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Abstract

In the computation of the material properties of random alloys, the method of

‘special quasirandom structures’ attempts to approximate the properties of the

alloy on a �nite volume with higher accuracy by replicating certain statistics of

the random atomic lattice in the �nite volume as accurately as possible. In the

present work, we provide a rigorous justi�cation for a variant of this method

in the framework of the Thomas–Fermi–von Weizsäcker (TFW) model. Our

approach is based on a recent analysis of a related variance reduction method

in stochastic homogenization of linear elliptic PDEs and the locality properties

of the TFW model. Concerning the latter, we extend an exponential locality

result by Nazar and Ortner to include point charges, a result that may be of

independent interest.

Keywords: random material, Thomas–Fermi–von Weizsäcker model, variance

reduction, density functional theory,
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(Some �gures may appear in colour only in the online journal)

1. Introduction

In material science, direct simulations based on density functional theory [14, 15, 21] are

currently limited to hundreds to thousands of atoms and therefore to material samples just

about one order of magnitude larger than the atomic length scale (see e.g. [22]). Multiscale

approaches—employed for example in the simulation of dislocations [9, 19, 25]—rely on
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Figure 1. A simple example of a random atomic lattice, the different atomic species
being indicated by the colours red and blue (left). An illustration of the method of rep-
resentative volumes (right): for ab initio computations of material properties, a sample
of microscopic extent must be chosen.

an extrapolation of the elastic properties of the material from such microscopic samples to

larger scales, a concept also known in the context of continuum mechanics as ‘method of rep-

resentative volumes’. While for materials with a periodic lattice the computational problem

on the atomic scale may often be simpli�ed to a problem on a single periodicity cell [3, 9,

19, 22, 25], such a simpli�cation is no longer possible for materials with random atomic lat-

tices like random alloys (see �gure 1 for an illustration). As a consequence, for random alloys

the atomic-scale samples must be chosen signi�cantly larger, giving rise to a computationally

costly problem.

For the computation of the effective properties of randomalloys, an approach called ‘special

quasirandom structures’ (SQS) has been proposed by Zunger et al [29] to increase the accu-

racy of DFT computationswithout increasing computational effort. The key idea of the method

of special quasirandom structures is to construct a periodic con�guration of atoms with �nite

but large periodicity cell (‘superlattice’) which re�ects certain statistical properties of the ran-

dom atomic lattice particularly well—like the proportion of the atomic species, the proportion

of nearest-neighbor contacts of the various atomic species, and so on (see �gure 2 for an

illustration). Further developments and applications of this method of ‘special quasirandom

structures’ may be found in [27, 28]. Related approaches have been employed in the context

of homogenization in continuum mechanics [1, 2, 23].

Inspired by themethod of special quasirandomstructures, in the continuummechanical con-

text of homogenization of random materials a selection approach for representative volumes

has been proposed by Le Bris, Legoll, andMinvielle [16]: This selection approach proceeds by

considering a large number of microscopic samples of the random material and selecting the

sample that is ‘most representative’ for the material as measured by certain statistical quanti-

ties, like for example the volume fraction in the case of a two-material composite. The effective

material properties are then approximated by numerically evaluating the cell formula provided

by homogenization theory on the selected sample. In the context of stochastic homogenization

of linear elliptic PDEs −∇ · (aε∇u) = f, for the computation of the effective (homogenized)

coef�cient the selection approach has been shown to yield an increase in accuracy of up to one

order of magnitude in a numerical example with ellipticity ratio 5 [16], while requiring negligi-

ble computational effort. Recently, a rigorous mathematical analysis of the selection approach

by Le Bris, Legoll, and Minvielle in the context of homogenization of linear elliptic PDEs has

been provided by the �rst author [11].

The main goal of the present paper is to show that the selection approach of Le Bris, Legoll,

and Minvielle [16]—which is conceptually related to the method of special quasirandom
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structures of Zunger et al [29]—also allows for an increase of accuracy in the computation

of the effective elastic properties of random atomic lattices in the context of orbital-free den-

sity functional theory (orbital-free DFT). More precisely, we neglect exchange–correlation

energy and consider the approximation of effective energies of random atomic lattices in the

framework of the Thomas–Fermi–von Weizsäcker (TFW) model. In the TFW model, for a

given nuclear charge distribution m the associated electronic density ρ of the ground state is

determined by minimizing the TFW energy

∫
CW|∇

√
ρ|2 + CTFρ

5/3
+

1

2
(m− ρ)φ dx

with the electric potential φ being subject to the Poisson equation

−∆φ = 4π(m− ρ).

By rescaling, we may henceforth assume that CW = 1 and CTF = 1. We recall that it is con-

venient to reformulate the TFW model in terms of the square root of the electronic density

u :=
√
ρ. With this notation, the Euler–Lagrange equation for the TFW model reads

−∆u+
5

3
u

7
3 − φu = 0, (1a)

−∆φ = 4π(m− u2). (1b)

In orbital-free DFT, further contributions accounting for exchange and correlation energy are

typically added to the TFW energy (and, correspondingly, to the Euler–Lagrange equation).

In the present work, we shall neglect those terms. We will also assume that the positions of

the nuclei are given a priori. While in a more realistic model the positions of the nuclei would

be determined by energetic relaxation, the question of crystallization in variational models of

interacting atoms is a challenging topic on its own, with positive answers currently restricted

to rather elementary (mostly non-quantum mechanical) models; see e.g. the review [6]. For

this reason, we restrict ourselves to the aforementioned setting of �xed nuclei positions. For

an overview of the mathematical theory of the TFW model, we refer to [7] and the references

therein.

In the framework of hyperelasticity the deformation of an elastic body is determined bymin-

imization of the total (elastic and potential) energy. For an atomic lattice, the elastic energy is

given as the overall energy of electrons and nuclei. In a multiscale approximation, the macro-

scopic deformation of the elastic body is approximated on the atomic length scale by af�ne

deformations. In many cases, for a macroscopically af�ne deformation the state of minimal

energy of the atomic lattice is given by an approximately af�nely deformed atomic lattice (a

principle known as the Cauchy–Born rule, see e.g. [8, 12]). The associated effective (homoge-

nized) elastic energy density is then given by the thermodynamic limit (i.e. the ‘in�nite-volume

average’) of the energy of the af�nely deformed atomic lattice. In other words, in the context of

the TFWapproximation the effective elastic energy density is given as the thermodynamic limit

of the TFW energy, i.e.—up to subtracting the self-energy of point charges—by the quantity

(2)

where the nuclear charge distribution m has been subjected to an appropriate af�ne change of

variables to account for the af�ne deformation of the lattice. Note that the almost-sure existence
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Figure 2. An illustration of the method of special quasirandom structures: an L-periodic
‘superlattice’ (with L≫ 1) is built to re�ect the statistical properties of the randommate-
rial particularly well—like the percentage of atoms of the two species, the statistics
of nearest-neighbor con�gurations, the statistics of con�gurations of three neighboring
atoms, and so on.

of this thermodynamic limit has been established for certain random lattices in [5]; see also [4,

7] for an overview and related questions. Under our main assumptions (A0)–(A3) below, the

almost sure existence of the limit (2) could also be shown by an argument similar to our proof

of theorem 3.

In practical computations of the effective energy (2), the in�nite-volume average in (2) must

be replaced by an average over a �nite volume, say, a box of the form [0, L]d , an approach also

known in the context of continuum mechanics as the method of representative volumes. Note

that in this setting onemust specify appropriate boundary conditions for ρ on ∂[0, L]d . We shall

denote the resulting �nite-volume approximation for E∞ by ERVE
L .

As boundary layer effects may negatively impact the rate of convergence (in the length L)

of the representative volume approximations ERVE
L towards the thermodynamic limit E∞ (see

for instance [11] for a brief discussion of the analogous problem in the context of periodic

homogenization of elliptic PDEs), it is desirable to work with periodic representative volumes.

In the context of nuclear charge distributions m arising from random lattices, this requires the

existence of a periodization of the probability distribution of the nuclear charges m, that is

an L-periodic variant m̃ of the probability distribution of m (see for instance �gure 2 for an

illustration). Note that care must be taken to align the de�nition of the representative volume

with a possible underlying periodic structure. For a more precise explanation of this notion of

periodization, see the discussion preceding conditions (A3a)–(A3c) below. From now on and

for the rest of the paper, we will assume that the representative volume approximation ERVE
L

for the effective energy density E∞ has been obtained by evaluating the averaged TFW energy

(see (6) below) on such a periodic representative volume.

Our main result—theorem 3—states that the selection approach for representative volumes

of Le Bris, Legoll, and Minvielle [16] increases the accuracy of approximations ERVE
L , at least

for a wide class of random nuclear charge distributions: Instead of choosing a representa-

tive volume (that is, an L-periodic nuclear charge distribution) uniformly at random from the

(periodized) probability distribution, it is better to preselect the representative volume to be

‘particularly representative’ for the random alloy in terms of certain basic statistical quantities

like the proportion of different types of atoms in the representative volume, the proportion of
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nearest-neighbor contacts of certain types in the representative volume, and so on. We denote

the resulting approximation for the effective energy density by Esel-RVE
L . In theorem 3 we show

that the approximation Esel-RVE
L is typically more accurate than the approximation ERVE

L . From

a mathematical viewpoint, the interest in our main result is twofold:

• It provides a rigorous justi�cation of a mathematically more precise version of the method

of ‘special quasirandom structures’ in a quantum mechanical model, the setting in which

these concepts were �rst developed [29].

• It provides a �rst example of a nonlinear PDE for which the selection approach for

representative volumes of Le Bris, Legoll, and Minvielle [16] can be proven to be

successful.

Let us brie�y comment on the mechanism for the gain in accuracy achieved by the method

of special quasirandom structures. The leading-order contribution to the error in the method

of representative volumes consists in fact of �uctuations, while in expectation the method of

representative volumes is accurate to much higher order. In fact, in the case of the TFWmodel

the systematic error of the method of representative volumes decays even exponentially in the

size of the representative volume

|E[ERVE
L ]− E∞| 6 C exp(−cL).

At the same time, the �uctuations display only CLT scaling behaviour

|ERVE
L − E[ERVE

L ]| ∼ L−d/2,

that is they behave like the �uctuations of the average of Ld i.i.d. random variables. Thus, a

variance reduction method—a method to reduce the �uctuations of the approximations ERVE
L

while mostly preserving the expected value E[ERVE
L ]—is expected to lead to an increase in

accuracy.

The selection of ‘particularly representative’ material samples may be viewed as such a

variance reduction method : in fact, we shall prove that the joint probability distribution of

the effective energy ERVE
L and statistical quantities like the percentage of atoms of a certain

species in the representative volume (and/or quantities like the percentage of nearest-neighbor

con�gurations of two given atomic species, etc.) is close to a multivariate Gaussian. Condition-

ing on the event that the auxiliary statistical quantity—which we shall denote by F—is close

to its expected value then reduces the variance of the computed energies ERVE
L , provided that

ERVE
L and the auxiliary quantity are nontrivially correlated (see �gure 3). At the same time, the

expected value E[ERVE
L ] is not changed much by selecting only representative volumes subject

to the condition that F is close to its expected value.

The main challenge in the proof is the derivation of the quantitative multivariate normal

approximation result for the joint probability distribution of the energy ERVE
L and the statistical

quantitiesF of the representative volume. Just like in [11], we make crucial use of the locality

properties of these quantities of interest, which allow for a quantitative (multivariate) normal

approximation. In [11], in the context of the homogenization of the linear elliptic PDE −∇ ·
(aε∇u) = f, a localization result for the effective energies

has been established: in [11], the contribution of termswith dependency range∼ ℓ to the overall
energy aRVEL ξ · ξ is seen to be essentially of the order ℓ−d , which is essentially twice the order of
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Figure 3. The joint probability distribution of the approximations for the effective
energy ERVE

L and auxiliary statistical quantities F like the percentage of atoms of a
certain species is close to a multivariate Gaussian (left). Conditioning on the auxiliary
statistical quantityF being close to its expected value then reduces the variance of ERVE

L ,
provided that the two random variables are nontrivially correlated (right).

the �uctuation scaling ℓ−d/2. By means of a ‘multilevel local dependency structure’ [10], this

allowed for the derivation of a quantitative multivariate normal approximation result for the

joint probability distribution of the representative volume approximation aRVEL of the effective

coef�cient and auxiliary statistical quantities like the averaged coef�cient

[11].

Due to the strong—exponential—localization properties of the TFWmodel (see [20] for the

case without point charges and theorem5 below for the general case), we in principle would not

even need to appeal to the ‘multilevel local dependence structure’ introduced in [10, 11], but

could directly work with a multivariate central limit theoremwith a standard local dependence

structure. However, it will be convenient for us to employ the abstract variance reduction result

of lemma 7, which is established in [10, 11].

Notation. We use standard notation for Sobolev spaces: by W1,p(Ω) we denote the space

of functions v ∈ Lp(Ω) whose distributional derivative ∇v also belongs to Lp(Ω), along

with the usual norm ‖v‖p
W1,p(Ω)

=
∫
Ω
|v|p + |∇v|p dx. As usual, we use the abbreviation

H1(Ω) :=W1,2(Ω). Given L > 1, by H1
per([0, L]

d) we denote the space of L-periodic Sobolev

functions v ∈ H1([0, L]d).

