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Direct and indirect reciprocity are key mechanisms for evolution of cooperation. Direct reciprocity
means individuals use their own experience to decide whether to cooperate with another person.
Indirect reciprocity means they also consider the experiences of others. Although the two mecha-
nisms are intertwined, they are typically studied in isolation. Here, we introduce a mathematical
framework that allows us to explore both kinds of reciprocity simultaneously. We show that the
well-known strategy ‘Generous Tit-for-Tat’ of direct reciprocity has a natural analogue in indirect
reciprocity, which we call ‘Generous Scoring’. With an equilibrium analysis, we characterize under
which conditions either of the two strategies can maintain cooperation. With simulations, we addi-
tionally explore which kind of reciprocity evolves when members of a population engage in social
learning to adapt to their environment. We find that indirect reciprocity evolves if any two individu-
als meet only occasionally, when information about others is reliable, and when strategy mutations
are rare. Our results draw unexpected connections between direct and indirect reciprocity, while
highlighting important differences regarding their evolvability.
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Reciprocity is a principle that guides many aspects of our social life1–4. Whenever people repay a

favor, write a positive evaluation of an online seller, or build up trust over multiple interactions, they

engage in reciprocal behavior. Previous work distinguishes two kinds of reciprocity. Direct reciprocity5–19

means that my behavior towards you depends on what you have done to me. Indirect reciprocity20–24

means that my behavior towards you also depends on what you have done to others. Direct reciprocity

requires that the same individuals interact repeatedly, which enables them to respond to their interaction

partner in future transactions (Fig. 1a). Indirect reciprocity does not require individuals to have a joint

history of previous interactions, nor does it require them to ever meet again. It is solely based on the

premise that by helping someone, you can increase your public standing. This reputational gain is valuable

in future interactions with others (Fig. 1b). Experiments suggest that human behavior is shaped by both

direct25,26 and indirect reciprocity27–29.

While direct and indirect reciprocity are related, the respective models are strikingly different. Studies

of direct reciprocity5–19 report substantial cooperation rates even if subjects only remember a minimum

of information. Successful strategies like Tit-for-Tat5 (TFT) and Generous Tit-for-Tat6 (GTFT) only keep

track of the very last interaction. In contrast, studies of indirect reciprocity stress that cooperation can

only be maintained when strategies are sufficiently complex21–23. To describe how complex strategies

need to be, this literature distinguishes different classes of strategies. The most elementary class are the

first-order strategies, where a player’s reputation only depends on her previous actions. A well-known

example is image scoring20. Here, reputations are represented by an integer score. A player’s score

increases when she cooperates, and it drops when she defects. Individuals only cooperate with those who

have a sufficiently high score. Classic image scoring, however, is unstable21. After all, individuals have

no incentive to retaliate against defectors, because this would impede their own score. This instability

suggests considering second-order strategies. Here, reputations do not only depend on what an individual

did, but also to whom. For example, when an individual defects against a co-player with a bad reputation,

this defection may be considered as justified. The hierarchy of strategies can be further extended to third

order. Here, players additionally take into account the focal individual’s reputation.

In a landmark study, Ohtsuki & Iwasa explored which strategies of up to third order sustain cooper-

ation22. In their study, reputations are required to be binary (good or bad), strategies are deterministic

(the same behaviour always yields the same reputation), and all information is public and mutually agreed

upon. Within this setup, they show there are no stable first-order strategies that give rise to cooperation.

However, there are two second-order strategies and six third-order strategies. These so-called leading eight

strategies can sustain cooperation because they allow for more sensible judgments than image scoring. At

the same time, they require more information than most well-known strategies of direct reciprocity.

The two kinds of reciprocity also differ in how susceptible they are to misunderstandings and other

types of errors. Whereas GTFT and similar strategies of direct reciprocity are robust with respect to

noise4,30, the leading eight strategies of indirect reciprocity are not31,32.

Due to such differences, it has been difficult to analyse the two modes of reciprocity within a single

theoretical framework. Previous work has taken two approaches. The first approach is to suggest particular
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strategies that combine elements of direct and indirect reciprocity, and to analyse their stability33,34. The

second approach uses computer simulations to let different strategies compete35–37. Two noteworthy stud-

ies of the latter kind are by Nakamaru & Kawata36 and Seki & Nakamaru37. They explore the evolution

of reciprocity when players can fake their own reputation, or misrepresent the reputation of others. The

two studies observe that when outside information becomes unreliable, players tend to ignore it. Com-

putational studies, however, make it difficult to compare the different kinds of reciprocity directly. They

often involve comparisons between strategies of different complexity. Moreover, the relative advantage of

each type of reciprocity can only be inferred by comparing simulations for specific parameter choices.

Instead, here we propose a framework that can be analysed explicitly. For our study, we extend the

theory of zero-determinant strategies from direct8–16 to indirect reciprocity. This approach allows us to

draw analytic conclusions when comparing the two mechanisms.

Results

A unified framework of reciprocity.

To introduce a model that entails both kinds of reciprocity, we consider a population of n players. Players

engage in the following sequence of interactions. In the beginning, two players are randomly drawn from

the population to interact in one round of the prisoner’s dilemma. In this game, each player independently

decides whether to cooperate (C) or defect (D). Cooperation means to pay a cost c>0 to provide a benefit

b > c for the co-player. After each such interaction, with probability d again two players are randomly

drawn from the population to engage in another round of the game. Otherwise, with probability 1−d, no

further interaction occurs. Once there are no more interactions, we calculate the payoffs of each player by

averaging over all pairwise games in which the respective player participated.

To make their decisions, players represent each co-player by a separate finite-state automaton. Each

automaton has two possible states, labeled as Good (G) and Bad (B), see Fig. 1c. Players cooperate with

those co-players they currently deem as good, and they defect against those they consider as bad. They

update the current state of each co-player according to their strategy (y, p, q, λ). The parameter y is the

initial probability that a co-player is considered as good, in the absence of any information (Fig. 1d).

