Networks and Spatial Economics (2021) 21:291-323
https://doi.org/10.1007/511067-021-09517-w

®

Check for
updates

New Inertial Projection Methods for Solving
Multivalued Variational Inequality Problems
Beyond Monotonicity

Chinedu Izuchukwu' . Yekini Shehu?3

Accepted: 13 January 2021 / Published online: 3 March 2021
© The Author(s) 2021

Abstract

In this paper, we present two new inertial projection-type methods for solving multi-
valued variational inequality problems in finite-dimensional spaces. We establish the
convergence of the sequence generated by these methods when the multivalued map-
ping associated with the problem is only required to be locally bounded without any
monotonicity assumption. Furthermore, the inertial techniques that we employ in this
paper are quite different from the ones used in most papers. Moreover, based on the
weaker assumptions on the inertial factor in our methods, we derive several special
cases of our methods. Finally, we present some experimental results to illustrate the
profits that we gain by introducing the inertial extrapolation steps.

Keywords Inertial methods - Multivalued variational inequalities - Projection-type
methods - Continuous mapping - Armijo-type linesearch
1 Introduction

Assume that C is a nonempty closed and convex subset of RN and F : C = RV a
multivalued mapping with nonempty values. The Multivalued Variational Inequality
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Problem (MVIP) associated with F and C consists in finding x* € C and u € F(x*)
such that

(u,y —x*) >0, Vy e C. (1

MVIP (1) was first introduced and studied by Browder (1965) as an important gen-
eralization of the classical Variational Inequality Problem (VIP). The MVIP is also
known to be a useful generalization of the class of multivalued complementarity
problems (see Dong et al. 2017; Facchinei and Pang 2003; He et al. 2019), as well
as constrained convex non-smooth optimization problems (see Dong et al. 2017; He
et al. 2019; Rockafellar 1970). Therefore, problem (1) is quite general and provides a
unified treatment for the study of a wide class of problems such as price equilibrium
problems, oligopolistic market equilibrium problems, Nash equilibrium problems,
fixed point problems for multivalued mappings, game theory, among others (see
Attouch and Cabot 2019b; Brouwer 1912; Carey and Ge 2012; He et al. 2019; Nadler
1969; Oggioni et al. 2012; Raciti and Falsaperla 2007 and the references therein).

When F is a singlevalued mapping in Eq. 1 (i.e., the case of the classical VIP),
many methods have been designed by numerious authors for solving the VIP. These
include, the gradient projection methods, extragradient methods (Korpelevich 1976),
the subgradient extragradient methods (Censor et al. 2011), Tseng’s method (Tseng
2000), among others (see, for example, Vuong 2019). We note that these methods
for solving the classical VIP are not simply transformed to the case of MVIP since
it is very difficult to handle the multivalued mapping associated with the MVIP.
Thus, the methods for solving the MVIP are quite different. In 2014, Fang and Chen
(2014) extended the subgradient extragradient method for solving the MVIP (1) in
finite dimensional spaces. By employing the Procedure A below, they proposed the
following Algorithm 1.1.

Procedure A (Konnov 1998)

Input: apoint x € RV,
Output: a point R(x) € C, where C := {x e RV | g(x) <0}, g : RY — Risa
convex function.
Step 1: setn = 0and x, = x.
Step 2: if g(x,) < 0, then stop and set R(x) = x,. Otherwise, go to Step 3.
Step 3:  choose a point w,, € dg(x,), where dg(x) denotes the subdifferential of g
at x, set

Wp

Xpp1 = Xp — 28(xp) [w ”2,
n

and set n := n + 1 go back to Step 2.
Algorithm 1.1.

Step 0: Choose x; € R" and two parameters y, 8 € (0, 1). Setn = 1.
Step 1. Apply Procedure A with x = x,, and set x, = R(X,).
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Step 2. Choose u, € F(x,) and let k, be the smallest nonnegative integer
satisfying v, € F(Pc(x, — yk"u,,)),

Yol — vall < (1 = 8)[1x0 — Pc(xn — yFrun)|. )

Set p, = yk" and z,, = Pc(x, — puuy). If x,, = z,, stop.

Step 3. Compute X,4+1 = Pc, (X, — puUn), where C, = {y € RN : (x, — ppu, —
Zn, Yy — 2n) < Oh
Letn = n + 1 and return to Step 1.

Inspired by Algorithm 1.1, Dong et al. (2017) proposed the following projection
and contraction method for solving the MVIP (1).

Algorithm 1.2,

Step 0: Choose x| € RY and four parameters T > 0, ¥, 8 € (0, 1) and o € (0, 2).
Setn =1.

Step 1. Apply Procedure A with x = x,, and set x, = R(X,).

Step 2. Choose u,, € F(x,) and find the smallest nonnegative integer /; such that
on = Ty and v, € F(Pc(x, — ppitn)), which satisfies

onlltn — vl < (1 = 8)llxp — Poc(xp — ppttn)|l. 3

Set y, = Pc(x, — ppuy). If x, = yy, stop.
Step 3. Compute x,+1 = x, — afud(xy, yu), where d(x,, yu) — on(un — vy),
¢ (Xn,¥n)

& (X, yn) = (Xp — Y, d(xn, yp)) and B, := TG

Letn = n + 1 and return to Step 1.

We comment that the Armijo-type linesearch procedures (2) and (3) of Algorithm
1.1 and Algorithm 1.2, respectively, involve the computation of projection onto C
multiple times in each linesearch. They also involve the evaluation of the multivalued
mapping F too many times in each search. To overcome some of these shortcom-
ings, He et al. (2019), proposed the following projection-type method for solving
MVIP (1):

Algorithm 1.3.

Step 0: Choose x; € R" as an initial point and fix four parameters y, o € (0, 1)
and 0 < p? < p! <00.SetC; =RN,¥; = x1, andn = 1.

Step 1:  Apply Procedure A to obtain x,, = R(x,).

Step 2: Choose u, € F(x,) and p, € [p°, p']. Set y, = Pc(x, — ppitn). If x, =
Yn, then stop. Otherwise, compute z, = oy, + (1 — o)Xy
and choose the largest o € {y°, y, ¥2, y3, - - - } such that there exists w, €
F(z,) satisfying

(W, Xp — Yn) = 0 {Un, Xp — Yn).

Step 3: Taking a point v, € F(y,), setd(xu, yn) = (Xn — yn) — pn(ttn — vy)
and compute v, = x,, —Bnd (X, yu), where B, = m, (X, yn) =
(Xn — Yn, d(xy, Yn))-
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Step4: SetC, = {y € RN|(w,, y —z,) <0} forn > 2 and Cr=n'"_,C;.
Compute X,+1 = Pcy(Vn).
If X,+1 = x,, then stop. Otherwise, let n := n + 1 and return Step 1.

As observed in He et al. (2019, Section 4), Algorithm 1.1, Algorithm 1.2 and Algo-
rithm 1.3 do not work well in some settings because of the presence of Procedure A
in the iterative steps. Hence, the authors in He et al. (2019) proposed the following
projection-type method without Procedure A for solving MVIP (1), which can be
implemented in such settings.

Algorithm 1.4,

Step 0: Choose x| € RY as an initial point and fix four parameters y, o € (0, 1)
and 0 < ,00 < ,01 <00.Set Cy =RY andn = 1.

Step 1: Choose u,, € F(x,) and p, € [,00,,01]. Set y, = Pc(xp — putty). If
Xn = Yn, then stop. Otherwise, compute z,, = &, y,+(1—a;)x, and choose
the largest o € {y°, y,y% y>,---} such that there exists w, € F(z,)
satisfying

(Wny X — Yn) = 0{Up, Xp — Yn)-

Step 2: Taking a point v, € F(y,), setd(x,, yn) = (X — Yn) — pn(un — vy)
and compute X, = x, —B,d (xn, yu), where B, = m, O (Xn, V) =
(Xn — Yn, d(Xn, yn)).
Step3: Set C, = {y € RN |[(wy, y — z,) <0} forn > 2 and C} = N/_, ;.
Compute x, 41 = Pcncx(Xn).
If x,41 = x,,, then stop. Otherwise, let n := n + 1 and return Step 1.