By H1
uloc(R

d) we denote the space of functions v : Rd → R whose restrictions v|B1(x)
belong to H1(B1(x)) for all x ∈ R

d, with a uniform bound on the local Sobolev norm

‖v‖2
H1
uloc

(Rd )
:= supx∈Rd

∫
B1(x)

|v|2 + |∇v|2 dx <∞. Similarly, by L2uloc(R
d) we denote the space

of measurable functions v :Rd → R with �nite norm ‖v‖2
L2
uloc

(Rd )
:= supx∈Rd

∫
B1(x)

|v|2 dx <∞.

By Br(x) we denote the ball of radius r around x ∈ R
d. We also use the shorthand notation

Br :=Br(0). ByCwewill denote a generic constant depending only on quantities like ρ,M, and

ω0 (see the assumptions (A1) and (A3) below), whose precise value may vary from occurrence

to occurrence.

For a set M, we denote by ♯M the number of its elements.

For two vector-valued random variables X and Y, we denote the covariance matrix as usual

by Cov[X, Y ]. We also use the notation VarX as a shorthand notation for Cov[X,X ].

2. Main results

In this article, we prove that the selection approach for representative volumes of Le Bris,

Legoll, and Minvielle [16] leads to an increase in accuracy when calculating effective energies
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for random lattices in the context of the Thomas–Fermi–vonWeizsäcker model (1), at least for

a wide class of randomnuclear charge distributions. For a precise statement of our assumptions

and our main result, see (A0)–(A3) and theorem 3 below.

Under more general conditions, we establish an exponential locality result for the TFW

model, an auxiliary result that generalizes a corresponding result by Nazar and Ortner [20] and

that may also be of independent interest. For a more precise statement of the assumptions and

the result, see (A1) and theorem 5 below.

Consider any Bravais lattice and denote by F ∈ R
3×3 a matrix whose columns are given

by the corresponding three primitive vectors. Our key assumptions on the nuclear charge

distribution m are as follows.

(A0) Letm be a random nuclear charge distribution (a—random—locally �nite nonnegative

Radon measure) on R3. In other words, let a probability space (Ω,F ,P) be given along

with a random variablem taking values in the space of locally �nite nonnegativeRadon

measures on R3.

(A1) Suppose that uniform local �niteness of the nuclear charge distribution m holds in the

following sense: there exist constants ρ > 0, M > 0, and ω0 > 0 such that m is of the

form

m = mc +
∑

y∈P
cyδy

for some mc = mc(m) ∈ L2uloc(R
3) with mc > 0, some cy = cy(m) > 0, and some set

P = P(m) ⊂ R
3 satisfying |x − y| > 4ρ for all x, y ∈ P with x 6= y, and in addition the

estimate

sup
x∈R3

(∫

B1(x)

m2
c dy

) 1
2

+ sup
x∈R3


 ∑

y∈P∩B1(x)
c2y




1
2

6 M

holds. Furthermore, suppose that an averaged lower bound for the nuclear charge

density of the form

holds for all R > ω−1
0 for some ω0 > 0.

(A2) Letm be stationary, i.e. suppose that the law of the shifted charge distributionm(·+ x)

coincides with the law of m for every x ∈ FZ3.

(A3) Let m have a �nite range of dependence r > 0, i.e. suppose that for any two Borel

sets A,B ⊂ R
3 with dist(A,B) > r the restrictions m|A and m|B are stochastically

independent.

We shall also use the concept of a periodization of an ensemble of nuclear charge distribu-

tionsm (where an ensemble of nuclear charge distributions is de�ned as a probability measure

on the space of nuclear charge distributions): a periodization of an ensemble of nuclear charge

distributions is an ensemble of nuclear charge distributions m̃ which are almost surely LFZ3-

periodic for some L≫ 1 and for which the probability distribution of m̃|x+F[0, L
2
]3 coincides

with the probability distribution of m|x+F[0, L
2
]3 for all x ∈ R

3. Given such a periodization m̃,

we substitute (A3) by (A3a)–(A3c):
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(A3a) The nuclear charge m̃ is almost surely LFZ3-periodic for some

L≫ 1.

(A3b) There exists a �nite range of dependence r > 0 such that for any two Borel LZ3-

periodic sets A,B ⊂ R
3 with dist(A,B) > r the restrictions m̃|A and m̃|B are stochasti-

cally independent.

(A3c) There exists a nuclear charge distribution m satisfying (A1), (A2), and (A3) such

that for any x0 ∈ R
3 the law of the restriction m̃|x0+F[0, L2 ]3 coincides with the law of

m|x0+F[0, L2 ]3 .
Let us brie�y comment on our main assumptions. The condition (A1) is nothing but a uni-

form local upper and lower bound on the charge distribution of the nuclei. The condition (A3)

is a strong decorrelation assumption restricting all stochastic dependencies to a scale r > 1.

The condition (A2) imposes a statistical homogeneity assumption on the random lattice.

Since we want to include the model case of a periodic lattice like Z3 whose sites are occupied

by randomatomic nuclei (i.e. at whose lattice sites there is a randommultiple of a Dirac charge;

see �gure 1) in our assumptions, we cannot assume translation invariance of the law of the

nuclear charge distribution m with respect to arbitrary shifts x ∈ R
3. Instead, in the case of

the lattice Z3 we have to restrict the translation invariance to discrete shifts x ∈ Z
3; as we are

interested in the effective elastic properties and as most (elastic) af�ne deformations of Z3

destroy the Z3 periodicity, we have to cover the case of an arbitrary Bravais lattice FZ3 in our

assumption (A2).

Let us now give a precise de�nition of the TFW energy and its thermodynamic limit.

Definition 1. Let m be a nuclear charge distribution satisfying the assumption (A1). For a

set Q ⊂ R
3 with �nite volume, we introduce the Thomas–Fermi–von Weizsäcker energy

EQ[m] :=

∫

Q

|∇u|2 + u
10
3 +

1

2
(mc − u2)φ dx +

∑

x∈P∩Q
cx(φ− φx)(x) (3)

where (u,φ) ∈ H1
uloc(R

3)× L2uloc(R
3) is the (unique) solution of the TFW equations (1) (see

theorem 16) and where φx ∈ L2(R3) is the (decaying) solution of −∆φx = 4πcxδx on R
3.

We de�ne the thermodynamic limit E∞ of the energy density—the effective energy

density—as

E∞ := lim
L→∞

L−3E[0,L]3[m] (4)

if the limit exists for almost every m and if it is independent of the realization m.

Letm be a nuclear charge distribution satisfying the assumptions (A0)–(A3). Given L > 1,

let m̃ be a periodization of the probability distribution of the nuclear charge distribution m

subject to (A3a)–(A3c). We de�ne the approximation ERVE
L of the effective energy density E∞

by the representative volume method as

ERVE
L :=

1

L3 detF



∫

F[0,L]3
|∇ũ|2 + ũ

10
3 +

1

2
(m̃c − ũ2)φ̃ dx +

∑

x∈P̃∩F[0,L)3
c̃x(φ̃− φx)(x)




where (ũ, φ̃) ∈ H1
uloc(R

3)× L2uloc(R
3) denotes the (unique) solution of the TFW equations (1)

given the nuclear charge distribution m̃. Note that both ũ and φ̃ inherit the LFZd-periodicity of

the nuclear charge distribution m̃ [7].

Finally, let N ∈ N, let F be a measurable RN-valued function of the (periodized) nuclear

charge distribution m̃, and let δ > 0. We then de�ne Esel-RVE
L to denote the approximation of
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the effective energy density E∞ using the selection method for representative volumes with the

selection performed according to the criterion

|F − E[F ]| 6 δL−3/2. (5)

In other words, the probability distribution of Esel-RVE
L is given as the conditional probability

distribution of ERVE
L given the event (5).

Let us brie�y discuss the TFWenergy (3). The �rst two terms in (3) correspond to the kinetic

energy of the electrons in the Thomas–Fermi–von Weizsäcker approximation. The third and

fourth term correspond to the Coulomb energy.Here, the contribution from the nuclear charges

m has been split into two terms, representing the absolutely continuous partmc and the singular

part
∑

x cxδx of the nuclear charge distribution. The presence of the difference φ− φx in the

fourth term in (3) corresponds to the usual subtraction of the self-energy of point charges. Note

that the difference φ− φx satis�es the PDE

−∆(φ− φx) = 4π


mc − u2 +

∑

y∈P
y6=x

cyδy


 , (6)

which by φ− φx ∈ H2(Bρ(x)) →֒ C0, 12 (Bρ(x)) ensures that the pointwise evaluation of φ− φx
at the point x in the above de�nition is indeed meaningful.

We next state additional assumptions and notation which will be needed to formulate our

main result on the analysis of the selection approach for representative volumes.

Main Assumptions 2. Consider a probability distribution of nuclear charges m on R
3

satisfying (A0), (A1), (A2), and (A3). Let L ∈ N, L > 2, and assume that there exists an L-

periodization m̃ of the probability distribution of m subject to (A1), (A2), and (A3a)–(A3c).

Let F (m̃) = (F1(m̃), . . . ,FN(m̃)) ( for some N ∈ N) be a collection of statistical quantities of

the nuclear charge density m̃ which are subject to the conditions of de�nition 4 with K 6

C0 and B 6 C0| logL|C0 for some C0 > 1. Suppose that the covariance matrix of F (m̃) is

nondegenerate and bounded in the natural scaling in the sense

L−3Id 6 VarF (m̃) 6 C0L
−3Id (7)

using the constant C0 from above. We introduce the condition number κ of the covariance
matrix of (ERVE

L ,F (m̃))

κ :=κ
(
Var(ERVE

L ,F (m̃))
)

and the ratio rVar between the expected order of �uctuations and the actual �uctuations of the

approximation ERVE
L

rVar :=
L−3

Var ERVE
L

.

Let us brie�y mention that the following statistical quantities F satisfy the conditions of

de�nition 4 below and are therefore admissible choices in our main result (i.e. in theorem 3

below):

• The density of nuclei of a speci�c type

F1,a := detF−1L−3♯{x ∈ P̃ ∩ F [0, L)3 : cx = a}.

5741



Nonlinearity 33 (2020) 5733 J Fischer and M Kniely

• The density of nearest-neighbor contacts of two speci�ed types of nuclei

F2,a,b := detF−1L−3♯
{
(x, x̃) ∈ P̃ ∩ F [0, L)3

× P̃ : cx = a, cx̃ = b, x − x̃ = Fe j for some 1 6 j 6 3
}

in case that the nuclei are arranged on the lattice FZ3.

• Similar statistics of con�gurations of three or more neighboring atoms or corresponding

quantities for more general atomic lattices.

Note that it is precisely these type of statistics of the random atomic lattice that are

considered in the original formulation of the method of special quasirandom structures [29].

We are now in a position to formulate our main result, the gain in accuracy by the selection

approach for representative volumes in the context of the TFW model for random alloys. Note

that our main result comprises essentially three assertions:

• The increase in accuracy of Esel-RVE
L (as compared to ERVE

L ) (10), which is achieved via the

reduction of �uctuations by essentially the fraction of the variance of ERVE
L explained by

the statistical quantities F .

• The higher-order approximation quality (9) of the expected value E[Esel-RVE
L ].

• The lower bound (12) for the probability that a randomly chosen nuclear charge distribu-

tion m̃ meets the selection criterion (8).

Theorem 3. Let the main assumptions 2 be satis�ed. Denote by ERVE
L the approximation for

the effective energy E∞ by the standard representative volume element method and by Esel-RVE
L

the approximation for E∞ by the selection approach for representative volumes introduced

by Le Bris, Legoll, and Minvielle [16] in the case of a representative volume of size L. Fur-

ther assume that in the selection approach, the representative volumes are selected from the

periodized probability distribution according to the criterion

|Fi(m̃)− E[Fi(m̃)]| 6 δL−3/2 (8)

for all i ∈ {1, . . . ,N} and some δ ∈ (0, 1 ] satisfying δN > CL−3/2|logL|C. Then, the selection
approach for representative volumes is subject to the following error analysis:

(a) The systematic error of the approximation Esel-RVE
L satis�es

|E
[
Esel-RVE
L

]
− E∞| 6 Cκ3/2

δN
L−3| logL|C. (9)

(b) The variance of the approximation Esel-RVE
L is bounded from above by

Var Esel-RVE
L

Var ERVE
L

6 1− (1− δ2)|ρ|2 + Cκ3/2rVar
δN

L−3/2| logL|C (10)

where |ρ|2 is the fraction of the variance of ERVE
L explained by the F (m̃). In other words,

|ρ|2 is the maximal squared correlation coef�cient between ERVE
L and any linear combi-

nation of the F (m̃). This explained fraction of the variance is given by the expression

|ρ|2 := Cov[ERVE
L ,F (m̃)](Var F (m̃))−1Cov[F (m̃),ERVE

L ]

Var ERVE
L

. (11)
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(c) The probability that a randomly chosen nuclear charge distribution m̃ satis�es the

selection criterion (8) is at least

P[|F (m̃)− E[F (m̃)]| 6 δL−3/2] > c(N)δN. (12)

We next state our precise assumption on the statistical quantities F .