The parameters p (and q), determine the probability to assign a good reputation to a co-player who has

just cooperated (defected) in a direct interaction (Fig. 1e,f). The parameter λ is a player’s receptivity to

indirect information. If a co-player interacts with a third party, then with probability λ the focal player

updates that co-player’s state accordingly. In that case, again the co-player obtains a good reputation with

probability p or q, depending on whether she cooperated or defected (Fig. 1g, Extended Data Fig. 1). For

simplicity, we assume in the main text that all population members observe everybody else’s interactions.

However, they may misinterpret the outcome of games between others with probability ε. When such an

observation error occurs, a third-party observer mistakenly interprets a player’s cooperation as defection,

and vice versa.

If λ=0 for all individuals, players base their decisions entirely on their own experiences. In that case
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our framework reduces to the standard model of direct reciprocity with reactive strategies6. On the other

hand, if λ=1 for all individuals, then players take all interactions of their opponents equally into account,

no matter whether they are directly involved. In that case our framework yields a model of indirect

reciprocity among players with stochastic first-order strategies38. It is important to note that even players

with λ= 1 do not ignore any directly obtained information they may have. For example, if the same two

individuals are chosen to interact for two consecutive rounds, their second-round behavior will naturally

depend on the outcome of the first round. However, in large populations in which such consecutive

encounters are unlikely, the role of direct information on players with λ = 1 becomes negligible. In SI
Section 6.2, we compare this baseline model with an alternative setup, where we consider a ‘purified’

version of indirect reciprocity. In that alternative setup, players can choose to ignore all direct experiences

they have, such that they solely rely on third-party information. The results of that alternative model are

similar to the results presented herein.

Our strategy space contains several well-known strategies of direct and indirect reciprocity. Examples

include TFT = (1, 1, 0, 0), GTFT = (1, 1, q, 0), and an elementary image scoring rule39 referred to as

Simple Scoring40, SCO = (1, 1, 0, 1). However, our model is more general than these previous studies

on either direct or indirect reciprocity in two ways. First, it allows for populations in which some players

use direct reciprocity (λ= 0), whereas others use indirect reciprocity (λ= 1). Second, it allows players

to combine the two modes of reciprocity, by choosing 0<λ< 1. In that case, players always take direct

experiences into account, but they would occasionally also consider a co-player’s interactions with others.

Models of indirect reciprocity often assume ‘public information’22,23. This does not only mean that all

individuals learn all relevant information. Instead, respective models also assume that everyone agrees on

each co-player’s reputation. Such an assumption can be problematic when individuals receive information

from independent sources, or when information transmission is noisy32. Moreover, even if individuals

agree on all past events, they may still disagree on which reputation a co-player should have if they apply

different social norms. Such different assessments can easily arise, for example, when some players

base their decisions on direct reciprocity, whereas others use indirect reciprocity. Because we are exactly

interested in such scenarios, our model is necessarily one of ‘private information’, as in Nakamaru &

Kawata36 and Seki & Nakamaru37. As a result, different players may hold different views on any given

population member.

Throughout the main text, we will use the above baseline framework to explore the dynamics of direct

and indirect reciprocity. However, in SI Section 6, we explore the effect of several model extensions. In

particular, we discuss how our results change when we allow for alternative kinds of errors41–43 and for

incomplete information44. Moreover, we describe how our framework can be adapted to capture more

complex strategies, including finite-state automata with more than two states18,45 or the leading eight22.

Equilibrium conditions for reciprocal cooperation.

Because the strategies of the baseline model only require first-order information, we can compute the play-

ers’ payoffs explicitly. The respective formula, derived in detail in SI Section 3, is valid for any population
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size, arbitrary population compositions, and all parameter values. Based on this explicit representation of

payoffs, we first characterised all Nash equilibria among the strategies (y, p, q, λ). In a Nash equilibrium,

no player can improve her payoff by unilaterally deviating (not even by using a more complex strategy that

uses arbitrary amounts of past information). By extending the theory of zero-determinant strategies8–12,

we find that for every λ ∈ [0, 1], there can be exactly one generic Nash equilibrium strategy (y, p, q, λ)

that yields full cooperation. These strategies are explicitly derived in SI Section 4. In the following, we

summarise the corresponding results.

For direct reciprocity (λ=0) the unique strategy that yields stable cooperation is given by the classical

GTFT strategy (Fig. 2a), with y=p=1 and

q0=1− c

δb
. (1)

Here, δ is the probability that two interacting players interact again some time in the future. This pair-

wise continuation probability can be derived from the population-wide continuation probability d (SI
Section 4). For indirect reciprocity (λ=1), the Nash equilibrium has y=p=1 and

q1=1− 1 + (n−2)δ

1 + (n−2)(1−2ε)

c

δ b
. (2)

In analogy to GTFT , we call this strategy Generous Scoring (GSCO, Fig. 2b). Both strategies have in

common that they always assign a good reputation to cooperators, and that they occasionally assign a

good reputation to defectors. However, they differ in which information they take into account when

making these assessments. While GTFT only considers direct interactions, GSCO takes all interactions of

a co-player into account.

The above descriptions of GTFT and GSCO only give rise to a sensible strategy if their q is non-

negative. By requiring q≥0, equations (1) and (2) thus characterise when cooperation can be sustained at

all. We find that the game’s continuation probability needs to be sufficiently large, δ≥δλ. The respective

threshold values for direct (λ=0) and indirect (λ=1) reciprocity are

δ0=
c

b
and δ1=

c

b+ (n−2)
(
(1−2ε)b−c

) . (3)

The threshold δ0 for direct reciprocity is simply given by the cost-to-benefit ratio of cooperation3. The

threshold δ1 for indirect reciprocity can be greater or lower, depending on whether or not outside informa-

tion is sufficiently reliable (i.e., depending on whether the probability ε of an observation error is greater

or lower than (1−c/b)/2). The two thresholds in (3) give rise to four possible cases (Fig. 2c). Either

(i) cooperation is not feasible at all, (ii) it is only feasible through indirect reciprocity, (iii) it is only fea-

sible through direct reciprocity, or (iv) it is feasible through both kinds of reciprocity. We have derived

analogous thresholds for δ under the alternative assumption that both direct and indirect observations are

subject to the same error rate (SI Section 6.1). In that case, the third region vanishes: if cooperation is

feasible at all, it is always feasible through indirect reciprocity (Fig. 2d).
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In addition to the extremal cases of direct reciprocity (λ = 0) and indirect reciprocity (λ = 1), we

have also explored whether the equilibrium conditions for a cooperative equilibrium can be met more

easily if players use intermediate values of λ. Interestingly, the answer is negative. Specifically, we

prove that if there is a cooperative Nash equilibrium for some 0 < λ < 1, then either GTFT or GSCO

is already an equilibrium. From an equilibrium perspective, intermediate degrees of receptivity thus do

not further extend the possibilities for cooperation. Moreover, in the limit of rare errors we find that the

conditions (3) are strict even as we allow for arbitrarily complex strategies: if neither GTFT nor GSCO

can sustain cooperation for the given parameters of the game, no other Nash equilibrium can.

