
https://doi.org/10.1007/s11067-021-09517-w

New Inertial Projection Methods for Solving
Multivalued Variational Inequality Problems
BeyondMonotonicity

Chinedu Izuchukwu1 ·Yekini Shehu2,3

Accepted: 13 January 2021
© The Author(s) 2021

Abstract
In this paper, we present two new inertial projection-type methods for solving multi-
valued variational inequality problems in finite-dimensional spaces. We establish the
convergence of the sequence generated by these methods when the multivalued map-
ping associated with the problem is only required to be locally bounded without any
monotonicity assumption. Furthermore, the inertial techniques that we employ in this
paper are quite different from the ones used in most papers. Moreover, based on the
weaker assumptions on the inertial factor in our methods, we derive several special
cases of our methods. Finally, we present some experimental results to illustrate the
profits that we gain by introducing the inertial extrapolation steps.

Keywords Inertial methods · Multivalued variational inequalities · Projection-type
methods · Continuous mapping · Armijo-type linesearch

1 Introduction

Assume that C is a nonempty closed and convex subset of RN and F : C ⇒ R
N a

multivalued mapping with nonempty values. The Multivalued Variational Inequality

� Yekini Shehu
yekini.shehu@unn.edu.ng

Chinedu Izuchukwu
izuchukwu c@yahoo.com; izuchukwuc@ukzn.ac.za

1 School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban,
South Africa

2 Department of Mathematics, Zhejiang Normal University, Jinhua 321004,
People’s Republic of China

3 Institute of Science and Technology (IST), Am Campus 1, 3400, Klosterneuburg, Austria

/ Published online: 3 March 2021

Networks and Spatial Economics (2021) 21:291–323

http://crossmark.crossref.org/dialog/?doi=10.1007/s11067-021-09517-w&domain=pdf
http://orcid.org/0000-0001-9224-7139
mailto: yekini.shehu@unn.edu.ng
mailto: izuchukwu_c@yahoo.com
mailto: izuchukwuc@ukzn.ac.za

Problem (MVIP) associated with F and C consists in finding x∗ ∈ C and u ∈ F(x∗)
such that

〈u, y − x∗〉 ≥ 0, ∀y ∈ C. (1)

MVIP (1) was first introduced and studied by Browder (1965) as an important gen-
eralization of the classical Variational Inequality Problem (VIP). The MVIP is also
known to be a useful generalization of the class of multivalued complementarity
problems (see Dong et al. 2017; Facchinei and Pang 2003; He et al. 2019), as well
as constrained convex non-smooth optimization problems (see Dong et al. 2017; He
et al. 2019; Rockafellar 1970). Therefore, problem (1) is quite general and provides a
unified treatment for the study of a wide class of problems such as price equilibrium
problems, oligopolistic market equilibrium problems, Nash equilibrium problems,
fixed point problems for multivalued mappings, game theory, among others (see
Attouch and Cabot 2019b; Brouwer 1912; Carey and Ge 2012; He et al. 2019; Nadler
1969; Oggioni et al. 2012; Raciti and Falsaperla 2007 and the references therein).

When F is a singlevalued mapping in Eq. 1 (i.e., the case of the classical VIP),
many methods have been designed by numerious authors for solving the VIP. These
include, the gradient projection methods, extragradient methods (Korpelevich 1976),
the subgradient extragradient methods (Censor et al. 2011), Tseng’s method (Tseng
2000), among others (see, for example, Vuong 2019). We note that these methods
for solving the classical VIP are not simply transformed to the case of MVIP since
it is very difficult to handle the multivalued mapping associated with the MVIP.
Thus, the methods for solving the MVIP are quite different. In 2014, Fang and Chen
(2014) extended the subgradient extragradient method for solving the MVIP (1) in
finite dimensional spaces. By employing the Procedure A below, they proposed the
following Algorithm 1.1.

Procedure A (Konnov 1998)

Input: a point x ∈ R
N .

Output: a point R(x) ∈ C, where C := {x ∈ R
N | g(x) ≤ 0}, g : RN → R is a

convex function.
Step 1: set n = 0 and xn = x.
Step 2: if g(xn) ≤ 0, then stop and set R(x) = xn. Otherwise, go to Step 3.
Step 3: choose a point wn ∈ ∂g(xn), where ∂g(x) denotes the subdifferential of g

at x, set

xn+1 = xn − 2g(xn)
wn

‖wn‖2 ,

and set n := n + 1 go back to Step 2.

Algorithm 1.1.

Step 0: Choose x̄1 ∈ R
N and two parameters γ, δ ∈ (0, 1). Set n = 1.

Step 1. Apply Procedure A with x = x̄n and set xn = R(x̄n).

292 C. Izuchukwu, Y. Shehu

Step 2. Choose un ∈ F(xn) and let kn be the smallest nonnegative integer
satisfying vn ∈ F(PC(xn − γ knun)),

γ kn‖un − vn‖ ≤ (1 − δ)‖xn − PC(xn − γ knun)‖. (2)

Set ρn = γ kn and zn = PC(xn − ρnun). If xn = zn, stop.
Step 3. Compute x̄n+1 = PCn(xn − ρnvn), where Cn = {y ∈ R

N : 〈xn − ρnun −
zn, y − zn〉 ≤ 0}.
Let n = n + 1 and return to Step 1.

Inspired by Algorithm 1.1, Dong et al. (2017) proposed the following projection
and contraction method for solving the MVIP (1).

Algorithm 1.2.

Step 0: Choose x̄1 ∈ R
N and four parameters τ > 0, γ, δ ∈ (0, 1) and α ∈ (0, 2).

Set n = 1.
Step 1. Apply Procedure A with x = x̄n and set xn = R(x̄n).
Step 2. Choose un ∈ F(xn) and find the smallest nonnegative integer lk such that

ρn = τγ lk and vn ∈ F(PC(xn − ρnun)), which satisfies

ρn‖un − vn‖ ≤ (1 − δ)‖xn − PC(xn − ρnun)‖. (3)

Set yn = PC(xn − ρnun). If xn = yn, stop.
Step 3. Compute x̄n+1 = xn − αβnd(xn, yn), where d(xn, yn) − ρn(un − vn),

φ(xn, yn) := 〈xn − yn, d(xn, yn)〉 and βn := φ(xn,yn)

‖d(xn,yn)‖2 .

Let n = n + 1 and return to Step 1.
We comment that the Armijo-type linesearch procedures (2) and (3) of Algorithm

1.1 and Algorithm 1.2, respectively, involve the computation of projection onto C

multiple times in each linesearch. They also involve the evaluation of the multivalued
mapping F too many times in each search. To overcome some of these shortcom-
ings, He et al. (2019), proposed the following projection-type method for solving
MVIP (1):

Algorithm 1.3.

Step 0: Choose x1 ∈ R
N as an initial point and fix four parameters γ, σ ∈ (0, 1)

and 0 < ρ0 ≤ ρ1 < ∞. Set C1 = R
N, x̄1 = x1, and n = 1.

Step 1: Apply Procedure A to obtain xn = R(x̄n).
Step 2: Choose un ∈ F(xn) and ρn ∈ [ρ0, ρ1]. Set yn = PC(xn − ρnun). If xn =

yn, then stop. Otherwise, compute zn = αnyn + (1 − αn)xn

and choose the largest α ∈ {γ 0, γ, γ 2, γ 3, · · · } such that there exists wn ∈
F(zn) satisfying

〈wn, xn − yn〉 ≥ σ 〈un, xn − yn〉.
Step 3: Taking a point vn ∈ F(yn), set d(xn, yn) = (xn − yn) − ρn(un − vn)

and compute v̄n = xn−βnd(xn, yn),where βn = φ(xn,yn)

‖d(xn,yn)‖2 , φ(xn, yn) =
〈xn − yn, d(xn, yn)〉.

293New Inertial Projection Methods for Solving Multivalued Variational...

Step 4: Set Cn = {y ∈ R
N |〈wn, y − zn〉 ≤ 0} for n ≥ 2 and C∗

n = ∩n
i=1Ci .

Compute x̄n+1 = PC∗
n
(v̄n).

If x̄n+1 = xn, then stop. Otherwise, let n := n + 1 and return Step 1.

As observed in He et al. (2019, Section 4), Algorithm 1.1, Algorithm 1.2 and Algo-
rithm 1.3 do not work well in some settings because of the presence of Procedure A
in the iterative steps. Hence, the authors in He et al. (2019) proposed the following
projection-type method without Procedure A for solving MVIP (1), which can be
implemented in such settings.

Algorithm 1.4.

Step 0: Choose x1 ∈ R
N as an initial point and fix four parameters γ, σ ∈ (0, 1)

and 0 < ρ0 ≤ ρ1 < ∞. Set C1 = R
N and n = 1.

Step 1: Choose un ∈ F(xn) and ρn ∈ [ρ0, ρ1]. Set yn = PC(xn − ρnun). If
xn = yn, then stop. Otherwise, compute zn = αnyn+(1−αn)xn and choose
the largest α ∈ {γ 0, γ, γ 2, γ 3, · · · } such that there exists wn ∈ F(zn)

satisfying

〈wn, xn − yn〉 ≥ σ 〈un, xn − yn〉.
Step 2: Taking a point vn ∈ F(yn), set d(xn, yn) = (xn − yn) − ρn(un − vn)

and compute x̄n = xn−βnd(xn, yn),where βn = φ(xn,yn)

‖d(xn,yn)‖2 , φ(xn, yn) =
〈xn − yn, d(xn, yn)〉.

Step 3: Set Cn = {y ∈ R
N |〈wn, y − zn〉 ≤ 0} for n ≥ 2 and C∗

n = ∩n
i=1Ci .

Compute xn+1 = PC∩C∗
n
(x̄n).

If xn+1 = xn, then stop. Otherwise, let n := n + 1 and return Step 1.

Notice that the linesearch procedure in Algorithm 1.3 and Algorithm 1.4 involve
the computation of the projection onto C only one time in each search trial. Thus,
Algorithm 1.3 and Algorithm 1.4 seem more efficient than Algorithm 1.1 and Algo-
rithm 1.2. Moreover, He et al. (2019) showed numerically that their methods perform
better than Algorithm 1.2 of Dong et al. (2017). However, Algorithm 1.3 and Algo-
rithm 1.4 still involve the evaluation of the multivalued mapping at least 3 times in
each iteration.

