods 

Plant material 

Plant material used was as follows: Col-0, PIN3::PIN3-GFP (Col-0 background) (Žádníková et 

al., 2010), DR5rev::GFP (Col-0, Friml et al., 2003), abp1-c1 (Col-0) and abp1-TD1(SK21825, Col-

4) (Gao et al., 2015), HS::axr3-1 (Col-0, Knox et al., 2003), ccvTIR1 and cTIR1 (tir1-1 afb2-3, 

Uchida et al., 2018). HS::ax3-1, ccvTIR1 and cTIR1 mutant combined with PIN3::PIN3-GFP were 

generated through genetic crosses. 

Growth conditions 

Seeds were grown on plates containing normal half-strength Murashige and Skoog medium 

and stratified at 4℃ for 3 days. Plates were placed vertically in the growth room to induce 

germination under light for 16 hours, and then plates were coved by aluminum foil and kept 

growing at 21℃ for 3 days. Light sources used were Philips GreenPower LED production 

modules combined with deep red (660 nm) / far red (720 nm) / blue (455 nm), with a photon 

density of about 140 µmol m-2 s-1. 

Hypocotyl gravitropic bending assay 

For gravity stimulation, 3-day-old etiolated seedlings were turned 90 degree, and plates were 

scanned (EPSON V700) at the indicated time or after 24 hours. The bending angle was 

measured using ImageJ. The wild type and HS::axr3-1 seedlings were both heat shock induced 

at 37℃ or not induced at room temperature for 40 minutes as described previously (Fendrych 

et al., 2016). After heat shock induction, the same plates were turned 90 degree for 24 hours 

and bending angle was measured.  

PEO-IAA treatment for DR5rev::GFP quantification in hypocotyl 

3-day-old etiolated DR5rev::GFP seedlings were pretreated with 10 µM PEO-IAA or the same 

amount of DMSO for 5 hours in darkness, then the seedlings were transferred to new plates 

supplied with 10 µM NAA for another 2 hours in darkness. DR5rev::GFP signal in hypocotyl 

was captured and quantified. 

PEO-IAA treatment for bending assay and PIN3-GFP quantification 

For bending assay, 3-day-old etiolated wild type seedlings were pretreated with 10 µM PEO-

IAA or DMSO for 2 hours, then the same plates were turned 90 degree for 24 hours, bending 

angle was measured. For PIN3-GFP quantification, wild type seedlings were pretreated with 

10 µM PEO-IAA or DMSO for 5 hours, then the same plates were turned 90 degree for 2 hours, 

6 hours or 24 hours, subsequently the PIN3-GFP localization in hypocotyl endodermal cells 
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was captured and GFP signal intensity was quantified. For the co-treatment with auxin, wild 

type seedlings pretreated with PEO-IAA or DMSO for 2 hours, the pretreated seedlings were 

transferred to new plates supplied with 10 µM NAA and 10 µM PEO-IAA or same amount of 

DMSO for another 4 hours in darkness, then PIN3-GFP localization in hypocotyl endodermal 

cells was detected immediately and GFP signal intensity was quantified. 

Quantification of PIN3-GFP in HS::axr3-1 hypocotyls as well as ccvTIR1 and cTIR1 hypocotyls 

3-day-old etiolated wild type and HS::axr3-1 seedlings were both incubated at 37℃ for heat 

shock induction or at room temperature without induction for 40 minutes (Fendrych et al., 

2016). 4 hours after induction, seedlings were gravistimulated for 2 hours, 6 hours and 24 

hours, PIN3-GFP localization in hypocotyl endodermal cells was captured and GFP signal 

intensity was quantified. For auxin treatment, heat shock induced or non-induced wild type 

and HS::axr3-1 seedlings were transferred to new plates with 10 µM NAA or same amount of 

DMSO for another 4 hours in darkness, then PIN3-GFP localization in hypocotyl endodermal 

cells was captured, GFP signal intensity was quantified. 

Similarly, 3-day-old etiolated wild type, ccvTIR1, cTIR1 seedlings were gravistimulated for 6 

hours or 24 hours respectively, then PIN3-GFP localization in hypocotyl endodermal cells was 

captured, GFP signal intensity was quantified. For auxin-induced PIN3-GFP quantification, 3-

days-old etiolated wild type, ccvTIR1 and cTIR1 hypocotyls were transferred to new plates 

with DMSO, 10 µM IAA or 10 µM cvxIAA, respectively. Then seedlings were incubated in 

darkness for 4 hours, PIN3-GFP localization in hypocotyl endodermal cells was captured, and 

GFP signal intensity was quantified. 

Amyloplasts sedimentation analysis 

3-day-old etiolated seedlings were treated with DMSO, PEO-IAA, NAA, and cvx-IAA or heated 

shock induced as described above, subsequently seedlings were gravity stimulated for 10 

minutes, 30 minutes, 1 hour, and 2 hours or without gravity stimulation. The seedlings were 

fixed with FAA solution (10% formaldehyde, 5% acetic acid and 50% ethanol; Fukaki et al., 

1998) at 4°C overnight. After fixation, seedlings were rinsed in 50% ethanol three times, and 

then seedlings were stained with Lugol solution (Sigma-Aldrich) for 15 minutes in darkness. 

Seedlings were mounted on slides with clearing solution (chloral hydrate : glycerol : water 

(8:1:2, W:V:V) ) for 2 hours at room temperature and then the images were captured by 

OLYMPUS BX53 microscopy. 
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Microscopy  

All the confocal images were obtained by LSM 700 or LSM 800 inverted microscopy (Zeiss, 

http://www.zeiss.com). All the confocal experiments were performed in the dark to avoid any 

light effects on PIN3 polarization. In any single experiment, the settings were identical for all 

samples. 

Quantitation of PIN3-GFP intensity 

All measurements were performed using ImageJ software. For the quantification of PIN3-GFP 

polarization, the intensity of PIN3-GFP at endodermal cells was measured (Rakusová et al., 

2019). After gravity stimulation, the ratio was calculated between the outer side of 

endodermal cells at lower and the upper side of horizontally placed hypocotyls (Rakusová 

et al., 2019). For auxin and co-treatment with other chemicals, the ratio was calculated 

between the inner side and outer side of endodermal cells (Rakusová et al., 2019). In all cases, 

at least 15 hypocotyls were measured and the ratio was calculated from the mean. 
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3.5 Supplementary Figures 

 
Supplementary Figure S1. ABP1 is not involved in hypocotyl gravitropic bending termination. 
(A) Time-line of wild type hypocotyls bending kinetics and PIN3 polarization events, data adapted from Rakusová 
et al. (2016). Arrowheads depict PIN3-GFP at outer sides of endodermal cells. Arrow indicates gravity direction. 
Scale bar = 20 µm. (B)  Bending angle of abp1 hypocotyls after 24 hours gravistimulation. n = 30 - 40. (C) Bending 
angle of non-induced HS::axr3-1 hypocotyls after 24 hours gravitimulation. n = 30 - 40.   



 
 

 
Supplementary Figure S2. Modification of TIR1/AFB pathway doesn’t affect amyloplasts sedimentation in 
Arabidopsis hypocotyl endodermal cells.  
3 days old etiolated wild type (WT, Col-0), ccvTIR1, cTIR1 seedlings were transferred to new Arabidopsis medium 
plates supplied with DMSO, 10 µM NAA, 10 µM PEO-IAA, 10 µM cvxIAA. Seedlings were gravity stimulated for 
10 minutes, 30 minutes, 1 hour and 2 hours or without gravity stimulation. The heat-induced or non-induced 
HS::axr3-1 seedlings were also gravity stimulated for 10 minutes,  30 minutes, 1 hour and 2 hours or without 
gravity stimulation. The amyloplast sedimentation in endodermal cells was observed. Arrowheads depict the 
amyloplast at endodermal cells. Arrow indicates gravity direction. Scale bar = 20 µm.  
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Supplementary Figure S3. Auxin-induced AUX/IAA protein degradation is not required for gravity-induced 
PIN3 polarization. 
 (A - B) PIN3-GFP localization in non-induced HS::axr3-1  hypocotyls (A) and heat-shock induced HS::axr3-1 
hypocotyls (B) without gravity stimulation. (C - D)  PIN3-GFP localization in non-induced HS::axr3-1 hypocotyls 
(C) and heat shock induced HS::axr3-1 hypocotyls (D) after 2 hours gravity stimulation. (E - F)  PIN3-GFP 
localization in non-induced HS::axr3-1 hypocotyls (E) and heat shock induced HS::axr3-1 hypocotyls (F) after 6 
hours gravity stimulation. (G - H) Quantification of PIN3-GFP intensity in non-induced HS::axr3-1 hypocotyls (G) 
or heat shock induced HS::axr3-1 hypocotyls (H) after 2 hours or 6 hours gravistimulation. The ratio was 
calculated by dividing the PIN3-GFP intensity at outer side of endodermal cells between lower and upper side of 
hypocotyls. Data and error bars represent the mean ± SD. n = 15, ** P < 0.05 determined by Student’s t-test. 
Arrowheads depict PIN3-GFP at outer sides of endodermal cells. Arrow indicates gravity direction. Scale bar =20 
µm  



 
 

 
Supplementary Figure S4. Compromised TIR1/AFB signaling doesn’t affect gravity-induced PIN3 polarization. 
 (A) DR5rev::GFP signal in hypocotyls upon DMSO treatment, 10 µM NAA and DMSO co-treatment, 10 µM NAA 
and 10 µM PEO-IAA co-treatment. Scale bar = 20 µm. (B) Quantification of DR5rev::GFP signal in hypocotyls. 
Data and error bars represent the mean ± SD. n = 15, ** P < 0.05 determined by Student’s t-test.  (C) PIN3-GFP 
localization in non-gravity stimulated wild type hypocotyls upon 10 µM PEO-IAA treatment.  (D - E) PIN3-GFP 
localization in DMSO treated wild type hypocotyls (D), 10 µM PEO-IAA treated wild type hypocotyls (E) after 2 
hours gravity stimulation. (F - G) PIN3-GFP localization in DMSO treated wild type hypocotyls (F), 10 µM PEO-IAA 
treated wild type hypocotyls (G) after 6 hours gravity stimulation. (H) Quantification of PIN3-GFP intensity in 
PEO-IAA treated wild type hypocotyls after 2hours or 6 hours gravistimulation. The ratio was calculated by 
dividing the PIN3-GFP intensity at outer side of endodermal cells at the lower and upper side of hypocotyls. Data 
and error bars represent the mean ± SD. n = 15, ** P < 0.05 determined by Student’s t-test. Arrowheads depict 
PIN3-GFP at outer sides of endodermal cells. Arrow indicates gravity direction. Scale bar = 20 µm.  
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Supplementary Figure S5. Normal PIN3-GFP repolarization in non-induced HS::axr3-1 hypocotyls after 24 
hours gravity stimulation. 
(A) PIN3-GFP localization in non-induced HS::axr3-1 hypocotyls after 24 hours gravity stimulation. (B) 
Quantification of PIN3-GFP intensity in non-induced HS::axr3-1 hypocotyls. The ratio was calculated by dividing 
the PIN3-GFP intensity at outer side of endodermal cells between lower and upper side of hypocotyls. Data and 
error bars represent the mean ± SD. n = 15. Arrowheads depict PIN3-GFP at outer sides of endodermal cells. 
Arrow indicates gravity direction. Scale bar = 20 µm. 
 
 
 

 
Supplementary Figure S6. Auxin-induced AUX/IAA protein degradation is required for auxin-mediated PIN3 
repolarization. 
 (A - D) PIN3-GFP localization in DMSO or 10 µM NAA treated heat shock induced HS::axr3-1 hypocotyls (A - B); 
DMSO or NAA treated non-induced HS::axr3-1 hypocotyls (C - D). (E - F) Quantification of PIN3-GFP intensity 
after 4 hours NAA treatment in heat shock induced HS::axr3-1 hypocotyls (E) and non-induced HS::axr3-1 
hypocotyls (F). The ratio was calculated by dividing the PIN3-GFP intensity at inner and outer side of hypocotyl 
endodermal cells. Data and error bars represent the mean ± SD. n = 15, ** P < 0.05 determined by Student’s t-
test. Arrowheads depict PIN3-GFP at outer side of endodermal cells. Scale bar = 20 µm.  



 
 

 
Supplementary Figure S7. Normal gravity response and gravity-induced PIN3 polarization in ccvTIR1 and cTIR1 
hypocotyls. 
(A - F) PIN3-GFP localization in non-gravity stimulated ccvTIR1 hypocotyls (A) and cTIR1 hypocotyls (B); PIN3-GFP 
in ccvTIR1 hypocotyls (C) and cTIR1 hypocotyls (D) after 6 hours gravity stimulation; PIN3-GFP in ccvTIR1 
hypocotyls (E) and cTIR1 hypocotyls (F) after 24 hours gravity stimulation.  (G) Quantification of bending kinetics 
of ccvTIR1 and cTIR1 hypocotyls. Data and error bars represent the mean ± SD. n = 30 - 40 for bending assay. 
(H) Quantification of PIN3-GFP intensity after 6 hours and 24 hours gravistimulation in ccvTIR1 and cTIR1 
hypocotyls. The ratio was calculated by dividing the PIN3-GFP intensity at outer side of endodermal cells at the 
lower and upper side of hypocotyls. Data and error bars represent the mean ± SD. n = 15, ** P < 0.05 determined 
by Student’s t-test. Arrowheads depict PIN3-GFP at outer sides of endodermal cells. Arrow indicates gravity 
direction. Scale bar = 20 µm.  
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Supplementary Figure S8. Normal auxin-induced PIN3 repolarization in cTIR1 mutant. 
(A - C) PIN3-GFP localization in DMSO treated cTIR1 hypocotyls (A), 10 µM IAA treated cTIR1 hypocotyls (B) and 
10 µM cvxIAA treated cTIR1 hypocotyls (C). (D) Quantification of PIN3-GFP intensity in cTIR1 hypocotyls. The 
ratio was calculated by dividing the PIN3-GFP intensity at inner and outer side of hypocotyl endodermal cells. 
Data and error bars represent the mean ± SD. n = 15, ** P < 0.05 determined by Student’s t-test. Arrowheads 
depict PIN3-GFP at outer side of endodermal cells. Scale bar = 20 µm. 
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4.1 Introduction 

The plant hormone auxin acts as a key regulator of plant development. It modulates 

plant growth and development by controlling multiple cellular processes. The complexity of 

auxin response is illustrated by the fact that numerous genes are controlled by auxin, and 

these auxin-responsive genes are differentially expressed across tissues and organs (Paponov 

et al., 2008; Salehin et al., 2015). Auxin regulates gene transcription through the canonical 

TIR1/AFB-Aux/IAA-ARF nuclear signaling pathway, and this pathway allows changes in 

transcription in response to auxin in a timeframe of 3 to 5 minutes (McClure et al., 1989; Abel 

and Theologis, 1996). However, there are recent demonstrations of rapid auxin actions 

depending on the TIR1/AFB receptor that are too fast to involve transcriptional regulation, 

such as the fast auxin-regulated root growth (Fendrych et al., 2018) or root hair elongation. 

Thus, TIR1/AFB auxin receptors, besides well-characterized mechanism of transcriptional 

regulation must have also a so far unknown non-transcriptional branch. 

In addition, over decades of auxin research, there were repeated observations about 

rapid cellular auxin effects including plasma membrane hyperpolarization, H+-pump 

activation, cytosolic calcium or pH changes, protoplast swelling and others that were never 

connected to transcriptional responses or TIR1/AFB-Aux/IAA pathway (Badescu and Napier 

2006). Prominent among those has been regulation of clathrin-mediated endocytosis by auxin 

as it clearly occurs independently of TIR1/AFB pathway and may serve as a part of feed-back 

mechanism between auxin and its intercellular flow (Paciorek et al., 2005; Robert et al., 2010). 

Also a newly identified auxin analogue, Pinstatic acid (PISA), does not require TIR1/AFB 
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receptors for its action, but still triggers distinct auxin responses including the effect on 

endocytosis and auxin transport (Oochi et al., 2019). All these observations show that a fast 

auxin response distinct from the well-studied nuclear TIR1/AFB-mediated mechanism exists 

and involves other, unknown modes of auxin perception (Paciorek et al., 2005; Robert et al., 

2010; Gallei et al., 2020). The cell surface-localized TMK receptor-like kinases may contribute 

to this uncharacterized auxin signaling (Xu et al., 2014; Cao et al., 2019), but it remains 

uncertain and other knowledge on the mechanism of auxin perception and downstream 

cellular auxin effects is lacking. 

Another essential level of regulation in auxin action is the directional auxin transport 

between cells (Vanneste and Friml, 2009). The establishment of auxin gradients and local 

maxima and minima in plant tissues (Vanneste and Friml, 2009) can be attributed to the local 

auxin biosynthesis (Morffy and Strader, 2020) and the directional, intercellular auxin 

transport (Adamowski and Friml, 2015). The directionality of auxin flow through tissues is 

achieved by the action of the PIN-FORMED (PIN) auxin efflux transporters and the polarity of 

their cellular localization at the plasma membrane (Petrášek et al., 2006; Wiśniewska et al., 

2006). PIN polarization and abundance at plasma membrane depends on various vesicle 

transport-related processes, such as GNOM-mediated constitutive recycling and clathrin-

mediated constitutive endocytosis (Geldner et al., 2001, 2003; Dhonukshe et al., 2007; Glanc 

et al., 2018), de novo secretion (Salanenka et al., 2018) and degradation in lytic vacuoles (Abas 

et al., 2006; Kleine-Vehn et al., 2008). Additionally, kinase-mediated PIN phosphorylation is 

also a key mechanism for PIN polarity or activity regulation (Zhang et al., 2010; Barbosa et al., 

2018; Xiao and Offringa, 2020; Tan et al., 2020). The PIN-dependent auxin transport network 

and its subcellular dynamics have emerged as a prominent mechanism integrating multitude 

of endogenous (such as plant hormones) and exogenous (including light and gravity) signals 

and translating them into the auxin distribution-mediated development (Vanneste and Friml, 

2009; Adamowski and Friml, 2015). 