Notice that the linesearch procedure in Algorithm 1.3 and Algorithm 1.4 involve
the computation of the projection onto C only one time in each search trial. Thus,
Algorithm 1.3 and Algorithm 1.4 seem more efficient than Algorithm 1.1 and Algo-
rithm 1.2. Moreover, He et al. (2019) showed numerically that their methods perform
better than Algorithm 1.2 of Dong et al. (2017). However, Algorithm 1.3 and Algo-
rithm 1.4 still involve the evaluation of the multivalued mapping at least 3 times in
each iteration.

Recently, inertial type algorithms for solving optimization problems have become
of great interest to numerous researchers. Since Polyak (1964) studied an inertial
extrapolation process for solving the smooth convex minimization problems, there
have been growing interests in the design and study of iterative methods with inertial
term. For example, inertial forward-backward splitting methods (Attouch et al. 2000;
Cholamjiak et al. 2018; Ochs et al. 2015), inertial Douglas-Rachford splitting method
(Bot et al. 2015), inertial ADMM (Bot and Csetnek 2016), and inertial forward-
backward-forward method (Lorenz and Pock 2015). The inertial term is based upon
a discrete analogue of a second order dissipative dynamical system (Attouch et al.
2000) and known for its efficiency in improving the convergence rate of iterative
methods. The inertial type algorithms have been tested in the solution of certian num-
ber of problems (for example, imaging and data analysis problems, motion of a body
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in a potential field) and the tests show that they actually give remarkable speed-up
when compared with corresponding algorithms without inertial term (see, for exam-
ple, Attouch and Cabot 2019a; Attouch and Cabot 2019b; Attouch et al. 2000; Beck
and Teboulle 2009; Bot and Csetnek 2016; Lorenz and Pock 2015; Ochs et al. 2015;
Polyak 1964; Shehu and Cholamjiak 2019; Shehu et al. 2019; Shehu et al. 2019 and
the references therein).

Inspired by this recent trend on inertial extrapolation type methods for solving
optimization problems, our aim in this paper is to design some modifications of
Algorithms 1.3 and 1.4, together with new inertial extrapolation techniques to solve
problem (1). We present two inertial projection-type methods for solving MVIP (1)
when the multivalued mapping F is only assumed to be locally bounded without
any monotonicity assumption. The first method uses a linesearch as in Algorithm 1.3
and Algorithm 1.4 while the second method uses a different linesearch procedure
with the aim of minimizing the number of evaluation of the multivalued mapping
F in each search. Furthermore, the inertial techniques that we employ in this paper
are quite different from the ones used in most papers (see for example Cholamjiak
et al. 2018; Chuang 2017; Lorenz and Pock 2015; Mainge 2008; Moudafi and Oliny
2003; Ochs et al. 2015; Polyak 1964; Shehu and Cholamjiak 2019; Shehu et al. 2019;
Shehu et al. 2019; Thong and Hieu 2018; Thong and Hieu 2017 and the references
therein). Moreover, based on the weaker assumptions on the inertial factor in our
methods, we derive several special cases of our methods. Finally, we provide some
numerical implementations of our methods and compare them with the methods in
He et al. (2019), in order to show the profits that we gain by introducing the inertial
extrapolation steps.

We organize the rest of the paper as follows: We first recall some basic results in
Section 2. Some discussions about our methods are given in Section 3. In Section 4,
we investigate the convergence analysis of our first method. In Section 5, we ana-
lyze the convergence of our second method. In Section 6, we give some numerical
experiments to support our theoretical findings. Then, we conclude with some final
remarks in Section 7.

2 Preliminaries
The metric projection, denoted by P, is a map defined on RY onto C which assigns
to each x € RY, the unique point in C, denoted by Pcx such that

lx — Pex|| =inf{llx — y| : y € C}.
It is well known that P¢ is nonexpansive, and characterized by the inequality

(x — Pcx,y— Pcx) <0 VyeC. (@)
Furthermore, the P¢ is known to possess the following property

IPcx —x|* < llx = yII> = | Pcx — ylI* Vy € C. ()

It is also known that P satisfies

(x —z,x — Pcz) > |lx — Pcz|?, Vx € C, z e RV, (©6)
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For more information and properties of Pc, see Goebel and Reich (1984) and He
(2006).
Definition 2.1 A multivalued mapping F : C = R” is said to be

e outer-semicontinuous at x € C if and only if the graph of F is closed;
inner-semicontinuous at x € C if for any sequence {x,} converging to x and
y € F(x), then there exists a sequence {y,} in F(x,) such that {y,} converges to
Y

e continuous at x € C if it is both outer-semicontinuous and inner-semicontinuous
at x;

e Jocally bounded on C if for every x € C, there exists a neighborhood U of x
such that F(U) is bounded, where F(U) = Uy ey F (x).

Definition 2.2 A multivalued mapping F : C = R” is said to be

¢ monotone on C if for any x, y € C,
(u—v,x—y)=>0, Vue F(x), ve F(y);
e pseudomonotone on C if forany x, y € C,
there exists u € F(x) : (u,y —x) > 0implies Vv € F(y) : (v,y —x) > 0;
® quasimonotone on C if for any x, y € C,

there exists u € F(x) : (u,y — x) > Oimplies Vv € F(y) : (v,y —x) > 0.

Proposition 2.3 (Rockafellar and Wets 2004) A multivalued mapping F : C = RN
is said to be locally bounded if and only if for any bounded sequence {x,} with u, €
F (xp), the sequence {uy} is bounded.

Proposition 2.4 (He et al. 2019) Assume that the solution set of problem (1) " is
nonempty and that F : C = RN is continuous. If either

(1) F is monotone or pseudomonotone on C;
(i1) F is quasimonotone on C and for any x* € T with u* € F(x*) satisfying (1)
such that

there exists y* € C : (u*,y* —x*) #£0;
(iii)  F is quasimonotone on C with int C # ) and 0 ¢ F(x*) forall x* € T.
Then,
(u,y—x*y>0VyeC, uecF(y), x* €T. @)

Remark 2.5 We can see from Proposition 2.4 that condition (7) is a weaker condition
than various monotonicity conditions. Thus, we shall assume for the rest of this paper,
that the solution set of problem (1) I' is nonempty and that Eq. 7 is satisfied.
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Following Attouch and Cabot (2019a, pages 5, 10), we note that if x, | = x, +
0, (x, — x,—1), then for all n > 1, we have that

n
Xntl — Xn = 1_[9,- (x1 — x0),
j=1

which implies that
n—1 1

Xp = X1 + Z l_[9j (x1 — x0).
j=1j=1
oo [
Thus, {x,} converges if and only if x; = xg orif > [] 6; < oo.
=1 j=1
Therefore, we assume henceforth that

[} 1
ST]6i| <o vizt ®)

I=i \j=i
Then, we can define the sequence {#;} in R by

00 1

00 [
a= Y (\T]oi =1+ 1I]e |- ©)
I=i i

I=i—1 \j=i i \j=
i-1
with the convention [ 6; = 1Vi > 1.
j=i
Remark 2.6 Assumption (8) ensures that {#;} is well-defined in Eq. 9 and
i =1+406itiy1, Vi > 1. (10)
The following proposition provides a criterion for ensuring assumption (8). In fact,

this condition makes it possible to cover the usual situations.

Proposition 2.7 (Attouch and Cabot 2019a, Proposition 3.1) Let {6, } be a sequence
such that 6,, € [0, 1) for every n > 1. Assume that

. 1 1
lim — =c,
n—oo \ 1 — 6,41 1-06,
for some c € [0, 1). Then, we have

(1) Condition Eq. 8 holds, and t,,11 ~ asn — oo.

P S
(I=c)(1—6)

(i1) The equivalence 1 — 6, ~ 1 — 0,41 holds true as n — oo. Hence, ty 1 ~ th42
asn — oo.
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Remark 2.8 Example of a sequence satisfying the assumptions of Proposition 2.7
(therefore, satisfying assumption (8))is 6, = 1 — %, 6> 1.
Clearly,

( 1 1 ) 1( 1 1 1
— = =N — =Nn = —=.
1_0n+1 1_0}1 0 6 0

Hence,

i ( 1 1 > 1
lim — = =.
n—oo \ 1 — 6,41 1-6, 0
Recall that the above example falls within the setting of Nesterov’s extrapolation

methods (for instance, see Attouch and Cabot 2019a; Beck and Teboulle 2009;
Chambolle and Dossal 2015, Nesterov 1983).