Recently, inertial type algorithms for solving optimization problems have become
of great interest to numerous researchers. Since Polyak (1964) studied an inertial
extrapolation process for solving the smooth convex minimization problems, there
have been growing interests in the design and study of iterative methods with inertial
term. For example, inertial forward-backward splitting methods (Attouch et al. 2000;
Cholamjiak et al. 2018; Ochs et al. 2015), inertial Douglas-Rachford splitting method
(Bot et al. 2015), inertial ADMM (Bot and Csetnek 2016), and inertial forward-
backward-forward method (Lorenz and Pock 2015). The inertial term is based upon
a discrete analogue of a second order dissipative dynamical system (Attouch et al.
2000) and known for its efficiency in improving the convergence rate of iterative
methods. The inertial type algorithms have been tested in the solution of certian num-
ber of problems (for example, imaging and data analysis problems, motion of a body

294 C. Izuchukwu, Y. Shehu

in a potential field) and the tests show that they actually give remarkable speed-up
when compared with corresponding algorithms without inertial term (see, for exam-
ple, Attouch and Cabot 2019a; Attouch and Cabot 2019b; Attouch et al. 2000; Beck
and Teboulle 2009; Bot and Csetnek 2016; Lorenz and Pock 2015; Ochs et al. 2015;
Polyak 1964; Shehu and Cholamjiak 2019; Shehu et al. 2019; Shehu et al. 2019 and
the references therein).

Inspired by this recent trend on inertial extrapolation type methods for solving
optimization problems, our aim in this paper is to design some modifications of
Algorithms 1.3 and 1.4, together with new inertial extrapolation techniques to solve
problem (1). We present two inertial projection-type methods for solving MVIP (1)
when the multivalued mapping F is only assumed to be locally bounded without
any monotonicity assumption. The first method uses a linesearch as in Algorithm 1.3
and Algorithm 1.4 while the second method uses a different linesearch procedure
with the aim of minimizing the number of evaluation of the multivalued mapping
F in each search. Furthermore, the inertial techniques that we employ in this paper
are quite different from the ones used in most papers (see for example Cholamjiak
et al. 2018; Chuang 2017; Lorenz and Pock 2015; Mainge 2008; Moudafi and Oliny
2003; Ochs et al. 2015; Polyak 1964; Shehu and Cholamjiak 2019; Shehu et al. 2019;
Shehu et al. 2019; Thong and Hieu 2018; Thong and Hieu 2017 and the references
therein). Moreover, based on the weaker assumptions on the inertial factor in our
methods, we derive several special cases of our methods. Finally, we provide some
numerical implementations of our methods and compare them with the methods in
He et al. (2019), in order to show the profits that we gain by introducing the inertial
extrapolation steps.

We organize the rest of the paper as follows: We first recall some basic results in
Section 2. Some discussions about our methods are given in Section 3. In Section 4,
we investigate the convergence analysis of our first method. In Section 5, we ana-
lyze the convergence of our second method. In Section 6, we give some numerical
experiments to support our theoretical findings. Then, we conclude with some final
remarks in Section 7.

2 Preliminaries

The metric projection, denoted by PC , is a map defined on RN onto C which assigns
to each x ∈ R

N , the unique point in C, denoted by PCx such that

‖x − PCx‖ = inf{‖x − y‖ : y ∈ C}.
It is well known that PC is nonexpansive, and characterized by the inequality

〈x − PCx, y − PCx〉 ≤ 0 ∀y ∈ C. (4)

Furthermore, the PC is known to possess the following property

‖PCx − x‖2 ≤ ‖x − y‖2 − ‖PCx − y‖2 ∀y ∈ C. (5)

It is also known that PC satisfies

〈x − z, x − PCz〉 ≥ ‖x − PCz‖2, ∀x ∈ C, z ∈ R
N . (6)

295New Inertial Projection Methods for Solving Multivalued Variational...

For more information and properties of PC , see Goebel and Reich (1984) and He
(2006).

Definition 2.1 A multivalued mapping F : C ⇒ R
N is said to be

• outer-semicontinuous at x ∈ C if and only if the graph of F is closed;
• inner-semicontinuous at x ∈ C if for any sequence {xn} converging to x and

y ∈ F(x), then there exists a sequence {yn} in F(xn) such that {yn} converges to
y;

• continuous at x ∈ C if it is both outer-semicontinuous and inner-semicontinuous
at x;

• locally bounded on C if for every x ∈ C, there exists a neighborhood U of x

such that F(U) is bounded, where F(U) = ∪x∈UF(x).

Definition 2.2 A multivalued mapping F : C ⇒ R
N is said to be

• monotone on C if for any x, y ∈ C,

〈u − v, x − y〉 ≥ 0, ∀u ∈ F(x), v ∈ F(y);
• pseudomonotone on C if for any x, y ∈ C,

there exists u ∈ F(x) : 〈u, y − x〉 ≥ 0 implies ∀v ∈ F(y) : 〈v, y − x〉 ≥ 0;
• quasimonotone on C if for any x, y ∈ C,

there exists u ∈ F(x) : 〈u, y − x〉 > 0 implies ∀v ∈ F(y) : 〈v, y − x〉 ≥ 0.

Proposition 2.3 (Rockafellar and Wets 2004) A multivalued mapping F : C ⇒ R
N

is said to be locally bounded if and only if for any bounded sequence {xn} with un ∈
F(xn), the sequence {un} is bounded.

Proposition 2.4 (He et al. 2019) Assume that the solution set of problem (1)
 is
nonempty and that F : C ⇒ R

N is continuous. If either

(i) F is monotone or pseudomonotone on C;
(ii) F is quasimonotone on C and for any x∗ ∈
 with u∗ ∈ F(x∗) satisfying (1)

such that

there exists y∗ ∈ C : 〈u∗, y∗ − x∗〉 �= 0;
(iii) F is quasimonotone on C with int C �= ∅ and 0 /∈ F(x∗) for all x∗ ∈
.

Then,

〈u, y − x∗〉 ≥ 0 ∀y ∈ C, u ∈ F(y), x∗ ∈
. (7)

Remark 2.5 We can see from Proposition 2.4 that condition (7) is a weaker condition
than various monotonicity conditions. Thus, we shall assume for the rest of this paper,
that the solution set of problem (1)
 is nonempty and that Eq. 7 is satisfied.

296 C. Izuchukwu, Y. Shehu

Following Attouch and Cabot (2019a, pages 5, 10), we note that if xn+1 = xn +
θn(xn − xn−1), then for all n ≥ 1, we have that

xn+1 − xn =
⎛
⎝

n∏
j=1

θj

⎞
⎠ (x1 − x0),

which implies that

xn = x1 +
⎛
⎝

n−1∑
j=1

l∏
j=1

θj

⎞
⎠ (x1 − x0).

Thus, {xn} converges if and only if x1 = x0 or if
∞∑
l=1

l∏
j=1

θj < ∞.

Therefore, we assume henceforth that

∞∑
l=i

⎛
⎝

l∏
j=i

θj

⎞
⎠ < ∞ ∀i ≥ 1. (8)

Then, we can define the sequence {ti} in R by

ti :=
∞∑

l=i−1

⎛
⎝

l∏
j=i

θj

⎞
⎠ = 1 +

∞∑
l=i

⎛
⎝

l∏
j=i

θj

⎞
⎠ , (9)

with the convention
i−1∏
j=i

θj = 1 ∀i ≥ 1.

Remark 2.6 Assumption (8) ensures that {ti} is well-defined in Eq. 9 and
ti = 1 + θi ti+1, ∀i ≥ 1. (10)

The following proposition provides a criterion for ensuring assumption (8). In fact,
this condition makes it possible to cover the usual situations.

Proposition 2.7 (Attouch and Cabot 2019a, Proposition 3.1) Let {θn} be a sequence
such that θn ∈ [0, 1) for every n ≥ 1. Assume that

lim
n→∞

(
1

1 − θn+1
− 1

1 − θn

)
= c,

for some c ∈ [0, 1). Then, we have
(i) Condition Eq. 8 holds, and tn+1 ∼ 1

(1−c)(1−θn)
as n → ∞.

(ii) The equivalence 1 − θn ∼ 1 − θn+1 holds true as n → ∞. Hence, tn+1 ∼ tn+2
as n → ∞.

297New Inertial Projection Methods for Solving Multivalued Variational...

Remark 2.8 Example of a sequence satisfying the assumptions of Proposition 2.7
(therefore, satisfying assumption (8)) is θn = 1 − θ̄

n
, θ̄ > 1.

Clearly,
(

1

1 − θn+1
− 1

1 − θn

)
= 1

θ̄
(n + 1) − 1

θ̄
n = 1

θ̄
.

Hence,

lim
n→∞

(
1

1 − θn+1
− 1

1 − θn

)
= 1

θ̄
.

Recall that the above example falls within the setting of Nesterov’s extrapolation
methods (for instance, see Attouch and Cabot 2019a; Beck and Teboulle 2009;
Chambolle and Dossal 2015, Nesterov 1983).

The corresponding finite sum expression of {ti} is defined for i, n ≥ 1, by

ti,n :=

⎧⎪⎨
⎪⎩

n−1∑
l=i−1

(
l∏

j=i

θj

)
= 1 +

n−1∑
l=i

(
l∏

j=i

θj

)
, i ≤ n,

0, otherwise.

(11)

In the same manner, we have that {ti,n} is well-defined and (see also Attouch and
Cabot 2019a)

ti,n = 1 + θi ti+1,n ∀i ≥ 1, n ≥ i + 1. (12)

The sequences {ti} and {ti,n} are very crucial to our convergence analysis. In fact,
their effect can be seen in the following lemma which also plays a crucial role in
establishing our convergence results.

Lemma 2.9 (Attouch and Cabot 2019a, page 42, Lemma B.1). Let {an}, {θn} and
{wn} be sequences of real numbers satisfying

an+1 ≤ θnan + wn for every n ≥ 1.

Assume that θn ≥ 0 for every n ≥ 1.

(a) For every n ≥ 1, we have

n∑
i=1

ai ≤ t1,na1 +
n−1∑
i=1

ti+1,nwi,

where the double sequence {ti,n} is defined by Eq. 11.
(b) Under Eq. 8, assume that the sequence {ti} defined by Eq. 9 satisfies

∞∑
i=1

ti+1[wi]+ < ∞. Then, the series
∑
i≥1

[ai]+ is convergent, and

∞∑
i=1

[ai]+ ≤ t1[a1]+ +
∞∑
i=1

ti+1[wi]+ ,

where [t]+ := max{t, 0} for any t ∈ R.

298 C. Izuchukwu, Y. Shehu

The following lemmas will also be needed in our convergence analysis.