Auxin itself has an impact on PIN-mediated transport. A positive feedback between 

auxin signaling and transport directionality is a key pre-requisite of the so-called auxin 

canalization hypothesis (Sachs, 1981; Sauer et al., 2006; Wabnik et al., 2010, 2011). For this 

feedback regulation, auxin triggers coordinated PIN polarization to gradually establish 

directional auxin transport between source and sink tissue (Wabnik et al., 2010, 2011; Prát et 

al., 2018). Auxin canalization underlines several self-organizing processes, such as the vascular 



 
 

strands formation (Sachs, 1981; Govindaraju et al., 2020), regeneration after wounding (Sauer 

et al., 2006; Mazur et al., 2016, 2020a, b), embryogenesis (Robert et al., 2013), shoot and root 

organogenesis (Benková et al., 2003; Heisler et al., 2005; Bhatia et al., 2016), and shoot 

gravitropic bending termination (Rakusová et al., 2016, 2019; Han et al., 2020). The genetic 

and cell biological studies suggested that auxin effect on PIN endocytic trafficking is central 

for canalization (Sauer et al., 2006; Paciorek et al., 2005; Robert et al., 2010; Zhang et al., 

2020; Mazur et al., 2020a,b). Nonetheless, the auxin signaling and downstream cellular 

mechanism, by which auxin regulates both PIN polarity and subcellular trafficking crucial for 

the self-organizing canalization processes, still remains elusive. 

Here, we applied a rapid phosphoproteomics approach to obtain components of the 

fast, non-transcriptional auxin responses. Among number of identified proteins that were 

rapidly phosphorylated in a TIR1/AFB-dependent and -independent manner, we further 

characterized the Myosin XI and MadB2 myosin binding proteins. We show that auxin-

phosphorylation of the myosin complex is sufficient and crucial for auxin feedback on PIN 

auxin transporter trafficking and polarization ultimately involved in auxin canalization-

mediated developmental processes such as flexible vasculature formation or regeneration. 

Overall, our study uncovers novel components of, so far elusive rapid auxin action and 

identifies a crucial part of the mechanism, by which auxin regulates its own transport during 

plant development. 

4.2 Results 

4.2.1 A novel and rapid phosphorylation response to auxin 

Several responses to auxin occur within minutes or faster, and are too quick to be 

mediated by gene expression changes (Kubeš and Napier, 2019; Fendrych et al., 2018). For 

similarly rapid responses described for animal steroid hormones (Steinman and Trainor, 

2010), or for osmotic stress in Arabidopsis (Stecker et al., 2014), changes in protein 

phosphorylation has been detected as prominent downstream signaling events. Therefore, 

we tested whether auxin can trigger rapid changes in protein phosphorylation. To maximize 

the depth of detecting phosphopeptides in plant extracts, we compared a number of protein 

extraction and phosphopeptide enrichment strategies. We found Filter-Aided Sample 

Preparation (FASP) to yield best results, identifying most proteins with the least co-

purification of nucleic acids (Figure 1A; Supplementary Figures S1A – S1J). We next combined 
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FASP with various phosphopeptide enrichment strategies, and obtained superior recovery 

with magnetic Ti4+ beads, identifying nearly 1500 phosphopeptides from Arabidopsis root 

extracts (Supplementary Figures S1A, S1B, S1D). When compared with alternative methods, 

Ti4+ enrichment did not show a bias for charged peptides, yet mostly identified phospho-

serines and -threonines (Supplementary Figures S1E – S1J). 

We optimized the protocol to allow for a 2-minute treatment of Arabidopsis seedlings. 

We used 100 nM of the natural auxin Indole-3-Acetic Acid (IAA), and identified 

phosphopeptides by mass spectrometry (Figure 1A). This resulted in about 3100 

phosphopeptides which were subjected to a sensitive hybrid data analysis approach 

(Nikonorova et al., 2018) that allows detection of differential abundance across samples 

despite missing values. The 2157 remaining phosphopeptides after filtering were subjected 

to FDR-controlled statistical comparison across treatments, resulting in about 10% 

differentially abundant phosphopeptides (FDR ≤ 0.05; Figure 1B). Global analysis showed that 

IAA mainly induces hyperphosporylation, while limited hyperphosphorylation was detected 

(Figure 1B). The differential phosphopeptides map to 338 proteins (Supplementary Table S1), 

and among these are several proteins for which auxin-dependent phosphorylation has 

previously been shown (SNX, AHA2; Figure 1C). Importantly, comparison with an earlier 

phosphoproteome on roots treated with 10 µM NAA for 30 minutes showed that most of the 

early phosphosites are unique (Figure 1C). Comparison of the proteins that are differentially 

phosphorylated with genes that are transcriptionally regulated by auxin confirmed that the 

phosphoresponse targets a different and unique set of proteins (Figure 1D). Thus, auxin 

induces a very rapid phosphorylation of number of proteins within 2 minutes or shorter.  

We next addressed whether the rapid phosphorylation response is mediated by 

TIR1/AFB pathway using either PEO-IAA, an anti-auxin for the TIR1 receptor (Hayashi et al., 

2008) or the orthologous cvxIAA/ccvTIR1 system that specifically activates TIR1/AFB signaling 

(Uchida et al., 2018). Notably, cvxIAA induced some changes in phosphorylation, but the 

overlap with IAA-induced phosphorylation changes was minimal (Figures 1B, 1E; 

Supplementary Figures S2A, S2B) suggesting that a substantial portion of the auxin 

phosphoresponse was TIR1-independent. PEO-IAA also induced changes in phosphorylation 

within 2 minutes (Figures 1B, 1E), but these again overlapped minimally with IAA-dependent 

or TIR1-dependent phosphosites (Figure 1E; Supplementary Figures S2A, S2B). This suggests 



 
 

that the auxin perception site cannot be efficiently inhibited by PEO-IAA and provides 

independent confirmation that the response is partly independent of TIR1/AFB. Thus, we 

identified a novel, ultra-rapid response to auxin that leads to the differential phosphorylation 

of a range of proteins, and that is largely mediated through yet unknown auxin perception 

and signaling mechanism. 

4.2.2 Auxin-mediated phosphorylation of Myosin XI and Myosin-
binding proteins 

The 338 proteins (Supplementary Table S1) predominately reside in the nucleus, 

cytosol and plasma membrane (Supplementary Figure S3A). The residues targeted by auxin-

dependent phosphorylation were mostly serines (Supplementary Figure S3B). Some of the 

targets have reported roles in membrane trafficking (e.g. SYP132, BIG3, DRP2A/B, EPSIN2), 

microtubule regulation (e.g. MAP70-1, TOR1, NEK5) or chromatin biology (e.g. SUVR5, TPL, 

BRM, HDT1), but have not previously been associated with auxin-dependent processes. The 

candidates also include PDK1, an AGC kinase that activates PIN proteins (Xiao and Offringa, 

2020; Tan et al., 2020). Thus, the phosphoproteome dataset represents a rich starting point 

for exploring fast auxin responses. Interestingly, among the identified candidates 

(Supplementary Tab S1), we found Myosin XIK, which is involved in trafficking processes 

(Peremyslov et al., 2008), was phosphorylated follwoing auxin treatment. In the globular tail 

domain (GTD) of Myosin XIK, the serine at position 1234 (S1234) was hyper-phosphorylated 

upon auxin treatment, while this site was not phosphorylated upon PEO-IAA treatment 

(Figure 2A). Minor differential phosphorylation was observed with cvxIAA treatment on 

ccvTIR1, suggesting a (partial) dependence on TIR1 (Figure 2A). Protein alignment revealed 

that the phosphorylation site is also conserved in other myosin XI proteins (Supplementary 

Figure S4A). In addition to Myosin XIK, we also found the myosin binding protein 

MadB2/PHOX2 to be hyper-phosphorylated upon auxin treatment (Figure 2B).  

The Arabidopsis genome contains 17 myosin members that are highly conserved 

(Reddy et al., 2001; Avisar et al., 2009). Myosin proteins have been shown to play roles in 

vesicle trafficking and endocytosis (Prokhnevsky et al., 2008; Peremyslov et al., 2008), auxin 

transport (Abu-Abied et al., 2019), auxin response (Ojangu et al., 2018) and gravitropism 

(Okamoto et al., 2015; Talts et al., 2016). MadB2 has been shown to bind to Myosin XIK but 

its function in plant development is less characterized (Kurth et al., 2017). 



77 
 

To examine auxin-mediated phosphorylation of Myosin XIK and XIF, we fused the 

globular tail domain (GTD) of myosin XIK and XIF with an RFP-tag, expressed this construct 

under the 35S promoter (35S::MyosinXIKWT, 35S::MyosinXIFWT) and transformed it into both 

Col-0 and myosin xik xif  plants. We then treated 7 days old 35S::MyosinXIKWT and 

35S::MyosinXIFWT (Col background) seedlings with 10 µM NAA for 30 minutes and collected 

the samples. Western blot analysis showed that Myosin XIK/XIF were more phosphorylated 

under auxin treatment (Figures 2C, 2D; Supplementary Figure 4B) thereby independently 

confirming the mass spectrometry data and extending this potential regulation to Myosin XIF. 

4.2.3 Myosin XI is required for auxin-senesitive PIN endomembrane 
trafficking 

PIN polar localization is tightly regulated by its constitutive endocytic trafficking 

between plasma membrane and endosomes (Geldner et al., 2001, 2003; Dhonukshe et al., 

2007; Kitakura et al., 2011; Glanc et al., 2018). We hence tested the involvement of Myosin 

XI proteins in PIN trafficking, which can be visualized by PIN intracellular aggregation into BFA 

bodies upon treatment with the trafficking inhibitor Brefeldin A (BFA) (Geldner et al., 2001, 

2003). Upon BFA treatment, the myosin xik xif double mutant displayed less PIN1 aggregation 

into BFA bodies compared to the wild type (Figures 3A, 3B), implying defective PIN1 endocytic 

trafficking. Auxin shows an inhibitory effect on BFA body formation (Paciorek et al., 2005), 

however, myosin xik xif double mutant was less sensitive to auxin treatment (Figures 3A, 3B). 

We next performed FM4-64 uptake assays (Bolte et al., 2004) to monitor 

endomembrane vesicles trafficking in myosin xik xif mutant. Quantification of FM4-64 uptake 

revealed a significantly reduced FM4-64 uptake in myosin xik xif mutant compared to the wild 

type (Figures 3C, 3D). Furthermore, auxin exhibited no additional inhibitory effect on FM4-64 

uptake in myosin xik xif mutant (Figures 3C, 3D), indicating that Myosin XI is involved in auxin-

mediated PIN endomembrane trafficking (Figures 3A – 3D; Paciorek et al., 2005). 

4.2.4 Auxin-mediated Myosin XI phosphorylation regulates PIN 
endomembrane trafficking 

To further investigate the physiological relevance of the S1234 or S1256 

phosphorylation site for Myosin XIK and Myosin XIF, respectively (Figures 2A - 2D), we 

mutated the Serine to Alanine to prevent phosphorylation, or to Aspartic acid to mimic 

phosphorylation. The resulting contracts MyosinXIKS1234A, MyosinXIKS1234D, MyosinXIFS1256A 



 
 

and MyosinXIFS1256D were fused to a RFP tag, expressed under the 35S promoter and were 

introduced into Col-0 and myosin xik xif mutant plants. We then harvested the T3 seedlings 

of 35S::MyosinXIKS1234A, 35S::MyosinXIKS1234D, 35S::MyosinXIFS1256A and 35S::MyosinXIFS1256D 

plants (Col-0 background) to verify their expression in these phospho-deficient and phosphor-

mimic mutants. Western blot analysis showed that both phospho-deficient and phospho-

mimic mutations of Myosin XIK/XIF were well expressed in plants (Figure 4A; Supplementary 

Figures S5A - S5D).  

We next examined whether altered the phosphorylation status of Myosin XIK/XIF 

contribute to PIN trafficking. The phospho-deficient mutants (Col-0 background) exhibited 

less BFA bodies in the root (Figure 4B; Supplementary Figure S6A), less FM4-64 uptake (Figure 

4C; Supplementary Figure S6B) and were also less sensitive to auxin treatment (Figures 4B, 

4C; Supplementary Figures S6A, S6B). However, the phospho-mimic mutants showed normal 

BFA body formation, FM4-64 uptake and responded normally to exogenously applied auxin 

(Figure 4B, 4C; Supplementary Figures S6A, S6B). Although the phospho-mimic mutations 

partially complemented the defective BFA body formation and FM4-64 uptake in myosin xik 

xif mutant, the phospho-deficient mutations did not restore these defects (Supplementary 

Figures S7A - S7C; Supplementary Figures S8A - S8C). 

Taken together, our results reveal that Myosin XI proteins are involved in PIN 

trafficking, and auxin-mediated phosphorylation of Myosin XI protein is a critical step for their 

function in PIN trafficking. 
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Figure 1. Phosphoproteomic analysis reveals rapid phosphorylation-dependent auxin response.  
(A) Schematic depiction of the phosphopeptide enrichment protocol. Root tips of 5 day old seedlings were 
treated with either 100 nM IAA, 10 µM PEO-IAA on Col-0 or 1 µM cvxIAA on cTIR/ccvTIR1. Root tips were 
harvested, proteins were extracted and submitted to the optimized FASP-C18-Ti4+ phosphopeptide enrichment 
protocol.  
(B) Histograms depict log2 fold changes of significantly regulated phosphopeptides (FDR ≤0.05) in each 
treatment compared to control treatment.  
(C) Comparison between IAA dataset including differentially regulated phosphopeptides (FDR ≤0.05) ,unique 
phosphopeptides for IAA and unique phosphopeptides for  mock and previously published phosphoproteomics 
on 2 hours stimulated roots with 10µNAA (Zhang et.al. 2013). Inserts in graphs depict log2 fold changes from 
Zhang et.al. (2013).  
(D) Comparison between IAA differentially regulated phosphopeptides (FDR ≤0.05) and 30 min 1 µM IAA treated 
root transcriptome from Lewis et.al (2013). 
(E) Venn diagram of overlapping significantly regulated phosphopeptides (FDR ≤0.05).  

 

 



 
 

 

Figure 2. Identification of Myosin XI-K and MadB2 as phosphotargets of auxin signaling. 
(A) Relative intensity of MS peak corresponding to the phosphopeptide surrounding S1234 in Myosin XI-K 
(sequence indicated) across various treatments (x-axis).  
(B) Relative intensity of MS peak corresponding to the phosphopeptide surrounding S263 in MadB2/PHOX2 
(sequence indicated) across various treatments (x-axis). Each dot corresponds to a single biological replicate. 
The phosphosites are indicated relative to protein domains in bottom panels. 
(C - D) Phosphorylation of myosin XI proteins upon auxin treatment by immunoblot assay. 7 days old whole 
seedlings were treated with 10 µM NAA or DMSO for 30 minutes. Whole plants were harvested and used for 
western blot assay. 
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Figure 3. Myosin XI proteins are involved in auxin-mediated PIN trafficking.  
(A) Representative images showing PIN1 trafficking in myosin xik xif mutant root.   
(B) Quantification of BFA bodies in myosin xik xif root. The BFA body was counted in each root, and average BFA 
bodies were calculated. Data and error bars represent the mean ± SD. n > 15, ** P < 0.05 determined by Student’s 
t-test. 
(C) Representative images showing FM4-64 uptake in myosin xik xif mutant root.  
(D) Quantification of FM4-64 uptake in myosin xik xif mutant root. The ratio was calculated by dividing signal 
between cytoplasm and plasm membrane. Data and error bars represent the mean ± SD. n = 10, more than 50 
cells were quantified, ** P < 0.05 determined by Student’s t-test. Arrowheads indicate BFA body in root. Scale 
bars, 20 µm. 

4.2.5 Auxin-mediated phosphorylation of Myosin is required for auxin-
meidated feedback on PIN polarity 

Next, we investigated the requirement of Myosin XIK/XIF for auxin to repolarize PINs 

(Sauer et al., 2006; Prát et al., 2018). In line with previous results (Sauer et al., 2006; Prát et 

al., 2018), auxin induced a relocalization of PIN1 from the basal to the lateral side of 

endodermal cells in wild type roots (Figures 5A, 5B). However, auxin failed to induce PIN1 

lateralization in the myosin xik xif mutant (Figures 5A, 5B).  

We then tested the auxin impact on PIN1 repolarization in phospho-deficient and 

phospho-mimic mutants (Col background). Whereas auxin-mediated PIN1 repolarization in 

phospho-mimic mutants was similar to wild type, the phospho-deficient mutants were less 

responsive to exogenous auxin (Figures 5C, 5D; Supplementary Figure S9). In addition, the 

defective auxin-mediated PIN1 repolarization in myosin xik xif mutant, was rescued by 

introducing the phospho-mimic mutations in myosin xik xif mutant background, but not by 

the phospho-deficient mutations (Supplementary Figures S10A - S10C). This suggests that 

auxin-mediated phosphorylation is critical for the action of Myosin XIK/XIF while controlling 

dynamic PIN1 localization. 