The corresponding finite sum expression of {#;} is defined for i, n > 1, by

n—1 1 n—1 1
lin ‘= Yi=i-1 \j=i =i \j=i (11)
0, otherwise.

In the same manner, we have that {#; ,} is well-defined and (see also Attouch and
Cabot 2019a)

tn=14+6iti1n,Vi>1, n>i+1. (12)

The sequences {t;} and {#; ,} are very crucial to our convergence analysis. In fact,
their effect can be seen in the following lemma which also plays a crucial role in
establishing our convergence results.

Lemma 2.9 (Attouch and Cabot 2019a, page 42, Lemma B.1). Let {a,}, {6,} and
{wy} be sequences of real numbers satisfying

an+1 < Oha, +wy, forevery n > 1.
Assume that 6, > 0 for everyn > 1.

(a) Foreveryn > 1, we have

n n—1
Zai < t,pa1 + ZtH—l,nwia
i=1 i=1
where the double sequence {t; ,} is defined by Eq. 11.
(b) Under Eq. 8, assume that the sequence {t;} defined by Eq. 9 satisfies
oo
> tiv1[wily < oo. Then, the series Y _[a;]+ is convergent, and
i=1 i>1
o oo
D laily < nlarly + ) tipilwily
i=1 i=l1
where [t]+ := max{t, 0} for any t € R.
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The following lemmas will also be needed in our convergence analysis.

Lemma 2.10 (Facchinei and Pang 2003) A point x* € T if and only if x* = Pc(x*—
pu) for some u € F(x*) and p > 0.

Lemma 2.11 (Attouch and Cabot 2019a, page 7, Lemma 2.1). Let {x,,} be a sequence
in RN, and let {6,} be a sequence of real numbers. Given z € RV, define the sequence
{Tw} by Ty := 3|1x, — z||*. Then

1
Chp1 =T =0,y —Ty1) = 5(911 +07%)”xn - xn—l”2 + (Xnt1 — Yn» Xnt1 — 2)

1 2
=5 11 =yl (13)
where y, = Xn + 0, (X, — Xp—1).

Lemma 2.12 The following is well-known:

20, y) = [IxI* + Iy1? = llx — yII> = llx + y1% — x> = IyI* Vx,y e RV,

Lemma 2.13 (Konnov 1998) The number of iterations in Procedure A is finite and
for any given x € RN, it holds that

[Rx) =yl < llx=yll. VyeC.

3 Proposed Methods

In this section, we present our methods and discuss their features. We begin with the
following assumptions under which we obtain our convergence results.
Assumption 3.1 Suppose that the following hold:

(a) The feasible set C is nonempty, closed and convex subset of RV .

(b) F:RYN =RV is locally bounded and continuous.

(c) T is nonempty and satisfies condition (7).

(d) 6, €[0, 1] forall n > 1 and there exists ¢ € (0, 1) such that for n large enough,
we have

A=) =6,-1) = Outarr (146, + 6,1 = 6,]. ). (14)

We now present some criteria that guarantee assumptions (8) and (14).

Proposition 3.1 Assume that {6,} is a nondecreasing sequence that satisfies 6, €
[0, 1[ Vn > 1 with lim 6, = 6 such that the following condition holds:

n—o0

1—-36>0. (15)
Then assumptions (8) and (14) hold.
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Proof Observe that 6, < 0 Vn > 1. Thus, we have that assumption (8) is satisfied
and t, = ﬁ Vn > 1 (see Attouch and Cabot 2019a). Now, observe that 1 —36 > 0

implies that (1 — 6) > %. This further implies that there exists € € (0, 1) such
that

o1 +6
(1—-e)(1-0)> (1%9) (16)

Since 8, < 0 Vn > 1, we obtain from Eq. 16 that

(=00 =602 S = G+, a7

for some € € (0, 1). Since 6,,_1 < 6, Vn > 1, we obtain that
Gntn—i-l(l + On) = entn—i-](l + 9n + [On—l - 9n]+)

Combining this with Eq. 17, we get that the assumption (14) is satisfied. O

Proposition 3.2 Suppose that 6,, € [0, 1) and there exists ¢ € [0, %) such that

1 1
lim _ —c (18)
n—00 \ 1 — 0,41 1 -6,
and
0,(1+6
liminf(1 — 6,)% > lim sup 201 %n). (19)
n—o0o H— 00 1—2c

Then assumption (14) holds.

Proof From Eq. 19, we obtain that

0,(1+ 6
liminf(1 — 6,_1)*> > lim sup On 1+ 6n) (20)

n—00 n—>00 1 —2c¢
Thus, there exists € € (0, 1) sufficiently small enough such that
0, (1 + 6,) . 0, (1 + 6,)

.. _ 2 .
1}1n_1)gcl)f(1 Oh—1)" > hnn’_l)sol.(l)p T~ 2c—e(l — o) > h,fis;p a0 2n

This implies that
(1+0()0(1+6,)  =<[1—2c—e(l—c)+ o] —6,-1)
=[(1 - &)1 —¢) — 2c — ¢ + oI — 1)
< [(1 = &)1 =) = Ouc + o)1 — 6,-1)?,
which implies that

A=) =)0 =6,-1)* = (1 +0(1)6, (1 46, + (1 = 6,-1)* + 0 (1 — 6,-1)?)) . (22)
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Now, observe from Eq. 18 that
On—1 = Op +c(1 = Op—1)(1 — 6y) =0 ((1 —6,—1)(1 — 6,)),
which implies from Proposition 2.7(ii) that

On—1 =6y = —c(1 = 6,—1)(1 = 6,) + 0 ((1 —6,—1)(1 —6,))
=—c(l=6,_1)*4+0(1—-6,_1)% as n — oo.

This implies that

6 —1 — On] =|—c(l —6—1)* 4+ o1 — 6p_1)?|
<c(l=6,_1)%+0(1 —6,_1)% as n — oo. (23)

Combining (22) and (23), we obtain that
1=e)(1 =)A= 6p—)* = 14+ 0(1) 0y (1 + 6y + [u_1 — Ou]4) . (24)

By Proposition 2.7, we have that #,41 ~ t, ~
Eq. 24 is equivalent to

1
T=00=6, n asn — OQ. HCHCC,

A=) (1= =0,-1)* = gttt (1 460+ [6n-1 —6,14)
which implies that assumption (14) holds. O

Remark 3.3 We mention that Proposition 3.1 and Proposition 3.2 provide some suffi-
cient conditions for ensuring that assumptions (14) and (8) hold. That is, assumptions
(14) and (8) are much more weaker conditions than the assumptions in both proposi-
tions. Note that similar conditions as in Propositions 3.1 and 3.2 have been used by
other authors to ensure convergence of inertial methods (see Lorenz and Pock 2015;
Thong and Hieu 2018; Thong and Hieu 2017 and the references therein). In fact, we
shall see later that using the conditions in Proposition 3.1 and Proposition 3.2, we
derive some corollaries of our results.

We now present the first method of this paper.
Algorithm 3.2.

Step 0: Choose the sequence {6,} in [0, 1) such that the condition from Egs. 8 and
14 hold. Let x1, xo € RY be given arbitrary and fix y,0 € (0,1),0 <
po < p1 < oo. Set Cy =RNandn=1.

Step 1. Set

Up = Xp + 0y (Xy — Xp—1)
and choose u,, € F(v,) and p, € [po, p1]. Then, compute
Yo = Pc(vy — puuy). If v, = y,: STOP. Otherwise, go to Step 2.

@ Springer



302 C.lzuchukwu, Y. Shehu

Step 2. Compute
Zn = Opyn + (1 —ay)vy

and choose the largest @ € {y, y2, y3,...} such that there exists a point
w, € F(z,) satisfying

(Wn, Uy — Yn) = 0{Un, Uy — Yn)- (25)
Step3. SetC, ={y € R : (w,,y—2z,) <0}forn >2and C} = N"_,C;. Then,
compute
Xnt1 = Pcx(vn).