Lemma 2.10 (Facchinei and Pang 2003) A point x∗ ∈
 if and only if x∗ = PC(x∗−
ρu) for some u ∈ F(x∗) and ρ > 0.

Lemma 2.11 (Attouch and Cabot 2019a, page 7, Lemma 2.1). Let {xn} be a sequence
inRN , and let {θn} be a sequence of real numbers. Given z ∈ R

N , define the sequence
{
n} by
n := 1

2‖xn − z‖2. Then

n+1 −
n − θn(
n −
n−1) = 1

2
(θn + θ2n)‖xn − xn−1‖2 + 〈xn+1 − yn, xn+1 − z〉

−1

2
‖xn+1 − yn‖2, (13)

where yn = xn + θn(xn − xn−1).

Lemma 2.12 The following is well-known:

2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x − y‖2 = ‖x + y‖2 − ‖x‖2 − ‖y‖2 ∀ x, y ∈ R
N .

Lemma 2.13 (Konnov 1998) The number of iterations in Procedure A is finite and
for any given x ∈ R

N , it holds that

‖R(x) − y‖ ≤ ‖x − y‖, ∀y ∈ C.

3 ProposedMethods

In this section, we present our methods and discuss their features. We begin with the
following assumptions under which we obtain our convergence results.

Assumption 3.1 Suppose that the following hold:

(a) The feasible set C is nonempty, closed and convex subset of RN .
(b) F : RN ⇒ R

N is locally bounded and continuous.
(c)
 is nonempty and satisfies condition (7).
(d) θn ∈ [0, 1[for all n ≥ 1 and there exists ε ∈ (0, 1) such that for n large enough,

we have

(1 − ε)(1 − θn−1) ≥ θntn+1

(
1 + θn + [

θn−1 − θn

]
+
)
. (14)

We now present some criteria that guarantee assumptions (8) and (14).

Proposition 3.1 Assume that {θn} is a nondecreasing sequence that satisfies θn ∈
[0, 1[∀n ≥ 1 with lim

n→∞ θn = θ such that the following condition holds:

1 − 3θ > 0. (15)

Then assumptions (8) and (14) hold.

299New Inertial Projection Methods for Solving Multivalued Variational...

Proof Observe that θn ≤ θ ∀n ≥ 1. Thus, we have that assumption (8) is satisfied
and tn = 1

1−θ
∀n ≥ 1 (see Attouch and Cabot 2019a). Now, observe that 1− 3θ > 0

implies that (1 − θ) >
θ(1+θ)
1−θ

. This further implies that there exists ε ∈ (0, 1) such
that

(1 − ε)(1 − θ) ≥ θ(1 + θ)

1 − θ
. (16)

Since θn ≤ θ ∀n ≥ 1, we obtain from Eq. 16 that

(1 − ε)(1 − θn−1) ≥ θ(1 + θ)

1 − θ
≥ θntn+1(1 + θn), (17)

for some ε ∈ (0, 1). Since θn−1 ≤ θn ∀n ≥ 1, we obtain that

θntn+1(1 + θn) = θntn+1(1 + θn + [θn−1 − θn]+).

Combining this with Eq. 17, we get that the assumption (14) is satisfied.

Proposition 3.2 Suppose that θn ∈ [0, 1) and there exists c ∈ [0, 1
2) such that

lim
n→∞

(
1

1 − θn+1
− 1

1 − θn

)
= c (18)

and

lim inf
n→∞ (1 − θn)

2 > lim sup
n→∞

θn(1 + θn)

1 − 2c
. (19)

Then assumption (14) holds.

Proof From Eq. 19, we obtain that

lim inf
n→∞ (1 − θn−1)

2 > lim sup
n→∞

θn(1 + θn)

1 − 2c
. (20)

Thus, there exists ε ∈ (0, 1) sufficiently small enough such that

lim inf
n→∞ (1 − θn−1)

2 > lim sup
n→∞

θn(1 + θn)

1 − 2c − ε(1 − c)
> lim sup

n→∞
θn(1 + θn)

1 − 2c
. (21)

This implies that

(1 + o(1))θn(1 + θn) ≤ [1 − 2c − ε(1 − c) + o(1)](1 − θn−1)
2

= [(1 − ε)(1 − c) − (2c − c + o(1))](1 − θn−1)
2

≤ [(1 − ε)(1 − c) − θn(c + o(1))](1 − θn−1)
2,

which implies that

(1 − ε)(1 − c)(1 − θn−1)
2 ≥ (1 + o(1))θn

(
1 + θn + (1 − θn−1)

2 + o
(
(1 − θn−1)

2
))
. (22)

300 C. Izuchukwu, Y. Shehu

Now, observe from Eq. 18 that

θn−1 − θn + c(1 − θn−1)(1 − θn) = o ((1 − θn−1)(1 − θn)) ,

which implies from Proposition 2.7(ii) that

θn−1 − θn = −c(1 − θn−1)(1 − θn) + o ((1 − θn−1)(1 − θn))

= −c(1 − θn−1)
2 + o(1 − θn−1)

2 as n → ∞.

This implies that

|θn−1 − θn| = | − c(1 − θn−1)
2 + o(1 − θn−1)

2|
≤ c(1 − θn−1)

2 + o(1 − θn−1)
2 as n → ∞. (23)

Combining (22) and (23), we obtain that

(1 − ε)(1 − c)(1 − θn−1)
2 ≥ (1 + o(1)) θn (1 + θn + [θn−1 − θn]+) . (24)

By Proposition 2.7, we have that tn+1 ∼ tn ∼ 1
(1−c)(1−θn−1)

as n → ∞. Hence,
Eq. 24 is equivalent to

(1 − ε)(1 − c)(1 − θn−1)
2 ≥ θn

(1−c)(1−θn−1)
tn+1 (1 + θn + [θn−1 − θn]+) ,

which implies that assumption (14) holds.

Remark 3.3 Wemention that Proposition 3.1 and Proposition 3.2 provide some suffi-
cient conditions for ensuring that assumptions (14) and (8) hold. That is, assumptions
(14) and (8) are much more weaker conditions than the assumptions in both proposi-
tions. Note that similar conditions as in Propositions 3.1 and 3.2 have been used by
other authors to ensure convergence of inertial methods (see Lorenz and Pock 2015;
Thong and Hieu 2018; Thong and Hieu 2017 and the references therein). In fact, we
shall see later that using the conditions in Proposition 3.1 and Proposition 3.2, we
derive some corollaries of our results.

We now present the first method of this paper.

Algorithm 3.2.

Step 0: Choose the sequence {θn} in [0, 1) such that the condition from Eqs. 8 and
14 hold. Let x1, x0 ∈ R

N be given arbitrary and fix γ, σ ∈ (0, 1), 0 <

ρ0 ≤ ρ1 < ∞. Set C1 = R
N and n = 1.

Step 1. Set
vn = xn + θn(xn − xn−1)

and choose un ∈ F(vn) and ρn ∈ [ρ0, ρ1]. Then, compute
yn = PC(vn − ρnun). If vn = yn: STOP. Otherwise, go to Step 2.

301New Inertial Projection Methods for Solving Multivalued Variational...

Step 2. Compute
zn = αnyn + (1 − αn)vn

and choose the largest α ∈ {γ, γ 2, γ 3, . . . } such that there exists a point
wn ∈ F(zn) satisfying

〈wn, vn − yn〉 ≥ σ 〈un, vn − yn〉. (25)

Step 3. Set Cn = {y ∈ R
N : 〈wn, y − zn〉 ≤ 0} for n ≥ 2 and C∗

n = ∩n
i=1Ci . Then,

compute

xn+1 = PC∗
n
(vn).

Set n := n + 1 and go back to Step 1.

Lemma 3.4 Step 2 of Algorithm 3.2 is well-defined.

Proof Let v ∈ C and u ∈ F(v). Define y := PC(v − ρu), ρ > 0. If v = y, then by
Lemma 2.10, we have that v is a solution. Now, if v �= y, then by Eq. 4,

〈u, v − y〉 = 1

ρ
〈y − (v − ρu) + (v − y), v − y〉 ≥ 1

ρ
〈v − y, v − y〉 > 0. (26)

Now, suppose on the contrary that Step 2 is not well-defined, then we will have that,
for any α > 0 and w ∈ F(z) with z = αy + (1 − α)v,

〈w, v − y〉 < σ 〈u, v − y〉. (27)

In particular, for αn = 1
n2

with zn = αny+(1−αn)v, we have that zn → v as n → ∞.
Since F is continuous, it is inner-semicontinuous. Thus, there exists wn ∈ F(zn)

such that wn → u with u ∈ F(v). Taking w as wn in Eq. 27, and taking limit as
n → ∞, we obtain that

(1 − σ)〈u, v − y〉 ≤ 0,

which contradicts (26). Hence, Step 2 of Algorithm 3.2 is well-defined.

Remark 3.5 Observe that Assumption 3.1 (c) ensures that Step 3 of Algorithm 3.2 is
well-defined since
 ⊂ C∗

n and hence C∗
n �= ∅ for all n ≥ 2. Indeed, for z ∈
, we

obtain from Assumption 3.1 (c) that 〈wn, z − zn〉 ≤ 0 ∀n ≥ 2. Thus, z ∈ Cn ∀n ≥ 2,
which follows that z ∈ C∗

n ∀n ≥ 2.

In the following, we present another method with a new linesearch (different from
Eq. 25) with the aim of minimizing the number of evaluation of the multivalued
mapping F in each search.

Algorithm 3.3.

Step 0: Choose the sequence {θn} such that the condition from Eqs. 8 and 14 hold.
Let x1, x0 ∈ R

N be given arbitrary and fix γ, σ ∈ (0, 1), 0 < ρ0 ≤ ρ1 <

∞. Set C1 = R
N and n = 1.

302 C. Izuchukwu, Y. Shehu

Step 1. Set
vn = xn + θn(xn − xn−1)

and choose un ∈ F(vn) and ρn ∈ [ρ0, ρ1]. Then, compute
yn = PC(vn − ρnun). If vn = yn: STOP. Otherwise, go to Step 2.

Step 2. Compute

zn = αnyn + (1 − αn)vn

and choose the largest α ∈ {γ, γ 2, γ 3, . . . } such that there exists a point
wn ∈ F(zn) satisfying

〈wn, vn − yn〉 ≥ σ

2
‖vn − yn‖2.

Step 3. Set Cn = {y ∈ R
N : 〈wn, y − zn〉 ≤ 0} for n ≥ 2 and C∗

n = ∩n
i=1Ci . Then,

compute
xn+1 = PC∗

n
(vn).

Set n := n + 1 and go back to Step 1.