Definition 4 (similar to [10, de�nition 3]). Let L > 2, and consider a probability distribu-

tion of LFZ3-periodic nuclear charges m̃ on R
3 satisfying (A1), (A2), and (A3a)–(A3c). Let

X = X[m̃] be a random variable of the periodized nuclear charge. We say that X is a sum of

randomvariableswith multilevel local dependence if there exist randomvariablesXny = Xny [m̃],

0 6 n 6 1+ log2 L, y ∈ 2nFZ3 ∩ F [0, L)3, and constants K > 1 and B > 1 with the following

properties:

• The random variable Xny [m̃] only depends on m̃|y+K log2 LF[−2n,2n]3 .

• We have

X =

1+log2 L∑

n=0

∑

y∈2nFZ3∩F[0,L)3
Xny .

• The random variables satisfy almost surely

|Xny | 6 BL−3.

Our proof of theorem 3 makes use of the following exponential locality result for solutions

to the TFW equations, which extends a similar locality result of [20] to include point charges

and which may be of independent interest.

Theorem 5. Let m1 and m2 be two nonnegative nuclear charge distributions (i.e. non-

negative locally �nite Radon measures) subject to the assumption (A1). Denote by (u1,φ1) ∈
H1

uloc(R
3)× L2uloc(R

3) and (u2,φ2) ∈ H1
uloc(R

3)× L2uloc(R
3) the corresponding solutions to the

TFW equation (1). Then the perturbations of the electronic density w := u1 − u2 and the

potential ψ :=φ1 − φ2 decay exponentially away from the perturbation of the nuclear charge

distribution δm :=m1 − m2. More precisely, there exist constants C = C(ρ,M,ω0) > 0 and

γ = γ(ρ,M,ω0) > 0 such that for all y ∈ R
3 the estimate

∫

R3


w2

+ |∇w|2 + ψ2
+ η|∇ψ|2 + η2

3∑

i, j=1

|∂i jψ|2

 e−2γ|x−y| dx

6 Ce−γ dist(supp(δm),y)

holds, where the cutoff η (0 6 η 6 1) is de�ned in assumption 9 below.

The following proposition comprises the exponential locality result for the TFW energy.

Given two nuclear charge distributions m1 and m2, the difference between the values of the

TFW energy evaluated for m1 and m2 within the domain Q1 exponentially decreases with the

distance between supp(m1 − m2) and Q1.

Corollary 6. Let assumption 9 be satis�ed. Then, there exist constants C = C(ρ,M,ω0) > 0

and c = c(ρ,M,ω0) > 0 such that for any cube Q1 ⊂ R
3 with unit volume the estimate

|EQ1
[m1]− EQ1

[m2]| 6 Ce−cdist(supp(m1−m2), Q1) (13)

holds true.
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3. Simulation of the selection approach for the TFW equations

In order to illustrate the applicability of the selection approach by Le Bris, Legoll, and Min-

vielle [16] in the context of orbital-free DFT, we calculate the energy per atom of an AlTi

random alloy in the simpli�ed case of the TFW model. We assume that both constituents of

the AlTi random alloy appear with the same probability of 0.5 at each lattice site; as a further

simpli�cation, we avoid the use of pseudopotentials. Such random AlTi alloys have also been

investigated in [27], but in the context of a molecular mechanics model for the interatomic

interactions.

We subsequently compare the performance of the selection approach for RVEs and the

standard RVE method by calculating the TFW energy per atom of randomAlTi con�gurations

on RVEs of different size. To this end, we evaluate the TFW energy per atom on 10 completely

randomly chosen con�gurations and 10 random con�gurations satisfying a selection criterion

discussed in amoment. This procedure is carried out on RVEs with length aL and L ∈ {2, 3, 4}.
Concerning the selection criterion for RVEs, we use the criterion (8) with F being the density

of Al atoms within the RVE. Employing the notation from the preceding chapters, we set

F := (aL)−3♯{x ∈ P̃ ∩ [0, aL)3 : cx = Al}.

The selection criterion now reads

|♯{x ∈ P̃ ∩ [0, aL)3 : cx = Al} − AL| 6 δ(aL)3/2

where δ > 0 remains to be �xed, and where AL := 2L3 is the expected number of Al atoms

within an RVE of length aL (note that the unit cell of an fcc crystal contains four distinct

atoms). In the simulations below, we have chosen δ := 2(3a)−3/2 ≈ 0.02. For L = 2, this

implies δ(aL)3/2 ≈ 1.09 which basically corresponds to the selection criterion

|♯{x ∈ P̃ ∩ [0, 2a)3 : cx = Al} − 16| 6 1.

By the de�nition of δ, we exactly arrive at the condition

|♯{x ∈ P̃ ∩ [0, 3a)3 : cx = Al} − 54| 6 2

for L = 3. As δ(4a)3/2 ≈ 3.08, the criterion for L = 4 basically coincides with

|♯{x ∈ P̃ ∩ [0, 4a)3 : cx = Al} − 128| 6 3.

The quality improvement of the selection approach for approximating the effective TFW

energy of a random AlTi alloy is apparent from �gure 4 even though each data point corre-

sponds to only 10 underlying atomic con�gurations. In particular, the variance of the measure-

ments of the TFW energy is smaller by a factor of ∼10 compared to the standard approach.

The variance reduction property of the selection method is also visualized in �gure 5, which

depicts the distribution of 40 calculated TFW energies for both the standard and the selec-

tion approach. While the TFW energy is close to a Gaussian distribution for the standard RVE

method, this is not the case within the selection approach (for which the distribution of the

TFW energy basically approximates a truncated Gaussian con�rming the analytic results from

the proof of [11, theorem 2]).

Let us �nally brie�y comment on the employed numerical scheme. For a given distribution

m of nuclear charges, we calculate (u,φ) by solving the discretized nonlinear PDE (1) using a

�xed-point iteration. Our discretization is based on P1 �nite elements; we use local re�nement

of the mesh near the point charges.

5744



Nonlinearity 33 (2020) 5733 J Fischer and M Kniely

Figure 4. Left: the mean TFW energy obtained for different sizes of the RVE using
the standard RVE method (blue) and the selection approach for RVEs (red). Right: the
variance of the TFW energy within the same setting.

Figure 5. Histogram plots for the TFW energy. Note that the TFW energy is approxi-
mately normally distributed in the case of the standard RVE method.

4. Analysis of the method of special quasirandom structures

The following lemma serves as the main technical tool to prove theorem 3. In fact, it is an

abstract version of [11, theorem 2]: one may adapt the proof of [11, theorem 2] in a one-to-one

fashion to establish lemma 7.

Lemma 7. Let d,N ∈ N, d > 2, N > 1, C0 > 1, L > 2, and let C > 0 denote a generic

constant which only depends on d, N, and C0 as well as on K and B from de�nition 4. Let

Z = (Z0, Z1, . . . , ZN) be a vector of random variables. Suppose that each Zi, i ∈ {0, . . . ,N}, is
a sum of random variables with multilevel local dependence according to de�nition 4. Assume

that the covariancematrix of (Z1, . . . , ZN) is nondegenerateand bounded in the natural scaling
in the sense that

L−dId 6 Var(Z1, . . . , ZN) 6 C0L
−dId.

Let δ ∈ (0, 1 ] satisfy δN > CL−d/2|logL|C, and let Z0,sel be a random variable whose law

coincides with the probability distribution of the random variable Z0 conditioned on the event

|Zi − E[Zi]| 6 δL−d/2 for all i ∈ {1, . . . ,N}.
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Introduce the condition number κ of the covariance matrix of (Z0, . . . , ZN),

κ :=κ (Var(Z0, . . . , ZN)) ,

and the ratio rVar between the expected order of �uctuations and the actual �uctuations of Z0

rVar :=
L−d

Var Z0
.

Then, the following estimates hold true:

(a) The difference of the expected values of Z0,sel and Z0 satis�es

|E
[
Z0,sel

]
− E [Z0] | 6

Cκ3/2

δN
L−d| log L|C. (14)

(b) The variance of Z0,sel is bounded from above by

Var Z0,sel

Var Z0
6 1− (1− δ2)|ρ|2 + Cκ3/2rVar

δN
L−d/2| log L|C

where |ρ|2 is the fraction of the variance of Z0 explained by (Z1, . . . , ZN). In other words,
|ρ|2 is the maximal squared correlation coef�cient between Z0 and any linear combination
of the Zi, i ∈ {1, . . . ,N}. This fraction of the variance of Z0 explained by Z1, . . . , ZN is
given by the expression

|ρ|2 := Cov[Z0, (Z1, . . . , ZN)](Var(Z1, . . . , ZN))
−1Cov[(Z1, . . . , ZN), Z0]

Var Z0
.

(c) The probability that (Z1, . . . , ZN) satis�es the imposed selection criterion is at least

P[|(Z1, . . . , ZN)− E[(Z1, . . . , ZN)]| 6 δL−d/2] > c(N)δN.

By combining the locality properties of the TFW model established in theorem 5 with the

abstract variance reduction result of lemma 7, we now establish our main result.

Proof of Theorem 3. Throughout the proof, we will assume F = Id. The case of general

F is similar.

For proving theorem 3, we aim to apply lemma 7 to the random variables Z0 :=ERVE
L and

Zi :=Fi(m̃), i ∈ {1, . . . ,N}. For this reason, we have to ensure that ERVE
L is a sum of random

variableswith multilevel local dependence according to de�nition 4, and thatE[Z0] = E[ERVE
L ]

in (14) can be replaced by E∞ (cf (9)) causing an error which is also bounded by the right-hand

side in (14). Hence, the results of theorem 3 immediately follow as soon as we have established

the following two results:

(a) The approximation ERVE
L for the thermodynamic limit energy E∞ by the method of

representative volumes

ERVE
L := L−3E[0,L]3[m̃]

= L−3

∫

[0,L]3
|∇ũ|2 + ũ

10
3 +

1

2
(m̃c − ũ2)φ̃ dx + L−3

∑

x∈P∩[0,L)3
cx(φ̃− φx)(x)
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(where (ũ, φ̃) denotes the solution of the TFW equations as stated in theorem 16;

note that by the L-periodicity of m̃, the solution (ũ, φ̃) is L-periodic) is a sum of random

variables with multilevel local dependence according to de�nition 4.

(b) The estimate for the systematic error

|E[ERVE
L ]− E∞| 6 C exp(−cL) (15)

holds.

Step 1: Proof of (a). We denote by Qℓ(x) the cube x + [− ℓ
2
, ℓ
2
)3. In order to establish the

property (a), we may write

ERVE
L =

∑

y∈Z3∩[0,L)3
E0
y + E1+log2L

with

E0
y := L−3EQ1(y)

[
m̃|extQKlog2L

(y)

]
(16a)

and

E1+log2L :=L−3
∑

y∈Z3∩[0,L)3

(
EQ1(y)[m̃]− EQ1(y)[m̃|extQKlog2L

(y)]
)
. (16b)

Here, we employ the notation m̃|extQKlog2L
(y) to denote the extension of the restriction m̃|QKlog2L(y)

to R3 by a constant multiple of the Lebesgue measure

m̃|extQKlog2L
(y)(A) := m̃(A ∩QKlog2L

(y))+

∫

A\QKlog2L(y)
1 dx

for any Borel set A ⊂ R
3. The constant K will be chosen below. Note that m̃|extQKlog2L

(y) is still

subject to uniform bounds of the form (A1).

The �rst of the three conditions on the Xny in de�nition 4 is satis�ed for the choice (16) as the

random variables E0
y only depend on m̃|QKlog2L(y). The second condition trivially holds true due

to the de�nition of E0
y and E

1+log2L. The third condition for the E0
y—that is, the bound |E0

y | 6
BL−3—follows from the structure of the Thomas–Fermi–von Weizsäcker energy in (3) and

the bounds on u, φ and m from proposition 14. Finally, to establish (a) it only remains to show

the bound |E1+log2L| 6 CL−3. As a consequence of corollary 6 and the equality m̃ = m̃|extQKlog2L
(y)

on QKlog2L
(y), we derive

∣∣∣EQ1(y)[m̃]− EQ1(y)

[
m̃|extQKlog2L

(y)

]∣∣∣ 6 Ce−c
Klog2L−1

2 6 Ce−c
(K−1)log2L

2 6 CL−3

for the choice K := 6
c
+ 1, where the positive constants C and c only depend on ρ, M, and ω0.

Taking the sum over all y ∈ Z
3 ∩ [0, L)d and multiplying by L−3, we have shown the desired

bound |E1+log2L| 6 CL−3.

Step 2: Proof of (b). In order to establish (15), we may write
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ERVE
L = L−3

∑

y∈ L
4
{0,1,2,3}3

EQL/4(y)[m̃]

= L−3
∑

y∈ L
4
{0,1,2,3}3

EQL/4(y)

[
m̃|extQL/2(y)

]

+ L−3
∑

y∈ L
4
{0,1,2,3}3

(
EQL/4(y)[m̃]− EQL/4(y)[m̃|

ext
QL/2(y)

]
)
.

Taking the expectation and estimating the terms in the last line using corollary 6 and the

equality m̃ = m̃|extQL/2(y)
on QL/2(y), we obtain

∣∣∣∣∣∣
E[ERVE

L ]− L−3
∑

y∈ L
4
{0,1,2,3}3

E

[
EQL/4(y)[m̃|

ext
QL/2(y)

]
]
∣∣∣∣∣∣
6 C exp(−cL).