 
 

4.2.6 MadB2 myosin binding proteins are required for auxin-mediated 
regulation of PIN polarity and trafficking 

Multiple Myosin protein receptors or binding proteins with unknown function have 

been identified in plants (Peremyslov et al., 2013; Kurth et al., 2017). MadB2, a myosin binding 

protein, was previously shown to directly interact with Myosin XIK (Kurth et al., 2017), and 

was identified in our study to be hyper-phosphorylated upon auxin treatment (Figure 2B; 

Supplementary Tab S1). The MadB2 protein has three homologs that appear to act 

redundantly in root hair growth (Kurth et al., 2017). We thus investigated the madb2 

quadruple mutant (madb 4ko) for defects related to altered auxin responses and found 

decreased primary root growth and reduced auxin-dependent root growth inhibition 

(Supplementary Figures S11A - S11C). Furthermore, while the hypocotyl gravitropic response 

was normal (Supplementary Figure S11D), hypocotyl basipetal auxin transport was reduced 

(Supplementary Figure S11E). In the madb 4ko mutant, we did not observe any differences in 

number of loops nor in the distribution of the defects between the loops. However it had 

significantly more leaves with ectopic branches (Supplementary Figures S11F - S11H). These 

phenotypes strongly suggest a role for MadB2 proteins in polar auxin transport, thus we 

wondered whether the MadB2 family contributes to PIN polarity regulation and trafficking. 

We first tested auxin-mediated PIN1 lateralization in madb 4ko mutant root. Auxin treatment 

failed to repolarize PIN1 to the lateral side of endodermal cells in madb 4ko mutant 

(Supplementary Figures S12A, S12B). Under BFA treatment, madb 4ko mutant showed less 

BFA bodies and were less sensitive to auxin application (Supplementary Figures S12C, S12D). 

Quantification of FM4-64 uptake demonstrated that vesicle trafficking was impaired in madb 

4ko mutant and auxin treatment showed no additional inhibitory effect on FM4-64 uptake in 

madb 4ko mutant (Supplementary Figures S12E, S12F).  

Hence, our data further support that MadB2 family also play an essential role for PIN 

trafficking and polarity regulation. However, other myosin binding proteins may contribute 

to PIN polarity regulation in shoot gravitropism (Kurth et al., 2017). 

4.2.7 Auxin-mediated Myosin phosphorylation in shoot gravitropic bending 
termination 

Auxin feedback on PIN polarity has also been shown crucial during hypocotyl 

gravitropic bending termination. In this context, auxin leads to relocation of PIN3 protein to 
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83 
 

the inner lateral sides of shoot endodermis cells thus equalizing auxin gradient and 

asymmetric growth (Rakusová et al., 2016, 2019; Han et al., 2020). Indeed, the myosin xik xif 

mutant showed hypocotyl hyperbending (Supplementary Figure S13A; Okamoto et al., 2015) 

and impaired polar auxin transport in hypocotyl (Supplementary Figure S13B) and likewise, 

the phospho-deficient mutants also showed hypocotyl hyperbending in both Col-0 and 

myosin xik xif mutant background (Supplementary Figures S14A, S14B). 

Given the hypocotyl hyperbending phenotype, we then assessed both gravity- and 

auxin-induced PIN3 polarization events (Rakusová et al., 2011, 2016) in myosin xik xif mutant. 

The steady-state of PIN3 polarity is not affected in myosin xik xif mutant (Supplementary 

Figures S13C, S13D). After 6 hours gravistimulation (Rakusová et al., 2011), we observed a 

normal gravity-induced PIN3 polarization in both wild type and myosin xik xif mutant 

hypocotyls (Supplementary Figures S13E, 13F, S13I); however, the auxin-mediated PIN3 

repolarization at later stages was defective (Supplementary Figures S13G, S13H, S13I). 

Additionally, gravity-induced PIN3 polarization was normal in both phospho-deficient and 

phospho-mimic Myosin XIK/XIF mutants (Col-0 background) but the phospho-deficient 

mutants showed a defective auxin-mediated PIN3 repolarization, whereas the phospho-

mimic mutants had normal PIN3 repolarization (Supplementary Figures S14C - S14G). 

Auxin application induces a similar PIN3 repolarization which is observed at later stage 

of gravitropism response (Rakusová et al., 2016, 2019; Han et al., 2020). We observed auxin-

induced PIN3 repolarization to the inner side of endodermal cells in wild type, but this auxin 

effect was defective in myosin xik xif mutant (Figures 6A, 6B) or phospho-deficient mutants 

(Figures 6C, 6D; Supplementary Figure S15). On the other hand, the phospho-mimic mutants 

showed normal PIN3 polarization in response to auxin treatment (Figures 6C, 6D; 

Supplementary Figure S15). 

These observations demonstrate that auxin-mediated Myosin XI protein 

phosphorylation is also required for auxin-mediated PIN3 repolarization during shoot 

gravitropic bending termination providing a developmental context to the cellular role of 

Myosin XI in auxin-regulated PIN polarity. 

 



 
 

 

Figure 4. Auxin-mediated Myosin phosphorylation is required for PIN trafficking. 
(A) Myosin XIk and XIF phosphorylation status in the phospho-deficient and phospho-mimic mutants (Col-0). 
(B) Quantification of BFA bodies in phospho-deficient and phospho-mimic myosin mutant root (Col-0 
background). The BFA body was counted in each root, average BFA bodies were calculated. Data and error bars 
represent the mean ± SD. n > 15, ** P < 0.05 determined by Student’s t-test. 
(C) Quantification of FM4-64 uptake in phospho-deficient and phospho-mimic myosin mutant root (Col-0 
background). The ratio was calculated by dividing signal between cytoplasm and plasm membrane. Data and 
error bars represent the mean ± SD. n = 10, more than 50 cells were quantified, ** P < 0.05 determined by 
Student’s t-test. 
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Figure 5. Phosphorylation of myosin XI proteins contributes to auxin-mediated PIN polarity regulation. 
(A) Representative images showing PIN1 localization in wild type, myosin xik xif mutant upon DMSO and auxin 
treatment.   
(B) Quantification of auxin-mediated PIN1 lateralization in myosin xik xif. The ratio was calculated by dividing 
PIN1 signal between lateral side and basal side in root endodermal cells. Data and error bars represent the mean 
± SD. n = 15, more than 50 cells were quantified, ** P < 0.05 determined by Student’s t-test. 
(C) Schematic depiction of auxin-induced PIN1 lateralization in phospho-deficient and phospho-mimic myosin 
mutant root (Col-0 background). 
(D) Quantification of auxin-mediated PIN1 lateralization in phospho-deficient and phospho-mimic myosin 
mutant root (Col-0 background). The ratio was calculated by dividing PIN1 signal between lateral side and basal 
side in root endodermal cells. Data and error bars represent the mean ± SD. n = 15, more than 50 cells were 
quantified, ** P < 0.05 determined by Student’s t-test. 
Arrowheads indicate PIN1 localization at basal side or lateral side in root endodermal cells. Scale bars, 20 µm. 

 



 
 

 

Figure 6. Phosphorylation of myosin XI proteins contributes to auxin-mediated PIN polarity regulation to 
terminate hypocotyl bending. 
(A) Representative images showing PIN3-GFP localization in wild type, myosin xik xif mutant hypocotyl upon 
DMSO and auxin treatment.  
(B) Quantification of auxin-mediated PIN3 repolarization in myosin xik xif mutant hypocotyls. The ratio was 
calculated by dividing PIN3-GFP signal between inner side and outer side of hypocotyl endodermal cells. Data 
and error bars represent the mean ± SD. n = 15, ** P < 0.05 determined by Student’s t-test. 
(C) Schematic depiction of auxin-induced PIN3 repolarization in phospho-deficient and phospho-mimic myosin 
mutant hypocotyls (Col-0 background). This schematic shows the PIN3 preolarization in shoot endodermal cells. 
Following auxin treatment, PIN3 polarizes to inner side of the endodermal cells in the phospho-mimic mutants, 
but this auxin-mediated PIN3 repolarization does not happen in the phospho-deficient mutants. 
(D) Quantification of auxin-mediated PIN3 repolarization in phospho-deficient and phospho-mimic myosin 
mutant hypocotyls. The ratio was calculated by dividing PIN3-GFP signal between inner side and outer side of 
hypocotyl endodermal cells. Data and error bars represent the mean ± SD. n = 15, ** P < 0.05 determined 
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Figure 7. Defects in auxin-canalization related phenotype in myosin xik xif mutant. 
(A) Represented leaf venation defects in myosin xik xif mutant. 
(B) Quantification of loops defects in myosin xik xif mutant. 
(C) Quantification of ectopical branches in myosin xik xif mutant. 
(D) Decreased DR5-GFP signal in myosin xik xif mutant leaf. 
(E) Regeneration defects in myosin xik xif mutant stem after wounding. 
(F) Defects in auxin canalization in myosin xik xif mutant stem. 

4.2.8 Auxin-mediated Myosin phosphorylation in auxin canalization-
mediated vasculature formation and regeneration 

The classical auxin canalization hypothesis proposes auxin feed-back regulation of 

directional auxin transport as the key part underlying self-organizing aspects of plant 

development, such as spontaneously arising vasculature during leaf venation (Scarpella et al., 

2009) and flexible regeneration of vasculature around wounding sites (Sauer et al., 2006; 

Mazur et al., 2016, 2020a, 2020b). 



 
 

We first analyzed leaf venation patterns in the myosin xik xif mutant. Compared to the 

wild type leaves, myosin xik xif mutant had significantly more leaves with fewer loops and 

they showed abnormal vascular patterning with disconnected loops and extra branches 

(Figure 7A - 7C). To test if these venation defects were linked to altered auxin distribution 

(Scarpella et al., 2009), we analyzed the expression of the auxin-responsive reporter 

DR5rev::GFP in leaves. In myosin xik xif mutant, the DR5 activity was decreased compared to 

wild type (Figure 7D). Additionally, we analyzed the leaf venation in the phospho-mimic and 

-deficient mutants (Col-0 background). Without any mutation in the Myosin XIK and XIF 

phosphorylation site, we observed more defects in the lower loops and slightly more ectopic 

branches (Supplementary Figures S16A, S16B). However, the phospho-mimic mutant showed 

similar phenotypes as the wild type leaves, the phopsho-deficient mutants showed defects in 

both discontinuity of the bottom loops of the vasculature and number of ectopic branches 

(Supplementary Figures S16A, S16B).  

Next, we analyzed the extent of vasculature regeneration in myosin xik xif mutant, 

visualized by toluidine blue staining of regenerated vasculature in stem segments. In wild type 

stems, the vasculature was fully developed and connected (Figure 7E). In myosin xik xif 

mutant, regeneration was completed and connected, but the vessel cells were formed from 

parenchyma cells compared to wild type stems (Figure 7E). In addition, auxin-induced 

vascular formation was also impaired in myosin xik xif mutant (Figure 7F). 

These results reveal that Myosin XI proteins is essential for auxin canalization-

mediated vasculature formation and regeneration around the wounding. 

4.3 Discussion 

The molecular mechanism underlying auxin-mediated PIN polarity regulation in plant 

developmental processes are extensively studied over the past century (Adamowski and 

Friml, 2015), but it is still elusive. Here, we applied a phosphoproteomics approach to identify 

novel proteins potentially will play essential roles in PIN polarity regulation in a 

phosphorylation-dependent manner. In this study, we characterized the crucial roles of the 

myosin transport network in PIN polarity regulation and trafficking. 
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4.3.1 Auxin-mediated rapid protein phosphorylation by different signaling 
pathways 

Protein phosphorylation and de-phosphorylation are suggested fast acting post-

translational modification to control protein functions. It long has been suggested that the 

phospho-state of PIN proteins involved in polar auxin transport has an effect on their function, 

both activity and polarity and trafficking (Zhang et al., 2010; Barbosa et al., 2018). While 

inhibition of phosphatase activity by genetic and pharmacological approaches has led to 

defects in auxin transport and PIN polarization (Rashotte et al., 2001; Friml et al., 2004; 

Michniewicz et al., 2007; Huang et al., 2010). More recent findings have revealed a role for 

D6PK and its paralogs D6PK-LIKE1-3, PINOID/WAG1,2 AGCVIII kinases, mitogen-activated 

protein (MAP) kinases and Ca2+/calmodulin-dependent protein kinase-related kinases (CRKs) 

in PIN phosphorylation and polar localization (Barbpsa et al., 2018; Weller et al., 2017; Rigo 

et al., 2013; Jia et al., 2016; Zourelidou et al., 2014; Lofke et al., 2013). The phosphatase PP2A 

displays antagonistic activity to PID activation, affecting the apical-basal targeting of PINs 

(Zhang et al., 2010; Michniewicz et al., 2007; Tan et al., 2020). 

Here we performed a short auxin treatment followed by an extensive 

phosphoproteomcis approach in order to identify fast players in post-translational 

modifications of proteins important in auxin responses. By using the available tools, such as 

the TIR1-specific anti-auxin PEO-IAA and the engineered receptor-ligand pair cvxIAA/ ccvTIR1, 

we identified auxin-induced rapid phosphoprylation both dependent and independent of the 

canonical TIR1/AFB1 nuclear signaling pathway. The fast phosphorylation of myosin complex 

belongs to the candidates identified. Further analysis of their role and the role of auxin-

mediated phosphorylation, in canalization-related processes proved that our approach was 

successful for the identification of novel and rapid regulators of PIN trafficking and polarity 

regulation. 

4.3.2 Auxin regulates PIN trafficking and polarity via phosphorylation of 
myosin complex 

A key condition for canalization is the feedback regulation of auxin transport, as 

manifested at a cellular level by the auxin effect on the subcellular localization of PIN auxin 

transporters. Constitutive trafficking and clathrin-mediated endocytosis of PINs have been 

suggested essential for this auxin feedback on PIN polarity (Paciorek et al., 2005; Robert et 

al., 2010; Mazur 2020a).  



 
 

Here we show that the Myosin XI proteins play crucial roles in auxin-mediated PIN 

polarity rearrangement both in root, hypocotyl, because the loss-of-function the myosin xik 

xif mutant was strongly affected in these processes. These auxin-mediated PIN polarization 

defects were also revealed in the phospho-deficient mutants, which further suggests that 

auxin-mediated phosphorylation of Myosin XI proteins are required and essential for PIN 

polarity regulation. Additionally, the defective PIN trafficking in myosin xik xif mutant and 

phospho-deficient mutants suggests the importance of auxin-mediated phosphorylation of 

Myosin XI proteins in PIN trafficking. 

The identification of large number of myosin interacting proteins indicates there is a 

series of specific interactions that allow myosin motors to operate on various cargoes, such 

as PIN proteins (Kurth et al., 2017). In this study, we demonstrate that the MadB2 myosin 

binding protein family contributes to PIN trafficking and polarity regulation in roots, but 

because of the lack of a hypocotyl phenotype, we postulate that other myosin binding 

proteins contribute to PIN polarity regulation in hypocotyl gravitropism (Peremyslov et al., 

2013; Kurth et al., 2017). It is likely that PIN proteins would bind to the MadB2 family, thus 

PINs can be transported though the trafficking pathway via the myosin transport network to 

the desired cell side, thereby determining the directional auxin transport (Peremyslov et al., 

2013; Kurth et al., 2017). However, it is still not clear how myosin binding proteins bind to 

PINs and transport PINs to the plasma membrane or to the endomembrane system. It is also 

essential to explore how myosin tail-binding proteins are employed by myosin proteins to 

carry out their transport ability and cellular functions to transport PINs (Peremyslov et al., 

2013; Ryan et al., 2017).  

4.3.3 Developmental roles of auxin feedback on directional auxin transport 

PIN polarization defects at the cellular level revealed by the exogenous auxin 

application appears to be developmentally relevant. Auxin feedback on PIN1 polarization 

defects was seen in myosin xik xif mutants by defects in leaf venation pattern, regeneration 

after wounding in stem segments and in root morphogenesis. Similarly, auxin feedback on 

PIN3 polarization in the shoot was visualized by defects in shoot bending termination in 

myosin xik xif mutants. Furthermore, we also observed defects in auxin-mediated PIN 

polarization and canalization-related phenotypes in the myosin binding protein MadB2 
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mutant. Hence, our findings suggest that the myosin transport network plays an essential role 

in auxin feedback on PIN polarity.  

In conclusion, our study demonstrates that Myosin XIK and XIF and MadB2 myosin 

binding proteins, as part of the myosin transport network, are required for auxin feedback on 

PIN polarity by mediating PIN trafficking. Furthermore, we also uncover that auxin-mediated 

phosphorylation of these myosin proteins is sufficient and required for their function in PIN 

trafficking and polarity regulation. Our work provides a novel and vital mechanism of PIN 

polarity regulation during plant development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

4.4 Materials and Methods 

Plant material and growth 

The following transgenic and mutant lines were used: Col-0, PIN3::PIN3-GFP (Žádníková et al., 

2010), myosin xik xif (Okamoto et al., 2015), madb 4ko (Kurth et al., 2017). Mutant 

combinations with PIN3::PIN3-GFP were generated through genetic crosses. Seeds were sown 

on plates with half-strength Murashige and Skoog (½ MS) medium with 1% sucrose, 1% agar 

and stratified at 4°C for 2 days, and then cultivation at 21°C in standard long day lighting (16h 

: 8h, light : dark).  