Remark 3.6 (a) Observe that if we choose a point u ∈ F(x) with y := PC(x−ρu),
then, by setting z = x − ρu in Eq. 6, we obtain that

〈u, x − y〉 ≥ σ

2
‖x − y‖2. (28)

Thus, using Eq. 28 and the continuity of F , we can see that Step 2 of Algorithm
3.3 is well-defined.

(b) Our Algorithm 3.2 and Algorithm 3.3 have fewer evaluations of multivalued
mapping F than Algorithm 1.3 and Algorithm 1.4.

4 Convergence Analysis for Algorithm 3.2

Lemma 4.1 Let {xn} be a sequence generated by Algorithm 3.2 and {
n} be defined
by
n = 1

2‖xn − z‖2 for any z ∈
. Then, under assumption (8) and Assumption
3.1(c),(d), we have that

n−1∑
i=1

[
ti+1,n ((1 − 3θi) − (1 − θi)) + ti,n(1 − θi−1)

] ‖xi − xi−1‖2

≤ 2t1|
1 −
0| + 2
0 + t1(1 − θ0)‖x1 − x0‖2,
where {ti,n} is defined in Eq. 11.

Proof First observe that

‖xn+1 − xn‖2 = ‖xn+1 − 2xn + xn−1 − (xn−1 − xn)‖2
= ‖xn+1 − 2xn + xn−1‖2 + ‖xn−1 − xn‖2

+2〈xn+1 − 2xn + xn−1, xn − xn−1〉,

303New Inertial Projection Methods for Solving Multivalued Variational...

which implies that

2〈xn+1−2xn+xn−1, xn−xn−1〉 = ‖xn+1−xn‖2−‖xn+1−2xn+xn−1‖2−‖xn−1−xn‖2.

Thus, we obtain that

‖xn+1 − vn‖2 = ‖xn+1 − xn − (xn − xn−1) + (1 − θn)(xn − xn−1)‖2
= ‖xn+1 − 2xn + xn−1‖2 + (1 − θn)

2‖xn − xn−1‖2
+2(1 − θn)〈xn+1 − 2xn + xn−1, xn − xn−1〉

= ‖xn+1 − 2xn + xn−1‖2 + (1 − θn)
2‖xn − xn−1‖2

+(1 − θn)
[
‖xn+1 − xn‖2 − ‖xn − xn−1‖2 − ‖xn+1 − 2xn + xn−1‖2

]

= θn‖xn+1 − 2xn + xn−1‖2 + (1 − θn)
2‖xn − xn−1‖2

+(1 − θn)
[
‖xn+1 − xn‖2 − ‖xn − xn−1‖2

]

≥ (1 − θn)
2‖xn − xn−1‖2 + (1 − θn)

[
‖xn+1 − xn‖2 − ‖xn − xn−1‖2

]
.(29)

Let z ∈
, then by Remark 3.5, we have that z ∈ C∗
n . Thus, we obtain from Lemma

2.11 and Eq. 29 that

n+1 −
n − θn(
n −
n−1) = 1

2
(θn + θ2n)‖xn − xn−1‖2 + 〈xn+1 − vn, xn+1 − z〉

−1

2
‖xn+1 − vn‖2

≤ 1

2
(θn + θ2n)‖xn − xn−1‖2 − 1

2
‖xn+1 − vn‖2 (30)

≤ 1

2
(θn + θ2n)‖xn − xn−1‖2 − 1

2
(1 − θn)

2‖xn − xn−1‖2

−1

2
(1 − θn)

[
‖xn+1 − xn‖2 − ‖xn − xn−1‖2

]

= 1

2
(3θn − 1)‖xn − xn−1‖2 − 1

2
(1 − θn)

×
[
‖xn+1 − xn‖2 − ‖xn − xn−1‖2

]
,

which implies from Lemma 2.9 (a) that

n −
0 =
n∑

i=1

(
i −
i−1)

≤ t1,n (
1 −
0) +
n−1∑
i=1

ti+1,n

[
1

2
(3θi − 1)‖xi − xi−1‖2 − 1

2
(1 − θi)

×
(
‖xi+1 − xi‖2 − ‖xi − xi−1‖2

)]
.

304 C. Izuchukwu, Y. Shehu

Notice that t1,n ≤ t1. Thus, we obtain that

n−1∑
i=1

ti+1,n

[
(1 − 3θi)‖xi − xi−1‖2 + (1 − θi)

(
‖xi+1 − xi‖2 − ‖xi − xi−1‖2

)]

≤ 2t1,n(
1 −
0) + 2(
0 −
n)

≤ 2t1|
1 −
0| + 2
0. (31)

Now, observe that

n−1∑
i=1

ti+1,n(1 − θi)
(
‖xi+1 − xi‖2 − ‖xi − xi−1‖2

)

=
n−1∑
i=1

(
ti,n(1 − θi−1) − ti+1,n(1 − θi)

) ‖xi − xi−1‖2

+tn,n(1 − θn−1)‖xn − xn−1‖2 − t1,n(1 − θ0)‖x1 − x0‖2

≥
n−1∑
i=1

(
ti,n(1 − θi−1) − ti+1,n(1 − θi)

) ‖xi − xi−1‖2 − t1(1 − θ0)‖x1 − x0‖2. (32)

Combining (31) and (32), we get that

n−1∑
i=1

ti+1,n(1 − 3θi)‖xi − xi−1‖2 +
n−1∑
i=1

(
ti,n(1 − θi−1) − ti+1,n(1 − θi)

) ‖xi − xi−1‖2

≤ 2t1|
1 −
0| + 2
0 + t1(1 − θ0)‖x0 − x1‖2.

That is,

n−1∑
i=1

[
ti+1,n ((1 − 3θi) − (1 − θi)) + ti,n(1 − θi−1)

] ‖xi − xi−1‖2

≤ 2t1|
1 −
0| + 2
0 + t1(1 − θ0)‖x0 − x1‖2. (33)

Lemma 4.2 Let {xn} be a sequence generated by Algorithm 3.2. Then, under

assumption (8) and Assumption 3.1(c),(d), we have that
∞∑

n=1
(1−θn−1)‖xn−xn−1‖2 <

∞ and
∞∑

n=1
θntn+1‖xn − xn−1‖2 < ∞.

305New Inertial Projection Methods for Solving Multivalued Variational...

Proof From Eq. 12 and since ti+1,n ≤ ti+1, we obtain

ti+1,n [(1 − 3θi) − (1 − θi)] + ti,n(1 − θi−1)

= ti+1,n [(1 − 3θi) − (1 − θi)] + (1 − θi−1) + θi ti+1,n(1 − θi−1)

= ti+1,n
[
(1 − 3θi) − (1 − θi) + θi(1 − θi−1)

] + (1 − θi−1)

= (1 − θi−1) − θi ti+1,n (1 − θi−1)

≥ (1 − θi−1) − θi ti+1 (1 − θi−1)

≥ (1 − θi−1) − θi ti+1

(
1 + θi + [

θi−1 − θi

]
+
)
. (34)

Using Eq. 34 in Lemma 4.1, we obtain that

n−1∑
i=1

(1 − θi−1) − θi ti+1

(
1 + θi + [

θi−1 − θi

]
+
)

‖xi − xi−1‖2

≤ 2t1|
1 −
0| + 2
0 + t1(1 − θ0)‖x0 − x1‖2.
Wemay assume without loss of generality that assumption (14) holds for every n ≥ 1.
Then, we obtain that

n−1∑
i=1

ε(1 − θi−1)‖xi − xi−1‖2 ≤ 2t1|
1 −
0| + 2
0 + t1(1 − θ0)‖x0 − x1‖2.

Now, taking limit as n → ∞, we get that
∞∑
i=1

(1 − θi−1)‖xi − xi−1‖2 < ∞. (35)

Thus, the first conclusion of the lemma is established. To establish the second
conclusion of the lemma, we employ assumption (14) again in Eq. 35 and obtain

∞∑
i=1

θi ti+1‖xi − xi−1‖2 < ∞.

Lemma 4.3 Let {xn} be a sequence generated by Algorithm 3.2. Then, under
assumption (8) and Assumption 3.1(c),(d), we have that

(a) lim
n→∞ ‖xn − z‖ exists for all z ∈
.

(b) lim
n→∞ ‖vn − xn+1‖ = 0.

Proof (a) From Eq. 30, we obtain that

n+1 −
n ≤ θn(
n −
n−1) + 1

2
(θn + θ2n)‖xn − xn−1‖2 − 1

2
‖xn+1 − vn‖2

≤ θn(
n −
n−1) + θn‖xn − xn−1‖2 − 1

2
‖xn+1 − vn‖2 (36)

≤ θn(
n −
n−1) + θn‖xn − xn−1‖2.

306 C. Izuchukwu, Y. Shehu

Thus, from Lemma 4.2 and Lemma 2.9 (b), we obtain that
∞∑

n=1

[

n −
n−1

]
+ <

∞. This implies that lim
n→∞
n = lim

n→∞
1
2‖xn − z‖2 exists, which further gives

that lim
n→∞ ‖xn − z‖ exists for all z ∈
.

(b) Now, using Eq. 36 and Lemma 2.9 (a), we obtain that

n −
0 =
n∑

i=1

(
i −
i−1)

≤ t1,n (
1 −
0) +
n−1∑
i=1

ti+1,n

[
θi‖xi − xi−1‖2 − 1

2
‖xi+1 − vi‖2

]
. (37)

Since ti+1,n ≤ ti+1, we obtain from Eq. 37 and Lemma 4.2 that

n−1∑
i=1

ti+1,n‖xi+1 − vi‖2 ≤ 2
0 + 2t1,n(
1 −
0) + 2
n−1∑
i=1

ti+1,nθi‖xi − xi−1‖2

≤ 2
0+2t1|
1−
0| + 2
∞∑
i=1

ti+1θi‖xi − xi−1‖2 < ∞.

Since ti+1,n = 0 for i ≥ n, letting n tend to ∞, we obtain that

∞∑
i=1

ti+1‖xi+1 − vi‖2 < ∞. (38)

Replacing i with n in Eq. 38 and since tn ≥ 1 for every n ≥ 1, we obtain from

Eq. 38 that
∞∑

n=1
‖xn+1 − vn‖2 < ∞. This implies that lim

n→∞ ‖vn − xn+1‖ = 0.