Setn :=n + 1 and go back to Step 1.

Lemma 3.4 Step 2 of Algorithm 3.2 is well-defined.

Proof Letv € C andu € F(v). Define y := Pc(v — pu), p > 0.If v = y, then by

Lemma 2.10, we have that v is a solution. Now, if v # y, then by Eq. 4,

S e S g
P o

Now, suppose on the contrary that Step 2 is not well-defined, then we will have that,

foranyo > 0and w € F(z) withz =ay + (1 — a)v,

(u,v—1y) (v—y,v—y)>0. (26)

(w,v—y) <o({u,v—y). 27

In particular, for o, = nlz with z, = a, y+(1—ay,)v, we have that z, — vasn — oo.
Since F' is continuous, it is inner-semicontinuous. Thus, there exists w, € F(z,)
such that w, — u with u € F(v). Taking w as w, in Eq. 27, and taking limit as
n — oo, we obtain that

(I—0o)u,v—-y) <0,

which contradicts (26). Hence, Step 2 of Algorithm 3.2 is well-defined. O

Remark 3.5 Observe that Assumption 3.1 (c) ensures that Step 3 of Algorithm 3.2 is
well-defined since I' C C;' and hence C;¥ # ¢ for all n > 2. Indeed, for z € T, we
obtain from Assumption 3.1 (c) that (w,, z — z,) < 0Vn > 2. Thus, z € C;, Vn > 2,
which follows that z € C;i Vn > 2.

In the following, we present another method with a new linesearch (different from
Eq. 25) with the aim of minimizing the number of evaluation of the multivalued
mapping F in each search.

Algorithm 3.3.
Step 0: Choose the sequence {6,} such that the condition from Eqs. 8 and 14 hold.

Let x1, xo € RY be given arbitrary and fix y,o € (0,1),0 < po < p1 <
00.SetC; =RY andn = 1.
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Step 1. Set
Uy = Xp + 0p(Xp — Xp—1)

and choose u, € F(v,) and p, € [po, p1]. Then, compute
yn = Pc(vy — puuy). If v, = y,: STOP. Otherwise, go to Step 2.
Step 2. Compute

Zn = opyp + (I —ay)v,

and choose the largest @ € {y, y%, 3, ...} such that there exists a point
w, € F(z,) satisfying

(Wi, Uy — Yn) = =llvg — yn||2~

| Q

Step3. SetC, ={y € RV : (w,,y—2z,) <0} forn >2and C} = N"_,C;. Then,
compute
Xn+l = PC,*,‘(Un)'

Setn :=n + 1 and go back to Step 1.

Remark 3.6 (a) Observe that if we choose a pointu € F(x) with y := Pc(x — pu),
then, by setting z = x — pu in Eq. 6, we obtain that

o
(,x = y) = —llx = vl (28)

Thus, using Eq. 28 and the continuity of F', we can see that Step 2 of Algorithm
3.3 is well-defined.

(b) Our Algorithm 3.2 and Algorithm 3.3 have fewer evaluations of multivalued
mapping F than Algorithm 1.3 and Algorithm 1.4.

4 Convergence Analysis for Algorithm 3.2

Lemma 4.1 Let {x,} be a sequence generated by Algorithm 3.2 and {T",,} be defined
byT, = %Hx,, — 2|12 for any z € T. Then, under assumption (8) and Assumption
3.1(c),(d), we have that

n—1

D ltirra (1 =36) = (1= 6) + tin(1 = D] llxi — xi 1|1
i=1

< 2t4|T' — Dol 4+ 200 + 11(1 — 6o) lx1 — x0l1?,
where {t; ,} is defined in Eq. 11.

Proof First observe that

2 2
xn1 — X217 = Nxn41 — 2x5 + Xp—1 — (K1 — X))l
2 2
= |lxp41 — 2x0 + X117 + |xXn—1 — Xl

+2(xn41 — 2%0 + Xpn—1, Xy — Xn—1),
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which implies that

2 2 2
2(xp41—2x0 X0 -1, Xn—Xp—1) = |Xnp1 =X "= 1 Xnr1 2% +xn 1 |7 = lxn—1—2x "
Thus, we obtain that

1201 = vall® = Ixn1 — X0 — (o = Xa—1) + (1 = 6) (o — Xp— D12
201 = 2 + X117 + (1 = 6,2 {1x0 — xn1 1|7
+2(1 = Op) (X1 — 2x0 + Xp—1, Xp — Xn—1)

= lons1 = 250 + a1 12 + (1= 6) [l — x—1 112

1= 00) [l =5l = I = 5112 = oo = 250+ 501 1]

= Oullxnt1 — 2% + X0t 12 + (1 = 6,210 — X1 ||

(1= ) [ a1 = 22 = %0 = a1 2]

%

(U= 0200 = 20t 17 4+ (1= 60) It = 5l =l — 201 17].29)

Let z € T, then by Remark 3.5, we have that z € C,;. Thus, we obtain from Lemma
2.11 and Eq. 29 that

1
Fatt =T = 64Ty = Tat) = S0 + O 1xn — Xn—1 11> + (Xnt1 = Vny Xng1 — 2)

1
=5 g1 = v 112
1 2 2 1 2
< SO+ 0D = Xt 12 = S lngs = vall (30)
1 1
< S0 + 02 1xn — Xn—1 1> — S = 0)? 1260 — xXn—1 11

1 2 2
—3 (=0 [0 = 20 = s = a1 1

L 36, — 1) 2-ta-e
B n Xn Xn—1 2 n

2 2
x [t = all® = o =501 1]

which implies from Lemma 2.9 (a) that

n
Ty —To=Y (I =T
i=1

n—1

1 1
<ta(C1=To)+ Y tiyin [5(3@- = Dlbxi = xi-1]* = 5(1 = 6)
i=1

2 2
x (Il = il = i = xi-11?) ]
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Notice that #1 , < t1. Thus, we obtain that

n—1

D tiern [(1 =300 i = i1 12+ (= 6) (Iin — % = i = xi-1 1)
i=1
< 2t1,,(T'1 = To) +2(To — I'n)
< 2n|I't = To| + 2. €1y
O
Now, observe that
n—1
> tirral =6 (Iien — w2 = i = xi1]1)
i=1
n—1

=Y (tin(l = 61) = ti1,0(1 = 6) i — x>
i=1
“l‘tn,n(l — D xn — xn—1 ”2 - tl,n(l —0p)lx1 — X()||2
n—1

D (tin(t = 0im1) = tix1a(1 = 6)) llxi — xi—1 1> = 611 = 6o)lx1 — xoll. (32)
i=1

%

Combining (31) and (32), we get that

n—1 n—1

D v =300 = xia P+ D (il = 0-1) = tig1.a(1 = 6) lxi — xi 1)
i=1 i=1

< 2|1y — Dol 4 2T + £1(1 — 6p) [lxo — x11|>.

That is,

1

[ti10 (1 =36,) — (1 = 6) + tin (1 = 6;—D)] llx; — xi—1 ]2
|

< 204|T'y — To| 4 2T + £1(1 — 6p) [lxo — x1 % (33)

3
|

Lemma 4.2 Let {x,} be a sequence generated by Algorithm 3.2. Then, under
(0.¢]

assumption (8) and Assumption 3.1(c),(d), we have that > (1—0,_1)||xp —Xn—1 ||2 <

n=1
00

oo and Y Outyi1llXn — Xu_1|* < 0.
n=1
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Proof From Eq. 12 and since #;41,, < ti4+1, we obtain

tiv1n [(1=30;) — (1 = 0)] + 1 n(1 — 0;—1)
= tit1,n [(1 —36) — (1 =)+ (1 —6i—1) + Oifit1,,(1 — 6;—1)
= tig1n [(1 =36) — (1 = 6) +6;(1 = 6;_)] + (1 — 6;—1)
=1 —06i—1) = Oitix1,n (1 —0i-1)
> (I —=6i—1) —Oitiy1 (1 —6;—1)
> (1= 60 = Ot (146, + [ - 61],). (34)

Using Eq. 34 in Lemma 4.1, we obtain that

n—1
D —=01) = Ot (1 +6; +[6i-1 — 9i]+) i — xi—1 17
i=1
< 20|T't = To| +2L0 + 11(1 = 60)|xo — x1|%.
We may assume without loss of generality that assumption (14) holds forevery n > 1.