Protein extraction 

Five days after germination, roots were treated with either 100 nM IAA, 10 µM PEO-IAA or 1 

µM cvxIAA or their respective solvents in the respective dilution as mock. Root tips were 

directly harvested on liquid nitrogen. For IAA and PEO-IAA treatments, Col-0 wild-type was 

used, while for cvxIAA treatment, ccvTIR1 was used (Uchida et al., 2018). The harvested root 

tips were ground to fine powder in liquid nitrogen with a mortar and pestle. Powder was 

suspended in SDS lysis buffer (100mM Tris pH8.0, 4%SDS and 10mM DTT). Protein extract was 

next sonicated using a cooled Biorupter (Diagenode) for 10 minutes using high power with 30 

seconds on 30 seconds off cycle. Lysate was cleared by centrifugation at maximum speed 

(13,000xg) for 30 minutes. Protein concentrations were determined using Bradford reagent 

(Bio-Rad). 

Protein precipitation 

Acetone precipitation was done according to Humphrey et.al. (2015). Methanol chloroform 

precipitation was done according to Vu et.al. (2016). For trichloroacetic acid (TCA) 

precipitation 1 volume of ≥99% TCA was added to 4 volumes of protein lysate. Mixtures were 

incubated on ice for 10 minutes and spun down at maximum speed (13,000xg) for 5 minutes 

at 4◦C. Pellet was washed twice with acetone at maximum speed (13,000xg) for 5 minutes at 

4◦C and then air dried and suspended in 50 mM ammoniumbicarbonate (ABC) (Sigma).  

Filter aided sample preparation (FASP) 

For FASP, 30 kDa cut-off amicon filter units (Merck Millipore) were used. Filters were first 

tested by applying 1000 µl urea buffer UT buffer (8 M Urea and 100mM Tris, pH=8.5) and 

centrifuging for 20 minutes on 6,000 RPM at 20◦C. The desired amount of protein sample was 

next mixed with UT buffer to a volume of 5000 µl, applied to filter and centrifuged for 20 

minutes at 6,000 RPM at 20◦C. Filter was washed with UT buffer for 20 minutes at 6,000 RPM 
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at 20◦C. Retained proteins were alkylated with 50 mM acrylamide (Sigma) in UT buffer for 30 

minutes at 20◦C while gently shaking. Filter was centrifuged and afterwards washed three 

times with UT buffer for 20 minutes on 6,000 RPM at 20◦C. Next, filters were washed three 

times in 50 mM ABC buffer. After the last wash, proteins were cleaved by adding Trypsin 

(Roche) in a 1:100 trypsin:protein ratio. Digestion was completed overnight. Filter was 

transferred to a new tube and peptides were eluted by 20 minutes at 6,000 RPM at 20◦C. 

Further elution was completed by two times adding 50 mM ABC buffer and centrifuging for 

20 minutes on 6000 RPM at 20◦C. 

C18 Stagetip clean up 

For peptide desalting and concentrating, 1000 µl tips were fitted with 2 plugs of C18 octadecyl 

47mm Disks 2215 (Empore™) material and 1 mg : 10 µg of LiChroprep® RP-18 peptides 

(Merck). Tips were sequentially equilibrated with 100 % methanol, 80 % ACN in 0.1 % formic 

acid and twice with 0.1 % formic acid for 4 minutes at 1,500xg. After equilibration, peptides 

were loaded for 20 minutes at 400xg. Bound peptides were washed with 0.1 % formic acid 

and eluted with 80 % ACN in 0.1 % formic acid for 4 minutes at 1,500xg. Eluted peptides were 

subsequently concentrated using a vacuum concentrator for 30 minutes at 45◦C and 

resuspended in 50 µl of 0.1 % formic acid. 

Phosphopeptide enrichment 

For magnetic Ti4+-IMAC (MagResyn) and TiO2-MOAC (MagResyn) approaches manufacture’s 

protocols were used without modifications (Resyn biosciences). For stage tip based TiO2 

Titansphere™ (GL Sciences) a 1:2 peptide to TiO2 (µg/µg) was used. FASP eluted peptides 

were mixed with ACN and TFA to a concentration of 50 % ACN and 6 % TFA. TiO2 columns 

were made with double C8 membrane and desired amount of beads in 100 % methanol. The 

columns were washed and equilibrated with 100 % ACN and 80 % ACN in 6 % TFA using 

centrifugation for 4 minutes at 1,500xg. Sample was loaded at 400xg for 30 minutes. Non-

specifically bound peptides were washed with 80 % ACN in 6 % TFA by centrifugation for 4 

minutes at 1,500xg and 2 times with 60 % ACN in 1 % TFA for 4 minutes at 1,500xg. Next, 

bound phosphopeptides were eluted three times in 40 % ACN and 15 % NH4OH. After the last 

elution samples were concentrated using a vacuum concentrator for 30 minutes at 45◦C. 

Samples were subsequently acidified using 10% TFA and processed with C18 Stagetip clean 

up. 

 



 
 

Mass spectrometry and data analysis 

Phosphopeptides were applied to online nanoLC-MS/MS using a 120 min acetonitrile gradient 

from 8-50 %. Spectra were recorded on a LTQ-XL mass spectrometer (Thermo Scientific) 

according to Wendrich et.al. (2017). Data analysis of obtained spectra was done in MaxQuant 

software package (Wendrich et al., 2017), with the addition of phosphorylation as a variable 

modification. Data analysis and visualization was performed in Perseus, Adobe Illustrator and 

R. Filtering of phosphopeptides was conducted using a hybrid data filtering approach as 

described previously (Nikonorova et al. 2018). Protein subcellular localisation analysis was 

preformed using the Multiple Marker Abundance Profiling (MMAP) tool on the subcellular 

localisation database for Arabidopsis proteins (SUBA4) (Hooper et.al. 2017). 

Myosin XIK and XIF phosphorylation mutagenesis 

The Myosin XIK and XIF GTD sequences (from amino acid 1100 to the C terminus) (Peremyslov 

et al., 2008) with mutations S1234A (Myosin XIKS1234A), S1234D (Myosin XIKS1234D), S1256A 

(Myosin XIFS1256A) and S1256D (Myosin XIFS1256D) or in non-mutated version (Myosin XIKWT, 

Myosin XIFWT) were synthesized, respectively. Then the sequences were recombined into the 

pDONR221 gateway vector and the pB7RWG2 expression vector. All the constructs were re-

sequenced to confirm the mutation sites and transformed into Arabidopsis plants using 

flower dip method. 

Protein extraction and immunoblot assay 

7 days old homozygous T3 seedlings of 35S::MyosinXIKWT, 35S::MyosinXIKS1234A, 

35S::MyosinXIKS1234D, 35S::MyosinXIFWT, 35S::MyosinXIFS1256A, 35S::MyosinXIFS1256D were 

treated with DMSO or 10 µM NAA for 30 minutes and seedlings were harvested. Samples 

were frozen in liquid nitrogen, ground into powder, and homogenized in protein extraction 

buffer (50 mM Tris-HCl, pH=7.5; 150 mM NaCl; 0.15% NP40; 10 mM DTT (1, 4-dithiothreitol); 

1 mM PMSF; containing protease inhibitor and phosphatase inhibitor). After 20 minutes of 

centrifugation (16,000 g) at 4 °C, total protein extract was collected and concentration was 

determined by Bradford Reagent (Bio-Rad). Lambda protein phosphatase treatment (New 

England BioLabs) was performed following the manufactorer’s protocol. After adding an equal 

amount of loading buffer (5µl, 4× Laemmli Sample Buffer, Bio-Rad ), 30 µg protein for each 

sample was boiled at 65°C for 10 minutes, then separated on a 10% normal or the Phos-tag 

SDS-PAGE (Phos-tag acrylamide AAL-107, Wako Pure Chemical Industries, #304-93521). 

Proteins were transferred to a PVDF membrane by wet blotting. The membranes were 
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incubated with primary rat monoclonal anti-5F8 antibody (Chromotek, 1:1000) and secondary 

bovine anti-rat HRP (horseradish peroxidase)-conjugated (1:5000) antibody. Following 

detection of the myosin protein, the membranes were stripped and incubated with primary 

plant Monoclonal Anti-Actin (Sigma, A0480, 1:1000) and secondary anti-mouse HRP (1:5000) 

antibody overnight. HRP activity was detected by the Supersignal Western Detection 

Reagents (Thermo Scientific) and imaged with a GE Healthcare Amersham 600RGB system.  

Quantification of hypocotyl gravitropic bending angle 

3 days old etiolated seedlings were turned 90°. To monitor gravitropic responses, plates were 

scanned 24 hours after gravistimulation or the bending was recorded at 1-h intervals and 

bending angle was measured by ImageJ (NIH; http://rsb.info.nih.gov/ij).  

Quantification of root hair length 

3 days old light grown seedlings were transferred to new plates supplied with 100 nM of NAA 

or the equivalent amount of DMSO for another 3 days. The plates were scanned and root hair 

length was quantified by ImageJ.  

Quantitative analysis of PIN3-GFP polarization in hypocotyl 

The PIN3-GFP intensity was measured by ImageJ. The fluorescence intensity of PIN3-GFP was 

measured at upper part of hypocotyl as described previously (Rakusová et al., 2019). After 

gravity stimulation, the ratio between lower and upper side endodermal cells was calculated. 

For auxin treatment, 3 days old etiolated seedlings were transferred to new plates with 10 

µM of NAA, or the equivalent amount of DMSO for 4 hours in darkness. The inner/outer ratio 

was calculated for the relevant endodermal cells.  

Hypocotyl basal-petal auxin transport assay 

6 days etiolated seedlings were placed on new half MS plates. 15 seedlings for each mutant 

or treatment in 3 replicates were used. 3H-IAA was added into half MS medium (1.25% agar) 

to a final concentration of 1.5 µM. A 5 µl of 3H-IAA droplets was placed on the top of the 

hypocotyl from which the cotyledons were excised for 6 hours while the seedlings were kept 

in the dark. 10 µM N-1-Naphthylphthalamic acid (NPA) was used as a control. After 6 hours, 

roots and the top part of the hypocotyl in contact with the drop were removed. Samples were 

homogenized in liquid nitrogen and incubated overnight in Opti-Fluor scintillation cocktail 

(Perkin Elmer). The scintillation counter (Hidex 300SL) was used to measure the amount of 

3H-IAA uptake by the hypocotyl and hence represents basipetal auxin transport. 

Measurements were performed in three technical and three biological replicates.  



 
 

Leaf venation assay 

7 days old light grown seedlings were used for leaf venation analysis. Cotyledons were cleared 

in 4% HCl and 20% methanol for 15 minutes at 65℃, followed by a 15 minutes incubation in 

7% NaOH and 70% ethanol at room temperature. Next, seedlings were rehydrated by 

successive incubations in 70%, 50%, 25%, and 10% ethanol for 5 minutes each, followed by 

incubation in 25% glycerol and 5% ethanol for 2 days at room temperature. Finally, cotyledons 

were mounted in 50% glycerol and were monitored by differential interference contrast DIC 

microscopy (Olympus BX53). 

Regeneration of stem after wounding 

For regeneration, inflorescence stems were cut with a sharp razor blade 3 to 4 mm from the 

rosette in the transversal plane of the basal sectors to interrupt the longitudinal continuum 

of vascular cambium and secondary tissues. Plants were covered with an artificial weight. 

Axillary buds grown above the rosette were not removed, thus remaining a source of 

endogenous auxin. 7 days after wounding, stem segments were cut to 80 µm native sections 

by automated vibratome (Leica VT1200 S, Leica Mycrosystems Ltd., Wetzlar, Germany). These 

sections were stained with a 0.025 % Toluidine Blue O aqueous solution and regeneration was 

analyzed in stems with fully developed, closed cambial rings and secondary tissues. 

Observations were made using a wide field microscope at 10x magnification (Zeiss 

Axioscope.A1 ZENAxiocam 105).  

Whole-mount in situ immunolozalization 

For PIN1 localization in root, 3 days old primary roots were treated for 4h with 10 µM of NAA 

in liquid ½ MS medium. Immunolozalization was carried out as described previously (Sauer et 

al., 2006). The following antibodies were used: anti-PIN1 (1:1000), secondary goat anti-rabbit 

antibody coupled Cy3 (Sigma-Aldrich, 1:600). PIN1 localization was monitored by LSM 800 

microscopy. Quantification of PIN1 lateralization was done as described (Sauer et al., 2006).  

FM4-64 uptake assay  

4 days old light grown seedlings were incubated with 10 µM NAA or the equivalent amount 

of DMSO for 30 minutes in ½ MS liquid medium. Then 2 µM FM4-64 was added to the medium 

for 15 minutes and roots were mounted and observed using LSM-800 Zeiss confocal 

microscope. Signal intensity at PM and cytoplasm was measured using ImageJ. The ratio 
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between cytoplasm and PM was calculated and statistical analysis was performed using t-

tests.  

BFA treatment assay 

To monitor PIN trafficking in the root, 3 days old light grown seedlings were pretreated with 

10 µM NAA or the equivalent amount of DMSO in ½ MS liquid medium for 30 minutes, and 

then co-treatment with 50 µM BFA for another 60 minutes. Immunolozalization was carried 

out as described previously (Sauer et al., 2006). The average number of BFA bodies per root 

was quantified.  

Statistical analysis 

All statistical analysis was performed using student’s test in excel (Microsoft 2010) with a 

significant difference (P < 0.05). 

Author Contributions  

H. H. and J. F. designed research. H. H. performed most of the experiment; I. V. helped to 

synthesize the Myosin XIK and XIF GTD sequences and performed western blot assay; M. R. 

and D. W. performed phosphoproteomics expetiment and analyzed the data; J. H. carried out 

the auxin transport assay; E. M. and N. R. contributed to the regeneration assay. H. H. and J. 

F. wrote the manuscript with the inputs from all authors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

4.5 References 

Abel, S., and Theologis, A. (1996). Early genes and auxin action. Plant Physiol. 111, 9. 
Abas, L., Benjamins, R., Malenica, N., Paciorek, T., Wišniewska, J., Moulinier–Anzola, J. C., 

et al. (2006). Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux 
facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 8, 249-256. 

Avisar, D., Abu-Abied, M., Belausov, E., Sadot, E., Hawes, C., Sparkes, I.A. (2009). A 
comparative study of the involvement of 17 Arabidopsis myosin family members on 
the motility of Golgi and other organelles. Plant Physiol. 150, 700-709. 

Adamowski, M., and Friml, J. (2015). PIN-dependent auxin transport: action, regulation, and 
evolution. Plant Cell 27, 20-32. 

Abu-Abied, M., Belausov, E., Hagay, S., Peremyslov, V., Dolja, V., Sadot, E. (2018). Myosin 
XI-K is involved in root organogenesis, polar auxin transport, and cell division. J. Exp. 
Bot. 69, 2869-2881. 

Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., Friml, J. 
(2003). Local, efflux-dependent auxin gradients as a common module for plant organ 
formation. Cell 115, 591-602. 

Bolte, S., Talbot, C., Boutte, Y., Catrice, O., Read, N.D., Satiat‐Jeunemaitre, B. (2004). FM-
dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J. 
Microsc. 214, 159-173. 

Badescu, G.O., Napier, R.M. (2006). Receptors for auxin: will it all end in TIRs?. Trends Plant 
Sci. 11, 217-223. 

Benjamins, R., and Scheres, B. (2008). Auxin: the looping star in plant development. Annu. 
Rev. Plant Biol. 59, 443-465. 

Bhatia, N., Bozorg, B., Larsson, A., Ohno, C., Jönsson, H., & Heisler, M. G. (2016). Auxin acts 
through MONOPTEROS to regulate plant cell polarity and pattern phyllotaxis. Curr. 
Biol. 26, 3202-3208. 

Barbosa, I. C., Hammes, U. Z., Schwechheimer, C. (2018). Activation and polarity control of 
PIN-FORMED auxin transporters by phosphorylation. Trends Plant Sci. 23, 523-538. 

Cao, M., Chen, R., Li, P., Yu, Y., Zheng, R., Ge, D., et al. (2019). TMK1-mediated auxin signalling 
regulates differential growth of the apical hook. Nature 568, 240-243. 

Dhonukshe, P., Aniento, F., Hwang, I., Robinson, D. G., Mravec, J., Stierhof, Y. D., Friml, J. 
(2007). Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in 
Arabidopsis. Curr. Biol. 17, 520-527. 

Friml, J. (2010). Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur. J. 
Cell Biol. 89, 231-235. 

Fendrych, M., Akhmanova, M., Merrin, J., Glanc, M., Hagihara, S., Takahashi, K., Friml, J. 
(2018). Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 
4, 453-459. 

Geldner, N., Friml, J., Stierhof, Y. D., Jürgens, G., Palme, K. (2001). Auxin transport inhibitors 
block PIN1 cycling and vesicle trafficking. Nature 413, 425. 

Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., et al. (2003). The 
Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and 
auxin-dependent plant growth. Cell 112, 219-230. 

Glanc, M., Fendrych, M., Friml, J. (2018). Mechanistic framework for cell-intrinsic re-
establishment of PIN2 polarity after cell division. Nat. Plants 4, 1082-1088. 

Govindaraju, P., Verna, C., Zhu, T., Scarpella, E. (2020). Vein patterning by tissue-specific 
auxin transport. Development 147, dev187666 



99 
 

Heisler, M. G., Ohno, C., Das, P., Sieber, P., Reddy, G. V., Long, J. A., Meyerowitz, E. M. 
(2005). Patterns of auxin transport and gene expression during primordium 
development revealed by live imaging of the Arabidopsis inflorescence meristem. 
Curr. Biol. 15, 1899-1911. 

Humphrey, S. J., Azimifar, S. B., Mann, M. (2015). High-throughput phosphoproteomics 
reveals in vivo insulin signaling dynamics. Nat. Biotechnol. 33, 990-995. 

Hooper, C. M., Castleden, I. R., Tanz, S. K., Aryamanesh, N., Millar, A. H. (2017). SUBA4: the 
interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic 
Acids Res. 45, D1064-D1074. 