Remark 4.4 The main role of assumption (14) is to guarantee the condition
∞∑

n=1

tn+1θn‖xn − xn−1‖2 < ∞, (39)

obtained in Lemma 4.2 above. Note that Lemma 4.3 holds true if we assume condi-
tion (39) directly. Moreover, if θn ∈ [0, θ] for every n ≥ 1, where θ ∈ [0, 1), then
tn ≤ 1

(1−θ)
∀n ≥ 1. Under this setting, we have that condition (39) is guaranteed by

the condition
∞∑

n=1

θn‖xn − xn−1‖2 < ∞. (40)

In other words, if we assume that condition (40) holds for θn ∈ [0, θ] ∀n ≥ 1,
with θ ∈ [0, 1), then Lemma 4.3 holds. This assumption has been used by numerous
authors to ensure convergence of inertial methods (see, for example, Alvarez and
Attouch 2001; Chuang 2017; Lorenz and Pock 2015; Mainge 2008; Moudafi and
Oliny 2003 and the references therein).

307New Inertial Projection Methods for Solving Multivalued Variational...

Furthermore, under the assumptions of Proposition 3.1, we obtain the following
as corollaries of Lemma 4.2 and Lemma 4.3 respectively.

Corollary 4.5 Let {xn} be a sequence generated by Algorithm 3.2 such that Assump-
tion 3.1(c) holds. Suppose that {θn} is a nondecreasing sequence that satisfies
θn ∈ [0, 1[∀n ≥ 1 with lim

n→∞ θn = θ such that 1 − 3θ > 0. Then, we have that
∞∑

n=1
(1 − θn−1)‖xn − xn−1‖2 < ∞ and

∞∑
n=1

θntn+1‖xn − xn−1‖2 < ∞.

Proof By Proposition 3.1, we have that assumptions (8) and (14) hold. Hence, the
proof follows from Lemma 4.2.

Corollary 4.6 Let {xn} be a sequence generated by Algorithm 3.2 such that Assump-
tion 3.1(c) holds. Suppose that {θn} is a nondecreasing sequence that satisfies θn ∈
[0, 1[∀n ≥ 1 with lim

n→∞ θn = θ such that 1 − 3θ > 0. Then,

(a) lim
n→∞ ‖xn − z‖ exists for all z ∈
.

(b) lim
n→∞ ‖vn − xn+1‖ = 0.

Proof It is similar to the proof of Corollary 4.5.

Remark 4.7 Observe that Eq. 18 and Proposition 2.7 imply that condition (8) also
holds in Proposition 3.2. Hence, by replacing assumptions (8) and (14) with the
assumptions of Proposition 3.2 in Lemma 4.2 and Lemma 4.3, we also obtain corol-
laries of Lemma 4.2 and Lemma 4.3 in the same manner as Corollaries 4.5 and 4.6
respectively.

Remark 4.8 If we take the inertial factor θn to be a constant (that is θn = θ ∀n ≥ 1),
then we obtain the following corollaries of Lemma 4.2 and Lemma 4.3.

Corollary 4.9 Let {xn} be a sequence generated by Algorithm 3.2 such that
Assumption 3.1(c) holds. Suppose that θn = θ ∀n ≥ 1 with θ ∈ [0, 1) such
that

(1 − θ)2 > θ(1 + θ). (41)

Then, we have that
∞∑

n=1
(1 − θ)‖xn − xn−1‖2 < ∞ and

∞∑
n=1

θ
1−θ

‖xn − xn−1‖2 < ∞.

Consequently, we have
∞∑

n=1
‖xn − xn−1‖2 < ∞.

308 C. Izuchukwu, Y. Shehu

Proof Since θn = θ ∈ [0, 1), we obtain for i ≥ 1 that ti =
∞∑

l=i−1
θ l−i+1 = 1

1−θ
<

∞. Thus, we get that assumption (8) holds. Note also from Eq. 41 that there exists
ε ∈ (0, 1) such that

(1 − ε)(1 − θ) ≥ θ(1 + θ)

1 − θ
,

which is equivalent to condition (14) since θn = θ ∀n ≥ 1. Hence, all the assump-
tions of Lemma 4.2 are satisfied. Thus, the rest of the proof follows from Lemma 4.2.

Corollary 4.10 Let {xn} be a sequence generated by Algorithm 3.2 such that
Assumption 3.1(c) holds. Suppose that θn = θ ∀n ≥ 1 with θ ∈ [0, 1) such that
(1 − θ)2 > θ(1 + θ). Then,

(a) lim
n→∞ ‖xn − z‖ exists for all z ∈
.

(b) lim
n→∞ ‖vn − xn+1‖ = 0.

Proof The proof is similar to the proof of Corollary 4.9.

We now return to a very important result for our convergence analysis, whose
proof rely on the linesearch given in Algorithm 3.2.

Lemma 4.11 Let assumption (8) and Assumption 3.1 hold, and let the sequence {xn}
be generated by Algorithm 3.2. Then, lim

n→∞ αn‖yn − vn‖2 = 0. Moreover, if there

exists a subsequence {xnk
} of {xn} such that {xnk

} converges to x∗ and x∗ /∈
, then

(a) lim inf
k→∞ αnk

> 0;

(b) lim
k→∞ ‖vnk

− ynk
‖ = 0.

Proof From Eq. 4, Step 1, Step 2 and the fact that xn+1 ∈ C∗
n, we obtain that

αn‖vn − yn‖2 = αn〈vn − yn, vn − yn〉
≤ αn〈vn − yn, vn − yn〉 + αn〈yn − vn + ρnun, vn − yn〉
= αnρn〈un, vn − yn〉
≤ αnρn

σ
〈wn, vn − yn〉

= ρn

σ
〈wn, vn − zn〉

≤ ρn

σ
(〈wn, vn − xn+1〉 + 〈wn, xn+1 − zn〉)

≤ ρn

σ
‖wn‖‖vn − xn+1‖. (42)

309New Inertial Projection Methods for Solving Multivalued Variational...

Since by Lemma 4.3, {xn} is bounded, we have that {zn} is also bounded. Moreover,
since F is locally bounded, we obtain from Proposition 2.3 that {wn} is bounded.
Using this and the boundedness of {ρn}, we obtain from Eq. 42 and Lemma 4.3 that

lim
n→∞ αn‖yn − vn‖2 = 0. (43)

(a) By Step 2, we have that {αn} ⊂ (0, 1) is bounded. Thus, there exists a subse-
quence {αnk

} of {αn} such that lim inf
k→∞ αnk

≥ 0.

In fact, we claim that lim inf
k→∞ αnk

> 0. Suppose on the contrary that lim inf
k→∞ αnk

=
0. Then, without loss of generality, we can choose a subsequence of {αnk

} still
denoted by {αnk

} such that lim
k→∞ αnk

= 0.

Now, define ᾱnk
:= αnk

γ
, z̄nk

:= ᾱnk
ynk

+(1− ᾱnk
)vnk

. Then, by the boundedness
of {ynk

− vnk
} and since αnk

→ 0 as k → ∞, we obtain that

lim
k→∞ ‖z̄nk

− vnk
‖ = 0. (44)

Also, by Lemma 4.2, we obtain that lim
k→∞ ‖xnk

−vnk
‖ = lim

k→∞ θnk
‖xnk

−xnk−1‖ = 0.

Thus, since xnk
→ x∗, we have that vnk

→ x∗. Using Assumption 3.1 (b), the
boundedness of {vnk

} and Proposition 2.3, we obtain that {unk
} is also bounded. Thus,

we can choose a subsequence of {unk
} still denoted by {unk

} such that unk
→ ū.

Since F is continuous, it is outer-semicontinuous. Hence, ū ∈ F(x∗). We also assume
without loss of generality that ρnk

→ ρ ∈ [ρ0, ρ1]. Therefore, we obtain from the
continuity of PC that ynk

→ y∗ as k → ∞, where y∗ = PC(x∗ − ρū).
Again, from Eq. 44, we obtain that z̄nk

→ x∗. Since F is inner-semicontinuous
and ū ∈ F(x∗), we can choose a subsequence wnk

∈ F(z̄nk
) such that w̄nk

→ ū.
Now, from the definition of z̄nk

and Step 2, we obtain that

〈w̄nk
, vnk

− ynk
〉 < σ 〈unk

, vnk
− ynk

〉. (45)

Thus, taking limit as k → ∞, we obtain that

〈ū, x∗ − y∗〉 ≤ 0. (46)

On the hand, since x∗ /∈
, we have from Lemma 2.10 that x∗ �= y∗. Hence, we get

〈ū, x∗ − y∗〉 = 1

ρ
〈y∗ − (x∗ − ρū) + (x∗ − y∗), x∗ − y∗〉 >

1

ρ
〈x∗ − y∗, x∗ − y∗〉 > 0,(47)

which is a contradiction to Eq. 46. Therefore, lim inf
k→∞ αnk

> 0.

(b) From (a), we have that lim inf
k→∞ αnk

> 0. Thus, we obtain from Eq. 43 that

0 ≤ lim sup
k→∞

‖vnk
− ynk

‖2 ≤ lim sup
k→∞

(
αnk

‖vnk
− ynk

‖2)
(
lim sup
k→∞

1
αnk

)

=
(
lim sup
k→∞

αnk
‖vnk

− ynk
‖2

) (
1

lim inf
k→∞ αnk

)

= 0.

310 C. Izuchukwu, Y. Shehu

Therefore, we obtain that

lim
k→∞ ‖vnk

− ynk
‖ = 0.

Now, we are in position to give the main theorem of this section.

Theorem 4.12 Let {xn} be a sequence generated by Algorithm 3.2. Then, under
assumption (8) and Assumption 3.1, we have that {xn} converges to an element of
.

Proof By Lemma 4.3, {xn} is bounded. Thus, there exists a subsequence {xnk
} of

{xn} such that {xnk
} converges to some point x∗. Also, we have that

‖vnk
− xnk

‖ = θnk
‖xnk

− xnk−1‖ → 0, as k → ∞. (48)

We now claim that x∗ ∈
.
Suppose on the contrary that x∗ /∈
. Then, it follows from Lemma 4.11 (b) and

Eq. 48 that

lim
k→∞ ynk

= lim
k→∞ PC(vnk

− ρnk
unk

) = lim
k→∞ xnk

= x∗. (49)

Now, without loss of generality, we may assume that ρnk
→ ρ∗ and unk

→ u∗.
Since F is continuous, it is outer-semicontinuous. Thus, we obtain that u∗ ∈ F(x∗).
Therefore, we obtain from Eq. 49 that

PC(x∗ − ρ∗u∗) = x∗.

It then follows from Lemma 2.10 that x∗ ∈
, which is a contraction. Hence, our
claim holds.