Then, we obtain that

n—1
D el = 6Dl —xi-y|? < 20|01 = To| + 200 +n1.(1 = 6o)lxo — 1.
i=1

Now, taking limit as n — oo, we get that

oo
D (=6l — xill* < oo (39)
i=1
Thus, the first conclusion of the lemma is established. To establish the second
conclusion of the lemma, we employ assumption (14) again in Eq. 35 and obtain

o0
2
Z@h‘ﬂllxl’ —xi—1I” < o0.
i=1
O

Lemma 4.3 Let {x,} be a sequence generated by Algorithm 3.2. Then, under
assumption (8) and Assumption 3.1(c),(d), we have that

(a) linolo lx — z|| exists forall z € T.
n—

()  hm [vy — Xxp41]l = 0.
n—od

Proof (a) From Eq. 30, we obtain that

1 1
1 —Tp <60,y —Tpop) + E(en + 9,%)||xn - xn—1||2 - E”xn—i-l - Un”2

IA

1
00Ty — Tue1) + Oullxn — xp—1 1 — 5 lensr = vl (36)

0, (Cr — Tue1) + Onllxn — X011

IA
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o0
Thus, from Lemma 4.2 and Lemma 2.9 (b), we obtain that >_ [, — I'y—1] L <
n=1
oo. This implies that lim I', = lim %Hxn — z]||? exists, which further gives
n—od n—oQ
that lim |x, — z|| exists forallz € .
n—od
(b) Now, using Eq. 36 and Lemma 2.9 (a), we obtain that

n
Ty —To =Y (Ii—Ti1)
i=1

n—1

1
ta (CL=T0) + Y titin [91- i = it I = Sl = vinz} .37

i=1

IA

Since tj+1., < ti+1, we obtain from Eq. 37 and Lemma 4.2 that

n—1 n—1

D tipiallxign = vill> <200 + 26, (Tr = T0) +2 ) tig1abillxi — xi1 )

i=1 i=1

o0
<200+2010 —Tol +2 ) tip16illx; — xi—1])* < oo
i=1

Since t;41,, = 0 fori > n, letting n tend to co, we obtain that

o0

2
D tiillxien —vill* < oo. (38)
i=1

Replacing i with n in Eq. 38 and since #,, > 1 for every n > 1, we obtain from
o
Eq. 38 that Y |lxp4+1 — vnll? < o0. This implies that lim |v, — x,41]| = 0.
n=1 n—oQ
O

Remark 4.4 The main role of assumption (14) is to guarantee the condition

o0

D tat1Oallxn — xu1|* < o0, (39)

n=1
obtained in Lemma 4.2 above. Note that Lemma 4.3 holds true if we assume condi-
tion (39) directly. Moreover, if 6, € [0, ] for every n > 1, where 6 € [0, 1), then
t < ﬁ Vn > 1. Under this setting, we have that condition (39) is guaranteed by
the condition

o

D Onllxn = |? < e (40)

n=1
In other words, if we assume that condition (40) holds for 6, € [0,0] Vn > 1,
with 6 € [0, 1), then Lemma 4.3 holds. This assumption has been used by numerous
authors to ensure convergence of inertial methods (see, for example, Alvarez and
Attouch 2001; Chuang 2017; Lorenz and Pock 2015; Mainge 2008; Moudafi and
Oliny 2003 and the references therein).
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Furthermore, under the assumptions of Proposition 3.1, we obtain the following
as corollaries of Lemma 4.2 and Lemma 4.3 respectively.

Corollary 4.5 Let {x,} be a sequence generated by Algorithm 3.2 such that Assump-

tion 3.1(c) holds. Suppose that {6,} is a nondecreasing sequence that satisfies

6, € [0,1[ Vn > 1 with lim 0, = 60 such that 1 — 360 > 0. Then, we have that
n— oo

o0 o0
S (1= Op—Dllxn — xp—111> < 00 and Y Optyi1 1 xn — xp—1 1> < oo
n=1 n=1

Proof By Proposition 3.1, we have that assumptions (8) and (14) hold. Hence, the
proof follows from Lemma 4.2. U

Corollary 4.6 Let {x,} be a sequence generated by Algorithm 3.2 such that Assump-
tion 3.1(c) holds. Suppose that {6,} is a nondecreasing sequence that satisfies 6, €
[0, 1] Vn > 1 with lim 6, = 0 such that 1 — 36 > 0. Then,

n—od

(@) lim |lx, — z|| exists forall z € T.
n—od

®  lim v, — xep1]l = 0.
n—oo

Proof 1t is similar to the proof of Corollary 4.5. O

Remark 4.7 Observe that Eq. 18 and Proposition 2.7 imply that condition (8) also
holds in Proposition 3.2. Hence, by replacing assumptions (8) and (14) with the
assumptions of Proposition 3.2 in Lemma 4.2 and Lemma 4.3, we also obtain corol-
laries of Lemma 4.2 and Lemma 4.3 in the same manner as Corollaries 4.5 and 4.6
respectively.

Remark 4.8 1f we take the inertial factor 6, to be a constant (thatis 8, =6 Vn > 1),
then we obtain the following corollaries of Lemma 4.2 and Lemma 4.3.

Corollary 4.9 Let {x,} be a sequence generated by Algorithm 3.2 such that
Assumption 3.1(c) holds. Suppose that 6, = 6 Vn > 1 with 0 € [0, 1) such
that

1-0)2>00+0). (41)

o o
Then, we have that 3" (1 — 0)||x, — x,_1]|> < oo and " %Hxn — X1 < o0.
n=1 n=1
(e 0]

Consequently, we have Yy ||x, — xp—1 12 < oo.
n=1
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0 .
Proof Since 6, = 6 € [0, 1), we obtain fori > 1 thaty, = Y 07 *l = Lo <
I=i—1

oo. Thus, we get that assumption (8) holds. Note also from Eq. 41 that there exists

€ € (0, 1) such that

(1 +0)
1-06

which is equivalent to condition (14) since 6, =6 Vn > 1. Hence, all the assump-

tions of Lemma 4.2 are satisfied. Thus, the rest of the proof follows from Lemma 4.2.
O]

(I-e(d-0)=

’

Corollary 4.10 Let {x,} be a sequence generated by Algorithm 3.2 such that
Assumption 3.1(c) holds. Suppose that 6,, = 6 Vn > 1 with 6 € [0, 1) such that
(1 —6)2 > 0(1 +6). Then,
(@) lim ||x, — z|| exists forall z € T.

n—oo

(b) lim [lvp — xp41ll = 0.
n—00

Proof The proof is similar to the proof of Corollary 4.9. O

We now return to a very important result for our convergence analysis, whose
proof rely on the linesearch given in Algorithm 3.2.

Lemma 4.11 Let assumption (8) and Assumption 3.1 hold, and let the sequence {x,}
be generated by Algorithm 3.2. Then, lim a,||y, — va||*> = 0. Moreover, if there
n—od

exists a subsequence {x,, } of {x,} such that {x,, } converges to x* and x* ¢ T', then
(a) liminfoy,, > 0;
k— 00

() lim [[vg, = yu |l = 0.
k— o0

Proof From Eq. 4, Step 1, Step 2 and the fact that x,41 € C)f, we obtain that

ayllv, — yn||2 = 0 (Un — Yn> Un — Yn)
AV — Yno Up — Yn) + Qu{Yn — Vn + P, Uy — Yn)