Comparing the dynamics of direct and indirect reciprocity.

The previous equilibrium results highlight different strategies that can maintain cooperation if adopted by

sufficiently many in the population. However, the above results do not imply that such strategies would

automatically evolve. After all, ALLD = (0, 0, 0, λ) is also an equilibrium for all parameter values (SI
Section 4). In a next step, we have thus explored under which conditions cooperation can emerge when

players engage in social learning.

To this end, we no longer assume that players use equilibrium strategies. Rather they may start out

with some arbitrary strategy (y, p, q, λ). Over time players adopt new strategies based on a pairwise

comparison process46,47. This process assumes that in each time step, one individual is randomly drawn

from the population. This player then has the opportunity to revise her strategy. She can do so by either

adopting a randomly chosen strategy (akin to a mutation in biological models), or by imitating the strategy

of another group member (akin to selection). Imitation events are biased such that strategies with a high

payoff have a better chance to be imitated (see Methods). This elementary strategy updating step is then

iterated over many time periods. We use simulations to record which strategies the players adopt over time

and how often they cooperate. To this end, we sometimes assume that mutations are rare. The limit of

rare mutations is mathematically well understood48–52 and it has been prominently employed in previous

studies of reciprocity53–59 and beyond60–64. When mutations are rare, the population consists of at most

two strategies, residents and mutants. The mutant strategy goes extinct or fixes before the next mutation

arises. The assumption of rare mutations allows simulations to be run more efficiently. This in turn makes

it easier to systematically explore the entire strategy space (see SI Section 5 for details). We complement

the respective results with simulations with frequent mutations.

We first explore the two limiting cases of reciprocity separately, by fixing either λ= 0 or λ= 1. We

consider two different scenarios (Fig. 3). In the first scenario, individuals interact only for a few rounds.

In the other scenario, we consider the limiting case that they interact for infinitely many rounds. This limit

has been employed in many previous studies6–12 as it naturally reduces the dimension of the strategy space

(see Fig. 3a,b). Similar results can be obtained if the number of rounds is large but finite (Fig. 4). In all

scenarios we observe that for rare mutations, players either tend to adopt a strategy close to always defect,

ALLD =(0, 0, 0, λ), or a conditionally cooperative strategy (1, 1, q, λ). As expected from our equilibrium

analysis, indirect reciprocity is overall more favourable to cooperation when individuals interact only for
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a few rounds. Interestingly, however, direct reciprocity is more effective in maintaining cooperation when

many rounds are played, even in the absence of any observation errors.

To gain some analytical understanding for why direct reciprocity becomes superior, we consider an

initial population that either employs ALLD or a conditionally cooperative strategy. For both resident

strategies, we record how long it takes until a different strategy can invade (Fig. 3c,d) and which strategies

are most likely to do so (Fig. 3e,f). When many games are being played, conditional cooperators have a

similar invasion time for both direct and indirect reciprocity (Fig. 3d). However, ALLD can be invaded

more easily when players use direct reciprocity. To explore this differential robustness of defectors, we

analysed the competition between ALLD and a conditionally cooperative strategy (1, 1, q, λ). When only

these two strategies are present, the respective payoffs πD and πC can be calculated explicitly (see SI
Section 5). In the limit of large populations and rare errors, the payoffs under direct reciprocity (λ= 0)

become
π0C = (b−c)·z − (1−δ+δq)c·(1−z)

π0D = (1−δ+δq)b·z.
(4)

Here, z is the fraction of conditional cooperators in the population. Eq. (4) yields two insights. First,

provided that q < 1−c/(δb), the dynamics is bistable. If cooperators are common (z≈ 1), they have the

higher payoff. In contrast, when cooperators are rare (z≈ 0), defectors are favoured. Second, the payoff

of the two strategies increases linearly in the fraction of cooperators. When we perform the same analysis

for indirect reciprocity (λ=1), we obtain

π1C =
q + q(1−q)(1−z)

1− (1− q)z
·z(b− c)− q(1−z)c

π1D = qb·z.
(5)

Again, for q sufficiently small these payoffs result in a bistable competition. However, while the defectors’

payoffs continue to increase linearly in the fraction of cooperators, the cooperators’ payoffs are now

nonlinear (Fig. 3g,h).

This analysis highlights two crucial effects that distinguish indirect from direct reciprocity. On the

one hand, indirect reciprocity leads to a faster spread of information throughout a population. As a con-

sequence, indirect reciprocity is more effective in restricting the payoff of a defector (i.e., π1D < π0D for

all z > 0). On the other hand, successful cooperation in indirect reciprocity is based on non-linear syn-

ergy effects. Cooperators only obtain high payoffs when they are sufficiently common. Which of the two

effects is dominant depends on the population size, the error rate, and on how often players interact on

average (Extended Data Fig. 2). Once players interact for many rounds, indirect reciprocity ceases to

have any advantage (because π1D=π0D for δ→1). In that case, defectors are always more readily invaded

under direct reciprocity.