Han, H., Rakusova, H., Verstraeten, I., Zhang, Y., Friml, J. (2020). SCFTIR1/AFB auxin signaling 
for bending termination during shoot gravitropism. Plant Physiol. 183, 37-40 

Kleine-Vehn, J., Leitner, J., Zwiewka, M., Sauer, M., Abas, L., Luschnig, C., Friml, J. (2008). 
Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar 
targeting. Proc. Natl. Acad. Sci. USA 105, 17812-17817. 

Kitakura, S., Vanneste, S., Robert, S., Löfke, C., Teichmann, T., Tanaka, H., Friml, J. (2011). 
Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in 
Arabidopsis. Plant Cell 23, 1920-1931. 

Kurth, E. G., Peremyslov, V. V., Turner, H. L., Makarova, K. S., Iranzo, J., Mekhedov, S. L.,     
Koonin, E. V., Dolja, V. V. (2017). Myosin-driven transport network in plants. Proc. 
Natl. Acad. Sci. USA 114, E1385-E1394. 

Kubeš, M., Napier, R. (2019). Non-canonical auxin signalling: fast and curious. J. Exp. Bot. 70, 
2609. 

Lewis, D. R., Olex, A. L., Lundy, S. R., Turkett, W. H., Fetrow, J. S., Muday, G. K. (2013). A 
kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that 
modulate lateral root development in Arabidopsis. Plant Cell 25, 3329-3346. 

McClure, B. A., Hagen, G., Brown, C. S., Gee, M. A., Guilfoyle, T. J. (1989). Transcription, 
organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell, 
1, 229-239. 

Mazur, E., Benková, E., Friml, J. (2016). Vascular cambium regeneration and vessel formation 
in wounded inflorescence stems of Arabidopsis. Sci. Rep. 6, 33754. 

Mazur, E., Gallei, M., Adamowski, M., Han, H., Robert, H. S., Friml, J. (2020a). Clathrin-
mediated trafficking and PIN trafficking are required for auxin canalization and 
vascular tissue formation in Arabidopsis. Plant Sci. 293, 110414. 

Mazur, E., Kulik, I., Hajný, J., Friml, J. (2020b). Auxin canalization and vascular tissue 
formation by TIR1/AFB-mediated auxin signaling in Arabidopsis. New Phytol. 226, 
1375-1383. 

Morffy, N., and Strader, L. C. (2020). Old Town Roads: routes of auxin biosynthesis across 
kingdoms. Curr Opin Plant Biol. 55, 21-27. 

Okamoto, K., Ueda, H., Shimada, T., Tamura, K., Kato, T., Tasaka, M., Morita, M. T., Hara-
Nishimura, I. (2015). Regulation of organ straightening and plant posture by an actin–
myosin XI cytoskeleton. Nat. Plants 1, 15031. 

Nikonorova, N., Van den Broeck, L., Zhu, S., Van De Cotte, B., Dubois, M., Gevaert, K., et al. 
(2018). Early mannitol-triggered changes in the Arabidopsis leaf (phospho) proteome 
reveal growth regulators. J. Exp. Bot. 69, 4591-4607. 

Ojangu, E. L., Ilau, B., Tanner, K., Talts, K., Ihoma, E., Dolja, V. V., Paves, H., Truve, E. (2018). 
Class XI myosins contribute to auxin response and senescence-induced cell death in 
Arabidopsis. Front. Plant Sci. 9, 1570 



 
 

Oochi, A., Hajny, J., Fukui, K., Nakao, Y., Gallei, M., Quareshy, M., et al. (2019). Pinstatic acid 
promotes auxin transport by inhibiting PIN internalization. Plant physiol. 180, 1152-
1165. 

Paciorek, T., Zažímalová, E., Ruthardt, N., Petrášek, J., Stierhof, Y. D., Kleine-Vehn, J., Morris, 
A. D.,  Emans, N.,  Jürgens, G.,  Geldner, N., Friml, J. (2005). Auxin inhibits endocytosis 
and promotes its own efflux from cells. Nature 435, 1251. 

Petrášek, J., Mravec, J., Bouchard, R., Blakeslee, J. J., Abas, M., Seifertová, D., et al. (2006). 
PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312, 914-
918. 

Prokhnevsky, A. I., Peremyslov, V. V., Dolja, V. V. (2008). Overlapping functions of the four 
class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. 
Proc. Natl. Acad. Sci. USA 105, 19744-19749. 

Peremyslov, V. V., Prokhnevsky, A. I., Avisar, D., Dolja, V. V. (2008). Two class XI myosins 
function in organelle trafficking and root hair development in Arabidopsis. Plant 
Physiol. 146, 1109-1116. 

Paponov, I. A., Paponov, M., Teale, W., Menges, M., Chakrabortee, S., Murray, J. A., Palme, 
K. (2008). Comprehensive transcriptome analysis of auxin responses in Arabidopsis. 
Mol. Plant 1, 321-337. 

Peremyslov, V. V., Morgun, E. A., Kurth, E. G., Makarova, K. S., Koonin, E. V., Dolja, V. V. 
(2013). Identification of myosin XI receptors in Arabidopsis defines a distinct class of 
transport vesicles. Plant Cell 25, 3022-3038. 

Prát, T., Hajný, J., Grunewald, W., Vasileva, M., Molnár, G., Tejos, R., Schmid, M, Sauer, M., 
Friml, J. (2018). WRKY23 is a component of the transcriptional network mediating 
auxin feedback on PIN polarity. PLoS Genet. 14, e1007177. 

Reddy, A. S., Day, I. S. (2001). Analysis of the myosins encoded in the recently completed 
Arabidopsis thaliana genome sequence. Genome Biol. 2, research0024. 

Rashotte, A. M., DeLong, A., & Muday, G. K. (2001). Genetic and chemical reductions in 
protein phosphatase activity alter auxin transport, gravity response, and lateral root 
growth. Plant Cell, 13, 1683-1697. 

Robert, S., Kleine-Vehn, J., Barbez, E., Sauer, M., Paciorek, T., Baster, P., et al. (2010). ABP1 
mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143, 
111-121. 

Rakusová, H., Gallego‐Bartolomé, J., Vanstraelen, M., Robert, H. S., Alabadí, D., Blázquez, 
M. A., et al. (2011). Polarization of PIN3-dependent auxin transport for hypocotyl 
gravitropic response in Arabidopsis thaliana. Plant J. 67, 817-826. 

Robert, H. S., Grones, P., Stepanova, A. N., Robles, L. M., Lokerse, A. S., Alonso, J. M., et al. 
(2013). Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr. 
Biol.  23, 2506-2512. 

Rakusová, H., Abbas, M., Han, H., Song, S., Robert, H. S., Friml, J. (2016). Termination of 
shoot gravitropic responses by auxin feedback on PIN3 polarity. Curr. Biol. 26, 3026-
3032. 

Ryan, J. M., Nebenführ, A. (2017). Update on myosin motors: molecular mechanisms and 
physiological functions. Plant Physiol. 176, 119-127. 

Rakusová, H., Han, H., Valošek, P., Friml, J. (2019). Genetic screen for factors mediating PIN 
polarization in gravistimulated Arabidopsis thaliana hypocotyls. Plant J. 98, 1048-1059 

Sachs, T. The control of the patterned differentiation of vascular tissues. Adv. Bot. Res. 9, 151–
162 (1981). 



101 
 

Scarpella, E., Marcos, D., Friml, J., Berleth, T. (2006). Control of leaf vascular patterning by 
polar auxin transport. Genes Dev. 20, 1015-1027.  

Sauer, M., Balla, J., Luschnig, C., Wiśniewska, J., Reinöhl, V., Friml, J., Benková, E. (2006). 
Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN 
polarity. Genes Dev. 20, 2902-2911. 

Sattarzadeh, A., Franzen, R., Schmelzer, E. (2008). The Arabidopsis class VIII myosin ATM2 is 
involved in endocytosis. Cell Motil Cytoskeleton 65, 457-468. 

Steinman, M. Q. and Trainor, B. C. (2010) Rapid Effects of Steroid Hormones on Animal 
Behavior. Nature Education Knowledge 3, 1 

Stecker, K.E., Minkoff, B.B., Sussman, M. R. (2014) Phosphoproteomic analyses reveal early 
signaling events in the osmotic stress response. Plant Physiol. 165, 1171-1187. 

Salehin, M., Bagchi, R., Estelle, M. (2015). SCFTIR1/AFB-based auxin perception: mechanism and 
role in plant growth and development. Plant Cell 27, 9-19. 

Shih, H. W., DePew, C. L., Miller, N. D., Monshausen, G. B. (2015). The cyclic nucleotide-gated 
channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Curr. Biol. 25, 
3119-3125. 

Talts, K., Ilau, B., Ojangu, E. L., Tanner, K., Peremyslov, V. V., Dolja, V. V., Truve, E., Paves, 
H. (2016). Arabidopsis myosins XI1, XI2, and XIK are crucial for gravity-induced bending 
of inflorescence stems. Front. Plant Sci. 7, 1932 

Tan, S., Zhang, X., Kong, W., Yang, X. L., Molnár, G., Vondráková, Z., et al. (2020). The lipid 
code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in 
Arabidopsis. Nat. Plants 6, 556-569 

Vieten, A., Vanneste, S., Wiśniewska, J., Benková, E., Benjamins, R., Beeckman, T., et al. 
(2005). Functional redundancy of PIN proteins is accompanied by auxin-dependent 
cross-regulation of PIN expression. Development 132, 4521-4531. 

Vanneste, S., and Friml, J. (2009). Auxin: a trigger for change in plant development. Cell 136, 
1005-1016. 

Vu, L. D., Stes, E., Van Bel, M., Nelissen, H., Maddelein, D., Inzé, D., De Smet, I. (2016). Up-
to-date workflow for plant (phospho) proteomics identifies differential drought-
responsive phosphorylation events in maize leaves. J. of proteome Res. 15, 4304-4317. 

Wiśniewska, J., Xu, J., Seifertová, D., Brewer, P. B., Růžička, K., Blilou, I., et al. (2006). Polar 
PIN localization directs auxin flow in plants. Science 312, 883-883. 

Wabnik, K., Kleine‐Vehn, J., Balla, J., Sauer, M., Naramoto, S., Reinöhl, V., et al. (2010). 
Emergence of tissue polarization from synergy of intracellular and extracellular auxin 
signaling. Mol. Syst. Biol. 6, 447. 

Wabnik, K., Govaerts, W., Friml, J., Kleine-Vehn, J. (2011). Feedback models for polarized 
auxin transport: an emerging trend. Mol. Syst. Biol. 7, 2352-2359. 

Wu, L., Hu, X., Wang, S., Tian, L., Pang, Y., Han, Z., et al. (2015). Quantitative analysis of 
changes in the phosphoproteome of maize induced by the plant hormone salicylic 
acid. Sci. Rep. 5, 1-16. 

Wendrich, J. R., Boeren, S., Möller, B. K., Weijers, D., De Rybel, B. (2017). In vivo 
identification of plant protein complexes using IP-MS/MS. Methods Mol. Biol. 1497, 
147-158. 

Xu, T., Dai, N., Chen, J., Nagawa, S., Cao, M., Li, H., et al. (2014). Cell surface ABP1-TMK auxin-
sensing complex activates ROP GTPase signaling. Science 343, 1025-1028. 

Xiao, Y., Offringa, R. (2020). PDK1 regulates auxin transport and Arabidopsis vascular 
development through AGC1 kinase PAX. Nat. Plants 6, 544-555. 



 
 

Zhang, J., Nodzyński, T., Pěnčík, A., Rolčík, J., Friml, J. (2010). PIN phosphorylation is sufficient 
to mediate PIN polarity and direct auxin transport. 107(2), 918-922. 

Žádníková, P., Petrášek, J., Marhavý, P., Raz, V., Vandenbussche, F., Ding, Z., Schwarzerová, 
K., Morita, M. T., Tasaka, M., Hejátko, J., Van Der Straeten, D.,  Friml, J.,  Benková, 
E. (2010). Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis 
thaliana. Development 137, 607-617. 

Zhang, H., Zhou, H., Berke, L., Heck, A. J., Mohammed, S., Scheres, B., Menke, F. L. (2013). 
Quantitative phosphoproteomics after auxin-stimulated lateral root induction 
identifies an SNX1 protein phosphorylation site required for growth. Mol. Cell 
Proteomics 12, 1158-1169. 

Zhang, W., Cai, C., Staiger, C.J. (2019). Myosins XI Are Involved in Exocytosis of Cellulose 
Synthase Complexes. Plant Physiol. 179, 1537-1555. 

Zhang, J., Mazur, E., Balla, J., Gallei, M., Kalousek, P., Medveďová, Z., et al., (2020). 
Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. 
Nat. Commun. 11, 1-10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



103 
 

4.6 Supplementary Figures 

 

 
Supplementary Figure 1. Comparison of different protein precipitation and phosphopeptide enrichments 
strategies.  
(A, B) Magnetic IMAC, MOAC (Mg) and agarose MOAC (TS) enrichment strategies were compared for 
phosphopeptide enrichment performance. IMAC outperformes the MOAC method by identifying ~3 fold more 
phosphopetides. All enrichments were conducted in technical triplicate. (C) Peptide digested samples were 
compared to 5 % protein lysate input material for nucleic acid interference on a DNA agarose gel. 
Phosphopeptide identifications supports DNA gel analysis by poor perfromance of acetone and 
methonol/chlorform precipiation techniques. All samples were performed in technical triplicate and 
phosphopeptides were enriched by the Ti4+ -IMAC method. (D) Venn diagram of enriched phosphopeptides show 
litlle overlap between the different enrichment methods.  
(E) Motif analysis from the specific enriched peptides shows a bias towards acidic peptides for TiO2(Mg). No 
discernable differences were observed in phosphorylated amino acid (F) or charge state (G). Biochemical 
properties of specific peptides show a bias in acidic peptides for TiO2(Mg) (H-J). 

 



 
 

 
Supplementary Figure 2. TIR1-dependent and -independent rapid auxin response.  
(A) Overlapping significantly regulated phosphopeptides of IAA and PEO-IAA dataset with the same phosphosite 
shows partial opposite regulation in a TIR1-independent manner. Corresponding sites show no regulation in the 
cvxIAA set as seen by predominantly black colour. 
 (B) Significant TIR1 dependent phosphosites (cvxIAA) mapped to phosphopeptides of IAA and PEO-IAA dataset. 
Only non-significant IAA and PEO-IAA phosphopeptides mapped to significantly regulated cvxIAA peptides 
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Supplementary Fgure 3. Analysis of phosphopeptide datasets.  
(A) Proteins represented by differentially regulated phosphopeptides (FDR ≤0.05) from the 100 nM IAA dataset 
show a predominant localization in the nucleus, cytoplasm and plasma membrane. (B)  The overall nature of 
phosphorylated amino acids followed previously published percentages (Serine ~90%, Threonine ~7 and 
Tyrosine ~1%) Wu et.al. 2016. 

 
 



 
 

 
Supplementary Figure S4. Conserved phosphorylation site at myosin XI protein family. 
(A) Protein alignment of some myosin XI proteins shows the conserved phosphorylation site at the GTD 
sequence. 
(B) Normal western blot assay of Myosin XIK and XIF and quantification of the phosphorylation ratio of Myosin 
XIK and XIF upon auxin treatment. 
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Supplementary Figure S5. Phosphorylation assay of the phospho-deficient and phospho-mimic myosin 
mutants (Col-0 background). 
(A - B) Normal western blot assay of Myosin XIF and quantification of the phosphorylation ratio of phospho-
deficient and phospho-mimic mutants upon auxin treatment. 
(C - D) Normal western blot assay of Myosin XIK and quantification of the phosphorylation ratio of phospho-
deficient and phospho-mimic mutants upon auxin treatment. 

 



 
 

 
Supplementary Figure S6. PIN trafficking in phospho-deficient and phospho-mimic myosin mutants (Col-0 
background). 
(A) Representative images showing BFA bodies in phospho-deficient and phospho-mimic myosin mutant root.   
(B) Representative images showing FM4-64 uptake in phospho-deficient and phospho-mimic myosin mutant 
root. Arrowheads indicate BFA body in root. Scale bars, 20 µm. 
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Supplementary Figure S7. PIN trafficking in phospho-deficient and phospho-mimic myosin mutants (myosin 
xik xif mutant background). 
(A - B) Representative images showing BFA bodies in phospho-deficient and phospho-mimic myosin mutant root.   
(C) Quantification of BFA bodies in phospho-deficient and phospho-mimic myosin mutant root (myosin xik xif 
mutant background). The BFA body was counted in each root, average BFA bodies were calculated. Data and 
error bars represent the mean ± SD. n > 15, ** P < 0.05 determined by Student’s t-test. 



 
 

 
Supplementary Figure S8. Fm4-64 uptake assay in phospho-deficient and phospho-mimic myosin mutants 
(myosin xik xif mutant background). 
(A - B) Representative images showing FM4-64 uptake in phospho-deficient and phospho-mimic myosin mutant 
root.   
(C) Quantification of FM4-64 uptake in phospho-deficient and phospho-mimic myosin mutant root (myosin xik 
xif mutant background). The ratio was calculated by dividing signal between cytoplasm and plasm membrane. 
Data and error bars represent the mean ± SD. n = 10, more than 50 cells were quantified, ** P < 0.05 determined 
by Student’s t-test. 
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Supplementary Figure S9. Auxin-induced PIN1 laterlization in phospho-deficient and phospho-mimic myosin 
mutants (Col-0 background). 
Representative images showing PIN1 localization in phospho-deficient and phospho-mimic myosin mutant root.  
Arrowheads indicate PIN1 localization in root. Scale bars, 20 µm. 