Ay Pn Uy, Vn — Yn)
Ay Pn

IA

= (Wn, Uy — Yn)
o
0
= _n<wn7 Up — Zn)
o
Pn
< ; Kwn, vy — Xp41) + (Wi, Xnp1 — 2n))
0
< ;n”wn””vn = Xnt1ll- 42)
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Since by Lemma 4.3, {x,} is bounded, we have that {z,} is also bounded. Moreover,
since F is locally bounded, we obtain from Proposition 2.3 that {w,} is bounded.
Using this and the boundedness of {p, }, we obtain from Eq. 42 and Lemma 4.3 that

lim o[y — val* = 0. (43)
n—oo
(a) By Step 2, we have that {«,,} C (0, 1) is bounded. Thus, there exists a subse-
quence {ay, } of {a,} such that l}cm infa,, > 0.
— 00
In fact, we claim that lim inf,, > 0. Suppose on the contrary that l}cm infa,, =
—00 —00
0. Then, without loss of generality, we can choose a subsequence of {oy, } still

denoted by {«,, } such that klim oy, =0.
—00

Now, define o, 1= a’%, Zny 1= Quy Yn; + (1 =0y ) vy, . Then, by the boundedness

of {yn, — vp, } and since a;, — 0 as k — oo, we obtain that

lim ||z, — vy |l = 0. (44)
k— 00
Also, by Lemma 4.2, we obtain that lim ||x,, — v, || = lim 6, ||x,, — x4, -1l = 0.
k— 00 k— 00

Thus, since x,, — x*, we have that v,, — x*. Using Assumption 3.1 (b), the
boundedness of {v,, } and Proposition 2.3, we obtain that {u,, } is also bounded. Thus,
we can choose a subsequence of {u,,} still denoted by {u,,} such that u,, — u.
Since F is continuous, it is outer-semicontinuous. Hence, u € F(x*). We also assume
without loss of generality that p,, — o € [po, p1]. Therefore, we obtain from the
continuity of Pc that y,, — y* as k — oo, where y* = Pc(x* — pur).

Again, from Eq. 44, we obtain that z,, — x*. Since F is inner-semicontinuous
and u € F(x*), we can choose a subsequence w,, € F(Z,,) such that w,, — i.

Now, from the definition of z,, and Step 2, we obtain that

<lZ)nk7 Un, — ynk> < O—(Mnkv Unp — Ynk>- (45)
Thus, taking limit as k — oo, we obtain that
(a,x* —y*) <0. (46)
On the hand, since x* ¢ I, we have from Lemma 2.10 that x* % y*. Hence, we get
- % * 1 * * - * * * * 1 * * %k *
(i, x* —y*) = ;(y — (T —pu) + (7 =y, X —yT) > ;(x —y5Lx" —=y") > 0,(47)
which is a contradiction to Eq. 46. Therefore, I}Cm inf oy, > 0.
—

o]

(b) From (a), we have that I}Cm infa,, > 0. Thus, we obtain from Eq. 43 that
—00

0 < limsup [lv,, — yn,(||2 < limsup (a,,k Ve, — Yy ||2) (limsup i)

k—o00 k— 00 k— 00

: 2 1
= (hm sup & ||vn, — Yu |l ) (m)
k—o00 k—oo Kk
= 0.
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Therefore, we obtain that

lim [lvg, — yn |l = 0.
k— 00

Now, we are in position to give the main theorem of this section.

Theorem 4.12 Let {x,} be a sequence generated by Algorithm 3.2. Then, under
assumption (8) and Assumption 3.1, we have that {x,} converges to an element of T'.

Proof By Lemma 4.3, {x,} is bounded. Thus, there exists a subsequence {x,,} of
{x,} such that {x,, } converges to some point x*. Also, we have that

lvne — Xng Il = Ony 1%y — Xpp—1ll = 0, as k — oo. (48)

We now claim that x* € T.
Suppose on the contrary that x* ¢ I'. Then, it follows from Lemma 4.11 (b) and
Eq. 48 that

lim y, = lIm Pc(vy — pnlin,) = lim x,, = x*. (49)
k—o00 k— o0 k— o0

Now, without loss of generality, we may assume that p,, — p* and u,, — u*.
Since F is continuous, it is outer-semicontinuous. Thus, we obtain that u* € F(x*).
Therefore, we obtain from Eq. 49 that

Pc(x* — p*u™) = x*.
It then follows from Lemma 2.10 that x* € I', which is a contraction. Hence, our
claim holds.
We now show that {x, } converges to x*.
Replacing z by x* in Lemma 4.3, we obtain that lim ||x, — x*|| exists. Since x*
n—oo

is an accumulation point of {x,}, we obtain that {x, } converges to x*. O]

Remark 4.13 In view of Corollaries 4.5-4.10, we can obtain various corollaries of
Theorem 4.12. Furthermore, in the case that 6, = 0 for all n > 1, assumptions (8)
and (14) are automatically satisfied. Moreover, we have in this case that 7, = 1 for
all n > 1. Hence, we can employ Procedure A (see page 1) to obtain similar result
as in He et al. (2019, Theorem 3.1).

Algorithm 4.1.

Step 0: Letx; € RY be given arbitrary and fix y,o0 € (0,1),0 < pg < p1 < 0.
Set Cy ZRN,)_Q =xjandn = 1.
Step 1. Apply Procedure A to obtain x, = R(x,).
Step 2. Choose u, € F(x,) and p, € [po, p1]. Then, compute
Yn = Pc(xy — ppuy). If x, = y,: STOP. Otherwise, go to Step 2.
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Step 3. Compute
Zn = dpyn + (1 —o)xp

and choose the largest & € {y, y2, >, ...} such that there exists a point
wy € F(z,) satisfying

(Wny X — Yn) = 0{Un, Xp — Yn)- (50

Step4. SetC, ={y € RN : (w,,y—2z,) <0} forn > 2and C; = N_,C;. Then,
compute

Xntl = PC,’{ (xn).
If X,,+1 = x5, then stop. Otherwise, let n = n + 1 and return to Step 1.
Corollary 4.14 (see for example, He et al. (2019, Theorem 3.1)) Let {x,} be a

sequence generated by Algorithm 4.1 such that the following assumptions hold:

(a) The set C is described as in procedure A (see page 1).
(b) F:C = RN islocally bounded and continuous.
(¢) T is nonempty and satisfies condition (7).

Then, we have that {x,} converges to an element of T.

Proof Tt follows carefully from Lemma 2.13 and Theorem 4.12. O

Remark 4.15 Under the settings of Remark 4.13, we can obtain in general, similar
result as in He et al. (2019, Theorem 3.2) without Procedure A.

Algorithm 4.2.

Step 0: Let x; € C be given arbitrary and fix y,0 € (0,1),0 < pp < p; < o0.
Set C; =R andn = 1.
Step 1. Choose u, € F(x,) and p, € [po, p1]. Then, compute
Yo = Pc(xy — ppuy). If x, = y,: STOP. Otherwise, go to Step 2.
Step 2. Compute

Zn = opyp + (I — ap)x,

and choose the largest € {y, y2, y3,...} such that there exists a point
w, € F(z,) satisfying

(Wn, Xp — Yn) = 0 {Up, Xp — Yn). (51

Step3. SetC, ={y € RN : (w,, y—z,) <0} forn > 2 and C, =n!_,C;. Then,
compute

Xnt1 = Pe 0 CE(xn).

If x,+1 = x,, then stop. Otherwise, let n = n + 1 and return to Step 1.
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Corollary 4.16 (see, for example, He et al. (2019, Theorem 3.2)) Let {x,} be
a sequence generated by Algorithm 4.2 such that the following assumptions
hold:

(@) The feasible set C is a nonempty closed and convex subset of RN
(b) F :C = RY islocally bounded and continuous.

(¢c) T is nonempty and satisfies condition (7).

Then, we have that {x,} converges to an element of T'.

Proof It follows directly from Corollary 4.14. O

5 Convergence Analysis for Algorithm 3.3

Remark 5.1 Notice that Step 2 (the linesearch procedure) of Algorithm 3.2 is not
utilized in the proof of Lemma 4.1-Lemma 4.3. Thus, Lemma 4.1-Lemma 4.3 hold
automatically if {x,} is generated by Algorithm 3.3. Therefore, we only need to prove
the version of Lemma 4.11 and Theorem 4.12 corresponding to Algorithm 3.3 in this
section.

Lemma 5.2 Let the sequence {x,} be generated by Algorithm 3.3 such that assump-

tion (8) and Assumption 3.1 are satisfied. Then, we have

(@) lim e,y = vall> = 0.

(b) Ifthere exists a subsequence {x,,} of {x,} such that {x,, } converges to x*, then
kll)n;o ”vnk — Yny ” =0.