Due to their nonlinear returns, cooperative strategies of indirect reciprocity are most effective when

they are common. This observation suggests that indirect reciprocity may be less likely to evolve when the

evolutionary process itself prevents cooperative strategies to form a large majority. Such a case can occur,
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for example, when mutations are abundant, such that many different strategies are routinely present in the

population. To explore this issue in more detail, we have systematically varied the mutation rate of the

evolutionary process (Fig. 4). Indeed, while mutations only have a minor effect on direct reciprocity, the

impact on indirect reciprocity can be substantial as mutation rates become large. In particular, around µn=

1 (i.e., once there is more than one mutation per generation), cooperation rates decline quickly. Further

simulations suggest that this downfall of cooperation is due to both a reduced stability of conditionally

cooperative strategies and an enhanced stability of populations with a majority of defectors (Fig. 4g-i).
These results highlight an important difference between direct and indirect reciprocity. While reactive

strategies of direct reciprocity are largely robust to mutations, the corresponding strategies of indirect

reciprocity are more sensitive. Strategies like Generous Scoring are most powerful in environments with

little noise. To spread, they do not only need outside information to be faithful (small ε) but also the

evolutionary process (small µ).

The co-evolution of direct and indirect reciprocity.

The above findings raise the question whether the players themselves are able to learn when to use in-

direct information. To explore this issue, we have first considered a simplified setup in which players

can freely choose between all strategies (y, p, q, λ) where either λ = 0 and λ = 1. That is, players can

choose whether they only take direct interactions into account, or whether they take all of a co-player’s

interactions equally into account. We study three different scenarios in the limit of rare mutations: one

with noisy information and few interactions (Fig. 5a), one with reliable information and intermediately

many interactions (Fig. 5b), and one with noisy information and many interactions (Fig. 5c). The results

confirm our previous analytical findings. While defectors are predominant in the first scenario, individuals

adopt conditionally cooperative strategies in the second and third scenario, showing a bias towards indirect

and direct reciprocity, respectively. In a next step, we have systematically varied how often individuals

interact with each other, and how noisy third-party information is (Fig. 5d). Again, we find that indirect

reciprocity is most abundant when there are intermediately many rounds, such that cooperation cannot

evolve through direct reciprocity alone.

We have repeated all simulations for an evolutionary process with more frequent mutations (Fig. 5e–
h). While the qualitative results are similar, we recover our previous observation that larger mutations

rates disfavour indirect reciprocity. Even in those parameter regions in which individuals learn to incor-

porate third-party information, evolving cooperation rates tend to be lower than in the scenario with rare

mutations (Fig. 5f). The effect of other game parameters on the evolution of cooperation is discussed in

SI Section 5, and visualised in Extended Data Fig. 3 and Extended Data Fig. 4.

Finally, we have also explored which strategies evolve when players can adopt intermediate values of λ

(Extended Data Fig. 12). To allow for a fair comparison between direct and indirect reciprocity, mutant

strategies are drawn such that an average mutant would resort to their direct experience in approximately

half of the cases (for details, see SI Section 5.4). Overall, we observe a similar trend as before: When

information is noisy and there are very few rounds, individuals learn not to cooperate (Extended Data
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Fig. 12e); when there is little noise and intermediately many interactions, individuals learn to cooperate

predominantly based on indirect information (Extended Data Fig. 12f); and when there is an interme-

diate amount of noise and many interactions, individuals tend to cooperate based on direct information

(Extended Data Fig. 12g).

Discussion

When deciding whether to cooperate, humans often resort to the co-player’s reputation arising from third

party interactions27,28, sometimes even if the two players have a joint history of direct interactions29.

Most theoretical studies, however, do not investigate how subjects choose between these two sources of

information. They either study direct reciprocity using repeated games5–18 or indirect reciprocity using

donor-recipient games20–23. Here, we have proposed a general framework that unifies direct and indirect

reciprocity.

To make such a comparison between different kinds of reciprocity most transparent, throughout the

main text we have focussed on a comparably simple setup. For example, we have not modelled explicitly

how information from third party interactions spreads throughout a population. We have assumed that

individuals observe each others’ interactions directly. Instead, one may equally assume that individuals use

rumours and gossip to exchange information about their past experiences with other population members.

Such communication can add another layer of complexity to the model because players may have an

incentive to strategically misrepresent their reputation. For example, defectors are naturally incentivised to

prevent others from faithfully learning about their past behaviours. As demonstrated in previous work36,37,

such miscommunication does not render cooperation impossible. However, it imposes additional bounds

on when indirect reciprocity can evolve. While our model does not consider the effects of false gossip

explicitly, we may capture some of its workings by assuming that observation errors may be biased. For

example, acts of defection may be more likely to be misperceived than acts of cooperation. In SI Section 6,

we show that all our analytical results naturally carry over to this more realistic setting.

Similarly, while we have explored the effect of observation errors in detail, we have neglected other

types of errors. As an example, implementation errors have received considerable attention in the previous

literature65. Such errors lead players to mis-execute their intended actions. They may fail to cooperate

although they planned to do so, perhaps because of a ‘trembling hand’66. The consequences of imple-

mentation errors can be rather different from observation errors, because only the former become publicly

known. Nevertheless, we can show in SI Section 6 that such implementation errors can be naturally

included into our framework (see also Extended Data Fig. 5).

Finally, in the main text we have restricted ourselves to the simplest class of strategies, which only

depend on a player’s previous action. Within this class, we have identified a remarkable new strategy of

indirect reciprocity. This strategy, called Generous Scoring (GSCO), is the analogue of Generous Tit-for-

Tat (GTFT)6. It routinely cooperates with other cooperators, but it is also willing to forgive a defector

occasionally. Unlike GTFT , however, GSCO does not require repeated interactions between two players;

it can sustain cooperation even if individuals are likely to never meet again. When previous research on

9



indirect reciprocity identified stable cooperative strategies, the strategies are only shown to be stable within

a given strategy class22,23. This kind of analysis does not rule out that the respective equilibria turn out to

be unstable once more complex mutant strategies are permitted. In contrast, Generous Scoring is a Nash

equilibrium with respect to all possible mutant strategies, independent of whether mutants themselves use

direct or indirect reciprocity, or how much information they are able to process.