 



 
 

 
Supplementary Figure S10. Auxin-induced PIN1 laterlization in phospho-deficient and phospho-mimic myosin 
mutants (myosin xik xif mutant background). 
(A – B) Representative images showing PIN1 localization in phospho-deficient and phospho-mimic myosin 
mutant root.   
(C) Quantification of auxin-mediated PIN1 lateralization. The ratio was calculated by dividing PIN1 signal 
between lateral side and basal side in root endodermal cells. Data and error bars represent the mean ± SD. n = 
15, more than 50 cells were quantified, ** P < 0.05 determined by Student’s t-test. 
Arrowheads indicate PIN1 localization in root. Scale bars, 20 µm. 
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Supplementary Figure S11. Auxin canalization related phenotype of madb 4ko mutant. 
(A) Representative images showing root growth defects in madb 4ko mutant upon auxin treatment. (B) 
Quantification of primary root length in madb 4ko mutant upon auxin treatment. Data and error bars represent 
the mean ± SD. n = 30 - 40, ** P < 0.05 determined by Student’s t-test. 
(C) Quantification of root hair length in madb 4ko mutant upon auxin treatment. Data and error bars represent 
the mean ± SD. n = 30 - 40, ** P < 0.05 determined by Student’s t-test. 
(D) Hypocotyl gravitropic bending after 24 hours gravity stimulation in madb 4ko mutant. 3 days old etiolated 
seedlings were gravistimulated for 24 hours, and bending angle was quantified. 
(E) Polar auxin transport in madb 4ko mutant. Data and error bars represent the mean ± SD. n = 15, ** P < 0.05 
determined by Student’s t-test. 
(F) Represented Leaf venation defects in madb 4ko mutant.  
(G) Quantification of loops defects in madb 4ko mutant. 
(H) Quantification of ectopical branches in madb 4ko mutant. 



 
 

 
Supplementary Figure S12. The Madb2 myosin binding protein contribute to PIN trafficking and polarity 
regulation. 
(A) Representative images showing PIN1 localization in madb 4ko mutant upon auxin treatment. (B) 
Quantification of auxin-mediated PIN1 lateralization in madb 4ko mutant root. The ratio was calculated by 
dividing PIN1 signal between lateral side and basal side in root endodermal cells. Data and error bars represent 
the mean ± SD. n = 15, more than 50 cells were quantified, ** P < 0.05 determined by Student’s t-test. 
(C) Representative images showing PIN1 trafficking in madb 4ko mutant root.  
(D) Quantification of BFA bodies in madb 4ko mutant root. The BFA body was counted in each root, average BFA 
bodies were calculated. Data and error bars represent the mean ± SD. n > 15, ** P < 0.05 determined by Student’s 
t-test. 
(E) Representative images showing FM4-64 uptake in madb 4ko mutant root.  
(F) Quantification of FM4-64 uptake in madb 4ko mutant root. The ratio was calculated by dividing signal 
between cytoplasm and plasm membrane. Data and error bars represent the mean ± SD. n = 10, more than 50 
cells were quantified, ** P < 0.05 determined by Student’s t-test. 
Arrowheads indicate PIN1 localization or BFA body in root. Scale bars, 20 µm. 
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Supplementary Figure S13. Gravity-induced PIN3 polarization in myosin xik xif mutant hypocotyl. 
(A) Hypocotyl gravitropic bending kinetics of myosin xik xif mutant. The average bending curvatures were 
calculated. Data and error bars represent the mean ± SD. n = 30 - 40, ** P < 0.05 determined by Student’s t-test. 
(B) Polar auxin transport in myosin xik xif mutant hypocotyl. Data and error bars represent the mean ± SD. n = 
15, ** P < 0.05 determined by Student’s t-test. 
(C - H) Representative images showing PIN3-GFP localization in no gravity stimulated wild type hypocotyls (C); 
no gravity stimulated myosin xik xif mutant hypocotyl (D); 6 hours gravity stimulated wild type hypocotyl (E) and 
myosin xik xif mutant hypocotyl (F); 24 hours gravity stimulated wild type (G) and myosin xik xif mutant hypocotyl 
(H). 3 days old etiolated seedlings were gravistimulated, and PIN3-GFP localization was captured.  
(I) Quantification of gravity-induced PIN3 repolarization in myosin xik xif mutant hypocotyl. The ratio was 
calculated by dividing PIN3-GFP signal between inner side and outer side of hypocotyl endodermal cells. Data 
and error bars represent the mean ± SD. n = 15, ** P < 0.05 determined by Student’s t-test. 
Arrowheads indicate PIN3 at outer side of hypocotyl endodermal cells. Arrow indicates gravity direction. Scale 
bars, 20 µm. 



 
 

 
Supplementary Figure S14. Gravity-induced PIN3 polarization in phospho-deficient and phospho-mimic 
myosin mutations in Col background. 
(A) Bending angle of phospho-deficient and phospho-mimic myosin mutations in Col background after 24 hours 
gravity stimulation. 3 days old etiolated seedlings were gravistimulated for 24 hours, and bending angle was 
quantified. 
(B) Bending angle of phospho-deficient and phospho-mimic myosin mutations in myosin xik xif mutant 
background after 24 hours gravity stimulation. 3 days old etiolated seedlings were gravistimulated for 24 hours, 
and bending angle was quantified. 
(C - G) Representative images showing PIN3-GFP localization in phospho-deficient and phospho-mimic myosin 
mutations in Col background after 6 hours (C, D) or 24 hours (F, G) gravity stimulation. 3 days old etiolated 
seedlings were gravistimulated for 6hours or 24 hours, PIN3-GFP localization was captured.  
(E) Quantification of gravity-induced PIN3 repolarization in phospho-deficient and phospho-mimic Myosin XIK 
and XIF mutant hypocotyl. The ratio was calculated by dividing PIN3-GFP signal between lower side and upper 
side of hypocotyl endodermal cells. Data and error bars represent the mean ± SD. n = 15, ** P < 0.05 determined 
by Student’s t-test. 
Arrowheads indicate PIN3 at outer side of hypocotyl endodermal cells. Arrow indicates gravity direction. Scale 
bars, 20 µm. 
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Supplementary Figure S15. Auxin-induced PIN3 polarization in phospho-deficient and phospho-mimic myosin 
mutants in Col background. 
Representative images showing PIN3-GFP localization in phospho-mimic Myosin XIK and XIF mutant hypocotyl 
upon DMSO or auxin treatment. Arrowheads indicate PIN3 at outer side of hypocotyl endodermal cells. Scale 
bars, 20 µm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

Supplementary Figure S16. Quantification of leaf venation defects in phospho-deficient and phospho-mimic 
myosin mutants in Col background. 
(A) Quantification of loops defects. 
(B) Quantification of ectopical branches. 
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5.1 Introduction 

Auxin is a regulatory phytohormone during plant development, which is characterized 

with polar transport within cells or tissues (Adamowski and Friml, 2015). The polar auxin 

transport depends on polarly localized PIN-FORMED (PIN) efflux transporters (Wiśniewsk et 

al., 2006). In the past decades, many novel genes, hormones, and environmental signals have 

been discovered to regulate the subcellular localization of PIN proteins and polar auxin fluxes 

that are essential for specific developmental processes (Adamowski and Friml, 2015). The 

canalization hypothesis indicates that the polarized PIN transporters forms a self-organizing 

patterns that determines auxin flows through tissues to establish the new polarity axes 

(Sachs, 1975; Sachs, 1986; Bennett et al., 2014; Smith and Bayer, 2009). Auxin canalization is 

involved in many developmental processes, such as vascular formation (Berleth and Sachs, 

2001), regeneration after wounding (Sauer et al., 2006; Mazur et al., 2016), competitive 

regulation of apical dominance (Bennett et al., 2016), embryonic apical-basal axis 

establishment (Wabnik et al., 2013; Robert et al., 2013), organogenesis (Benková et al., 2003), 

and hypocotyl gravitropic bending termination (Rakusová et al., 2016, 2019). However, the 

molecular mechanism of auxin canalization is still not clear. The key hypothesis is either auxin 

has a direct feedback regulation on auxin transporters or the formation of auxin channels 

(Sachs, 1975). Evidence has been shown that auxin has a direct feedback regulation on PIN 

polarity (Sauer et al., 2006), and this probably due to auxin effect on clathrin-mediated 

endocytosis (CME) of PIN protein (Paciorek et al., 2005).  

Auxin feedback regulation on PIN repolarization has been demonstrated in both root 

and hypocotyl. In root, PIN1 is localized at basal sides of endodermal cells, pericycle cells and 

vascular tissues (Friml et al., 2002a), whereas PIN2 displays a basal polarity in young cortex 

cells but an apical polarity in epidermal cells (Müller et al., 1998; Kleine-Vehn et al., 2008a). 

Upon auxin treatment, PIN1 rearranges it polarity from basal to inner-lateral side in root 



 
 

endodermal and pericycle ells; whereas PIN2 polarity is shifted from basal to outer-lateral 

side of root cortex cells (Sauer et al., 2006, Prát et al., 2018). In the hypocotyl, PIN3 is 

expressed at endodermal cells with apolar distribution (Friml et al., 2002), and PIN3 

repolarizes to inner side of hypocotyl endodermal cells upon auxin treatment (Rakusová et 

al., 2016, 2019). The detailed mechanism and biological significance of this auxin effect on 

PIN1 and PIN2 in root are still elusive, but it depends on SCFTIR1-AUX/IAA-ARF auxin signaling 

pathway (Sauer et al., 2006), and requires the function of WRKY23 transcription factor (Prát 

et al., 2018). However, auxin feedback on PIN3 polarity at least is essential for hypocotyl 

gravitropic bending termination (Rakusová et al., 2016), and requires actin cytoskeleton 

function (Rakusová et al, 2019).  

PIN proteins are undergoing recycling between plasma membrane and endosomal 

compartments (Geldner et al., 2001, 2003). The cycling is inhibited by the fungal toxin, 

brefeldin A (BFA), resulting in PIN internalization into the “BFA body” (Geldner et al., 2001). 

Actin inhibitor cytochalasin D abolishes the BFA-induced PIN internalization (Geldner et al., 

2001).  Cytochalasin D also induces a rapidly PIN3 internalization (Friml et al., 2002b). 

Furthermore, actin inhibitor latrunculin B (Lat B) treatment leads a defective PIN1 polar 

localization in protophloem cells as well as a defective auxin-induced PIN3 repolarization in 

hypocotyl endodermal cells (Kleine-Vehn et al., 2006; Rakusová et al., 2019). Importantly, 

both apical and basal PIN targeting requires intact actin cytoskeleton (Kleine-Vehn et al., 

2008b). Cortical actin microfilaments are also crucial for PIN1 asymmetric distribution in leaf 

epidermal pavement cells (Nagawa et al., 2012). However, the mechanism of actin 

cytoskeleton in auxin-mediated feedback on PIN polarity is not well understood.  

Actin cytoskeleton function and organization require many actin-binding proteins, 

such as formin, actin-depolymerizing factor and Actin-Related-Protein 2/3 Complex (ARP2/3) 

(Staiger and Blanchoin, 2006). The ARP2/3 complex has been extensively studied in 

Arabidopsis, and mutations in ARP2/3 complex leads epidermal cell adhesion defects and 

distorted trichomes (Le et al., 2003; Mathur et al., 2003; El-Din El-Assal et al., 2004). The 

ARP2/3 complex mutants also exhibit cell wall defects as well as defects in polar auxin 

transport (Pratap Sahi et al., 2017). It also has been reported that ARP3 and ARPC2A shows 

different roles in gravitropism and phototropism (Reboulet et al., 2010). ARP3, one of the 

subunits of ARP2/3 complex, is involved in root gravitropism response by affecting amyloplast 

sedimentation and PIN-mediated polar auxin transport (Zou et al., 2016). Moreover, the arp3 
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mutant shows an overbending hypocotyl gravitropic response (Zou et al., 2016), indicating a 

possible role of ARP3 in regulation of PIN3 polarization during hypocotyl gravitropism.  

In this study, we performed a detailed analysis to explore the roles of actin 

cytoskeleton and its organization protein, ACTIN2 and ARP3 in auxin feedback on PIN polarity. 

We conclude that actin cytoskeleton is involved in auxin feedback regulation on PIN 

repolarization in both root and hypocotyl. Disruption of the actin cytoskeleton or mutation in 

ACTIN2 and ARP3 genes resulting in a defective auxin-induced PIN rearrangement in roots 

and hypocotyls, ultimately lead to auxin-canalization related developmental defects. An 

uptake assay using the FM4-64 dye indicates that both actin2 and arp3 mutants defects in 

endomembrane trafficking. BFA treatment demonstrates that the actin cytoskeleton is 

involved in PIN trafficking. Overall, our results indicate the actin cytoskeleton plays an 

essential role in auxin feedback regulation of PIN polarity by affecting PIN trafficking. 

5.2 Results 

5.2.1 The actin cytoskeleton is involved in auxin–mediated PIN 
rearrangement in Arabidopsis root 

Previously, we reveal that the actin cytoskeleton is required for auxin feedback on 

PIN3 repolarization during hypocotyl bending termination (Rakusová et al., 2019). To evaluate 

whether the actin cytoskeleton is also required for auxin-mediated PIN rearrangement in 

root, we studied the impacts of actin cytoskeleton inhibitors on auxin-mediated PIN1 

rearrangement in roots (Sauer et al., 2006; Prát et al., 2018). We pretreated 3 days old light 

grown wild type seedlings with 10 µM of latrunculin B (LatB) to disrupt the actin cytoskeleton 

or 5 µM of jasplakinolide to stabilize the actin cytoskeleton for 30minutes, then co-treated 

with 10 µM of 1-naphthaleneacetic acid (NAA) for another 4 hours. Consistent with previous 

results (Sauer et al., 2006; Prát et al., 2018), NAA induced PIN1 repolarization to the lateral 

side of endodermal cells in roots (Figure 1A, 1B, 1E), but NAA failed to induce PIN1 

rearrangement when the actin cytoskeleton is disrupted by LatB or stabilized by Jasplakinolide 

(Figure 1C, 1D, 1E), these data indicate that the actin cytoskeleton is required for auxin-

mediated PIN rearrangement in roots. 



 
 

 

Figure 1. Actin cytoskeleton is required for auxin feedback on PIN1 lateralization in primary root.  
3 days old light grown wild type seedlings were pre-treated with 10 µM of LatB, and 5 µM of jasplakinolide for 
30 minutes, then co-treated with 10 µM of NAA for 4 hours. (A - D) Representative confocal images of PIN1 in 
root upon DMSO treatment (A), 10 µM of NAA treatment (B), 10 µM of LatB and NAA co-treatment (C), 5 µM of 
jasplakinolide and NAA co-treatment (D). (E) Quantification of PIN1 lateral-to-basal signal intensity in 
endodermal cells. The ratio was calculated between lateral and basal side of endodermal cells. Data are means 
± the SD, N > 10, Students t-test, ** P < 0.05. Scale bars = 20 µm. Arrowheads depict PIN1in endodermal cells 

5.2.2 Defective auxin feedback on PIN1 polarization in actin2 and arp3 
mutants root 

We next characterized actin cytoskeleton related mutants which would show the 

same PIN polarization defects. ACTIN2 and ARP3 are two good candidates with defects either 

in PIN repolarization or polar auxin transport (Zou et al., 2016; Pratap Sahi et al., 2017; 

Rakusová et al., 2019). Therefore, we assessed the auxin-induced PIN1 lateralization in actin2 

and arp3 mutants. As shown, PIN1 relocated to the lateral side of endodermal cells after 4 

hours of 10 µM of NAA treatment in wild type roots; whereas the auxin-induced PIN1 

lateralization did not happen in both actin2 and arp3 mutants roots (Figure 2A - 2E), indicating 

that ACTIN2 and ARP3 are also required for auxin feedback on PIN repolarization in the root.   

5.2.3 Defective auxin feedback on PIN3 polarization in actin2 and arp3 
mutants during shoot gravitropism 

In contrast to roots, auxin also mediates PIN repolarization during hypocotyl 

gravitropism (Rakusová et al., 2016, 2019). As shown previously, either disruption of the actin 

cytoskeleton or mutation in ACTIN2 gene causes hypocotyl hyperbending with defects in 

auxin-mediated PIN3 repolarization (Figure 3A - 3G, 3J; Rakusová et al., 2019). In addition, the 

arp3 mutant also shows overbending of the hypocotyl similar to actin2 mutant and LatB 

treatment (Supplementary Figure S1E; Zou et al., 2016; Rakusová et al., 2019), we then 

addressed the role of ARP3 in PIN3 polarization regulation during hypocotyl gravitropism. We 
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first examined gravity-mediated PIN3 polarization in the arp3 mutant (Rakusová et al., 2016). 

After 6 hours of gravity stimulation, a strong PIN3-GFP signal was observed at the lower side 

of endodermal cells in both wild type and in arp3 mutant hypocotyls (Supplementary Figure 

S1A, S1B, S1F). However, after 24 hours gravity stimulation, a strong PIN3-GFP signal retained 

at the outer side of endodermal cells in the arp3 mutant; whereas the PIN3-GFP signal 

disappeared at outer side of endodermal cells in the wild type hypocotyls (Supplementary 

Figure S1C, S1D, S1G). These data indicate a defective of auxin-mediated PIN3 repolarization 

at later stage of hypocotyl gravitropic response (Rakusová et al., 2016), but a normal gravity-

mediated PIN3 polarization in the arp3 mutant (Supplementary Figure S1A – S1G). Similar 

auxin-mediated PIN3 polarization defects are also observed in LatB treated hypocotyls and in 

the actin2 mutant hypocotyls (Rakusová et al., 2019). 