Proof (a) From Eq. 4, Step 2 and the fact that x,, | € C,;, we obtain that

20,

IA

2
anllvy — yull (Wn, vy — yn)

o
2

< —{Wn, Uy — Zn)
o

IA

; (wn, vy — Xpg1) + {Wn, Xpp1 — 20))

IA

2
—lwnlllfon = xnp1l- (52)

Since {z,} is bounded and F is locally bounded, we obtain from Proposition
2.3 that {w,} is also bounded. Thus, we obtain from Eq. 52 and Lemma 4.3
that

lim oy llyn — vall* = 0. (53)
n—oo

(b) Since {a,} C (0, 1) is bounded, we have that liminf o, > 0.
n—oo
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We now consider two possible cases:
Case 1: Suppose that lim inf «;, = 0. Then, we can choose a subsequence of {«;,}
n—od

denoted by {a;, } such that klim oy, = 0and
— 00

lim [jvy, — ypll =17 >0. (54)
k— o0
Now, define @;, = 0% Then, z,, = ap, Y, + (1 — &y, )vy,. Since a,, — 0 as

k — oo, we obtain that a,, — 0 as k — oo. Hence,
lim [1Zy, — vng || = 0. (55)
k—00

Now, from the definition of z,, and Step 2, we obtain that

_ o 2
(wnka Unp — ynk) < E”vnk — Yny -,
which implies that

2(Wyy, — nys Vn, — Yng) + 2t U — V) < O |Vng — Y 1% (56)
Now, set s, := Uy, — On,Un, - Then, Eq. 56 becomes

2
— 2
2(wnk — Unys Uny — Ynk> + P (Unk — Sngs Unp — Ynk) < c7||Unk — Yny I,
ng

which implies that

1

- 2 2 2 2

2<wnk_unk7 Unk—Ynk)+p (”Unk - )’nk” + ”Snk - vnk” - ”Snk - ynk ” ) < U||Unk—)’nk|| .
nk

That is,

1 1 _
— (s = v 12 = s = e I7) < @ = = l1vm, = v 1> = 20y = st v = i) 57)
Pny. Py,

Now, by Lemma 4.2, we obtain that klim lxn, — vy, | = 0. Thus, since x,, — x*,
— 00

we have that v,, — x*. Using Assumption 3.1 (b), the boundedness of {v,,} and
Proposition 2.3, we obtain that {u,, } is also bounded. Thus, we can choose a subse-
quence of {uy, } still denoted by {u,, } such that u,, — u. Since F is continuous, it is
outer-semicontinuous. Hence, iz € F(x*). We also assume without loss of generality
that p,, — p € [po, p1] C [po, %). Again, from Eq. 55, we obtain that z,, — x*.
Since F is inner-semicontinuous and u € F(x*), we can choose a subsequence
Wy, € F(Zy,,) such that w,, — u.
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Also, since {v,,}, {un,}, {yn,} and {w,, } are bounded, we can choose a subse-
quence {k;} of {k} such that

I li _ 2 _ _ 2
P imsup ( Isp, — Vg 17 = llsn, — Y|l

k—o00
. 1 o
=< lim sup o — — ”vnk - )’nk” - 2<wnk — Upys Upy — )’nk>
k—00 Pny.

. 1 .
Jll)ngo |:((7 - P ) ”Unkj - Ynkj [ 2<wnkj - Mnkj s Unkj - ynkj )] .
J

Thus, we obtain from Eq. 54 that

. 1
timsup (lsn, = vn, > = lsn = mI”) = o0 = . (58)

k—o00

At this point, we claim that r = 0. Otherwise, Eq. 58 will become

. 1
tim sup (lsn, = vn,I” = lsw = m|1?) = oo = 21 <0,

k— 00

1

_ —r(o=3) -
But for ¢ = ——t > 0, there exists N € N such that

y,,_rl=3)
”snk_vnknz_”snk_ynk”2 f/)(a_;)‘FS: T <0VkeN, k>N.

Thus, we obtain that
v, = Sl < lyne — smell Vk €N,

which is a contradiction to the definition of y,, = Pc(vy, — pn s, ). Therefore,
t = 0. Hence, Eq. 54 becomes

lim ”vnk - )’nk” =0.
k—o00

Case 2: Suppose that liminf «, > 0. Then, we obtain from Eq. 53 that
n—oQ

0 < limsup |va, — yue 1> < lim sup (tn, [lv, — Y, 1) (hm sup D%)
k—o00 "k

k—00 k—00
= ( limsu — 2 S —
= P 1Vn — Yo ll iminfa,
k—o00 k—o0 k
=0.
Therefore, we obtain that
lim [Jvp, — yn |l = 0.
k—00

O
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Theorem 5.3 Let {x,} be a sequence generated by Algorithm 3.3. Then, under
assumption (8) and Assumption 3.1, we have that {x,} converges to an element
of I'.

Proof By Lemma 4.3, {x,} is bounded. Thus, there exists a subsequence {x,,} of
{x,} such that {x,, } converges to some point x*. Thus, we obtain from Lemma 5.2 (b)
that

fim vy, — ¥, || = 0. (59)
k— o0

Also, from Lemma 4.2, we obtain that

lim ||vn, — X, || = O. (60)
k— o0

Hence, from Egs. 59 and 60, we obtain

lim y,, = lim Pc(vn, — pnpttn,) = lim x,, = x*. (61)
k—o00 k— o0 k— o0

Now, without loss of generality, we may assume that p,, — p* and u,, — u*.
Since F is continuous, it is outer-semicontinuous. Thus, we obtain that u* € F(x™).
Therefore, we obtain from Eq. 61 that

Pc(x* — p*u™) = x*.

It then follows from Lemma 2.10 that x* € T".
We now show that {x, } converges to x*.
Replacing z by x* in Lemma 4.3, we obtain that lim ||x, — x*||? exists. Since x*
n—oo

is an accumulation point of {x,}, we obtain that {x,} converges to x*. O]

Remark 5.4 Following Remark 4.13, we can also obtain various corollaries of
Theorem 5.3.

6 Numerical Experiments

In this section, we discuss the numerical behavior of Algorithm 3.2 and Algorithm
3.3 using test examples taken from the literature. We only compare our methods with
Algorithms 1.3 and 1.4 of He et al. (2019) since in He et al. (2019, Section 4), we have
that the methods in He et al. (2019) are more efficient than most relevant methods in
the literature.

The codes are implemented in Matlab 2016 (b). We perform all computations on
a personal computer with an Intel(R) Core(TM) i5-2600 CPU at 2.30GHz and 8.00
Gb-RAM.

We consider the same set of examples considered in He et al. (2019, Section 4).
We randomly choose x¢, x; € RY and the inertial factor 6, satisfying assumptions
(8) and (14).
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Example 6.1 Consider the following convex non-smooth optimization problem (see
also Dong et al. 2017; He et al. 2019)

min @(x),
Xecw()

where ¢(x) = —x1 +20max{x? + x3 — 1,0} and C = {x € R2 : x; + x, < 1}.
This problem is equivalent to the MVIP (1) with F(x) = d¢(x), where dgp(x) is the
subdifferential of ¢ at x:

(—1+ 40x1, 40x7), if ||x|| > 1;
dp(x) =1 (—=1,0), if ||lx|| < 1;
{(—=1440txy, 40tx7)|t € [0, 1]}, if ||x] = 1.

Then, we see that x* = (1,0) is the unique solution of the problem, and the
multivalued mapping F = 9d¢ satisfies the assumptions of Assumption 3.1 (b).

For the parameters, we choose p, € (0,2),0 = 0.8, and y = 0.7. Furthermore,
we take ||x, — x™*|| < € as the termination criterion. We stress that these choices are
the same as the ones considered by He et al. (2019) for their numerical experiments.

For ¢ = 10~7, we obtain the numerical results listed in Table 1 and Fig. 1, which
show that our methods perfom better than Algorithm 1.3 and Algorithm 1.4 of He
et al. (2019).

For ¢ = 10719, it was observed in He et al. (2019, Section 4) that Algorithm
1.3 of He et al. (2019) does not work well because of the presence of Procedure A
in the iterative steps. Therefore, in this setting, we shall compare our methods with
only Algorithm 1.4 of of He et al. (2019). For this, we obtain the numerical results
reported in Table 2 and Fig. 2, which show that our methods still perform better than
Algorithm 1.4 of He et al. (2019).