We now show that {xn} converges to x∗.
Replacing z by x∗ in Lemma 4.3, we obtain that lim

n→∞ ‖xn − x∗‖2 exists. Since x∗

is an accumulation point of {xn}, we obtain that {xn} converges to x∗.

Remark 4.13 In view of Corollaries 4.5-4.10, we can obtain various corollaries of
Theorem 4.12. Furthermore, in the case that θn = 0 for all n ≥ 1, assumptions (8)
and (14) are automatically satisfied. Moreover, we have in this case that tn = 1 for
all n ≥ 1. Hence, we can employ Procedure A (see page 1) to obtain similar result
as in He et al. (2019, Theorem 3.1).

Algorithm 4.1.

Step 0: Let x1 ∈ R
N be given arbitrary and fix γ, σ ∈ (0, 1), 0 < ρ0 ≤ ρ1 < ∞.

Set C1 = R
N , x̄1 = x1 and n = 1.

Step 1. Apply Procedure A to obtain xn = R(x̄n).
Step 2. Choose un ∈ F(xn) and ρn ∈ [ρ0, ρ1]. Then, compute

yn = PC(xn − ρnun). If xn = yn: STOP. Otherwise, go to Step 2.

311New Inertial Projection Methods for Solving Multivalued Variational...

Step 3. Compute

zn = αnyn + (1 − αn)xn

and choose the largest α ∈ {γ, γ 2, γ 3, . . . } such that there exists a point
wn ∈ F(zn) satisfying

〈wn, xn − yn〉 ≥ σ 〈un, xn − yn〉. (50)

Step 4. Set Cn = {y ∈ R
N : 〈wn, y − zn〉 ≤ 0} for n ≥ 2 and C∗

n = ∩n
i=1Ci . Then,

compute

x̄n+1 = PC∗
n
(xn).

If x̄n+1 = xn, then stop. Otherwise, let n = n + 1 and return to Step 1.

Corollary 4.14 (see for example, He et al. (2019, Theorem 3.1)) Let {xn} be a
sequence generated by Algorithm 4.1 such that the following assumptions hold:

(a) The set C is described as in procedure A (see page 1).
(b) F : C ⇒ R

N is locally bounded and continuous.
(c)
 is nonempty and satisfies condition (7).

Then, we have that {xn} converges to an element of
.

Proof It follows carefully from Lemma 2.13 and Theorem 4.12.

Remark 4.15 Under the settings of Remark 4.13, we can obtain in general, similar
result as in He et al. (2019, Theorem 3.2) without Procedure A.

Algorithm 4.2.

Step 0: Let x1 ∈ C be given arbitrary and fix γ, σ ∈ (0, 1), 0 < ρ0 ≤ ρ1 < ∞.
Set C1 = R

N and n = 1.
Step 1. Choose un ∈ F(xn) and ρn ∈ [ρ0, ρ1]. Then, compute

yn = PC(xn − ρnun). If xn = yn: STOP. Otherwise, go to Step 2.
Step 2. Compute

zn = αnyn + (1 − αn)xn

and choose the largest α ∈ {γ, γ 2, γ 3, . . . } such that there exists a point
wn ∈ F(zn) satisfying

〈wn, xn − yn〉 ≥ σ 〈un, xn − yn〉. (51)

Step 3. Set Cn = {y ∈ R
N : 〈wn, y − zn〉 ≤ 0} for n ≥ 2 and C∗

n = ∩n
i=1Ci . Then,

compute

xn+1 = PC ∩ C∗
n(xn).

If xn+1 = xn, then stop. Otherwise, let n = n + 1 and return to Step 1.

312 C. Izuchukwu, Y. Shehu

Corollary 4.16 (see, for example, He et al. (2019, Theorem 3.2)) Let {xn} be
a sequence generated by Algorithm 4.2 such that the following assumptions
hold:

(a) The feasible set C is a nonempty closed and convex subset of RN .
(b) F : C ⇒ R

N is locally bounded and continuous.
(c)
 is nonempty and satisfies condition (7).

Then, we have that {xn} converges to an element of
.
Proof It follows directly from Corollary 4.14.

5 Convergence Analysis for Algorithm 3.3

Remark 5.1 Notice that Step 2 (the linesearch procedure) of Algorithm 3.2 is not
utilized in the proof of Lemma 4.1-Lemma 4.3. Thus, Lemma 4.1-Lemma 4.3 hold
automatically if {xn} is generated by Algorithm 3.3. Therefore, we only need to prove
the version of Lemma 4.11 and Theorem 4.12 corresponding to Algorithm 3.3 in this
section.

Lemma 5.2 Let the sequence {xn} be generated by Algorithm 3.3 such that assump-
tion (8) and Assumption 3.1 are satisfied. Then, we have

(a) lim
n→∞ αn‖yn − vn‖2 = 0.

(b) If there exists a subsequence {xnk
} of {xn} such that {xnk

} converges to x∗, then
lim

k→∞ ‖vnk
− ynk

‖ = 0.

Proof (a) From Eq. 4, Step 2 and the fact that xn+1 ∈ C∗
n, we obtain that

αn‖vn − yn‖2 ≤ 2αn

σ
〈wn, vn − yn〉

≤ 2

σ
〈wn, vn − zn〉

≤ 2

σ
(〈wn, vn − xn+1〉 + 〈wn, xn+1 − zn〉)

≤ 2

σ
‖wn‖‖vn − xn+1‖. (52)

Since {zn} is bounded and F is locally bounded, we obtain from Proposition
2.3 that {wn} is also bounded. Thus, we obtain from Eq. 52 and Lemma 4.3
that

lim
n→∞ αn‖yn − vn‖2 = 0. (53)

(b) Since {αn} ⊂ (0, 1) is bounded, we have that lim inf
n→∞ αn ≥ 0.

313New Inertial Projection Methods for Solving Multivalued Variational...

We now consider two possible cases:
Case 1: Suppose that lim inf

n→∞ αn = 0. Then, we can choose a subsequence of {αn}
denoted by {αnk

} such that lim
k→∞ αnk

= 0 and

lim
k→∞ ‖vnk

− ynk
‖ = t ≥ 0. (54)

Now, define ᾱnk
:= αnk

γ
. Then, z̄nk

:= ᾱnk
ynk

+ (1 − ᾱnk
)vnk

. Since αnk
→ 0 as

k → ∞, we obtain that ᾱnk
→ 0 as k → ∞. Hence,

lim
k→∞ ‖z̄nk

− vnk
‖ = 0. (55)

Now, from the definition of z̄nk
and Step 2, we obtain that

〈w̄nk
, vnk

− ynk
〉 <

σ

2
‖vnk

− ynk
‖2,

which implies that

2〈w̄nk
− unk

, vnk
− ynk

〉 + 2〈unk
, vnk

− ynk
〉 < σ‖vnk

− ynk
‖2. (56)

Now, set snk
:= vnk

− ρnk
unk

. Then, Eq. 56 becomes

2〈w̄nk
− unk

, vnk
− ynk

〉 + 2

ρnk

〈vnk
− snk

, vnk
− ynk

〉 < σ‖vnk
− ynk

‖2,

which implies that

2〈w̄nk
−unk

, vnk
−ynk

〉+ 1

ρnk

(
‖vnk

− ynk
‖2 + ‖snk

− vnk
‖2 − ‖snk

− ynk
‖2

)
< σ‖vnk

−ynk
‖2.

That is,

1

ρnk

(
‖snk

− vnk
‖2 − ‖snk

− ynk
‖2

)
< (σ − 1

ρnk

)‖vnk
− ynk

‖2 − 2〈w̄nk
− unk

, vnk
− ynk

〉. (57)

Now, by Lemma 4.2, we obtain that lim
k→∞ ‖xnk

− vnk
‖ = 0. Thus, since xnk

→ x∗,
we have that vnk

→ x∗. Using Assumption 3.1 (b), the boundedness of {vnk
} and

Proposition 2.3, we obtain that {unk
} is also bounded. Thus, we can choose a subse-

quence of {unk
} still denoted by {unk

} such that unk
→ ū. Since F is continuous, it is

outer-semicontinuous. Hence, ū ∈ F(x∗). We also assume without loss of generality
that ρnk

→ ρ ∈ [ρ0, ρ1] ⊂ [ρ0, 1
σ
). Again, from Eq. 55, we obtain that z̄nk

→ x∗.
Since F is inner-semicontinuous and ū ∈ F(x∗), we can choose a subsequence
wnk

∈ F(z̄nk
) such that w̄nk

→ ū.

314 C. Izuchukwu, Y. Shehu

Also, since {vnk
}, {unk

}, {ynk
} and {w̄nk

} are bounded, we can choose a subse-
quence {kj } of {k} such that

1

ρ

[
lim sup
k→∞

(
‖snk

− vnk
‖2 − ‖snk

− ynk
‖2

)]

≤ lim sup
k→∞

[(
σ − 1

ρnk

)
‖vnk

− ynk
‖2 − 2〈w̄nk

− unk
, vnk

− ynk
〉
]

= lim
j→∞

[(
σ − 1

ρnkj

)
‖vnkj

− ynkj
‖2 − 2〈w̄nkj

− unkj
, vnkj

− ynkj
〉
]
.

Thus, we obtain from Eq. 54 that

lim sup
k→∞

(
‖snk

− vnk
‖2 − ‖snk

− ynk
‖2

)
≤ ρ(σ − 1

ρ
)t . (58)

At this point, we claim that t = 0. Otherwise, Eq. 58 will become

lim sup
k→∞

(
‖snk

− vnk
‖2 − ‖snk

− ynk
‖2

)
≤ ρ(σ − 1

ρ
)t < 0.

But for ε = −ρ
(
σ− 1

ρ

)

2 t > 0, there exists N ∈ N such that

‖snk
−vnk

‖2−‖snk
−ynk

‖2 ≤ ρ

(
σ − 1

ρ

)
+ε =

ρ
(
σ − 1

ρ

)

2
< 0 ∀k ∈ N, k ≥ N .

Thus, we obtain that

‖vnk
− snk

‖ < ‖ynk
− snk

‖ ∀k ∈ N,

which is a contradiction to the definition of ynk
= PC(vnk

− ρnk
unk

). Therefore,
t = 0. Hence, Eq. 54 becomes

lim
k→∞ ‖vnk

− ynk
‖ = 0.

Case 2: Suppose that lim inf
n→∞ αn > 0. Then, we obtain from Eq. 53 that

0 ≤ lim sup
k→∞

‖vnk
− ynk

‖2 ≤ lim sup
k→∞

(
αnk

‖vnk
− ynk

‖2)
(
lim sup
k→∞

1
αnk

)

=
(
lim sup
k→∞

αnk
‖vnk

− ynk
‖2

)(
1

lim inf
k→∞ αnk

)

= 0.