Using the equality in law of m̃|extQL/2(y)
and m|extQL/2(y)

, we deduce

∣∣∣∣∣∣
E[ERVE

L ]− L−3
∑

y∈ L
4 {0,1,2,3}3

E

[
EQL/4(y)[m|extQL/2(y)

]
]
∣∣∣∣∣∣
6 C exp(−cL). (17)

Following the same strategy but now for m instead of m̃, we obtain

L−3EQL(y)[m] = L−3
∑

y∈ L
4
{0,1,2,3}3

EQL/4(y)

[
m|extQL/2(y)

]

+ L−3
∑

y∈ L
4
{0,1,2,3}3

(
EQL/4(y)[m]− EQL/4(y)[m|

ext
QL/2(y)

]
)
,

and by the same reasoning as above we infer

∣∣∣∣∣∣
L−3

E
[
E[0,L]3[m]

]
− L−3

∑

y∈ L
4 {0,1,2,3}3

E

[
EQL/4(y)[m|extQL/2(y)

]
]
∣∣∣∣∣∣
6 C exp(−cL). (18)

Since we assumed in de�nition 1 that L−3E[0,L]3[m] converges to the effective energy density

E∞ for L→∞ independently of the realizationm, we also know that L−3
E
[
E[0,L]3[m]

]
tends to

E∞ for L→∞. But as L−3
E
[
E[0,L]3[m]

]
is independent of L due to the stationarity assumption

(A2), we deduce

L−3
E
[
E[0,L]3[m]

]
= E∞ (19)

for all L > 1. Combining (17)–(19) gives rise to (15). �

5. Locality of the TFW equations involving point charges

An important tool which we will utilize frequently to deal with the Dirac charges and the

corresponding singularities of the potential is given by the class of cut-off functions ηρ which
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we introduce now. Note that given a nuclear charge distribution m, we will de�ne ηρ in such a
way that ηρ vanishes in a ρ-neighborhood of the point charges and that ηρ ≡ 1 holds outside

of a 2ρ-neighborhood of all point charges.

Notation 8. For ρ > 0, we de�ne the cut-off function η̃ρ : [0,∞ )→ [0, 1] via

η̃ρ(r) := exp

(
− ρ log 2

2(r − ρ)

)

for r ∈ (ρ, 3
2
ρ], η̃ρ(r) := 1− η̃ρ(3ρ− r) for r ∈ ( 3

2
ρ, 2ρ), η̃ρ = 0 on [0, ρ ] and η̃ρ = 1 on

[2ρ,∞). For all ρ > 0, one thus has η̃ρ ∈ C1([0,∞ )) and there exists a constant cη(ρ) > 0

such that
|η̃′ρ|2
η̃ρ

6 cη(ρ) holds true on (ρ,∞).

Moreover, for any discrete set P ⊂ R
3 satisfying |x − y| > 4ρ for some ρ > 0 and all

x, y ∈ P, x 6= y, de�ne ηρ :R
3 → [0, 1] via ηρ := η̃ρ(| · − z|) on B2ρ(z) for all z ∈ P and ηρ := 1

elsewhere. Then, we have ηρ ∈ C1(R3) and

|∇ηρ|2
ηρ

6 cη(ρ) (20)

is valid on {ηρ > 0}.

We now collect the set of assumptions and notationswhichwe employwithin the subsequent

lemmas and theorem 5.

Assumption 9. Let mi, i ∈ {1, 2}, be charge distributions satisfying (A1), (A2), and

(A3), and let (ui,φi) ∈ H1
uloc(R

3)× L2uloc(R
3) denote the unique weak solution to the

Thomas–Fermi–von Weizsäcker equations




−∆ui +

5

3
u

7
3
i − φiui = 0,

−∆φi = 4π(mi − u2i ),
(21)

(see theorem 16).

We de�ne the short-hand notations w := u1 − u2, ψ :=φ1 − φ2, δm :=m1 − m2, and

δmc :=mc,1 − mc,2. The measure δm then may be decomposed as

δm = δmc +
∑

x∈P′
δcxδx

where P
′ ⊂ P1 ∪ P2 is the set of all x ∈ P1 ∪ P2 for which δcx := c1,x − c2,x 6= 0 holds true.

Moreover, we will use the notation η to denote the cutoff function ηρ from notation 8 with P
′

taking the role of P. Finally, we introduce ξ := e−γ|·−y| for some 0 < γ < 1 and y ∈ R
3. Note

that this choice entails |∇ξ| 6 γξ 6 ξ.

As a key step towards theorem 5, we derive an upper bound for the weighted L2-norm of

w, ∇w, and √
η∇ψ by adapting the strategy in [20] to the more general case of locally �nite

nonnegative Radon measures representing the nuclear charges.

Lemma 10. Let assumption 9 be satis�ed. Then, there exist positive constants C =

C(ρ,M,ω0) > 0 and γ = γ(ρ,M,ω0) > 0 such that
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∫

R3

(w2
+ |∇w|2 + η|∇ψ|2)ξ2 dx

6 C

(∫

R3

(w2
+ ψ2)|∇ξ|2 dx +

∫

{η<1}
(w2

+ ψ2)ξ2 dx +

∫

R3

|δmc ψ|ξ2 dx

)

holds, where η and ξ (depending on γ) are de�ned in assumption 9.

Proof. Following the argumentation in [20], we have

−∆w =
5

3

(
u

7
3
2 − u

7
3
1

)
+ φ1u1 − φ2u2, (22)

−∆ψ = 4π(u22 − u21)+ 4π δm, (23)

and test (22) withwξ2 (note that byw ∈ H1
uloc(R

3) and the exponential decay of ξ and∇ξ,wξ2
is indeed an admissible test function). This yields

∫

R3

∇w · ∇(wξ2) dx +
5

3

∫

R3

(
u

7
3
1 − u

7
3
2

)
wξ2 dx −

∫

R3

(φ1u1 − φ2u2)wξ
2 dx = 0.

The elementary estimate

(
u

7
3
1 − u

7
3
2

)
(u1 − u2) =

(
u

4
3
1 + u

4
3
2

)
w2

+ u1u2(u
1
3
1 − u

1
3
2 )w >

1

2

(
u

4
3
1 + u

4
3
2

)
w2

+ νw2

with 1
2
inf

R3

(
u

4
3
1 + u

4
3
2

)
> ν > 0 (and ν only depending on ρ, M, and ω0 due to theorem 16),

as well as the identities

φ1u1 − φ2u2 =
φ1 + φ2

2
w +

u1 + u2

2
ψ,

∇w · ∇(wξ2) = |∇(wξ)|2 − w2|∇ξ|2

give rise to

∫

R3

|∇(wξ)|2 dx +
5

6

∫

R3

(
u

4
3
1 + u

4
3
2

)
w2ξ2 dx

− 1

2

∫

R3

(φ1 + φ2)w
2ξ2 dx + ν

∫

R3

w2ξ2 dx

6

∫

R3

w2|∇ξ|2 dx +
1

2

∫

R3

(u1 + u2)ψwξ
2 dx.

Now, consider the operators Li := −∆+ 5
3
u

4
3
i − φi for i ∈ {1, 2} and

L := −∆+ a, a :=
5

6

(
u

4
3
1 + u

4
3
2

)
− 1

2
(φ1 + φ2) ∈ L2uloc(R

3) (24)

(the latter inclusion holding by ui ∈ H2
uloc(R

3)). Due to lemma 12, L1, L2, and hence L are

nonnegative operators on H1(R3). In fact, wξ ∈ H1(R3), 〈wξ, L(wξ)〉 > 0 and

〈wξ, L(wξ)〉 + ν

∫

R3

w2ξ2 dx 6

∫

R3

w2|∇ξ|2 dx +
1

2

∫

R3

(u1 + u2)ψwξ
2 dx.
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We continue by testing (23) with ηψξ2 ∈ H1(R3), which results in

∫

R3

∇ψ · ∇(ηψξ2) = −4π

∫

R3

η(u1 + u2)ψwξ
2 dx + 4π

∫

R3

η δmc ψξ
2 dx.

The representation

∇ψ · ∇(ηψξ2) = η|∇(ψξ)|2 − ηψ2|∇ξ|2 + ψξ2∇ψ · ∇η

leads one to

1

2

∫

R3

η(u1 + u2)ψwξ
2 dx = − 1

8π

∫

R3

∇ψ · ∇(ηψξ2) dx +
1

2

∫

R3

η δmc ψξ
2 dx

= − 1

8π

∫

R3

η|∇(ψξ)|2 dx +
1

8π

∫

R3

ηψ2|∇ξ|2 dx

− 1

8π

∫

R3

ψξ2∇ψ · ∇η dx +
1

2

∫

R3

η δmc ψξ
2 dx

and, thus,

〈wξ, L(wξ)〉 + ν

∫

R3

w2ξ2 dx +
1

8π

∫

R3

η|∇(ψξ)|2 dx

6

∫

R3

w2|∇ξ|2 dx +
1

8π

∫

R3

ψ2|∇ξ|2 dx − 1

8π

∫

R3

ψξ2∇ψ · ∇η dx

+
1

2

∫

R3

(1− η)(u1 + u2)ψwξ
2 dx +

1

2

∫

R3

η δmc ψξ
2 dx.

We further apply Young’s inequality together with |∇η|2 6 cη(ρ)η and the identity∇η = 0 on

the set {η = 1} to �nd

∣∣∣∣
∫

R3

ψξ2∇ψ · ∇η dx

∣∣∣∣ 6 µ

∫

{η<1}
η|∇ψ|2ξ2 dx +M

∫

{η<1}
ψ2ξ2 dx

with 0 < µ < M <∞ and µ suf�ciently small. The estimate η|∇ψ|2ξ2 6 2η|∇(ψξ)|2 +
2ηψ2|∇ξ|2 now allows us to absorb the integral µ

∫
{η<1} η|∇ψ|2ξ

2dx on the right-hand side

within the corresponding integral on the left-hand side. By employing the uniform L∞-bound

for u1 and u2 from proposition 14, we obtain

〈wξ, L(wξ)〉 +
∫

R3

(w2
+ η|∇ψ|2)ξ2 dx

6 C

(∫

R3

(w2
+ ψ2)|∇ξ|2 dx +

∫

{η<1}
(w2

+ ψ2)ξ2 dx +

∫

R3

|δmc ψ|ξ2 dx

)
. (25)

As L = −∆+ a with a ∈ L2uloc(R
3) de�ned in (24) and |∇w|2ξ2 6 2|∇(wξ)|2 + 2w2|∇ξ|2,

we derive
∫

R3

|∇w|2ξ2 dx +

∫

R3

(w2
+ η|∇ψ|2)ξ2 dx 6 2

∫

R3

|a|w2ξ2 dx

+ C

(∫

R3

(w2
+ ψ2)|∇ξ|2 dx +

∫

{η<1}
(w2

+ ψ2)ξ2 dx +

∫

R3

|δmc ψ|ξ2 dx

)
. (26)
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In order to handle the |a|w2ξ2-term, we bound the integral over R3 by the sum over all inte-

grals over all balls of radius 1 located at points with integer coordinates. After applying a

Gagliardo–Nirenberg-estimate and Young’s inequality, we again arrive at (a multiple of) an

integral over R3 as every x ∈ R
3 can belong to at most eight unit balls around integer points:

∫

R3

|a|w2ξ2 dx 6
∑

x∈Z3

‖a‖L2(B1(x))‖wξ‖
2
L4(B1(x))

6
∑

x∈Z3

C‖a‖L2
uloc

(R3)‖wξ‖
1
2

L2(B1(x))
‖wξ‖

3
2

H1(B1(x))

6
∑

x∈Z3

(
C(τ )‖a‖4

L2
uloc

(R3)
‖wξ‖2

L2(B1(x))
+
τ

8
‖wξ‖2

H1(B1(x))

)

6

(
C(τ )‖a‖4

L2
uloc

(R3)
+ τ

)∫

R3

w2ξ2 dx + τ

∫

R3

|∇w|2ξ2 dx + τ

∫

R3

w2|∇ξ|2 dx.

We now choose τ > 0—arising from Young’s inequality—in such a way that
∫
R3 |∇w|2ξ2 dx

can be absorbed on the left-hand side of (26). As L is nonnegative, the right-hand side of (25)

already serves as an upper bound for
∫
R3w

2ξ2 dx. As a consequence, the claim of the lemma

follows. �

The next lemma establishes an L2-bound for ψ, and at the same time improves the bound

on the L2-norm of w, ∇w, and√η∇ψ.

Lemma 11. Let assumption 9 be satis�ed. Then, there exist positive constants C =

C(ρ,M,ω0) > 0 and γ = γ(ρ,M,ω0) > 0 such that

∫

R3

(w2
+ |∇w|2 + ψ2

+ η|∇ψ|2)ξ2 dx

6 C

(∫

{η<1}
(w2

+ ψ2)ξ2 dx +

∫

R3

(δmc)
2ξ2 dx

)

where η and ξ (depending on γ) are de�ned in assumption 9.