Exogenous application of auxin also induces PIN3 repolarization into the inner side of 

endodermal cells of the hypocotyl, as is observed at the later stage of gravitropic response 

(Rakusová et al., 2016, 2019). As reported previously, auxin-mediated PIN3 polarization 

doesn’t happen in LatB treated hypocotyls and in the actin2 mutant (Figure 3A - 3G, 3J; 

Rakusová et al., 2019). We then investigated the auxin effect on PIN3 polarization in the arp3 

mutant. We transferred 3 days old etiolated arp3 mutant seedlings to new plates with 10 µM 

of NAA or dimethyl sulfoxide (DMSO) for 4 hours. DMSO has no prominent effect on PIN3 

polarity in both wild type and the arp3 mutant (Figure 3A, 3H, 3K; Rakusová et al., 2016, 2019). 

The PIN3-GFP signal disappeared at outer side of endodermal cells in wild type after 4 hours 

NAA treatment (Figure 3B, 3E; Rakusová et al., 2016, 2019), but a strong PIN3-GFP signal was 

still observed at outer side of endodermal cells in the arp3 mutant upon auxin treatment 

(Figure 3I,3 K), indicating a defective auxin-mediated PIN3 repolarization in the arp3 mutant. 

Together with previous data (Figure 3A - 3K; Rakusová et al., 2019), our result supports that 

actin cytoskeleton is required for auxin feedback regulation of PIN polarity during hypocotyl 

gravitropic response. 

The defective auxin feedback on PIN polarity also resulted in auxin canalization related 

phenotypes in actin2 and arp3 mutants. Upon auxin treatment, actin2 and arp3 mutants 

generated less lateral root, and short root hairs compared to wild type (Supplementary Figure 

S2A – S2D), this could be the consequence of less effective PIN repolarization in root upon 

auxin treatment (Figure 3A - 3E). The defective auxin feedback regulation on PIN3 polarity in 

actin2 and arp3 mutants is also demonstrated by hyperbending hypocotyls. In addition, LatB 



 
 

treatment also causes hypocotyl hyperbending (Supplementary Figure S1E; Zou et al., 2016; 

Rakusová et al., 2019).  

 

Figure 2. Auxin-induced PIN1 lateralization requires ACTIN2 and ARP3.  
3 days light grown seedlings were treated with DMSO or 10 µM of NAA for 4 hours. (A - D) Representative 
confocal images of PIN1 in DMSO treatment in actin2 mutant (A) and arp3 mutant (C) or NAA treated actin2 
mutant (B) and arp3 mutant (D). (E) Quantification of PIN1 lateral-to-basal signal intensity in endodermal cells. 
The ratio was calculated between lateral and basal side of endodermal cells. Data are means ± the SD, N > 10 
seedlings, Students t-test, ** P < 0.05. Scale bars = 20 µm. Arrowheads depict PIN1in endodermal cells. 

5.2.4 Defective leaf venation patterning, auxin canalization, regeneration in 
actin2 and arp3 mutants 

Leaf vascular patterning requires auxin signaling and auxin flow (Berleth et al., 2006). 

The canalization hypothesis proposes the directional auxin flow as the main signal for vascular 

development and regeneration. To further emphasize the involvement of ACTIN2 and ARP3 

in canalization, we examined the leaf venation patterning (Berleth and Sachs, 2001), 

regeneration after wounding (Sauer et al., 2006; Mazur et al., 2016) in actin2 and arp3 

mutants.  

We first quantified leaf vascular pattern of 7 days light-grown seedlings of wild type, 

actin2 and arp3 mutants. In wild type, only 13% of the leaves showed venation defects; 

whereas in the leaves of the actin2 and arp3 mutants the venation defects increased to 43.9% 

and 39.3%, respectively (Figure 4A, 4B).  

Vasculature is regenerated in the wound neighborhood of primary tissues, according 

to the presumable new auxin flow direction (Aloni and Sachs, 1973; Sachs and Cohen, 1982; 

Flaishman et al., 2003; Sauer et al., 2006; Mazur et al., 2016). We then investigated 
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vasculature regeneration in the actin2 and the arp3 mutants stem after wounding. After 7 

days, the new regenerated vessel was completed formed around the wound in wild type 

plants (Figure 4C, 4D). In the actin2 mutant, 50% of seedlings displayed a completed 

regeneration of vessel cells; 50% of seedlings showed a slower development of vessel strands 

and the newly formed vessel strands were not connected (Figure 4C, 4D). In the arp3 mutant, 

30% of the seedlings showed single vessel cells, and 30% of seedlings exhibited incomplete 

vasculature regeneration (Figure 4C, 4D), indicating a defective regeneration of new vessels 

in the arp3 and actin2 mutants stem compared to wild type. 

 

Figure 3. Auxin-induced PIN3 repolarization requires actin cytoskeleton, ACTIN2 and ARP3.  
3 days etiolated seedlings were transferred to new plates with DMSO or 10 µM of NAA for 4 hours in darkness. 
(A - D) Representative confocal images of PIN3-GFP in wild type hypocotyls under DMSO treatment (A), NAA 
treatment (B), LatB treatment (C), LatB and NAA co-treated (D). (E) Quantification of PIN3-GFP intensity upon 
LatB and auxin co-treatment. The PIN3-GFP intensity was calculated between inner and outer side of 
endodermal cells. (F - I) Representative confocal images of PIN3-GFP under DMSO treatment in actin2 mutant 
(F) and arp3 mutant (H), NAA treatment in actin2 mutant (G) and arp3 mutant (I). (J - K) Quantification of PIN3-
GFP intensity upon auxin treatment in actin2 mutant (J) and arp3 mutant (K). The PIN3-GFP intensity was 
calculated between inner and outer side of endodermal cells. Data are means ± the SD, N > 15, Students t-test, 
** P < 0.05. Scale bars = 20 µm. Arrowheads depict PIN3 at outer side of endodermal cells. 

Local application of auxin after wounding is sufficient to induce vasculature formation 

along the auxin channel (Sauer et al., 2006; Mazur et al., 2016). We then studied auxin effect 

on vasculature formation in the actin2 and arp3 mutants after wounding. After 6 days, new 

vessels were completely formed from the local auxin source, the vessels were organized in 

continues strand in wild type stems (Figure 5A, 5G, 5H). In actin2 mutant, auxin-induced 

vessels formation decreased to 80%, and the vessels are unshaped, disorganized and did not 



 
 

form continues strand (Figure 5B, 5G, 5H). In arp3 mutants, the vessels formation decreased 

to 60%, vessels are observed in groups of cells and the strand were not connected (Figure 5C, 

5G, 5H). In addition, we didn’t observe vessels formation from the local applied auxin source 

when actin cytoskeleton was disrupted by LatB in wild type, the actin2 and arp3 mutants 

(Figure 5D, 5E, 5F, 5H). Taken together, these data indicate that actin cytoskeleton is involved 

in auxin canalization. 

5.2.5 Trafficking defects in actin2 and arp3 mutants 

Auxin feedback on PIN polarity is linked to auxin effects on clathrin-mediated 

endocytosis of PIN proteins (Paciorek et al., 2005). Accumulation of cortical actin 

microfilaments inhibits PIN endocytosis (Nagawa et al., 2012). The ARP2/3 complex has been 

reported to be involved in actin filament assembly, and it is also required for vesicle trafficking 

and endocytosis (Rotty and Bear, 2013; Sun et al., 2015; Zou et al., 2016). We then evaluated 

whether ACTIN2 and ARP3 are involved in endomembrane trafficking. The FM4-64 dye is 

widely used to investigate endomembrane trafficking of vesicles in living eukaryotic cells 

(Bolte et al., 2004). After incubation with 2 µM of FM4-64 for 15 minutes, FM4-64 dye was 

internalized and substantial numbers of fluorescent vesicles were detected in the cytoplasm 

of wild type roots. Conversely, only a few vesicles were observed in the actin2 and arp3 

mutants, indicating a defective trafficking in actin2 and arp3 mutants (Figure 6A, 6C, 6E, 6G; 

Zou et al., 2016). In addition, auxin has been shown to inhibit endomembrane trafficking 

(Figure 6B; Paciorek et al., 2005), however, actin2 and arp3 were less sensitive to auxin 

treatment (Figure 6D, 6F, 6G), indicating that ACTIN2 and ARP3 are involved in 

endomembrane trafficking. 

5.2.6 ACTIN2 and ARP3 mutations cause defective PIN trafficking 

PIN proteins are undergoing recycling between plasma membrane and endosomal 

compartments (Geldner et al., 2001). The cycling is inhibited by the fungal toxin, brefeldin A 

(BFA), resulting in PIN internalization into BFA bodies (Geldner et al., 2001). Auxin and actin 

inhibitors have been reported to inhibit BFA body formation (Geldner et al., 2001; Paciorek 

et al., 2005). To determine whether ACTIN2 and ARP3 are required for PIN trafficking, we 

studied PIN trafficking in the actin2 and arp3 mutant roots upon BFA treatment. After 50 µM 

of BFA treatment for 60 minutes, we observed less BFA bodies in actin2 and arp3 mutants 

compared to wild type (Figure 7A, 7B, 7C, 7G), indicating a defective PIN trafficking. As 
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expected, auxin inhibited BFA body formation in wild type roots (Figure 7D, 7G), however, 

auxin has no additional effects in the actin2 and arp3 mutants root (Figure 7E - 7G). 

Altogether, actin cytoskeleton is required for PIN trafficking (Geldner et al., 2001; Figure 7A - 

7C). Furthermore, our data at least support that ACTIN2 and ARP3 are involved in auxin-

mediated inhibition of PIN trafficking (Paciorek et al., 2005). 

BFA treatment also leads membrane proteins including PINs translocation from Golgi 

apparatus to trans-Golgi network (TGN)/early endosomes (EE) (Naramoto et al., 2014). 

Because less BFA bodies were observed in actin2 and arp3 mutants (Figure 7), it is likely that 

ACTIN2 and ARP3 are required for PIN translocation g from the Golgi apparatus to the TGN/EE. 

To address this hypothesis, we performed immunolozalization in the actin2 and arp3 mutants 

roots using the anti-ARF1 antibody to mark TGN/EE. First, we investigated if actin 

cytoskeleton is required for PIN trafficking to TGN/EE. Pretreatment with 10 µM of LatB for 

30 minutes, and then co-treatment with 50 µM of BFA, and LatB abolished the trafficking from 

Golgi apparatus to TGN/EE (Supplementary Figure S3A – S3D). Furthermore, the actin2 and 

arp3 mutants also showed defects in trafficking to TGN/EE upon BFA treatment 

(Supplementary Figure S3E – S3H). This assay suggests that actin cytoskeleton including 

ACTIN2 and ARP3 is required for protein trafficking to TGN/EE. 

To further study the role of the actin cytoskeleton, ACTIN2 and ARP3 in trafficking, we 

monitored late endosomes movements, marked by 35S::GFP-ARA7 in actin2 and arp3 

mutants roots (Ueda et al., 2004). When the actin cytoskeleton was disrupted by LatB, the 

endosomes movement were significantly reduced compared to DMSO treatment 

(Supplementary Figure S4). Similar endosomes movement defects were also observed in the 

actin2 and arp3 mutants, but not as strong as LatB treatment (Supplementary Figure S4), 

maybe due to the redundancy of the gene family. Our results demonstrate that actin 

cytoskeleton is essential for PIN trafficking to TGN/EE. 

5.3 Discussion 

The link between the actin cytoskeleton and polar auxin transport is complicated. On 

one hand, auxin modulates actin organization, and actin dynamics (Zhu and Geisler, 2015). 

On the other hand, the actin cytoskeleton is involved not only in the PIN recycling but also in 

PIN endocytosis. As a consequence, modulation of actin dynamics and organization either by 

chemical treatments, by hormones such as auxin, or by genetic mutants (including actin and 

javascript:;


 
 

actin regulators) do affect PIN protein trafficking and endocytosis (Zhu and Geisler, 2015). In 

this study, we show that at least the actin cytoskeleton and it organization protein ACTIN2 

and ARP3 are involved in auxin canalization with an essential role in auxin-mediated PIN 

polarity rearrangement by modulating PIN trafficking.  

 

Figure 4. Defective leaf venation, regeneration in actin2 and arp3 mutants.  
(A) Representative images of leaf venation defects in wild type, actin2 and arp3 mutant leaf. Scale bars = 1 cm. 
(B) Evaluation of cotyledon vasculature defects in actin2 and arp3 mutants. (C) Representative images of 
vasculature regeneration around wound after 7 days in wild type, actin2 and arp3 mutants. Vessels were fully 
regenerated around wound in wild type; vessels were not fully regenerated and slower than wild type in actin2 
mutant (50%);   vessels were in grouped cells (30%) and vessels were not started (30%) in arp3 mutant. Scale 
bars = 200 µm. (D) Quantification of regeneration defects in actin2 and arp3 mutants. N = 10. 
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Figure 5. Auxin-canalization requires actin cytoskeleton, ACTIN2 and ARP3 protein function.  
(A - C) Representative images of auxin induced vasculature regeneration in wild type (A), actin2 mutant (B) and 
arp3 mutant (C). The vessels are completely formed and connected with exist vasculature in wild type (A); the 
vessels are unshaped, disorganized and are not connected with vasculature in actin2 mutant (B); the vessels are 
in grouped cells and are not connected with vasculature in arp3 mutant (C). (D - F) Representative images of 
auxin induced vasculature regeneration upon LatB treatment in wild type (D), actin2 mutant (E) and arp3 mutant 
(F). Auxin failed to induce vessels formation in wild type, actin2 and arp3 mutants when actin cytoskeleton is 
disrupted by LatB (D - F).  Scale bars = 200 µm. (G) Quantification of vasculature regeneration upon auxin and 
LatB treatment in actin2 and arp3 mutants. N = 10. (H) Schemes of auxin canalization in actin2 and arp3 mutants. 
Auxin-induced vessels formation was completed and connected to exist vasculature in wild type (red line), and 
vessels were also formed around the wound in wild type (blue line) but not in actin2 and arp3 mutants. Auxin-
induced vessels formation was defective in both actin2 and arp3 mutants (red line). LatB abolished auxin-
induced vessels formation inwild type, actin2 and arp3 mutants. 



 
 

 

Figure 6. Decreased FM4-64 uptake in actin2 and arp3 mutants.  
4 days light grown seedlings were used for FAM4-64 assay. (A - F) 30 minutes DMSO treatment in wild type (A), 
actin2 mutant (C), and arp3 mutant (E) or 10 µM of NAA treatment in wild type (B), actin2 mutant (D), and arp3 
mutant (F). (G) Quantification of FM4-64 internalization fluorescence intensity in actin2 and arp3 mutants. The 
ratio was calculated between cytoplasm and plasma membrane (PM). Data are means ± the SD, N > 10, Students 
t-test, ** P < 0.05. Scale bars = 20 µm. 

5.3.1 Requirement of actin cytoskeleton for auxin feedback regulation on 
PIN polarity 

The canalization hypothesis proposes that auxin has a feedback regulation on PIN 

polarity (Sachs, 1975; Smith and Bayer, 2009; Bennett et al., 2014), and this auxin feedback 

on PIN polarity has been demonstrated with experimental evidence in roots and hypocotyls 

(Sauer et al., 2006; Prát et al., 2018; Rakusová et al., 2016, 2019). In roots, PIN1 changes its 

polarity from the basal side to the lateral-inner side of endodermal cells upon auxin treatment 

(Sauer et al., 2006; Prát et al., 2018). However, auxin fails to induce PIN1 repolarization to 

lateral-inner side of endodermal cells when the actin cytoskeleton is disrupted or in actin2 

and arp3 mutants roots (Figure 2A - 2E). Taken together, these direct evidence supports that 

actin cytoskeleton plays vital roles in auxin feedback regulation on PIN polarity. 

Auxin feedback on PIN3 repolarization is essential for hypocotyl gravitropic bending 

termination (Rakusová et al., 2016, 2019), and the hyperbeding hypocotyls of the actin2 and 

arp3 mutants suggest a possible role of ACTIN2 and ARP3 in PIN polarity regulation. Indeed, 

both actin2 and arp3 mutants showed defects in auxin-mediated PIN3 repolarization in 

hypocotyls (Figure 3F - 3K; Supplementary Figure S1C, S1D, S1G; Rakusová et al., 2019), but a 

normal gravity-induced PIN3 polarization (Supplementary Figure S1A, S1B, S1F; Rakusová et 

al., 2019). In addition, distripution of the actin cytoskeleton also shows similar auxin-mediated 
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PIN3 polarizarion defects (Figure 3A - 3E; Rakusová et al., 2019). All these data support a more 

specific role of actin cytoskeleton in auxin-mediated feedback on PIN3 polarization to 

terminate hypocotyl bending.  

 

Figure 7. Defective intracellular PIN1 trafficking in actin2 and arp3 mutants upon BFA treatment.  
3 days light grown seedlings were used for BFA treatment. (A - C) 60 minutes of 50 µM of BFA treatment  in wild 
type (A), actin2 mutant (B), arp3 mutant (C). (D - F) 30 minutes of 10 of µM NAA pretreatment then co treatment 
with 50 µM  of BFA for 60 minutes in wild type (D), actin2 mutant (E), arp3 mutant (F). (G) Quantification of BFA 
bodies in actin2 and arp3 mutants. Data are means ± the SD. N > 15, Students t-test, ** P < 0.05. Scale bars = 20 
µm. Arrowheads depict BFA body. 