Therefore, we obtain that

lim
k→∞ ‖vnk

− ynk
‖ = 0.

315New Inertial Projection Methods for Solving Multivalued Variational...

Theorem 5.3 Let {xn} be a sequence generated by Algorithm 3.3. Then, under
assumption (8) and Assumption 3.1, we have that {xn} converges to an element
of
.

Proof By Lemma 4.3, {xn} is bounded. Thus, there exists a subsequence {xnk
} of

{xn} such that {xnk
} converges to some point x∗. Thus, we obtain from Lemma 5.2 (b)

that

lim
k→∞ ‖vnk

− ynk
‖ = 0. (59)

Also, from Lemma 4.2, we obtain that

lim
k→∞ ‖vnk

− xnk
‖ = 0. (60)

Hence, from Eqs. 59 and 60, we obtain

lim
k→∞ ynk

= lim
k→∞ PC(vnk

− ρnk
unk

) = lim
k→∞ xnk

= x∗. (61)

Now, without loss of generality, we may assume that ρnk
→ ρ∗ and unk

→ u∗.
Since F is continuous, it is outer-semicontinuous. Thus, we obtain that u∗ ∈ F(x∗).
Therefore, we obtain from Eq. 61 that

PC(x∗ − ρ∗u∗) = x∗.

It then follows from Lemma 2.10 that x∗ ∈
.
We now show that {xn} converges to x∗.
Replacing z by x∗ in Lemma 4.3, we obtain that lim

n→∞ ‖xn − x∗‖2 exists. Since x∗

is an accumulation point of {xn}, we obtain that {xn} converges to x∗.

Remark 5.4 Following Remark 4.13, we can also obtain various corollaries of
Theorem 5.3.

6 Numerical Experiments

In this section, we discuss the numerical behavior of Algorithm 3.2 and Algorithm
3.3 using test examples taken from the literature. We only compare our methods with
Algorithms 1.3 and 1.4 of He et al. (2019) since in He et al. (2019, Section 4), we have
that the methods in He et al. (2019) are more efficient than most relevant methods in
the literature.

The codes are implemented in Matlab 2016 (b). We perform all computations on
a personal computer with an Intel(R) Core(TM) i5-2600 CPU at 2.30GHz and 8.00
Gb-RAM.

We consider the same set of examples considered in He et al. (2019, Section 4).
We randomly choose x0, x1 ∈ R

N and the inertial factor θn satisfying assumptions
(8) and (14).

316 C. Izuchukwu, Y. Shehu

Example 6.1 Consider the following convex non-smooth optimization problem (see
also Dong et al. 2017; He et al. 2019)

min
x∈C

ϕ(x),

where ϕ(x) = −x1 + 20max{x2
1 + x2

2 − 1, 0} and C = {x ∈ R
2+ : x1 + x2 ≤ 1}.

This problem is equivalent to the MVIP (1) with F(x) = ∂ϕ(x), where ∂ϕ(x) is the
subdifferential of ϕ at x:

∂ϕ(x) =
⎧⎨
⎩

(−1 + 40x1, 40x2), if ‖x‖ > 1;
(−1, 0), if ‖x‖ < 1;
{(−1 + 40tx1, 40tx2)|t ∈ [0, 1]}, if ‖x‖ = 1.

Then, we see that x∗ = (1, 0) is the unique solution of the problem, and the
multivalued mapping F = ∂ϕ satisfies the assumptions of Assumption 3.1 (b).

For the parameters, we choose ρn ∈ (0, 2), σ = 0.8, and γ = 0.7. Furthermore,
we take ‖xn − x∗‖ ≤ ε as the termination criterion. We stress that these choices are
the same as the ones considered by He et al. (2019) for their numerical experiments.

For ε = 10−7, we obtain the numerical results listed in Table 1 and Fig. 1, which
show that our methods perfom better than Algorithm 1.3 and Algorithm 1.4 of He
et al. (2019).

For ε = 10−10, it was observed in He et al. (2019, Section 4) that Algorithm
1.3 of He et al. (2019) does not work well because of the presence of Procedure A
in the iterative steps. Therefore, in this setting, we shall compare our methods with
only Algorithm 1.4 of of He et al. (2019). For this, we obtain the numerical results
reported in Table 2 and Fig. 2, which show that our methods still perform better than
Algorithm 1.4 of He et al. (2019).

We consider the following cases for the numerical experiments of Example 6.1.

Case 1: x1 = (0.5,−0.25)T , x0 = (0.5,−0.25)T and θn = 2n−1
8n .

Case 2: x1 = (0.7, 0.25)T , x0 = (0.5, 0.25)T and θn = 2n−1
8n .

Case 3: x1 = (−1.5, 1)T , x0 = (1, −0.2)T and θn = n−1
n+4 .

Case 4: x1 = (−0.5, 1.5)T , x0 = (−0.5, 1)T and θn = n−1
n+4 .

Table 1 Numerical results for Example 6.1 with ε = 10−7

Alg. 3.2 Alg. 3.3 Alg. 1.3 Alg. 1.4

Case 1 CPU time (sec) No. of Iteration 0.0720 5 0.0150 3 0.1310 10 0.2550 17

Case 2 CPU time (sec) No. of Iteration 0.0724 5 0.0151 3 0.1330 10 0.2550 17

Case 3 CPU time (sec) No. of Iteration 0.0720 5 0.0350 4 0.1320 10 0.2550 18

Case 4 CPU time (sec) No. of Iteration 0.0480 4 0.0430 4 0.1040 8 0.2610 18

317New Inertial Projection Methods for Solving Multivalued Variational...

Iteration number (n)
0 5 10 15 20

||x
n-x

* ||

0

0.2

0.4

0.6

0.8

1

1.2

Algorithm 3.2
Algorithm 3.3
Algorithm 1.3
Algorithm 1.4

Iteration number (n)
0 5 10 15 20

||x
n-x

* ||

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithm 3.2
Algorithm 3.3
Algorithm 1.3
Algorithm 1.4

Iteration number (n)
0 5 10 15 20

||x
n-x

* ||

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Algorithm 3.2
Algorithm 3.3
Algorithm 1.3
Algorithm 1.4

Iteration number (n)
0 5 10 15 20

||x
n-x

* ||

0

0.1

0.2

0.3

0.4

0.5

0.6

Algorithm 3.2
Algorithm 3.3
Algorithm 1.3
Algorithm 1.4

Fig. 1 ‖xn − x∗‖ vs Iteration numbers (n) for Example 6.1 with ε = 10−7: Top Left: Case 1; Top Right:
Case 2; Bottom Left: Case 3; Bottom Right: Case 4

Table 2 Numerical results for Example 6.1 with ε = 10−10

Alg. 3.2 Alg. 3.3 Alg. 1.4

Case 1 CPU time (sec) No. of Iteration 0.1420 10 0.0160 4 0.7910 34

Case 2 CPU time (sec) No. of Iteration 0.1390 10 0.0110 4 0.7840 34

Case 3 CPU time (sec) No. of Iteration 0.1010 8 0.0370 5 0.7810 34

Case 4 CPU time (sec) No. of Iteration 0.1020 8 0.0370 5 0.7920 35

318 C. Izuchukwu, Y. Shehu

Iteration number (n)
0 5 10 15 20 25 30 35

||x
n-x

* ||

0

0.2

0.4

0.6

0.8

1

1.2

Algorithm 3.2
Algorithm 3.3
Algorithm 1.4

Iteration number (n)
0 5 10 15 20 25 30 35

||x
n-x

* ||

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithm 3.2
Algorithm 3.3
Algorithm 1.4

Iteration number (n)
0 5 10 15 20 25 30 35

||x
n-x

* ||

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Algorithm 3.2
Algorithm 3.3
Algorithm 1.4

Iteration number (n)
0 5 10 15 20 25 30 35

||x
n-x

* ||

0

0.1

0.2

0.3

0.4

0.5

0.6

Algorithm 3.2
Algorithm 3.3
Algorithm 1.4

Fig. 2 ‖xn − x∗‖ vs Iteration numbers (n) for Example 6.1 with ε = 10−10: Top Left: Case 1; Top Right:
Case 2; Bottom Left: Case 3; Bottom Right: Case 4

Example 6.2 We next consider the following optimization problem which was also
considered in He et al. (2019) and Ye and He (2015).

min
x∈C

ϕ(x),

where C =
{
x ∈ R

5 : xi ≥ 0, i = 1, 2, · · · , 5,
∑5

i=1 xi = a, a > 0
}
and ϕ(x) =

0.5〈Hx,x〉+〈q,x〉+1
5∑

i=1
xi

.

Furthermore, H denotes a positive diagonal matrix with the same element h taken
from the interval (0.1, 2) and q = (−1, −1, −1, −1, −1). Clearly, this problem

319New Inertial Projection Methods for Solving Multivalued Variational...

Table 3 Numerical results for Example 6.2 with ε = 10−4

Alg. 3.2 Alg. 3.3 Alg. 1.4

Case 1 CPU time (sec) No. of Iteration 0.5210 14 0.0610 6 1.1210 42

Case 2 CPU time (sec) No. of Iteration 0.3100 10 0.0830 4 0.9220 33

Case 3 CPU time (sec) No. of Iteration 0.2200 9 0.0800 4 0.9210 32

Case 4 CPU time (sec) No. of Iteration 0.2920 9 0.0870 4 0.9290 32

Iteration number (n)
0 10 20 30 40 50

||x
n-x

* ||

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Algorithm 3.2
Algorithm 3.3
Algorithm 1.4

Iteration number (n)
0 5 10 15 20 25 30 35

||x
n-x

* ||

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithm 3.2
Algorithm 3.3
Algorithm 1.4

Iteration number (n)
0 5 10 15 20 25 30 35

||x
n-x

* ||

0

0.1

0.2

0.3

0.4

0.5

0.6

Algorithm 3.2
Algorithm 3.3
Algorithm 1.4

Iteration number (n)
0 5 10 15 20 25 30 35

||x
n-x

* ||

0

0.1

0.2

0.3

0.4

0.5

0.6

Algorithm 3.2
Algorithm 3.3
Algorithm 1.4

Fig. 3 ‖xn − x∗‖ vs Iteration numbers (n) for Example 6.2 with ε = 10−4: Top Left: Case 1; Top Right:
Case 2; Bottom Left: Case 3; Bottom Right: Case 4

320 C. Izuchukwu, Y. Shehu

is equivalent to MVIP (1) with solution set
 = { 15 (a, · · · , a)}, where F(x) =
(ϕ1(x), · · · , ϕ5(x)) and

ϕi(x) = ∂ϕ(x)

∂xi

=
hxi

5∑
i=1

xi − 0.5h
∑5

i=1 x2
i − 1

(
5∑

i=1
xi

)2
.