Proof. We rewrite (22) as

−∆w +
5

3

(
u

7
3
1 − u

7
3
2

)
− φ1 + φ2

2
w =

u1 + u2

2
ψ

and test with ηψξ2 ∈ H1(R3). This gives

∫

R3

u1 + u2

2
ηψ2ξ2 dx

=

∫

R3

∇w · ∇(ηψξ2) dx +
5

3

∫

R3

(
u

7
3
1 − u

7
3
2

)
ηψξ2 dx −

∫

R3

φ1 + φ2
2

ηwψξ2 dx. (27)

Considering the �rst term on the right-hand side of (27), we obtain
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∣∣∣∣
∫

R3

∇w · ∇(ηψξ2) dx

∣∣∣∣

6

∣∣∣∣
∫

R3

∇w · ∇η ψξ2 dx

∣∣∣∣+
∣∣∣∣
∫

R3

∇w · ∇ψ ηξ2 dx

∣∣∣∣+ 2

∣∣∣∣
∫

R3

∇w · ∇ξ ηψξ dx

∣∣∣∣

6

(∫

R3

|∇w|2ξ2 dx

) 1
2
(∫

R3

|∇η|2ψ2ξ2 dx

) 1
2

+

(∫

R3

|∇w|2ξ2 dx

) 1
2
(∫

R3

|∇ψ|2η2ξ2 dx

) 1
2

+ 2

(∫

R3

|∇w|2ξ2 dx

) 1
2
(∫

R3

|∇ξ|2η2ψ2 dx

) 1
2

.

Taking |∇ξ| 6 ξ and |∇η|2 6 cη(ρ)η into account, we obtain for any τ > 0 that there exists a

constant C(τ ) > 0 such that

∣∣∣∣
∫

R3

∇w · ∇(ηψξ2) dx

∣∣∣∣ 6 C(τ )

∫

R3

(|∇w|2 + η|∇ψ|2)ξ2 dx + τ

∫

R3

ψ2ξ2 dx. (28)

The next term in (27) can be controlled for any τ > 0 using the L∞-bounds on u1 and u2 from

proposition 14 via

5

3

∫

R3

(
u

7
3
1 − u

7
3
2

)
ηψξ2 dx

6

∫

R3

η|w||ψ|ξ2 dx 6 C(τ )

∫

R3

w2ξ2 dx + τ

∫

R3

ψ2ξ2 dx (29)

with some C = C(τ ,M ) > 0. We proceed by estimating the last expression in (27) using also

proposition 14 as

∣∣∣∣
∫

R3

φ1 + φ2
2

ηwψξ2 dx

∣∣∣∣ 6
∑

x∈Z3

∣∣∣∣
∫

B1(x)

φ1 + φ2
2

ηwψξ2 dx

∣∣∣∣

6
∑

x∈Z3

∥∥∥∥
φ1 + φ2

2

∥∥∥∥
L2
uloc

(R3)

‖wξ‖L4(B1(x))‖ηψξ‖L4(B1(x))

6 C
∑

x∈Z3

(
‖wξ‖L2(B1(x)) + ‖ξ∇w‖L2(B1(x)) + ‖w∇ξ‖L2(B1(x))

)

×
(
‖ηψξ‖L2(B1(x)) + ‖ψξ∇η‖L2(B1(x)) + ‖ηξ∇ψ‖L2(B1(x)) + ‖ηψ∇ξ‖L2(B1(x))

)

6
∑

x∈Z3

[
C
(
‖wξ‖2

L2(B1(x))
+ ‖ξ∇w‖2

L2(B1(x))
+ ‖w∇ξ‖2

L2(B1(x))

)

+
τ

8

(
‖ηψξ‖2

L2(B1(x))
+ ‖ψξ∇η‖2

L2(B1(x))
+ ‖ηξ∇ψ‖2

L2(B1(x))
+ ‖ηψ∇ξ‖2

L2(B1(x))

)]

6 8C

(∫

R3

w2ξ2 dx +

∫

R3

|∇w|2ξ2 dx +

∫

R3

w2|∇ξ|2 dx

)
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+ τ

(∫

R3

η2ψ2ξ2 dx +

∫

R3

|∇η|2ψ2ξ2 dx +

∫

R3

η2|∇ψ|2ξ2 dx +

∫

R3

η2ψ2|∇ξ|2 dx

)

6 16C

∫

R3

(w2
+ |∇w|2)ξ2 dx + (2+ cη)τ

∫

R3

ψ2ξ2 dx + τ

∫

R3

η|∇ψ|2ξ2 dx (30)

where τ > 0 will be chosen suf�ciently small. Returning to
∫
R3ψ

2ξ2 dx, we make use of the

lower bounds inf
R3ui > 0, i ∈ {1, 2}, from theorem 16 and rewrite

∫

R3

ψ2ξ2 dx 6 C

∫

R3

u1 + u2

2
ψ2ξ2 dx

6 C

∫

{η<1}

u1 + u2

2
ψ2ξ2 dx + C

∫

R3

u1 + u2

2
ηψ2ξ2 dx

with constants C(ρ,M,ω0) > 0. We now combine (27)–(30), and �nd

∫

R3

ψ2ξ2 dx 6 C

(∫

{η<1}
ψ2ξ2 dx +

∫

R3

(w2
+ |∇w|2 + η|∇ψ|2)ξ2 dx

)
+ Cτ

∫

R3

ψ2ξ2 dx

where τ > 0 can be chosen arbitrarily small. Thanks to lemma 10, we arrive at

∫

R3
(w2

+ |∇w|2 + ψ2
+ η|∇ψ|2 )ξ2 dx

6 C

(
∫

R3
(w2

+ ψ2)|∇ξ|2 d x +

∫

{η<1}
(w2

+ ψ2)ξ2 dx +

∫

R3
(δmc)

2ξ2 dx

)

+ Cτ

∫

R3
ψ2ξ2 d x

with τ > 0 arbitrary. If we set both constants τ (from above) and γ (from the de�nition

of ξ := e−γ|·−y|) to suf�ciently small values, we may absorb
∫
R3ψ

2ξ2 dx and
∫
R3(w

2 +

ψ2)|∇ξ|2 dx on the left-hand side due to |∇ξ| 6 γξ, which entails the desired estimate. �

We are now in position to prove our locality result theorem 5.

Proof of Theorem 5. In view of lemma 11, for proving theorem 5 it suf�ces to show that

the bound on the L2-norm of w,∇w, ψ, and∇ψ from lemma 11 also serves as an upper bound

for the L2-norm of the second order partial derivatives ∂ijψ.
We �rst establish a bound for

∫
R3η|∆ψ|2ξ2 dx. From (23), we derive

∫

R3

η|∆ψ|2ξ2 dx = 4π

∫

R3

η(u1 + u2)w∆ψ ξ
2 dx − 4π

∫

R3

η δmc∆ψ ξ
2 dx.

Using Young’s inequality and absorption as well as the bounds from proposition 14 and lemma

11, we arrive at

∫

R3

η|∆ψ|2ξ2 dx 6 C

(∫

{η<1}
(w2

+ ψ2)ξ2 dx +

∫

R3

(δmc)
2ξ2 dx

)
. (31)

We will now employ integration by parts to arrive at

∑

i, j

∫

R3

η2|∂i jψ|2ξ2 dx

=
∑

i, j

(
−2

∫

R3

η∂ jη∂iψ∂i jψξ
2 dx −

∫

R3

η2∂iψ∂i j jψξ
2 dx − 2

∫

R3

η2∂iψ∂i jψξ∂ jξ dx

)
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=
∑

i, j

(
−2

∫

R3

η∂ jη∂iψ∂i jψξ
2 dx + 2

∫

R3

η∂iη∂iψ∂ j jψξ
2 dx

+

∫

R3

η2∂iiψ∂ j jψξ
2 dx + 2

∫

R3

η2∂iψ∂ j jψξ∂iξ dx − 2

∫

R3

η2∂iψ∂i jψξ∂ jξ dx

)
.

We utilize the bounds |∇ξ| 6 ξ and |∇η|2 6 cη(ρ)η and continue as

∑

i j

∫

R3

η2|∂i jψ|2ξ2 dx

6 C‖η 1
2 ξ∇ψ‖L2(R3)

(
∑

i j

‖ηξ∂i jψ‖L2(R3) + ‖ηξ∆ψ‖L2(R3)

)
+

∫

R3

η|∆ψ|2ξ2 dx

6 C

(∫

R3

η|∇ψ|2ξ2 dx +

∫

R3

η|∆ψ|2ξ2 dx

)
+

1

2

∑

i j

∫

R3

η2|∂i jψ|2ξ2 dx.

Lemma 11 and (31) now entail

∫

R3


w2

+ |∇w|2 + ψ2
+ η|∇ψ|2 + η2

3∑

i, j=1

|∂i jψ|2

 e−2γ|x−y| dx

6 C

(∫

{η<1}
(w2

+ ψ2)e−2γ|x−y| dx +

∫

R3

(δmc)
2e−2γ|x−y| dx

)

where we inserted the de�nition ξ = e−γ|·−y| from assumption 9 with some �xed y ∈ R
3.

Moreover, we calculate

∫

{η<1}
(w2

+ ψ2)e−2γ|x−y| dx +

∫

R3

(δmc)
2e−2γ|x−y| dx

6 e−γdist({η<1},y)
∫

{η<1}
(w2

+ ψ2)ξ dx

+ e−γdist(supp(δmc),y)
∫

supp(δmc)

(δmc)
2ξ dx

6 e2ργe−γ dist(P′,y)
∫

{η<1}
(w2

+ ψ2)ξ dx

+ e−γdist(supp(δmc),y)
∫

supp(δmc)

(δmc)
2ξ dx.

Finally, the claim of the theorem follows from the uniform bounds on w, ψ, and δmc arising

from proposition 14 and condition (A1). �

We �nally establish the locality result for the TFW energy.

Proof of Corollary 6. The difference of the TFW energy for m1 and m2 is given by
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EQ1
[m1]− EQ1

[m2] =

∫

Q1

|∇u1|2 − |∇u2|2 dx

+

∫

Q1

u
10
3
1 − u

10
3
2 dx

+
1

2

∫

Q1

(mc,1 − u21)φ1 − (mc,2 − u22)φ2 dx (32)

+
∑

x∈P1∩Q1

c1,x(φ1 − φ1,x)(x)−
∑

x∈P2∩Q1

c2,x(φ2 − φ2,x)(x).

We recall ξ := e−γ|·−y|, where x dx is the centre of Q1. We further recall the de�nition

of η from notation 8 and �nd using proposition 14 and theorem 5

∣∣∣∣
∫

Q1

(|∇u1|2 − |∇u2|2) dx
∣∣∣∣ 6 C

∫

R3

||∇u1|2 − |∇u2|2|ξ2 dx

6 C‖(∇u1 +∇u2)ξ‖L2(R3)‖(∇u1 −∇u2)ξ‖L2(R3)

6 Ce−cdist(supp(δm),y)

with positive constants C(ρ,M,ω0) and c(ρ,M,ω0). Consequently, we have

∣∣∣∣
∫

Q1

(|∇u1|2 − |∇u2|2) dx
∣∣∣∣ 6 Ce−cdist(supp(δm),Q1),

which implies the desired estimate for the �rst term in (32). Concerning the second expression,

we derive (using again proposition 14)

∣∣∣∣
∫

Q1

(
u

10
3
1 − u

10
3
2

)
dx

∣∣∣∣ =
∣∣∣∣
∫

Q1

10

3
v(x)

7
3 (u1(x)− u2(x)) dx

∣∣∣∣ 6 C

(∫

Q1

(u1 − u2)
2 dx

) 1
2

where v(x) ∈ [u1(x), u2(x) ] for all x ∈ Q1. As for the previous term, we obtain from theorem

5

∣∣∣∣
∫

Q1

(
u

10
3
1 − u

10
3
2

)
dx

∣∣∣∣ 6 C

(∫

R3

(u1 − u2)
2ξ2 dx

) 1
2

6 Ce−cdist(supp(δm),Q1 ).

The �rst part of the Coulomb energy in (32) can be estimated via

∣∣∣∣
∫

Q1

(
(mc,1 − u21)φ1 − (mc,2 − u22)φ2

)
dx

∣∣∣∣

6

∫

Q1

(
mc,1|φ1 − φ2|+ |φ2||mc,1 − mc,2|+ u21|φ1 − φ2|+ |φ2||u21 − u22|

)
dx.

Due to mc,i,φi ∈ L2uloc(R
3) and ui ∈ L∞(R3) (see proposition 14), one concludes that

∣∣∣∣
∫

Q1

(
(mc,1 − u21)φ1 − (mc,2 − u22)φ2

)
dx

∣∣∣∣

6 C
(
‖(φ1 − φ2)ξ‖L2(R3) + ‖(mc,1 − mc,2)ξ‖L2(R3) + ‖(u1 − u2)ξ‖L2(R3)

)
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and, hence, arrives at the desired bound by applying theorem 5 and the same arguments as

above. We are left to control the change of the Coulomb energy related to the atomic nuclei in

(32), which we may bound by

∣∣∣∣∣∣

∑

x∈P1∩Q1

c1,x(φ1 − φ1,x)(x)−
∑

x∈P2∩Q1

c2,x(φ2 − φ2,x)(x)

∣∣∣∣∣∣

6
∑

x∈(P1∪P2)∩Q1

(
|c1,x||(φ1 − φ1,x − φ2 + φ2,x)(x)|+ |(φ2 − φ2,x)(x)||c1,x − c2,x|

)
.