This stability of Generous Scoring may be surprising. After all, first-order strategies have been sus-

pected to be incapable of sustaining cooperation21–23. For example, Image Scoring is unstable because

players have no incentive to retaliate against defectors in the first place21. By defecting, they would only

harm their own reputation, which puts them at risk to receive less cooperation in the future. Generous

Scoring circumvents this risk by punishing defectors stochastically, with a well-defined probability. This

probability is chosen such that the expected long-term loss in reputation exactly matches the short run

gains from saving the cooperation costs. We note that this does not require the players to know all relevant

game parameters in advance, or to explicitly calculate the respective probabilities. Instead, our simula-

tions suggest that individuals may well be able to learn such strategies through elementary exploration and

imitation processes.

Our results also suggest that direct and indirect reciprocity require different environments to emerge.

Generous Tit-for-Tat requires players to interact sufficiently often, whereas Generous Scoring can also

sustain cooperation when players only interact occasionally. However, for Generous Scoring to evolve,

mutation rates need to be smaller than under direct reciprocity, and outside information needs to be suffi-

ciently reliable (Fig. 3 – Fig. 5). While our results in the main text focus on simple first-order strategies,

our general framework is equally applicable to more elaborate norms of indirect reciprocity. In partic-

ular, in SI Section 6 we explore how our framework can be adapted to study strategies represented by

finite-state automata with more than two states18 or the leading eight22, see also Extended Data Fig. 6–

Extended Data Fig. 9.

We have explored how to make decisions when different sources of information are available. When

individuals interact regularly, we find that they rely on direct information. They trust their own experiences

more than indirect information which may be subject to noise. In contrast, when relationships are short-

lived or superficial, cooperation can only be sustained when people act upon public reputations. Previous

work suggests that indirect reciprocity requires social norms that are sufficiently complex21–23. These

norms make use of an unlimited regress; when assigning a new reputation to a person, observers need

to take into account the reputation of the person’s co-player, which in turn depends on the reputation of

the co-player’s previous interaction partner. Our model proposes a different view. To sustain cooperation,

simple probabilistic rules based on a minimum of information can suffice.
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Methods

In the following, we provide a more technical summary of our framework. We explain how it can be used to (i) derive
the players’ payoffs, (ii) characterise all Nash equilibria among reactive strategies, and (iii) study the co-evolution
of direct and indirect reciprocity. For all details and proofs, we refer to the SI.

General framework. For the baseline model considered throughout the main text, we consider a game in a well-
mixed population with n individuals. In each round, two individuals are randomly drawn to interact in one round
of a prisoner’s dilemma. They can either cooperate (C) or defect (D). Cooperation means to pay a cost c > 0 to
provide a benefit b > c to the co-player. Defection means to pay no cost, and for the co-player to gain no benefit.
Both players decide independently. Their actions are observed by all population members. However, we assume
indirect information is subject to perception errors: those members who only indirectly witness the interaction may
misinterpret each player’s action with probability ε. That is, with probability ε, outside observers take a C for a D,
or vice versa. After the two interacting individuals have made their decisions, with probability d there is another
round. In that case, again two individuals are chosen at random from the population to interact in a prisoner’s
dilemma. Otherwise, with probability 1−d, the game is over. The players’ payoffs for the population game are
defined as their average payoff over all rounds in which they participated in.

Each individual represents every other population member by a separate finite-state automaton. Each automaton
can be in one of two possible states, ‘good’ (G) or ‘bad’ (B). The current state of the automaton depends on the
individual’s strategy, on the co-player’s past actions, and on whether or not an error has occurred. In the main text,
strategies are 4-tuples (y, p, q, λ)∈ [0, 1]. The first entry y is the initial probability for the automaton to be in the
good state. The second entry p and the third entry q are the conditional probabilities that the automaton is in the good
state, given that the respective co-player just cooperated (defected) in a direct interaction, respectively. Finally, the
value of λ is the probability that a player’s indirect interactions with third parties are taken into account to update the
automaton accordingly. For λ= 0, third-party interactions are completely ignored, and the automaton’s state only
depends on direct interactions. For λ=1, every interaction of the respective co-player is equally taken into account,
no matter whether or not the focal individual is directly involved. Individuals cooperate with those co-players they
consider as good, and defect against those co-players they consider as bad.

We refer to the case of λ=0 as direct reciprocity, and to λ=1 as indirect reciprocity. We note that in exceptional
cases, even a player with λ=1 may base her decisions on direct experiences. This happens, for example, when the
same two players are chosen to interact for two consecutive rounds. In that case, the players’ second-round behavior
will depend on their direct experience in the first round. In SI Section 6.2, we contrast this model with an alternative
specification. In that alternative model, players who use indirect reciprocity ignore all direct information entirely.
With minor modifications, all results presented herein carry over (see also Extended Data Fig. 11).

Derivation of a unified payoff equation of direct and indirect reciprocity. For our baseline framework, the
players’ payoffs can be calculated explicitly, without having to simulate the game. To derive the respective payoff
equation, let each player i adopt some arbitrary but fixed strategy (yi, pi, qi, λi). Let w̄=2/n denote the probability
that a particular player is chosen to interact in the next round of the prisoner’s dilemma. Similarly, w=2/

(
n(n−1)

)
is the probability that a particular pair of players is chosen. Finally, we denote by xij(t) the probability that player i
considers player j to be good after t games have been played in the population. Given the value of xij(t), we can
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recursively compute xij(t+1) as

xij(t+1) = (1−w̄)xij(t)

+ w
(
xji(t) pi + (1−xji(t)) qi

)
+ (w̄−w) (1−λi)xij(t)

+ wλi
∑
l 6=i,j

((
1−ε

)
xjl(t)+ε

(
1−xjl(t)

))
pi +

((
1−ε

)(
1−xjl(t)

)
+ εxjl(t)

)
qi.

(6)

The summands on the right hand side reflect the following four possible events (illustrated in Extended Data
Fig. 1e–h):

(i) The first line on the right hand side corresponds to the case that player j does not interact at time t. This happens
with probability 1− w̄. In this case i’s automaton with respect to j does not change.

(ii) The second line corresponds to the case that i directly interacts with j at time t. This happens with probabilityw.
In this case, we assume players always get a chance to update the co-player’s reputation. The updated
reputation state depends on the values of pi and qi, and on j’s actions. Player j’s action is C with probability
xji(t) and D with probability 1−xji(t).