5.3.2 The actin cytoskeleton is a component of auxin canalization 

Canalization is involved in many developmental processes (Berleth and Sachs, 2001; 

Sauer et al., 2006; Mazur et al., 2016). Auxin has been proposed to be the polarizing signal 

that mediates the directional channel formation underlying the spatio-temporal vasculature 

patterning and regeneration after wounding (Mazur et al., 2016). Feedback between auxin 

signaling and auxin flow is required for canalization (Mazur et al., 2016), but the mechanism 

behind is poorly understood. The actin2 and arp3 mutants show defects in leaf venation 



 
 

patterning (Figure 4A, 4B), and they also show regeneration defects around the wound 

compared to wild type (Figure 4C, 4D). Furthermore, actin cytoskeleton inhibitor, LatB 

abolished auxin-induced formation of vascular in stem after wounding in wild type, actin2 and 

arp3 mutants (Figure 5D - 5G). Additionally, actin2 and arp3 mutants are insensitive to auxin 

application during regeneration after wounding (Figure 5A - 5C, 5G). These evidences support 

that actin cytoskeleton is a component of auxin-canalization, which is in line with previous 

report that LatB causes a defective PIN1 polar localization in protophloem cells (Kleine-Vehn 

et al., 2006). 

5.3.3 The actin cytoskeleton dependent PIN trafficking 

The abundance and localization of PIN proteins at plasma membrane are finely 

regulated by different signals (Adamowski and Friml, 2015). PIN trafficking is crucial for PIN 

subcellular localization. Actin cytoskeleton has been shown to be involved in PIN trafficking 

(Geldner et al., 2001; Friml et al., 2002b; Nagawa et al., 2012). Clathrin-mediated endocytosis 

(CME) of PIN protein is a vital mechanism for manipulating PIN-mediated auxin distribution 

(Dhonukshe et al., 2007; Kitakura et al., 2011). In mammalian cells, actin cytoskeleton and 

ARP2/3 complex have been shown to transiently appear at clathrin-coated pits just prior to 

vesicle release (Yarar, et al; 2005). Our data provide evidence that ACTIN2 and ARP3 are also 

essential for trafficking (Figure 6A - 6G). However, the role of actin cytoskeleton in plant CME 

needs more investigation.   

BFA treatment indicates that PIN recycling depends on the actin cytoskeleton (Figure 

7A - 7G; Geldner et al., 2001). Disruption of actin cytoskeleton leads to a defective trafficking 

to TGN/EE.  Similar defects are also observed in actin2 and arp3 mutants (Supplementary 

Figure S3A – S3H; Supplementary Figure S4). Taken together, our results demonstrate that 

ACTIN2 and ARP3 mediated actin organization participates in regulation of auxin distribution 

by inhibiting endosomes movement, resulting in a defective PIN trafficking.  

In plants, the ARP2/3 complex is regulated by the nucleation promoting factors 

SCAR/WAVE regulatory complex and other proteins (Szymanski, 2005; Yanagisawa et al., 

2013). SPIKE1 (SPK1) activating ROP-GTP signals that antagonize the SCAR regulatory complex 

resulting in activating of the ARP2/3 complex (Yanagisawa et al., 2013). On the other hand, 

some of the known membrane adaptor proteins do not have homologs in plants, therefore, 
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plants have evolved different protein complexes that localize at the cytoskeleton and 

mediated membrane trafficking or endocytosis (Wang and Hussey, 2015). We can’t exclude 

the role of these proteins in auxin feedback on PIN polarity regulation, CME-mediated PIN 

endocytosis and trafficking. The next step would be important to investigate the function of 

these proteins such as the SCAR/WAVE complex, upstream of the ARP2/3 complex and other 

ARP2/3 complex subunits in PIN-mediated auxin transport, CME, and PIN trafficking 

processes. These novel findings would provide more insights to understand the basis of PIN 

polarity regulation. In addition, the actin-based myosin transport network drives long-

distance intracellular transport in plant cells, the myosin motor proteins track toward to actin 

filament to deliver cargoes or proteins to specific cellular locations (Tominaga et al., 2003). 

Thus, it appears that myosin proteins may also important for PIN-mediated auxin transport 

(Abu-Abied et al., 2018), but the function of myosin proteins in auxin canalization especially 

in auxin feedback on PIN polarity needs more investigation. 

In summary, our study reveals an essential aspect of the actin cytoskeleton in PIN 

subcellular localization regulation. We also demonstreat that actin cytoskeleton is also 

important for auxin canalization-realted developmental processes. 

 

 

 

 

 

 

 

 

 

 



 
 

5.4 Materials and Methods 

Plant material and growth conditions 

The following transgenic and mutant lines were used: Col-0 (wild type), PIN3::PIN3-GFP (Col-

0 background, Žádníková et al., 2010); 35S::GFP-ARA7 (Ueda et al., 2004); actin2 

(SALK_048987, Rakusová et al., 2019), arp3 (SALK_010045). Mutant combinations with 

PIN3::PIN3-GFP or 35S::GFP-ARA7 were generated through genetic crosses. Seeds were sown 

on plates with half-strength Murashige and Skoog (½ MS) medium with 1% sucrose, 1% agar 

and stratified at 4°C for 2 days, and then cultivation at 21°C.  

Hypocotyl gravity stimulation 

3 days old etiolated seedlings were turned 90°. To monitor gravitropic responses, plates were 

scanned 24 hours after gravistimulation, and bending angle was measured by ImageJ (NIH; 

http://rsb.info.nih.gov/ij). Each experiment was done at least three times with more than 30 

seedlings to generate the same significant results.  

Quantification of PIN3-GFP intensity 

PIN3-GFP intensity was measured by ImageJ. The fluorescence intensity of PIN3-GFP were 

measured at upper part of hypocotyl as described previously (Rakusová et al., 2019). The ratio 

was calculated between outer side of endodermal cells at lower and upper side of hypocotyl 

after gravity stimulation for 6 hours or 24 hours (Rakusová et al, 2019). For auxin treatment, 

3 days old etiolated seedlings were transferred onto new plates with 10 µM of NAA, and the 

same amount of DMSO for 4 hours. The ratio was calculated between inner and outer side of 

endodermal cells (Rakusová et al, 2016, 2019). Three biological repeats with more than 15 

seedlings were performed to generate the same significant results. 

Leaf venation assay  

7 days old light grown seedlings were used for leaf venation analysis. Cotyledons were cleared 

in a solution containing 4% HCl and 20% methanol for 15 minutes at 65℃, followed by a 15 

minutes incubation in 7% NaOH and 70% ethanol at room temperature. Next, seedlings were 

rehydrated by successive incubations in 70%, 50%, 25%, and 10% ethanol for 5 minutes, 

followed by incubation in a solution containing 25% glycerol and 5% ethanol for 2 days at 

room temperature. Finally, seedlings were mounted in 50% glycerol and were monitored by 

differential interference contrast DIC microscopy (Olympus BX53). 
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Canalization and regeneration of stem 

The canalization and regeneration was performed as described previously (Mazur et al., 

2016). Briefly, plants with immature inflorescence stems (9 to 10 cm tall) were used. Stems 

were decapitated with a sharp razor blade, the apical floral parts (1 to 2 cm) were removed, 

and the artificial weight, a 2.5 g lead ball connected with a plastic tube was applied. 

Decapitated stems covered by the artificial weight were additionally supported by a wood 

stick to avoid their bending. With this method, secondary tissue architecture could be 

obtained 6 days after weight application in the basal parts of previously immature Arabidopsis 

stems (5 mm segments above the rosette). Next, the stems were incised in the basal parts. 10 

µM of indole-3-acetic acid (IAA) and 10 µM of Latrunculin B were mixed with lanolin paste 

and locally applied onto the wounded stems, beneath the wound.  

For regeneration, inflorescence stems were cut precisely with a sharp razor blade 3 to 4 mm 

from the rosette in the transversal plane of the basal sectors with vascular cambium and 

secondary tissues to interrupt their longitudinal continuum. Plants were still covered with the 

artificial weight during this experimental step. Axillary buds grown above the rosette leaves 

were not removed, thus remaining the source of endogenous auxin. After 7 days after 

wounding, stems were cut by automated vibratome (Leica VT1200 S, Leica Mycrosystems Ltd., 

Wetzlar, Germany) and 80 µm thick native sections were prepared. The native sections were 

stained with a 0.025 % Toluidine Blue O aqueous solution and regeneration was analyzed in 

stems with fully developed, closed cambial rings, and secondary tissues in their basal parts. 

The native sections were observed using a bright field microscope (Zeiss Axioscope.A1 ZEN) 

and pictures of vasculature were photographed with a camera (Axiocam 105) at 10x 

magnification. Only stems selected in this manner were used to study vasculature 

regeneration. 

Whole-mount in situ immunolozalization 

For PIN1 rearrangement in root upon auxin treatment, 3 days old primary roots were treated 

with 10 µM of LatB and 5 µM of Jasplakinolide for 30 minutes, then co-treated with 10 µM of 

NAA for another 4 hours. The immunolozalization was carried out as described previously 

(Sauer and Friml, 2010). The antibodies were used as follows: anti-PIN1, 1 : 1000 (Paciorek et 

al., 2005). The second goat anti-rabbit antibody coupled Cy3 (Sigma-Aldrich) was diluted 1 : 

600. PIN1 was monitored by inverted Zeiss confocal LSM-700. Quantification of PIN1 

lateralization was performed in more than 50 endodermal cells for each root as described 



 
 

before (Sauer et al., 2006). Three biological repeats were performed with a similar significant 

results. 

FM4-64 assay and microscopy observation 

4 days old light grown seedlings were incubated with 10 µM of NAA or same amount of DMSO 

for 30 minutes in ½ MS liquid medium, then seedlings were transferred to new medium with 

2 µM of FM4-64 for 15 minutes, and seedlings were mounted and observed using an inverted 

Zeiss confocal LSM-700 microscopy. Signal intensity was measured using ImageJ in more 50 

cells. The ratio was calculated between cytoplasm and plasm membrane (PM). Three 

biological independent repeats with at least 10 seedlings were performed to generate the 

same significant results. 

BFA treatment assay 

To monitor PIN trafficking, 3 days old light grown seedlings were pretreated with 10 µM of 

latrunculin B (LatB), 10 µM  of NAA or same amount of DMSO for 30 minutes, and then co-

treatment with 50 µM of BFA in ½ MS liquid medium for another 60 minutes, 

immunolozalization was carried out using anti-PIN1 or anti-ARF1 (ADP-ribosylation factor 1) 

antibody. Three biological independent repeats with at least 15 seedlings were performed to 

generate the same significant results. 

Quantification of endosomes movements 

4 days old light-grown seedlings were used for analysis.  Seedlings were treated with 30 µM 

of latrunculin B and same amount of DMSO for 30 minutes, then an inverted LSM-800 

microscopy was used to track the late endosomes movement with a setting of 4 millisecond 

per frame, in total 12 frames were recorded for each root. The TrackMate software was used 

to quantify endosomes movement using ImageJ (Jaqaman et al., 2008). The estimated blob 

diameter was set by 0.5 micron, with a threshold at 20, over 200 spots were quantified per 

root. Three biological independent repeats were performed to generate the same significant 

results. 

Statistical analysis 

All statistical analysis was performed using student’s test in excel (Microsoft 2010) with a 

significant difference (** P < 0.05 or *** P < 0.001).  

Author contributions:  

H.H. and J.F. designed experiments; H.H. performed most the experiments; E.M. performed 

the auxin canalization experiment, and analyzed data, N.R. conducted the regeneration 
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experiment, and analyzed data; H.H. and J.F. wrote the manuscript with inputs from all 

authors. 
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5.6 Supplementary Figures 

 
Supplementary Figure S1. Normal gravity-induced PIN3 polarization in arp3 mutant.  
3 days old etiolated seedlings were gravity stimulated for 6 hours or 24 hours. (A - B) Confocal image of PIN3-
GFP in wild type (A) and arp3 mutant (B) after 6 hours gravity stimulation. (C - D) Confocal image of PIN3-GFP in 
wild type (C) and arp3 mutant (D) after 24 hours gravity stimulation. (E) Quantification of bending angle of arp3 
mutant after 24 hours gravity stimulation. (F - G) Quantification of PIN3 intensity in arp3 mutant after 6 hours 
(F) and 24 hours (G) gravity stimulation. The ratio was calculated at outer side of endodermal cells between 
lower and upper side of hypocotyl. Data are means ± the SD, N > 10, Students t-test, ** P < 0.05. Scale bars = 20 
µm. Arrowheads depict the PIN3-GFP at the outer sides of endodermal cells. Arrow indicates gravity direction. 
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Supplementary Figure S2. Root phenotypes of actin2 and arp3 mutant upon auxin treatment.  
3 days light grown seedlings were transferred onto new plates with DMSO or 100 nM of NAA  and seedlings 
were kept growing for another 3 days, lateral root number and root hair length were quantified. (A) 
Representative images of lateral root of NAA treated wild type, actin2 and arp3 mutants. (B) Quantification of 
lateral root number after NAA treatment in actin2 and arp3 mutants. (C) Representative images of root hair 
elongation of NAA treated wild type, actin2 mutant and arp3 mutants.  (D) Quantification of root hair length 
after NAA treatment in actin2 and arp3 mutants. Data are means ± the SD, N > 20, Students t-test, ** P < 0.05. 
Scale bars = 1 cm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

Supplementary Figure S3. Defective trafficking to TGN/EE in actin2 and arp3 mutants.  
3 days light grown seedlings were pre-treated with 10 µM of LatB for 30minutes, then co-treated with 50µM 
BFA or DMSO, or only treated with 50 µM BFA or DMSO for another 60 minutes. Immunolozalization was 
performed using anti-ARF1. (A) DMSO treated wild type seedlings. (B) 50 µM BFA treated wild type seedlings. 
(C) LatB and DMSO co-treated wild type seedlings. (D) LatB and BFA co-treated wild type seedlings. (E - F) DMSO 
or BFA treated actin2 mutant. (G - H) DMSO or BFA treated arp3 mutant. Scare bar = 50 µm. 
 
 
 
 
 
 
 

 

Supplementary Figure S4. Actin cytoskeleton, ACTIN2 and ARP3 are involved in late endosomes movement.  
4 days light grown seedlings were pre-treated with 30 µM of LatB and DMSO for 30minutes, then late endosomes 
movement was tracked. Data are means ± the SD, N = 5, Students t-test, ** P < 0.05, *** P < 0.01.  
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6 Conclusions and future Perspectives 

6.1 Conclusions 

The main aim of this thesis is to gain a better understanding into processes that control 

cell polarity of auxin transporters PIN-FORMED (PIN) proteins during Arabidopsis thaliana 

development. Firstly, we study the physiological effect of PA, an inhibitor of phenylpropanoid 

pathway, on hypocotyl gravitropism. We demonstrate that PA inhibits auxin-mediated PIN3 

repolarization via modulating flavonoid content and PID phosphorylation that ultimately 

leads to hypocotyl hyperbending. Secondly, we show the essential involvement of SCFTIR1/AFB 

signalling in auxin-mediated PIN3 repolarization to terminate hypocotyl bending. By 

performing a phosphoproteomics, we characterize the role of Myosin XI protein and the 

MadB2 family myosin binding protein in PIN polarization regulation that ultimately leads to 

canalization-related developmental defects. Additionally, we uncover the vital role of actin 

cytoskeleton in PIN polarity regulation via modulating PIN trafficking. The results presented 

in this PhD thesis will provide novel insights into PIN polarity regulation during Arabidopsis 

development. 

6.2 Further perspectives 

Over the past decades, the mechanism underline PIN polarity regulation remains 

elusive. Genetic screen or chemical screen have been performed to identify novel factors 

mediating PIN subcellular localization. In Chaper 2, we investigate the physiological effect of 

PA on Arabidopsis hypocotyl gravitropism via modulating PIN-mediated intercellular polar 

auxin transport. However, it is also important to examine the PA effect on other kinases which 

have been reported to play essential roles in PIN polarity regulation. Meanwhile, under our 

experimental system, we only dissect the physiological effect of PA on hypocotyl gravitropism, 

we can’t rule out whether PA also has impact on other developmental processes. On the other 

hand, the chemicals we used in the hypocotyl gravitropism assay also requires further study 

to uncover their role during Arabidopsis development. 

In Chapter 4 and Chapter 5, we characterize the role of myosin complex and actin 

organization protein, ACTIN2 and ARP3, in PIN polarity regulation via modulating PIN 

trafficking. Despite the initial insights we obtained, some crucial questions needs more 

investigations in future, such as (1) which auxin signaling pathway is involved in the auxin-

mediated myosin complex phosphorylation? (2) Which kinase phosphorylates myosin 



 
 

protein? (3) How myosin protein and its binding protein transport cargoes, such as PINs? (4) 

How the tail-binding proteins are employed by myosin proteins to carry out their transport 

ability and cellular functions? (5) Is the interaction between myosin and myosin binding 

proteins is auxin dependent? (6) Are other known myosin proteins and its binding proteins 

also involved in PIN trafficking? (7) Is there any other actin-related proteins essential for PIN 

trafficking and polarity regulation? (8) What is the upstream of the ARP2/3 complex in PIN 

polarity regulation? 

On the other hand, our phosphoproteomics approach identified many proteins are 

rapidly phosphorylated upon auxin treatment in a TIR1-dependent and -independent manner. 

The candidate proteins form our phosphoproteomics assay will provide novel and additional 

phosphorylation dependent regulation of PIN subcellular localization and polar auxin 

transport during Arabidopsis development and growth. 

Overall, the answers to those fundamental questions will help us to understand how 

the PIN polarity is regulated by secondary metabolites, myosin transport network, and actin 

cytoskeleton. It will also bring new insights into phosphorylation-dependent regulation of PIN 

subcellular localization during plant development. 

 
 
 
 

 