In the case that dist(supp(m1 − m2),Q1) 6 2ρ, we observe that (13) holds true for the right-
hand side of the previous equation as it is bounded by a constant (due to the uniform bound

on φi − φi,x) and as e
−cdist(supp(m1−m2), Q1) is bounded from below by a positive constant. And if

dist(supp(m1 − m2),Q1) > 2ρ, we know that φ1 − φ2 ∈ H2(Q1) →֒ C0, 12 (Q1) and φ1,x = φ2,x
as well as c1,x = c2,x for all x ∈ (P1 ∪ P2) ∩Q1. As a consequence, in this case we have

∣∣∣∣∣∣

∑

x∈(P1∪P2)∩Q1

c1,x(φ1 − φ1,x)(x)−
∑

x∈(P1∪P2)∩Q1

c2,x(φ2 − φ2,x)(x)

∣∣∣∣∣∣

6 C
∑

x∈(P1∪P2)∩Q1

|c1,x||(φ1 − φ2)(x)| 6 C‖φ1 − φ2‖H2(Q1)

6 C

(∫

Q1

(
|φ1 − φ2|2 + η|∇(φ1 − φ2)|2 + η2

∑

i j

|∂i j(φ1 − φ2)|2
)

dx

) 1
2

6 C

(∫

R3

(
|φ1 − φ2|2 + η|∇(φ1 − φ2)|2 + η2

∑

i j

|∂i j(φ1 − φ2)|2
)
ξ2 dx

) 1
2

and we may now employ theorem 5 and the bound from proposition 14 to �nish the proof. �

6. Uniform bounds on solutions to the TFW equations

For our arguments we need uniform estimates on the solutions to the TFW equations which

depend only on the parameters ρ,M, andω0. For this reason, we repeat some of the calculations

of [7, 20] to show that they do in fact yield uniform estimates. The following lemma and its

proof are based on similar considerations in [7, 20].

Lemma 12. Let a ∈ L2uloc(R
3) and suppose there exists some u ∈ H2

uloc(R
3)with infBR(0) u >

0 for all R > 0 and (−∆+ a)u = 0. Then,

〈w, (−∆+ a)w〉 :=
∫

R3

(|∇w|2 + aw2) dx > 0

for all w ∈ H1(R3).

Proof. We �rst note that u ∈ L∞(R3) ∩ C(R3) due to the uniformboundednessof ‖u‖H2(B1(x))

for every x ∈ R
3. Regularizing a ∈ L2uloc(R

3) (e.g. by convolution with some molli�er), we

obtain a family of functions aε ∈ C∞(R3) which converge for ε→ 0 to a in L2(BR) for any
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R > 0. A standard result on differential operators [13] ensures that the minimal eigenvalue λε
of−∆+ aε as an operator onBR with Dirichlet boundary conditions is simple and is associated

with a nonnegative eigenfunction vε ∈ H1
0 (BR), ‖vε‖L2(BR) = 1. From the equation

(−∆+ aε)vε = λεvε

and elliptic regularity theory, we deduce vε ∈ H3(BR) →֒ C1, 1
2 (BR), hence∇vε is well-de�ned

and ∂vε
∂n

6 0 on ∂BR. Moreover, it holds that

λε =

∫

BR

(|∇vε|2 + aεv
2
ε ) dx = inf

v∈H1
0
(BR )

‖v‖
L2(BR)

=1

∫

BR

(|∇v|2 + aεv
2) dx.

We shall now prove that the eigenvalues λε are bounded for ε→ 0. For any �xed

v∗ ∈ H1
0 (BR) with ‖v∗‖L2(BR) = 1, we have λε 6

∫
BR
(|∇v∗|2 + aεv

2
∗) dx 6 ‖v∗‖2H1(BR)

+

C‖aε‖L2(BR)‖v∗‖2H1(BR)
where the last expression is boundeddue to aε → a in L2(BR). This yields

an upper bound of the formλε 6 C. In addition, the equation
∫
BR
|∇vε|2 dx = λε −

∫
BR
aεv

2
ε dx

and the Gagliardo–Nirenberg–Sobolev type estimate

‖vε‖L4(BR) 6 C‖vε‖
1
4

L2(BR)
‖vε‖

3
4

H1(BR)
= C‖vε‖

3
4

H1(BR)

further implies

∣∣∣∣
∫

BR

aεv
2
ε dx

∣∣∣∣ 6 C‖aε‖L2(BR)‖vε‖
3
2

H1(BR)
6 C‖aε‖4L2(BR) +

1

2
‖vε‖2H1(BR)

6 C +
1

2
‖∇vε‖2L2(BR)

where we utilized the normalization of vε and the boundedness of ‖aε‖L2(BR). This results

in ‖∇vε‖2L2(BR) 6 λε + C + 1
2
‖∇vε‖2L2(BR), which provides both a lower bound for λε of the

form λε > −C and an upper bound for ‖vε‖H1(BR)
. Up to a subsequence, we thus know that λε

converges for ε→ 0.

In fact, one can show that limε→0 λε > 0 holds true. To see this, we calculate

λε

∫

BR

uvε dx =

∫

BR

u(−∆+ aε)vε dx

= −
∫

∂BR

u
∂vε
∂n

dS +

∫

BR

∇u · ∇vε dx +
∫

BR

aεuvε dx

= −
∫

∂BR

u
∂vε
∂n

dS +

∫

BR

(−∆+ a)uvε dx +

∫

BR

(aε − a)uvε dx

> −‖aε − a‖L2(BR)‖u‖L∞(BR)

wherewe have employed u > 0 and ∂vε
∂n

6 0 on ∂BR as well as (−∆+ a)u = 0. By arguing that

1 =
∫
BR
v2ε dx 6 (

∫
BR
vε dx)

1
2 (
∫
BR
v3ε dx)

1
2 6 C‖vε‖

1
2

L1(BR)
‖vε‖

3
2

H1(BR)
6 C‖vε‖

1
2

L1(BR)
, we con-

clude that
∫

BR

uvε dx > inf
BR

u

∫

BR

vε dx > c > 0.
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Consequently, λε > −(
∫
BR
uvε dx)

−1‖aε − a‖L2(BR)‖u‖L∞(BR) → 0 for ε→ 0.

Now choose some arbitraryw ∈ H1(R3) and a sequencewk ∈ C∞
c (R3),wk → w inH1(R3).

As

〈w, (−∆+ a)w〉 =
∫

R3

(|∇w|2 + aw2) dx = lim
k→∞

∫

R3

(|∇wk|2 + aw2
k ) dx,

it suf�ces to verify that
∫
R3(|∇wk|2 + aw2

k ) dx > 0 for all k ∈ N. For �xed k ∈ N, there exists

some R > 0 such that suppwk ⊂ BR(0), hence,
∫
R3 (|∇wk|2 + aεw

2
k ) dx > λε‖wk‖2L2(BR(0)) for

all ε > 0 and

∫

R3

(|∇wk|2 + aw2
k ) dx = lim

ε→0

∫

R3

(|∇wk|2 + aεw
2
k ) dx > ‖wk‖2L2(BR(0))limε→0

λε > 0.

Finally, 〈w, (−∆+ a)w〉 > 0 is proven. �

Appropriate bounds on the solutions to the Thomas–Fermi–vonWeizsäcker equations (21)

can be constructed with the help of proposition 13. The proof mainly relies on arguments from

[7, 20] where corresponding estimates have been deduced in similar situations.

Proposition 13. Let M > 0 and m = mc +
∑

x∈P cxδx where mc ∈ L2uloc(R
3), mc > 0, cx >

0 and P ⊂ R
3 such that |x − y| > 4ρ > 0 for all x, y ∈ P with x 6= y, and

‖mc‖L2
uloc

(R3) + sup
x∈R3


 ∑

y∈P∩B1(x)
c2y




1
2

6 M. (33)

Then, there exists some R0 > 1 such that for each Rn > R0 and mRn :=mχBRn (0), there exists

a solution (uRn ,φRn) ∈ H1(R3)× L2uloc(R
3), u > 0, which satis�es




−∆uRn +

5

3
u

7
3
Rn

− φRnuRn = 0,

−∆φRn = 4π(mRn − u2Rn),
(34)

in the sense of distributions. Using the notation ηρ introduced in notation 8, this solution

satis�es the bounds

‖uRn‖H2
uloc

(R3) 6 C(1+M4),

‖uRn‖Lp
uloc

(R3) 6 Cp(1+M
3
4 ) for all 1 6 p< 4,

‖φRn‖Lp
uloc

(R3) 6 Cp(1+M) for all 1 6 p< 3,

‖φRn‖W1,p
uloc

(R3)
6 Cp

(
1+M

7
4

)
for all 1 6 p<

3

2
,

‖ηρ∂iφRn‖L2
uloc

(R3) 6 Cρ

(
1+M

7
4

)
for all 0 < ρ < ρ, 1 6 i 6 3,

‖ηρ∂i jφRn‖L2
uloc

(R3) 6 Cρ

(
1+M

5
2

)
for all 0 < ρ < ρ, 1 6 i, j 6 3

(35)

where C,Cp,Cρ > 0 are independent of M and Rn.
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Proof. We assume from now on that m is not identically zero on R
3. Consequently, there

exists some R0 > 1 such that
∫
R3mRn dx > 0 holds true for all Rn > R0. According to [17,

theorem 7.19, theorem 7.7, theorem 7.8], there exists a nonnegative uRn ∈ H1(R3) satisfying∫
R3u

2
Rn

dx =
∫
R3mRn dx which is a solution to

−∆uRn +
5

3
u

7
3
Rn

−
(
(mRn − u2Rn) ∗

1

| · |

)
uRn = −θRnuRn

where θRn > 0 is the Lagrange multiplier associated to the charge constraint
∫
R3u

2
Rn

dx =∫
R3mRn dx. By introducing

φRn :=
(
mRn − u2Rn

)
∗ 1

| · | − θRn , (36)

we arrive at the Thomas–Fermi type equations

−∆uRn +
5

3
u

7
3
Rn

− φRnuRn = 0, (37)

−∆φRn = 4π
(
mRn − u2Rn

)
. (38)

Due to [17, theorem 7.10, theorem 7.13], there even exists a solution uRn ∈ H2(R3) →֒
C0, 12 (R3), which satis�es u(x)→ 0 for |x| →∞ and uRn > 0 on R

3. Moreover, we de�ne

mc,Rn :=mc χBRn (0) and derive for any x ∈ R
3

∥∥∥∥(mRn − u2Rn) ∗
1

| · |

∥∥∥∥
L2(B1(x))

=

∥∥∥∥∥∥

∑

y∈P∩BRn (0)

cy

| · −y| + (mc,Rn − u2Rn) ∗
1

| · |

∥∥∥∥∥∥
L2(B1(x))

6
∑

y∈P∩BRn (0)
cy

∥∥∥∥
1

| · |

∥∥∥∥
L2(B1(0))

+

√
4π

3

∥∥∥∥(mc,Rn − u2Rn) ∗
1

| · |

∥∥∥∥
L∞(R3)

6 C(Rn)

(
M + ‖mc,Rn − u2Rn‖L 5

3 (R3)

∥∥∥∥
χB1(0)
| · |

∥∥∥∥
L
5
2 (R3)

+ ‖mc,Rn − u2Rn‖L 7
5 (R3)

∥∥∥∥
χ
R3\B1(0)
| · |

∥∥∥∥
L
7
2 (R3)

)

6 C(Rn)

(
M + ‖mc,Rn‖L2(BRn (0)) + ‖uRn‖2

L
10
3 (R3)

+ ‖uRn‖2
L
14
5 (R3)

)

6 C(Rn)
(
M + ‖uRn‖2H1(R3)

)
,

where we also employed the Sobolev embedding. As a consequence, we get φRn ∈ L2uloc(R
3).

Analogously,
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∥∥∥∥(mRn − u2Rn) ∗
1

| · |2
∥∥∥∥
L
4
3 (B1(x))

=

∥∥∥∥∥∥

∑

y∈P∩BRn (0)

cy

| · −y|2 + (mc,Rn − u2Rn) ∗
1

| · |2

∥∥∥∥∥∥
L
4
3 (B1(x))

6
∑

y∈P∩BRn (0)
cy

∥∥∥∥
1

| · |2
∥∥∥∥
L
4
3 (B1(0))

+ C

∥∥∥∥(mc,Rn − u2Rn) ∗
1

| · |2
∥∥∥∥
L3(R3)

6 C(Rn)

(
M + ‖mc,Rn − u2Rn‖L 5

3 (R3)

∥∥∥∥
χB1(0)
| · |2

∥∥∥∥
L
15
11 (R3)

+ ‖mc,Rn − u2Rn‖L 7
5 (R3)

∥∥∥∥
χ
R3\B1(0)
| · |2

∥∥∥∥
L
21
13 (R3)

)

6 C(Rn)
(
M + ‖uRn‖2H1(R3)

)
,

which implies∇φRn ∈ L
4
3
uloc(R

3). Moreover, we will use the fact that for any f ∈ Lp(R3), g ∈
Lq(R3) and dual indices p, q ∈ (1,∞), the convolution f∗g is a continuous function tending to
zero at in�nity (see e.g. [18, lemma II.25]). From the previous calculations, we thus know that

(mc,Rn − u2Rn) ∗
1
|·| ∈ C(R3) and

(
(mc,Rn − u2Rn) ∗

1
|·|

)
(x)→ 0 for |x| →∞. As a result, φRn ∈

C(R3\(P ∩ BRn(0))) and φRn (x)→−θRn for |x| →∞.