(iii) The third line corresponds to the case that j interacts with some third party, which happens with cumulative
probability (w̄−w), but player i decides not to react to this indirect information, with probability (1−λi). In
this case i’s automaton with respect to j does not change.

(iv) The last line represents the case that j interacts with some third party l, which has probability w each, and i
updates her automaton with respect to j accordingly. In this case, player i’s updated state depends on whether
or not j cooperates, whether or not there is a perception error, and on the values of pi and qi. We sum up over
all possible interactions of player j with third parties.

Given this recursion, we can calculate the value of xij(t) for all future times t based on the initial condition xij(0)=

yi. This allows us to compute the weighted average xij :=(1−d)
∑∞
t=0 d

t ·xij(t). This average corresponds to the
probability to find player i’s automaton in the good state in a randomly picked round. Its value can be computed
explicitly, by representing Eq. (6) in matrix notation (SI Section 3). Based on the values of xij , player i’s expected
payoff becomes

πi =
1

n−1

∑
j 6=i

(xji b−xij c). (7)

This equation allows the explicit calculation of payoffs for arbitrary population compositions. Its results are in agree-
ment with the payoffs that one obtains when simulating the game dynamics explicitly (Extended Data Fig. 10).

Equilibrium analysis. Based on the payoff formula (7), we can explicitly characterise the generic Nash equilibria
of our model (i.e., those Nash equilibria that are robust with respect to small parameter changes). To this end,
it is useful to introduce the variable δ, which is the pairwise continuation probability (the probability that two
players interact again, given that they just had an interaction). This probability can be calculated explicitly. It
depends on the population-wide continuation probability d and on the population size n, and it is given by δ =

2d/
(
2d+(n−1)n(1−d)

)
. For a derivation, see SI Section 4.

By extending the theory of zero-determinant strategies8–16, we prove that a reactive strategy (y, p, q, λ) is a
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generic Nash equilibrium for 0<δ<1 if it is either ALLD=(0, 0, 0, λ), or if p−q=r∗λ with

r∗λ :=
1 + (n− 2)δλ

1 + (n− 2)(1− 2ε)λ
· c
λb
. (8)

In Fig. 3a,b, the set of all strategies that satisfy p−q=r∗λ is depicted by a coloured face and a coloured dashed line,
respectively. If the entire population adopts one of these Nash equilibrium strategies, no single player can gain a
higher payoff by deviating.

We call a generic Nash equilibrium cooperative, if it has the additional property that all players are fully coop-
erative in the limit of rare errors. Due to this latter property, the strategy needs to satisfy

y=p=1. (9)

That is, the strategy always needs to assign a good reputation to unknown players, and to players who have cooper-
ated in the latest relevant interaction. Combining Eqs. (8) and (9) shows that within the space of reactive strategies,
there is exactly one cooperative Nash equilibrium of direct reciprocity (λ= 0). This strategy is GTFT , as defined
in Eq. (1). Similarly, there is exactly one cooperative Nash equilibrium of indirect reciprocity (λ= 1), the strategy
GSCO, defined by Eq. (2). In addition to these distinguished boundary cases, we can use Eqs. (8) and (9) to con-
struct infinitely many cooperative Nash equilibria, one for every value of λ∈ [0, 1]. We refer to the class of all these
strategies as Generous Reciprocators. For all respective details, see SI Section 4.

Evolutionary analysis. We model the evolutionary spread of strategies in the population by a pairwise comparison
process46,47. Initially, players adopt an arbitrary strategy (y, p, q, λ). Then one player is randomly chosen from the
population to update her strategy. There are two distinct mechanisms how this updating can occur.

(i) With probability µ, there is a mutation event. In that case, the focal player abandons her old strategy and instead
switches to a new strategy (y′, p′, q′, λ′). The first three entries, y′, p′, q′, are uniformly and independently
drawn from the unit interval [0, 1]. For simplicity, we assume in most figures that the last entry λ′ is either
predetermined (for those simulations in which players are restricted to either direct or indirect reciprocity),
or that it is randomly taken from the set {0, 1}.

In addition, in Extended Data Fig. 12, we explore how evolution operates when players can also adopt
strategies with intermediate λ. For these simulations, we first compute how likely it is for a given strategy
(y, p, q, λ) that a player’s state with respect to a given co-player is updated between two consecutive games
of the two players. The respective probability γ can be calculated as (SI Section 5.4)

γ =
(n−2)λ

1 + (n−2)λ
. (10)

As one may expect, λ = 0 implies that γ = 0. That is, a player who ignores all third-party information
only updates the co-player’s state in a direct encounter and never in between. Similarly, λ= 1 implies that
γ = (n−2)/(n−1). That is, a player who takes all information into account has an (n−2)/(n−1) chance
to update the co-player’s state before the two players interact again (the only exception occurs when the co-
player engages in no third-party interaction in between, which happens with a 1/(n−1) probability). For the
simulations shown in Extended Data Fig. 12, we randomly draw mutant strategies (y′, p′, q′, λ′) such that
the respective γ′ according to Eq. (10) is evenly distributed in [0, (n−2)/(n−1)]. In this way, we ensure that
a randomly drawn mutant is approximately equally likely to base her decisions on direct and on third-party

13



information, respectively.

We note that alternatively, one could also consider a mutation scheme where λ itself is uniformly drawn from
the unit interval [0, 1]. We do not employ this alternative mutation scheme here because the resulting mutant
strategies would rarely engage in direct reciprocity. Intuitively, players in large populations have many more
third-party interactions than they have direct interactions. As a result, even for a comparably small value of λ,
the resulting γ according to Eq. (10) is typically close to one (especially if the population size n is large). For
uniform λ, players would thus rarely act based on their direct experience with the respective co-player. For
further details, see SI Section 5.4.

(ii) With probability 1−µ, there is an imitation event. In that case, the focal player randomly chooses another player
from the population as a potential role model. If the focal player’s payoff according to Eq. (7) is given by πF
and the role model’s payoff is πR, the focal player adopts the role model’s strategy with probability

ρ =
1

1 + exp
[
− β(πR − πF )

] . (11)

The parameter β ≥ 0 measures the strength of selection. For small values of β, the imitation probability is
roughly 1/2, independent of the strategies of the involved players. As the value of β increases, the more likely
it becomes that the focal player only adopts those strategies that yield a higher payoff.