We consider the following cases for the numerical experiments of Example 6.1.

Case1: x; = (0.5,-0.25)7, xo = (0.5, —0.25)" and 6, = 2L
Case 2: = (07,0257, xo = (0.5,0.25)T and 6, = 2n;1.
Case3: x —( 15, D7, xo = (1, -0.2)" and 6, = 2=

4
Case4: x| = (—0.5,1.57,x9 = (-0.5, 1)Tand9,,=—4

Table 1 Numerical results for Example 6.1 with € = 1077

Alg. 3.2 Alg.33 Alg. 13 Alg. 14

Case 1 CPU time (sec) No. of Iteration 0.0720 5 0.0150 3 0.1310 10 0.2550 17

Case 2 CPU time (sec) No. of Iteration 0.0724 5 0.01513 0.1330 10 0.2550 17

Case 3 CPU time (sec) No. of Iteration 0.0720 5 0.0350 4 0.1320 10 0.2550 18

Case 4 CPU time (sec) No. of Iteration 0.0480 4 0.0430 4 0.1040 8 0.2610 18

@ Springer



318 C. lzuchukwu, Y. Shehu
1.2 T 1
—6— Algorithm 3.2 —6— Algorithm 3.2
~—&— Algorithm 3.3 0.9 ©— Algorithm 3.3 | -
—6— Algorithm 1.3 —©— Algorithm 1.3
1 —6— Algorithm 1.4 | 08 —O— Algorithm 1.4
08
X_ 06
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02 ¥
0 3 2 o &
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14 T 0.6
—6— Algorithm 3.2 —6— Algorithm 3.2
Algorithm 3.3 ©— Algorithm 3.3
12k —6— Algorithm 1.3 | —6— Algorithm 1.3
—6— Algorithm 1.4 0.5} —&— Algorithm 1.4 |
1k
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'c "2 03
x X
T 06 -
0.2r
0.4
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Iteration number (n)

Iteration number (n)

Fig.1 |x, — x*|| vs Iteration numbers (n) for Example 6.1 with € = 10~7: Top Left: Case 1; Top Right:

Case 2; Bottom Left: Case 3; Bottom Right: Case 4

Table 2 Numerical results for Example 6.1 with ¢ = 10710

Alg. 3.2 Alg. 3.3 Alg. 1.4
Case 1 CPU time (sec) No. of Iteration 0.1420 10 0.0160 4 0.7910 34
Case 2 CPU time (sec) No. of Iteration 0.1390 10 0.01104 0.7840 34
Case 3 CPU time (sec) No. of Iteration 0.1010 8 0.0370 5 0.7810 34
Case 4 CPU time (sec) No. of Iteration 0.1020 8 0.0370 5 0.7920 35
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—6— Algorithm 3.2
©— Algorithm 3.3| 4
—©6— Algorithm 1.4

—6— Algorithm 3.2
©— Algorithm 3.3
—O©— Algorithm 1.4

n

. N @

A & o o o S
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Iteration number (n) Iteration number (n)

0.6

—6— Algorithm 3.2 —6— Algorithm 3.2
Algorithm 3.3 & Algorithm 3.3
—6— Algorithm 1.4 | —6— Algorithm 1.4

I, I

lix, I

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Iteration number (n) Iteration number (n)

Fig.2 |lx, — x*| vs Iteration numbers (n) for Example 6.1 with € = 10710 Top Left: Case 1; Top Right:
Case 2; Bottom Left: Case 3; Bottom Right: Case 4

Example 6.2 We next consider the following optimization problem which was also
considered in He et al. (2019) and Ye and He (2015).

min @(x),
xecw()

where C = {x eR:x; >0, i=1,2,---,5, Z?lei =a, a >0} and ¢(x) =
0.5(Hx,x)+{q.x)+1
R T,

DX
i=1
Furthermore, H denotes a positive diagonal matrix with the same element / taken

from the interval (0.1,2) and ¢ = (—1,—1, —1, —1, —1). Clearly, this problem
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Table 3 Numerical results for Example 6.2 with € = 107*

Alg. 3.2 Alg. 3.3 Alg. 1.4

Case 1 CPU time (sec) No. of Iteration 0.5210 14 0.0610 6 1.1210 42
Case 2 CPU time (sec) No. of Iteration 0.3100 10 0.0830 4 0.9220 33
Case 3 CPU time (sec) No. of Iteration 0.2200 9 0.0800 4 0.9210 32
Case 4 CPU time (sec) No. of Iteration 0.29209 0.0870 4 0.9290 32

14 4

—6— Algorithm 3.2 —&— Algorithm 3.2
Algorithm 3.3 ©— Algorithm 3.3 | 4
12 —©— Algorithm 1.4 | ——©— Algorithm 1.4
L

= 08r —
= o6l =

0 10

20 30 40
Iteration number (n)

50

0.6 T

lix, Il

. : : . v
—6— Algorithm 3.2
—&— Algorithm 3.3
—6&— Algorithm 1.4

. @ .

10 15 20 25 30
Iteration number (n)

35

lix, I

10

15 20

25 30 35

Iteration number (n)

0.6

.

—6— Algorithm 3.2

&— Algorithm 3.3
—6&— Algorithm 1.4

@ @

10

15 20

25 30 35

Iteration number (n)

Fig.3 [x, — x*|| vs Iteration numbers (n) for Example 6.2 with ¢ = 10~*: Top Left: Case 1; Top Right:

Case 2; Bottom Left: Case 3; Bottom Right: Case 4
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is equivalent to MVIP (1) with solution set I' = {%(a, o+, a)}, where F(x) =
(@1(x), -+, ¢s5(x)) and

5
hxi 3 xi — 0.5h Y _ x? — 1
o) 5

0x; 5 2
i=1

For € = 1074, 6 = 0.3 and for some randomly chosen values of a, we compare
our methods with Algorithm 1.4 of He et al. (2019). We obtain the numerical results
displayed in Table 3 and Fig. 3, which show that our methods perform better than
Algorithm 1.4 of He et al. (2019).

We consider the following cases for the numerical experiments of Example 6.2.

Casel: x;=(1,051,15 D7, x = (1,051,157, a=5and6, = 21
Case2: x| = (3,2,2,1,2)7, xo = (4.3,2.5,2.2,03,0.7)7, a = 10 and 6, =

2n—1
8n
Case3: x; = (0.1,0.9,2,05,1.57, xo = (0.3,0.5,1.2,2.5,057, a = 5 and
—1
.
Cased: x; = (2.1,2.9,2,1.5,1.5)7, xp = (1.3,1.5,2.2,3.5,1.5)7, a = 10 and
On = "=

7 Conclusion

We propose two new inertial extrapolation projection-type methods for solving
MVIPs when the multivalued mapping F is only required to be locally bounded with-
out any monotonicity assumption. The first method uses a linesearch as in He et al.
(2019, Algorithms 1 and 2) while the second method uses a different linesearch
procedure with the aim of minimizing the number of evaluation of the multivalued
mapping F' in each search. Furthermore, our inertial techniques for establishing the
convergence of these methods are quite different from the commonly used ones in
most papers (see for example Cholamjiak et al. 2018; Chuang 2017; Ochs et al. 2015;
Lorenz and Pock 2015; Polyak 1964; Shehu and Cholamjiak 2019; Lorenz and Pock
2015; Mainge 2008; Moudafi and Oliny 2003; Shehu et al. 2019; Shehu et al. 2019;
Thong and Hieu 2018; Thong and Hieu 2017 and the references therein). Moreover,
based on the weaker assumptions on the inertial factor in our methods, we derive
several special cases of our methods. Finally, we consider some numerical imple-
mentations of our methods and compare them with the methods in He et al. (2019,
Algorithms 1 and 2), in order to show the profits that we gain by introducing the
new inertial extrapolation steps. In fact, in all our comparisons, the numerical results
demonstrate that our methods perform better than the methods in He et al. (2019,
Algorithms 1 and 2). Thus, our results improve and generalize many recent important
results in this direction.
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