A pointwise lower bound (uniform in Rn) for φRn can be obtained from the inequalities [24,

proposition 8, corollary 9]

9

10
u

4
3
Rn

6 (mRn − u2Rn) ∗
1

| · | + Λ,

0 6 θRn 6 Λ

(39)

where Λ > 0 is a constant independent ofM and Rn. Thus,

φRn > −2Λ. (40)

A pointwise upper bound for φRn cannot hold due to the point charges, but we may follow the

arguments of [7, 20] to establish upper bounds for φRn in L
p
uloc(R

3), p < 3, which are uniform

in Rn.

Step 1: Lp-bound on φRn . Let ω ∈ C∞
c (B1(0)) satisfying 0 6 ω 6 1, ω = 1 on B 1

2
(0) and∫

R3 ω
2 dx = 1. We further de�ne cω :=

∫
R3 |∇ω|2 dx and ωx :=ω(· −x). Applying lemma 12,

we know that the operator LRn := −∆+ 5
3
u

4
3
Rn

− φRn is nonnegative. Therefore,

〈ωx , LRnωx〉 =
∫

R3

|∇ωx|2 dy+

∫

R3

(
5

3
u

4
3
Rn

− φRn

)
ω2
x dy > 0,

and hence,

5

3
u

4
3
Rn

∗ ω2 >
(
φRn ∗ ω2 − cω

)
+
.
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We now construct a (uniform in Rn) pointwise upper bound for the convolutionφRn ∗ ω2. First,

−∆
(
φRn ∗ ω2

)
= 4π

(
mRn ∗ ω2 − u2Rn ∗ ω

2
)

and the �rst term on the right-hand side can be estimated by

(mRn ∗ ω2)(x) =

∫

B1(x)

mRn(y)ω
2(x − y) dy 6

∑

y∈P∩B1(x)
cy +

∫

B1(x)

mc(y) dy 6 CM

for all x ∈ R
3 with a constant C > 0 independent of M and Rn. By employing Jensen’s

inequality, we control the second term via

4π(u2Rn ∗ ω
2)(x) >

(
5

3

) 3
2
∫

R3

u2Rn(x − y)ω2(y) dy

>

(
5

3

) 3
2
(∫

R3

u
4
3
Rn
(x − y)ω2(y) dy

) 3
2

=

(
5

3
u

4
3
Rn

∗ ω2

) 3
2

>
(
φRn ∗ ω2 − cω

) 3
2

+
.

We thus have

−∆
(
φRn ∗ ω2

)
+
(
φRn ∗ ω2 − cω

) 3
2

+
6 C∗M,

with a constant C∗ > 0. Apart from that, one can easily show that φRn ∗ ω2 is a continuous

function (see e.g. [18, lemma II.25]),which satis�es—due to (36)—(φRn ∗ ω2)(x)→−θRn 6 0

for |x| →∞.

We introduce the set

S :=

{
x ∈ R

3

∣∣∣∣ φRn ∗ ω
2 − cω > 0

}
,

which is open and bounded due to the previous calculations. Furthermore, the constant and

positive function h := (C∗M)
2
3 satis�es −∆h+ h

3
2
+ = C∗M on S, which entails

−∆
(
φRn ∗ ω2 − cω

)
+
(
φRn ∗ ω2 − cω

) 3
2

+
6 −∆h+ h

3
2
+ on S,

φRn ∗ ω2 − cω = 0 6 h on ∂S.

Thanks to the maximum principle, we arrive at φRn ∗ ω2 6 cω + C
2
3∗ M

2
3 on S, but trivially also

on R3\S. Therefore,

φRn ∗ ω2 6 C
(
1+M

2
3

)

with a constant C > 0 independent ofM and Rn.

In the case that φRn 6 0 on R3, we have due to (40) the pointwise bounds−2Λ 6 φRn 6 0.

Otherwise, the positive part φ+Rn is not identically zero, and we shall derive appropriate Lp-

bounds for φ+Rn . We �rst recall that φRn ∈ C(R3\(P ∩ BRn(0))). In particular, φ
+
Rn

is continuous

away from the set P ∩ BRn(0) and

φ+Rn ∗ ω
2
= φ−Rn ∗ ω

2
+ φRn ∗ ω2

6 2Λ + C
(
1+M

2
3

)
6 C

(
1+M

2
3

)
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with constants C > 0 independent of M and Rn. Now, choose some arbitrary x0 ∈ R
3\(P ∩

BRn(0)) satisfying φRn(x0) > 0. On the one hand, we obtain the bound

∫

B 1
2

(x0)

φ+Rn (x) dx 6

∫

R3

φ+Rn (x)ω
2(x0 − x) dx

=
(
φ+Rn ∗ ω

2
)
(x0) 6 C

(
1+M

2
3

)
. (41)

On the other hand, we may write

∫

B 1
2

(x0)

φ+Rn (x) dx =

∫ 1
2

0

∫

∂Bτ (x0)

φ+Rn (y) ds(y) dτ ,

and we immediately see that there exists some t ∈ ( 1
4
, 1
2
) such that

∫

∂Bt (x0)

φ+Rn(y) ds(y) < 8

∫

B 1
2

(x0)

φ+Rn(x) dx. (42)

Consider the boundary related problem

−∆φ
x0
1 = 0 on Bt(x0),

φ
x0
1 = φ+Rn on ∂Bt(x0),

as well as the two domain related problems

−∆φ
x0
2 = 4πmc on Bt(x0),

φ
x0
2 = 0 on ∂Bt(x0).

and

−∆φx03 = 4π
∑

y∈P∩BRn (0)
cyδy on Bt(x0),

φ
x0
3 = 0 on ∂Bt(x0).

Because of

−∆φ+Rn 6 (−∆φRn)χ{φRn>0} = 4π
(
mRn − u2Rn

)
χ{φRn>0} 6 4πmRn

we may employ the maximum principle to deduce φ+Rn 6 φx01 + φx02 + φx03 on Bt(x0). In partic-

ular, φ+Rn (x0) 6 φ
x0
1 (x0)+ φ

x0
2 (x0)+ φ

x0
3 (x0) and we shall derive bounds for the three terms on

the right-hand side which are independent of Rn.

The �rst bound follows from the mean value property of harmonic functions and the

estimates in (42) and (41) via
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where the constant C > 0 is independent ofM and Rn. For the second problem, we proceed as

in [20] and �nd a solution φ
x0
2 ∈ H2(Bt(x0)) →֒ C0, 12 (Bt(x0)). This yields

φ
x0
2 (x0) 6 ‖φx02 ‖

C
0, 1
2 (Bt (x0))

6 C‖φx02 ‖H2(Bt(x0))

6C‖mc‖L2(Bt(x0)) 6 C‖mc‖L2
uloc

(R3) 6 CM

with C > 0 independent of M and Rn. The bound on φ
x0
3 (x0) arises from a comparison of φ

x0
3

with

φ̂
x0
3 :=

∑

y∈P∩BRn (0)∩Bt(x0)

cy

| · − y| .

As −∆φ̂x03 = 4π
∑

y∈P∩BRn (0)∩Bt(x0) cyδy = 4π
∑

y∈P∩BRn (0) cyδy = −∆φx03 in Bt(x0) and φ̂
x0
3 >

0 = φ
x0
3 on ∂Bt(x0), we have φ

x0
3 6 φ̂

x0
3 in Bt(x0) and, hence,

φx03 (x0) 6
∑

y∈P∩BRn (0)∩Bt(x0)

cy

|x0 − y| =
∑

y∈P∩BRn (0)

cy

|x0 − y|χBt(y)(x0).

Together, we arrive at

φ+Rn (x0) 6 C(1+M)+
∑

y∈P∩BRn (0)

cy

|x0 − y|χBt (y)(x0),

and as x0 ∈ R
3\(P ∩ BRn(0)) has been chosen arbitrarily, we further obtain

φ+Rn (x) 6 C(1+M)+
∑

y∈P∩BRn (0)

cy

|x − y|χBt (y)

a.e. inR3 whereC > 0 is a constant independent ofM and Rn. For p ∈ [1, 3), we then conclude

that

‖φ+Rn‖Lpuloc(R3) 6 Cp(1+M)

whereCp > 0 denotes a constant depending only on p. Combining this estimate with the lower

bound for φRn in (40), entails—as a �rst step—the desired Lp-bound on φRn in (35).
Step 2: further bounds. In order to establish the bounds on uRn in (35), we �rst utilize (39)

to �nd

‖uRn‖Lp(B1(x0)) = ‖u
4
3
Rn
‖

3
4

L
3
4
p
(B1(x0))

6 Cp

(
1+ ‖φRn‖

3
4

L
3
4
p
(B1(x0))

)
6 Cp(1+M

3
4 ) (43)

for any p ∈ [1, 4) and x0 ∈ R
3. We recall the de�nition of the cut-off function η̃ρ : [0,∞ )→

[0, 1] from notation 8 and observe that ηx : R
3 → [0, 1], ηx := 1− η̃1(| · −x|) is another cut-off

function satisfying ηx = 1 on B1(x) and ηx = 0 on R
3\B2(x). As an immediate consequence,

there exists some C > 0 such that |∇ηx|2 6 C holds true onR3. Testing (37) with η2x0uRn gives
rise to

∫

B2(x0)

η2x0 |∇uRn |
2 dx + 2

∫

B2(x0)

ηx0uRn∇uRn · ∇ηx0 dx

= −5

3

∫

B2(x0)

η2x0u
10
3
Rn

dx +

∫

B2(x0)

η2x0φRnu
2
Rn

dx.
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Applying Young’s inequality and |∇ηx0 | 6 C to the second integral on the left-hand side, an

absorption argument leads one to

∫

B1(x0)

|∇uRn |2 dx 6 2

∫

B2(x0)

φRnu
2
Rn

dx + C

∫

B2(x0)

u2Rn dx

6 2‖φRn‖
L
5
2 (B2(x0))

‖uRn‖2
L
10
3 (B2(x0))

+ C‖uRn‖2L2(B2(x0))
(43)

6C(1+M)(1+M
3
2 )+ C(1+M

3
2 ) 6 C(1+M

5
2 ). (44)

Now, consider the equation

−∆uRn = −5

3
u

7
3
Rn

+ φRnuRn .

As the right-hand side belongs to L
7
4 (B2(x0)) (which will be detailed immediately), a standard

result (see e.g. [13, theorem 8.17]) ensures the following norm estimates on B2(x0):

‖uRn‖L∞(B1(x0))

6 C

(
‖uRn‖L2(B2(x0)) +

∥∥∥∥−
5

3
u

7
3
Rn

+ φRnuRn

∥∥∥∥
L
7
4 (B2(x0))

)

6 C

(
‖uRn‖L2(B2(x0)) + ‖uRn‖

7
3

L
49
12 (B2(x0))

+ ‖φRn‖
L
21
8 (B2(x0))

‖uRn‖
L
21
4 (B2(x0))

)

6 C

(
‖uRn‖L2(B2(x0)) + ‖uRn‖

7
3

H1(B2(x0))
+ ‖φRn‖

L
21
8 (B2(x0))

‖uRn‖H1(B2(x0))

)

6 C
(
(1+M

3
4 )+ (1+M

5
4 )

7
3 + (1+M)(1+M

5
4 )
)

6 C(1+M
35
12 )

where C > 0 denotes various constants independent of M and Rn. As a consequence,

‖uRn‖L∞(R3) 6 C(1+M
35
12 ) and 5

3
u

7
3
Rn

− φRnuRn ∈ L2uloc(R
3). By applying standard elliptic reg-

ularity theory to (37) we thus conclude that

‖uRn‖H2(B1(x0))
6 C

(∥∥∥∥
5

3
u

7
3
Rn

− φRnuRn

∥∥∥∥
L2(B2(x0))

+ ‖uRn‖H1(B2(x0))

)

6 C

(
‖uRn‖

7
3

H1(B2(x0))
+ ‖φRn‖L2(B2(x0))‖uRn‖L∞(R3) + ‖uRn‖H1(B2(x0))

)

6 C
(
(1+M

5
4 )

7
3 + (1+M)(1+M

35
12 )+ (1+M

5
4 )
)

6 C(1+M
47
12 ).

For establishing the remaining bounds on φRn , we split

φRn =
∑

y∈P∩BRn (0)

cy

| · − y|ω(· − y)+ φcRn
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where all singularities of φRn are collected within the �rst term. The cut-off function ω ∈
C∞
c (R3) satisfying ω = 1 on B1(0) and ω = 0 on R

3\B2(0) enforces each contribution from

the Coulomb potential to have �nite range. The nonsingular function φcRn is then subject to

−∆φcRn = 4π(mc
Rn

+ u2Rn)+
∑

y∈P∩BRn (0)
cy

(
−2

· − y

| · − y|3 · ∇ω(· − y)+
1

| · − y|∆ω(· − y)

)
.