For positive values of µ and finite values of β, the two mechanisms of mutation and imitation give rise to an ergodic
stochastic process on the space of all population compositions. To explore the evolutionary dynamics, we have
simulated this process for a large number of updating events. We record which strategies the players adopt over
time, and how often they cooperate. Because the process is ergodic, the time averages of these quantities converge,
and they are independent of the initial population67.

Specific methods employed for the figures. Fig. 3a,b depicts simulation results of the evolutionary process when
all players are either required to use direct (λ=0) or indirect reciprocity (λ=1). We simulated the process for 2·107

mutant strategies. For panels c–f, we have looked at simulations where the initial population either employs noisy
variant of ALLD, (0.01, 0.01, 0.01, λ), or a conditionally cooperative strategy, CC = (0.99, 0.99, 0.5, λ). We then
recorded how long it takes on average until a mutant strategy reaches fixation, and which mutant strategy succeeds.
Each bar depicts an average over 103 simulations. Panels g,h depict the players’ payoffs when the population con-
sists of a mixture of defectors and noisy discriminators (TFT in the case of direct reciprocity, SCO in the case with
indirect reciprocity, with p=0.99, q=0.01). As parameters for this figure, we use n=50, b=5, c=1, ε=0, β=10,
and the limit of rare mutations µ→0.

Fig. 4 explores how different mutation rates affect the results of Fig. 3. As in Fig. 3, all players are either restricted
to use direct (λ = 0) or indirect reciprocity (λ = 1). For the panels a–f, we have then simulated the evolutionary
process for different continuation probabilities. Panels a–c depict which strategies the players use over time, for
either the limit µ→0 (grey bars) or a mutation rate of µ=0.01 (coloured bars). The upper panels of d–e depict how
much players cooperate on average, for different values of µ. The lower panels show how many different strategies
are simultaneously present in a population on average. This number ranges from 1 in the limit of rare mutations
to n = 50 when mutations are abundant. Panels g–i consider populations that are initialised either with the same
noisy variant of ALLD considered in Fig. 3, or with the same conditionally cooperative strategy. Again, we record
how long it takes on average until the respective strategy has been removed from the population by the evolution-
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ary process. Each data point represents an average of 50 independent simulations. Time is scaled such that units
correspond to number of introduced mutant strategies. For µ→ 0 these extinction times converge to the values in
Fig. 3c,d. For µ→ 1, extinction times converge to a value that is the same for both strategies and all continuation
probabilities. Unless noted otherwise, parameters are the same as in Fig. 3.

Fig. 5 shows evolutionary results for the case that in addition to the y, p, q values, players are also free to choose
λ∈ {0, 1}. We consider two sets of simulations, either for the case of rare mutations (µ→0), or for a positive mu-
tation rate (µ=0.02). The panels a–c and e–g depict average trajectories for three specific scenarios. The scenarios
differ in the game’s continuation probability and the error rate. The specific parameters we use are δ= 0.3, ε= 0.1

(Fig. 5a,e), δ = 0.9, ε= 0.001 (Fig. 5b,f), and δ = 0.999, ε= 0.01 (Fig. 5c,g). The time trajectories represent an
average over 1,000 simulations. In the initial population, all players employ ALLD = (0, 0, 0, λ) with randomly
chosen λ∈{0, 1}. Time is scaled such that units correspond to the number of introduced mutant strategies since the
beginning of the simulation. In Fig. 5d,h, we systematically vary the continuation probability and the error rate of
the game. Each data point corresponds to the time average of a single simulation with 107 time steps. Unless noted
otherwise, parameters are the same as in Fig. 3.

Extended Data Fig. 3 explores how the results for the three scenarios considered in Fig. 5 change as we vary
four model parameters. The upper half of the figure considers the same basic setup as in Fig. 5: the population
is initialised such that every player uses ALLD. Then we simulate the process for a sufficient time (at least until
107 mutant strategies have been introduced). This time is chosen such that the average cooperation rate and the
average proportion of indirect reciprocity equilibrates, and that these quantities are independent of the chosen initial
population. In the lower half we consider an alternative simulation scheme. Here, we take the average over 200
simulations with randomly chosen initial populations. Each simulation is only run for 105 time steps (mutant strate-
gies introduced). The evolutionary parameters that we vary are the benefit-to-cost ratio b/c (between 1 and 12),
population size n (between 2 and 1,024), selection strength β (between 0.01 and 100) and mutation rate µ (between
0.0001 and 1). As the baseline parameters, we use the same values as in Fig. 5a–c.

Extended Data Fig. 4 investigates in more detail the non-monotonicity of evolving cooperation rates in Extended
Data Fig. 3e. To this end, we again consider the scenario with intermediately many interactions and reliable infor-
mation (δ=0.9, ε=0.001, orange curve in Extended Data Fig. 3e). Panels a,b, explore how many mutant strategies
it takes on average to invade two different resident strategies. Because the non-monotonicity arises in a scenario that
favours the evolution of indirect reciprocity, we consider two residents with λ=1. The defector resident is given by
(0.001, 0.001, 0.001, 1), whereas the cooperative resident adopts the strategy (0.999, 0.999, 0.650, 1). We have run
1,000 simulations for different values of the selection strength parameter (10−3≤β≤102). Dots represent outcomes
of individual simulations, whereas the red and blue curve represent average values. For panels c–e, we have run the
same evolutionary process as in Extended Data Fig. 3e for the scenario with intermediately many interactions and
reliable information. For three different intensities of selection, we have recorded the distribution of cooperation
rates over a simulation with 2 · 107 time steps. Time steps are measured in number of mutant strategies introduced
by the process.

