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Abstract

Motivation: Epistasis, the context-dependence of the contribution of an amino acid substitution to fitness, is com-
mon in evolution. To detect epistasis, fitness must be measured for at least four genotypes: the reference genotype,
two different single mutants and a double mutant with both of the single mutations. For higher-order epistasis of the
order n, fitness has to be measured for all 2n genotypes of an n-dimensional hypercube in genotype space forming a
‘combinatorially complete dataset’. So far, only a handful of such datasets have been produced by manual curation.
Concurrently, random mutagenesis experiments have produced measurements of fitness and other phenotypes in a
high-throughput manner, potentially containing a number of combinatorially complete datasets.

Results: We present an effective recursive algorithm for finding all hypercube structures in random mutagenesis ex-
perimental data. To test the algorithm, we applied it to the data from a recent HIS3 protein dataset and found all
199 847 053 unique combinatorially complete genotype combinations of dimensionality ranging from 2 to 12. The al-
gorithm may be useful for researchers looking for higher-order epistasis in their high-throughput experimental data.

Availability and implementation: https://github.com/ivankovlab/HypercubeME.git.

Contact: d.ivankov@skoltech.ru

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Epistasis, the dependence of the impact of a mutation on the genetic
context, is abundant and important phenomenon in molecular evo-
lution (Breen et al., 2012). Formally, epistasis is characterized by
coefficients a having two or more indices in the following represen-
tation of fitness f as a function of a genotype g (assuming, for simpli-
city, that maximum of one mutation is allowed at any position):
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where sums are taken over N considered positions, di ¼ 1 if i-th

position is mutated in genotype g; otherwise di ¼ 0 or di ¼ –1, de-
pending on the formalism of epistasis description (Poelwijk et al.,
2016). Coefficients ai correspond to a single effect of the mutation
in the i-th position. Coefficients aij, having two indices, represent the
pairwise epistasis between positions i and j, while coefficients a hav-
ing three or more indices correspond to ‘higher-order epistasis’ (de
Araujo and Guimaraes, 2016; Otwinowski et al., 2018; Poelwijk
et al., 2016; Sailer and Harms, 2017a, b, c; Tuo, 2018; Weinreich
et al., 2013, 2018).

To detect epistatic terms of the order n by means of Walsh trans-
form (Weinreich et al., 2013), one has to measure phenotypes of all
2n genotypes forming an n-dimensional hypercube in genotype
space. Such experimental datasets are called ‘combinatorially com-
plete datasets’ (Weinreich et al., 2013). Up to now, higher-order
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epistasis was studied using only a handful of examples carefully
designed to have all 2n combinations (Weinreich et al., 2013). On
the other hand, high-throughput experiments using (quasi-)random
mutagenesis have produced vast amounts of data: 51 715 measured
genotypes for GFP (Sarkisyan et al., 2016), over 65 000 for arginine
tRNA (Li et al., 2016), 956 648 for HIS3 protein (Pokusaeva et al.,
2019), to name a few. These experiments may contain a number of
combinatorially complete datasets as subsets of a general dataset.
However, the extraction of such hypercubes from a large dataset is not
straightforward, and may not be feasible to do in a brute-force manner.

2 Algorithm

The algorithm uses the fact that any n-dimensional hypercube con-
tains two opposite hyperfacets, which are parallel to each other.
Those hyperfacets are hypercubes of dimensionality (n—1), which,
in turn, are built from parallel hypercubes of dimensionality (n—2),
etc. down to hypercubes of 0-th dimensionality (which are simply
points in genotype space, i.e. genotypes).

The algorithm consists of repeating steps. At each step, all pos-
sible n-dimensional hypercubes are generated from the set of (n––1)-
dimensional hypercubes. Informally, at each step, the algorithm
takes all pairs of existing parallel hypercubes and if the distance be-
tween the hypercubes in the pair is one, the pair composes the hyper-
cube of a higher dimensionality (Fig. 1). We need to define the
diagonal of a combinatorially complete dataset as a list of mutations

transforming a genotype of the dataset to the most distant genotype
of the same dataset. An n-dimensional combinatorially complete
dataset therefore contains 2n–1 diagonals, each of which (if not
empty) can be written in the forward and reverse direction.

Formally, the algorithm consists of the following steps:
Each step of the algorithm can be easily parallelized. The multi-

processor version can be found at https://github.com/ivankovlab/
HypercubeME.git.

3 Results

We have applied the algorithm to the recently published fitness land-
scape for HIS3 protein (Pokusaeva et al., 2019), the biggest fitness

Fig. 1. Example illustrating the work of the algorithm. (A) A graph corresponding to a five-dimensional hypercube is given, where measured genotypes are drawn in yellow-

green and non-measured genotypes are drawn in grey. Vertices are given in binary notation, where each digit corresponds to one of five substitution sites. The digit is zero if

the corresponding substitution site contains an amino acid of the reference ‘00000’ genotype; otherwise, it is one. Two vertices are connected if they differ by only one digit.

The graph is drawn so that: (1) all vertices are visible (that is, no vertex is shaded by another one); (2) all vertices having the same number of zeros belong to the same vertical

line; (3) the edges parallel in five-dimensional cube are drawn parallel to each other, and in different colors, for convenience. Blue, black, red, pink and green edges correspond

to substitutions in the fifth, fourth, third, second and first sites, respectively. (B) The algorithm is applied to an example of random mutagenesis data from the panel (A). The di-

agonal for each group of hypercubes is given in bold

01 Input: list of genotypes

02 Output: list of found hypercubes

03 FOR each Genotype from Input:

04 HCube.Diagonal <- empty list

05 HCube.First <- Genotype

06 HCube.Last <- Genotype

07 ADD HCube to ListHCubes[0]

08 N <- 0 # current dimensionality

09 REPEAT:

10 FOR each Group from ListHCubes[N] with same

Diagonal:

11 FOR each pair of hypercubes HCube1, HCube2 from

the Group:

12 IF mutation from HCube1.First to HCube2.First is

single:

13 Forward <- mutation from HCube1.First to

HCube2.First

14 Reverse <- mutation from HCube2.First to

HCube1.First

15 IF Forward is alphabetically less than Reverse:

16 NewDiagonal <- list(Diagonal, Forward)

17 HCube <- (NewDiagonal, HCube1.First,

HCube2.Last)

18 ELSE:

19 NewDiagonal <- list(Diagonal, Reverse)

20 HCube <- (NewDiagonal, HCube2.First,

HCube1.Last)

21 IF Mutations in NewDiagonal are alphabetic-

ally ordered:

22 ADD HCube to ListHCubes[Nþ1]

23 SORT ListHCubes[Nþ1] by Diagonal

24 N <- Nþ1

25 UNTIL no new hypercubes are found
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landscape published so far. The HIS3 protein was divided into 12
segments, and quasi-random mutagenesis has been done in each seg-
ment separately. We had to exclude indels and mutations
outside the segment, so the number of considered experimentally
measured genotypes ranged from 16 182 for segment S7 to 82 081
for segment S2, overall summing up to 721 791 genotypes
(Supplementary Table S1).

We have found all 199 847 053 hypercubes having dimensional-
ity from 2 to 12. The single-processor working time ranged from 2 h
for S7 to almost 10 days for S5. Among the found hypercubes, the
percentage of squares was 12%, while the remaining 88% had
dimensionality 3 and higher and, thus, can be used for exploring
higher-order epistasis. The number of found hypercubes throughout
segments is given in Supplementary Table S2.
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