For ε = 10−4, σ = 0.3 and for some randomly chosen values of a, we compare
our methods with Algorithm 1.4 of He et al. (2019). We obtain the numerical results
displayed in Table 3 and Fig. 3, which show that our methods perform better than
Algorithm 1.4 of He et al. (2019).

We consider the following cases for the numerical experiments of Example 6.2.

Case 1: x1 = (1, 0.5, 1, 1.5, 1)T , x0 = (1, 0.5, 1, 1.5, 1)T , a = 5 and θn = 2n−1
8n .

Case 2: x1 = (3, 2, 2, 1, 2)T , x0 = (4.3, 2.5, 2.2, 0.3, 0.7)T , a = 10 and θn =
2n−1
8n .

Case 3: x1 = (0.1, 0.9, 2, 0.5, 1.5)T , x0 = (0.3, 0.5, 1.2, 2.5, 0.5)T , a = 5 and
θn = n−1

n+4 .
Case 4: x1 = (2.1, 2.9, 2, 1.5, 1.5)T , x0 = (1.3, 1.5, 2.2, 3.5, 1.5)T , a = 10 and

θn = n−1
n+4 .

7 Conclusion

We propose two new inertial extrapolation projection-type methods for solving
MVIPs when the multivalued mapping F is only required to be locally bounded with-
out any monotonicity assumption. The first method uses a linesearch as in He et al.
(2019, Algorithms 1 and 2) while the second method uses a different linesearch
procedure with the aim of minimizing the number of evaluation of the multivalued
mapping F in each search. Furthermore, our inertial techniques for establishing the
convergence of these methods are quite different from the commonly used ones in
most papers (see for example Cholamjiak et al. 2018; Chuang 2017; Ochs et al. 2015;
Lorenz and Pock 2015; Polyak 1964; Shehu and Cholamjiak 2019; Lorenz and Pock
2015; Mainge 2008; Moudafi and Oliny 2003; Shehu et al. 2019; Shehu et al. 2019;
Thong and Hieu 2018; Thong and Hieu 2017 and the references therein). Moreover,
based on the weaker assumptions on the inertial factor in our methods, we derive
several special cases of our methods. Finally, we consider some numerical imple-
mentations of our methods and compare them with the methods in He et al. (2019,
Algorithms 1 and 2), in order to show the profits that we gain by introducing the
new inertial extrapolation steps. In fact, in all our comparisons, the numerical results
demonstrate that our methods perform better than the methods in He et al. (2019,
Algorithms 1 and 2). Thus, our results improve and generalize many recent important
results in this direction.

321New Inertial Projection Methods for Solving Multivalued Variational...

Acknowledgements The authors sincerely thank the Editor-in-Chief and anonymous referees for their
careful reading, constructive comments and fruitful suggestions that help improve the manuscript. The
research of the first author is supported by the National Research Foundation (NRF) South Africa
(S& F-DSI/NRF Free Standing Postdoctoral Fellowship; Grant Number: 120784). The first author also
acknowledges the financial support from DSI/NRF, South Africa Center of Excellence in Mathematical
and Statistical Sciences (CoE-MaSS) Postdoctoral Fellowship. The second author has received funding
from the European Research Council (ERC) under the European Union’s Seventh Framework Program
(FP7 - 2007-2013) (Grant agreement No. 616160).

Funding Open Access funding provided by Institute of Science and Technology (IST Austria).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.
0/.

References

Alvarez F, Attouch H (2001) An inertial proximal method for maximal monotone operators via discretiza-
tion of a nonlinear oscillator with damping. Set-Valued Anal 9:3–11

Attouch H, Cabot A (2019) Convergence of a relaxed inertial proximal algorithm for maximally monotone
operators. Math Program. https://doi.org/10.1007/s10107-019-01412-0

Attouch H, Cabot A (2019) Convergence of a relaxed inertial forward–backward algorithm for structured
monotone inclusions. Appl Math Optim 80:547–598

Attouch H, Goudon X, Redont P (2000) The heavy ball with friction. I. The continuous dynamical system.
Commun Contemp Math 2(1):1–34

Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J Imaging Sci 2(1):183–202

Bot RI, Csetnek ER, Hendrich C (2015) Inertial Douglas-Rachford splitting for monotone inclusion. Appl
Math Comput 256:472–487

Bot RI, Csetnek ER (2016) An inertial alternating direction method of multipliers. Minimax Theory Appl
1:29–49

Brouwer LEJ (1912) Über Abbildung von Mannigfaltigkeiten. Math Ann 71(4):97–115
Browder FE (1965) Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces.

Trans Am Math Soc 18:338–351
Carey M, Ge YE (2012) Comparison of methods for path flow reassignment for dynamic user equilibrium.

Netw Spat Econ 12:337–376
Censor Y, Gibali A, Reich S (2011) The subgradient extragradient method for solving variational

inequalities in Hilbert space. J Optim Theory Appl 148:318–335
Chambolle A, Dossal C. h. (2015) On the convergence of the iterates of the “fast iterative shrink-

age/thresholding algorithm”. J Optim Theory Appl 166:968–982
Cholamjiak W, Cholamjiak P, Suantai S (2018) An inertial forward-backward splitting method for solv-

ing inclusion problems in Hilbert spaces. J Fixed Point Theory Appl, 20. https://doi.org/10.1007/
s11784-018-0526-5

Chuang CS (2017) Hybrid inertial proximal algorithm for the split variational inclusion problem in Hilbert
spaces with applications. Optimization 66(5):777–792

Dong QL, Lu YY, Yang J, He S (2017) Approximately solving multi-valued variational inequalities by
using a projection and contraction algorithm. Numer Algor 76:799–812

322 C. Izuchukwu, Y. Shehu

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1007/s10107-019-01412-0
https://doi.org/10.1007/s11784-018-0526-5
https://doi.org/10.1007/s11784-018-0526-5

Facchinei F, Pang JS (2003) Finite-dimensional variational inequalities and complementarity problems
vol 1 & 2. Springer, Berlin

Fang CJ, Chen SL (2014) A subgradient extragradient algorithm for solving multi-valued variational
inequality. Appl Math Comput 229:123–130

Goebel K, Reich S (1984) Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Marcel
Dekker, New York

He YR (2006) A new double projection algorithm for variational inequalities. J Comput Appl Math
185:66–173

He X, Huang N, Li X (2019) Modified projection methods for solving multi-valued variational inequality
without monotonicity. Netw Spat Econ. https://doi.org/10.1007/s11067-019-09485-2

Konnov IV (1998) A combined relaxation method for variational inequalities with nonlinear constraints.
Math Program 80:239–252

Korpelevich GM (1976) The extragradient method for finding saddle points and other problems. Matecon
12:747–756

Lorenz DA, Pock T (2015) An inertial forward–backward algorithm for monotone inclusions. J Math
Imaging Vis 51:311–325

Mainge PE (2008) Convergence theorems for inertial KM-type algorithms. J Comput Appl Math
219(1):223–236

Moudafi A, Oliny M (2003) Convergence of a splitting inertial proximal method for monotone operators.
J Comput Appl Math 155:447–454

Nadler SB (1969) Multi-valued contraction mappings. Pac J Math (English Series) 30:475–488
Nesterov Y (1983) A method of solving a convex programming problem with convergence rate O(1/k2).

Soviet Math Doklady 27:372–376
Ochs P, Brox T, Pock T (2015) iPiasco: inertial proximal algorithm for strongly convex optimization. J

Math Imaging Vis 53:171–181
Oggioni G, Smeers Y, Allevi E, Schaible S (2012) A generalized Nash equilibrium model of market

coupling in the European power system. Netw Spat Econ 12:503–560
Polyak BT (1964) Some methods of speeding up the convergence of iterates methods. USSR Comput

Math Phys 4(5):1–17
Raciti F, Falsaperla P (2007) Improved noniterative algorithm for the calculation of the equilibrium in the

traffic network problem. J Optim Theory Appl 133:401–411
Rockafellar RT, Wets JB (2004) Variational analysis. Springer, New York
Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton
Shehu Y, Cholamjiak P (2019) Iterative method with inertial for variational inequalities in Hilbert spaces.

Calcolo, 56(1)
Shehu Y, Li XH, Dong QL (2019) An efficient projection-type method for monotone variational

inequalities in Hilbert spaces. Numer Algorithms. https://doi.org/10.1007/s11075-019-00758-y
Shehu Y, Vuong PT, Zemkoho A (2019) An inertial extrapolation method for convex simple bilevel

optimization. Optim Methods Softw. https://doi.org/10.1080/10556788.2019.1619729
Thong DV, Hieu DV (2018) Inertial subgradient extragradient algorithms with line-search pro-

cess for solving variational inequality problems and fixed point problems. Numer Algorithms.
https://doi.org/10.1007/s11075-018-0527-x

Thong DV, Hieu DV (2017) An inertial method for solving split common fixed point problems. J Fixed
Point Theory Appl 19(4):3029–3051

Tseng P (2000) A modified forward-backward splitting method for maximal monotone mappings. SIAM
J Control Optim 38:431–446

Vuong PT (2019) The global exponential stability of a dynamical system for solving variational
inequalities. Netw Spat Econ. https://doi.org/10.1007/s11067-019-09457-6

Ye ML, He YR (2015) A double projection method for solving variational inequalities without monotonic-
ity. Comput Optim Appl 60:141–150

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

323New Inertial Projection Methods for Solving Multivalued Variational...

https://doi.org/10.1007/s11067-019-09485-2
https://doi.org/10.1007/s11075-019-00758-y
https://doi.org/10.1080/10556788.2019.1619729
https://doi.org/10.1007/s11075-018-0527-x
https://doi.org/10.1007/s11067-019-09457-6

	New Inertial Projection Methods for Solving Multivalued Variational...
	Abstract
	Introduction
	Procedure A KO1998
	Algorithm 1.1.
	Algorithm 1.2.
	Algorithm 1.3.
	Algorithm 1.4.
	Preliminaries
	Proposed Methods
	Algorithm 3.2.
	Algorithm 3.3.
	Convergence Analysis for Algorithm 3.2
	Algorithm 4.1.
	Algorithm 4.2.
	Convergence Analysis for Algorithm 3.3
	Numerical Experiments
	Conclusion
	References