(45)

Testing this equation with ω(· − y)φcRn on B2(x0) for some arbitrary x0 ∈ R
3 entails

∫

B1(x0)

|∇φcRn |
2 dx 6

∫

B2(x0)

ω(· − x0)|∇φcRn |
2 dx

= −
∫

B2(x0)

∆φcRnω(· − x0)φ
c
Rn

dx −
∫

B2(x0)

∇ω(· − x0) · φcRn∇φ
c
Rn

dx

6 C

∫

B2(x0)

(
(|mc

Rn
|+ u2Rn)|φ

c
Rn
|+ |∇ω(· − x0)||φcRn ||∇φ

c
Rn
|

+
∑

y∈P∩BRn (0)
cy

(
1

| · − y|2 |∇ω(· − y)|+ 1

| · − y| |∆ω(· − y)|
)
|φcRn |


 dx.

As the expression inside the brackets in the last line is bounded by a constant which only

depends on the choice of ω, we deduce
∫

B1(x0)

|∇φcRn |
2 dx

6 C

(
(‖mc

Rn
‖L2

uloc
(R3) + ‖uRn‖2

H1
uloc

(R3)
)‖φcRn‖L2uloc(R3)

+
1

4γ
‖φcRn‖

2

L2
uloc

(R3)
+ γ‖∇φcRn‖

2

L2
uloc

(R3)
+

∑

y∈P∩B2(x0)
cy‖φcRn‖L1uloc(R3)




where γ > 0 will be chosen subsequently. Besides, we observe that

‖φcRn‖L2uloc(R3) 6 ‖φRn‖L2
uloc

(R3) + sup
x∈R3

∑

y∈P∩B2(x)
cy

∥∥∥∥
ω(· − y)

| · − y|

∥∥∥∥
L2(B1(x))

6 C(1+M)+ sup
x∈R3

∑

y∈P∩B3(x)
cy C 6 C(1+M).

For γ > 0 suf�ciently small and together with (44), we arrive at

∫

B1(x0)

|∇φcRn |
2 dx 6 C

(
(1+M

5
2 )(1+M)+ (1+M2)+M(1+M)

)
+

1

2
‖∇φcRn‖

2

L2
uloc

(R3)
,

and, hence,

‖∇φcRn‖L2uloc(R3) 6 C
(
1+M

7
4

)
. (46)
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A similar estimate can be derived for the second order derivatives ∂i jφ
c
Rn
, 1 6 i, j 6 3. To this

end, we �rst note that

−
∫

B2(x0)

∆φcRnω∆φ
c
Rn

dx =

∫

B2(x0)

∇φcRn · ∇ω∆φcRn dx

−
∑

i, j

∫

B2(x0)

∂iφ
c
Rn
∂ jω ∂i jφ

c
Rn

dx −
∑

i, j

∫

B2(x0)

ω|∂i jφcRn |
2 dx.

This enables one to estimate

∑

i, j

∫

B1(x0)

|∂i jφcRn |
2 dx 6 C

∫

B2(x0)

(
|∇φcRn |

2
+|∆φcRn |

2
)
dx+

∑

i, j

∫

B2(x0)

|∂iφcRn | |∂ jω| |∂i jφ
c
Rn
| dx.

From (45) and by arguing as above, we know that

∫

B2(x0)

|∆φcRn |
2 dx 6 C



∫

B2(x0)

(
(mc

Rn
)2 + u4Rn

)
dx +

∑

y∈P∩B3(x0)
c2y




where the constant C > 0 only depends on the choice of ω. Consequently,

∑

i, j

∫

B1(x0)

|∂i jφcRn |
2 dx 6 C

(
‖∇φcRn‖

2

L2
uloc

(R3)
+ ‖mc

Rn
‖2
L2
uloc

(R3)

+ ‖uRn‖4
H1
uloc

(R3)
+

∑

y∈P∩B3(x0)
c2y


+

1

2

∑

i, j

‖∂i jφcRn‖
2

L2
uloc

(R3)
.

Using (44) and (46), we now get for all 1 6 i, j 6 3 the bound

‖∂i jφcRn‖L2uloc(R3) 6 C
(
1+M

5
2

)
. (47)

By an elementary calculation with p ∈ [1, 3
2
), one easily obtains

∫

B1(x0)

|∇
∑

y∈P∩BRn (0)

cy

| · − y|ω(· − y)|p dx

6 Cp

∑

y∈P∩B3(x0)
cpy

∫

B1(x0)

(
1

| · − y|2p +
1

| · − y|p
)

dx 6 Cp

∑

y∈P∩B3(x0)
cpy

with a constant Cp > 0. This gives rise to

∥∥∥∥∥∥
∇

∑

y∈P∩BRn (0)

cy

| · − y|ω(· − y)

∥∥∥∥∥∥
L
p
uloc

(R3)

6 CpM

for 1 < p< 3
2
and—by taking into account (46)—

‖∇φRn‖Lp
uloc

(R3) 6 Cp

(
1+M

7
4

)
.
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Similarly, we deduce

∫

B1(x0)

η2ρ|∂iφRn |2 dx

6 C
∑

y∈P∩B3(0)
c2y

∫

B1(x0)

η2ρ

(
1

| · − y|4 +
1

| · − y|2
)

dx + C

∫

B1(x0)

η2ρ|∂iφcRn |
2 dx

6 CρM
2
+ C

(
1+M

7
2

)
6 Cρ

(
1+M

7
2

)

by employing (46). This yields

‖ηρ∂iφRn‖L2
uloc

(R3) 6 Cρ

(
1+M

7
4

)
.

An analogous argumentation using (47) �nally leads to

‖ηρ∂i jφRn‖L2
uloc

(R3) 6 Cρ

(
1+M

5
2

)
.

This �nishes the proof. �

Proposition 14. Let m = mc +
∑

x∈P cxδx be a charge distribution subject to assumption
(A1). Then, there exists a solution (u,φ) ∈ H1

uloc(R
3)× L2uloc(R

3), u > 0, to




−∆u+

5

3
u

7
3 − φu = 0,

−∆φ = 4π(m− u2),
(48)

in the distributional sense. Furthermore, using the cutoff ηρ introduced in notation 8 this

solution satis�es the bounds

‖u‖H2
uloc

(R3) 6 C(1+M4),

‖u‖Lp
uloc

(R3) 6 Cp(1+M
3
4 ) for all 1 6 p< 4,

‖φ‖Lp
uloc

(R3) 6 Cp(1+M) for all 1 6 p< 3,

‖φ‖
W

1,p
uloc

(R3)
6 Cp

(
1+M

7
4

)
for all 1 6 p<

3

2
,

‖ηρ∂iφ‖L2
uloc

(R3) 6 Cρ

(
1+M

7
4

)
for all 0 < ρ < ρ, 1 6 i 6 3,

‖ηρ∂i jφ‖L2
uloc

(R3) 6 Cρ

(
1+M

5
2

)
for all 0 < ρ < ρ, 1 6 i, j 6 3

where C,Cp,Cρ > 0 are independent of M.

Proof. This proposition can be proven along the same lines of arguments as a similar

statement in [20]. We �rst set Rn :=R0 + n for n ∈ N in proposition 13 and obtain bounded

sequences uRn ∈ H2
uloc(R

3) and φRn ∈ W
1,p
uloc(R

3), p ∈ (1, 3
2
). By a diagonal sequence argument,

we get subsequences uRn > 0 weakly converging in H2(BR(0)) to some u ∈ H2
loc(R

3) and φRn
weakly converging inW1,p(BR(0)) to some φ ∈ W

1,p
loc (R

3) for all R > 0 and p ∈ (1, 3
2
).
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Let x0 ∈ R
3. We then have uRn ⇀ u in H2(B1(x0)) and φRn ⇀ φ in W1,p(B1(x0)) for all

p ∈ [1, 3
2
); in particular, one derives uRn → u in Lq(B1(x0)) for all q ∈ [1, 4) and φRn → φ in

Lr(B1(x0)) for all r ∈ [1, 3). The corresponding bounds on u and φ are now an immediate

consequence of the bounds on uRn and φRn in (35).
The H2-type bound on φ on the set R3\P can be deduced by a similar reasoning. We start

by observing that

‖∂iφRn‖L2(BR(0)∩int{ηρ=1}) 6 ‖ηρ∂iφRn‖L2(BR(0)) 6 CρR
3
2

(
1+M

7
4

)
,

for all 1 6 i, j 6 3, R > 0, and 0 < ρ < ρ due to the bounds in (35). By selecting a diagonal

sequence φRn , we �nd that φRn weakly converges to φ in H1(BR(0) ∩ int{ηρ/2 = 1}) for all
R > 0 and 0 < ρ < ρ. This fact gives rise to

‖ηρ∂iφ‖L2(B1(x0)) 6 ‖∂iφ‖L2(B1(x0)∩int{η ρ
2
=1}) 6 C ρ

2

(
1+M

7
4

)

(and an analogous bound on ηρ∂ijφ) for all x0 ∈ R
3, 0 < ρ < ρ, and 1 6 i, j 6 3.

We subsequently rewrite (34) in the distributional formulation. For all v ∈ C∞
c (R3),

we have

∫

R3

(
−uRn∆v +

5

3
u

7
3
Rn
v − φRnuRnv

)
dx = 0

and

−
∫

R3

φRn∆v dx = 4π


 ∑

x∈P∩BRn (0)
cxv(x)+

∫

R3

(
mc,Rn − u2Rn

)
v dx


 .

Due to the convergence properties of uRn and φRn derived above, these equations converge to
the corresponding distributional formulation of (48) for n→∞. �

Note that in the literature sometimes a condition equivalent to (A1) is used.

Remark 15. We now give an equivalent characterization of the inf-condition for charge dis-

tributionsm in (A1), which also appears in [7]. An analogous statement without Diracmeasures

has been proven in [20]. But as the result only appeals to the mass, the proof is the same.

Let m = mc +
∑

y∈P cyδy where mc ∈ L2uloc(R
3), mc > 0, cy > 0 and P ⊂ R

3 such that |x −
y| > 4ρ for all x, y ∈ P, x 6= y, for some ρ > 0. Then, the following statements are equivalent.

(i) infx∈R3

(∫
BR(x)

mc dy+
∑

y∈P∩BR(x)cy
)
> ω0R

3 for all R > ω−1
0

(ii) limR→∞infx∈R3
1
R

(∫
BR(x)

mc dy+
∑

y∈P∩BR(x)cy
)
= ∞

Theorem 16. Let the charge distribution m satisfy (A1). Then, there exists a unique solution

(u,φ) ∈ H1
uloc(R

3)× L2uloc(R
3), u > 0, to




−∆u+

5

3
u

7
3 − φu = 0,

−∆φ = 4π(m− u2),
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in the distributional sense. This solution (u,φ) satis�es the bounds established in proposition
14 as well as

inf
x∈R3

u(x) > c

where c > 0 only depends on ρ, M, and ω0.

Proof. The existence of a corresponding solution has already been proven in proposition

14, whereas the uniqueness follows from the general existence and uniqueness result in [7,

theorem 6.10]. The assumptions in this theorem are satis�ed due to (A1) and remark 15.

As in [20], we assume that

inf
m subject to (A1)

inf
x∈R3

u(x) = 0

and show that this assumption leads to a contradiction. We choose a sequence of charges mn

satisfying (A1) and xn ∈ R
3 such that the solution (un,φn) ful�ls

un(xn) 6
1

n
.

Using the bounds on un and φn from proposition 14, we estimate
∥∥∥∥
5

3
u

4
3
n − φn

∥∥∥∥
L2
uloc

(R3)

6
5

3
‖un‖

4
3

L
8
3
uloc

(R3)

+ ‖φn‖L2
uloc

(R3) 6 C(1+M).

From Harnack’s inequality [26, corollary 5.2] and the uniform bound on the coef�cient of the

operator−∆+ 5
3
u

4
3
n − φn, we obtain a constant C > 0 depending only onM and R such that

sup
x∈BR(xn)

un(x) 6 C inf
x∈BR(xn)

un(x) 6
C

n
(49)

for allR > 0. The shifted functions un(·+ xn), thus, convergeuniformly to zero onBR(0), while

the potential φn solves

−∆φn = 4π(mn − u2n) (50)

in the sense of distributions.

We now choose a cut-off function ω ∈ C∞
c (R3) subject to 0 6 ω 6 1, ω = 1 on B 1

2
(0), and

ω = 0 on R3\B1(0). By testing (50) with ω( ·−xn
R

), we derive

4π

∫

BR(xn)

mn(x)ω

(
x − xn

R

)
dx

= 4π

∫

BR(xn)

u2nω

(
x − xn

R

)
dx − 1

R2

∫

BR(xn)

φn∆ω

(
x − xn

R

)
dx.

As a consequence of (A1) and the bound on φn from proposition 14, we may now estimate

cR3
6

∫

B R
2
(xn)

mn(x) dx 6

∫

BR(xn)

u2n(x) dx + CR(1+M)

with positive constants c and C independent of M and R > 2ω−1
0 . However, if we �rst choose

R > 2ω−1
0 solving cR3 > 1+ CR(1+M ), and then n ∈ N such that

∫
BR(xn)

u2n(x) dx < 1 holds

true (according to (49)), we arrive at a contradiction. �
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