For Extended Data Fig. 5, we have re-run the simulations in Fig. 5d for different noise scenarios. Except for the
changes explicitly mentioned (by changing the error scenario, or the information available to the players), the sim-
ulations have been performed exactly as for Fig. 5d.
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Extended Data Fig. 6 explores the stability of three different finite-state automata against a single ALLD or ALLC
mutant. Because there is no efficient payoff formula that computes the payoffs of arbitrary automata in the context
of indirect reciprocity with noisy observations, we computed the payoffs by simulations. To this end, we assumed
all automata are initialized in the good state. Then players engage in 2 · 106 pairwise interactions. To compute the
players’ average payoffs, we take the mean over all their payoffs in the second half of the simulation, as in previous
work32. Taking the average over all rounds would not alter our conclusions. As game parameters, we use n= 50,
b=5, c=1, and ε=0.05.

For Extended Data Fig. 7, we have first simulated the players’ payoffs for all possible population compositions
(kA, kC , kD). Here, kA is the number of players who adopt the respective automaton strategy, kC is the number
of unconditional cooperators, and kD is the number of defectors. For these payoff calculations, we have employed
the same process as in Extended Data Fig. 6. For pre-computed payoffs, the fixation probability of a given mutant
strategy into any other resident strategy can be computed explicitly68. Based on all pairwise fixation probabilities,
one can then compute how often each strategy is played on average48. This yields the panels a–c. For positive mu-
tation rates, the abundance of each strategy can still be computed explicitly, by formulating the evolutionary process
as a Markov chain. The states of this Markov chain are all possible population compositions (kA, kC , kD). When
n = 50, there are 1,326 such states. Thus, the dynamics can be described by an 1, 326×1, 326 transition matrix.
The entries of this transition matrix describe with which probability the population moves from state (kA, kC , kD)
to state (k′A, k

′
C , k

′
D) after one evolutionary updating event (see for example SI Section 6.2 in Ref. 32). The invari-

ant distribution of this Markov chain can be computed directly. It describes how often each state is visited by the
evolutionary process, as illustrated in panels d–f. Based on this invariant distribution, we can also calculate how
often players cooperate on average, as shown in panels g–i.

Extended Data Fig. 8 and Extended Data Fig. 9 use exactly the same method as Extended Data Fig. 6 and Ex-
tended Data Fig. 7, respectively. As the only difference, the finite-state automata are replaced by leading-eight
strategies.

Extended Data Fig. 10 considers a population consisting of 49 conditional cooperators and a single defector. The
cooperators employ the strategy (1, 1, 0.01, λ), whereas the remaining defector applies the strategy (0, 0, 0, λ). We
use two independent approaches to compute the players’ payoffs, the payoff equation (7), and explicit simulations of
the game dynamics (we averaged over 105 iterations per parameter combination). The parameters are a, ε=0.001,
δ=0.9 and b, ε=0.45, δ=0.999. The respective Python scripts used to run the simulations and for solving Eq. (7)
are provided in the SI.

For Extended Data Fig. 11, we repeat the simulations done in Fig. 5a–d, but now using the alternative strategy set
(y, p, q, κ) described in SI Section 6.2. Here, players who employ indirect reciprocity ignore all direct information
they may have. Game parameters are the same as in Fig. 5a–d.

Finally, in Extended Data Fig. 12, we repeat the simulations in Fig. 3, Fig. 4, and Fig. 5, but now allowing for
intermediate values of λ. In Extended Data Fig. 12a-d, we consider the case of a fixed λ value. To this end, we
use five different values of λ, which according to Eq. (10) map to the values of γ ∈ {0, 1/4, 1/2, 3/4, γmax}, with
γmax =(n−2)/(n−1). For the panels a, b, we consider the same setup as in Fig. 3a,b, and use the same parameter
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values. For the panels c,d, we use the same setup and the same parameters as in Fig. 4d,f. Finally, for the panels
e–h, we use the same parameters and the same general setup as in Fig. 5a–d. However, while in Fig. 5a–d, players
are restricted to strategies with either λ= 0 or λ= 1, here they can adopt arbitrary strategies with 0<λ< 1. The
bottom panels of Extended Data Fig. 12e–g show how often residents adopt different values of γ by the end of
each simulation (for 1,000 simulations in total). For details on how the respective mutant strategies are generated,
see Methods and SI Section 5.4.

Data availability. The raw data generated for the main text, which was used to create Fig. 3–Fig. 5, is available at
https://osf.io/brnvx/?view_only=4adc0b791a3640df88c94362d0f164e6. The raw data for
the Extended Data Figures is available from the authors upon request.

Code availability. All simulations and numerical calculations have been performed with MATLAB R2014A and
Python 2.7. In the SI Appendix, we provide the Python scripts used to simulate the game dynamics, numerically
calculate the players’ expected payoffs, and simulate the evolutionary process.
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Figure 1: A unifying framework for direct and indirect reciprocity. a, Under direct reciprocity, an individual’s
cooperation is returned directly by the beneficiary. b, Under indirect reciprocity, cooperation is not returned by the
beneficiary, but by some observer. c, To model direct and indirect reciprocity we consider individuals who assign
one of two possible reputations to their co-player, good (G) or bad (B). The current assignment is highlighted in
green. Individuals cooperate (C) with those co-players they consider as good, and they defect (D) against those they
deem as bad. d–g, Whether an individual considers a co-player as good depends on her strategy (y, p, q, λ). Here,
y is the initial probability to assign a good reputation to the co-player, without having any information; p and q are
the probabilities to assign a good reputation after the co-player has cooperated or defected in a direct interaction,
respectively. The receptivity λ is the probability with which an individual takes third-party interactions of the
respective co-player into account. For λ= 0, we obtain a model of direct reciprocity. For λ= 1, we obtain a model
of indirect reciprocity. While the illustrations depict one-way interactions for simplicity, our model considers two-
way interactions. When two players are chosen to interact, they both decide simultaneously whether to cooperate or
defect. All other population members observe their choices.
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Figure 2: An equilibrium analysis reveals when direct or indirect reciprocity can sustain cooperation.
a,b, Within the reactive strategies, there is one cooperative Nash equilibrium for direct reciprocity (GTFT), and
one such equilibrium for indirect reciprocity (GSCO). Both strategies have in common that they always cooperate
in the first round, or if the co-player has cooperated in the last relevant interaction (y= p= 1). They differ in how
they react to a co-player’s defection, as described by Eqs. (1) and (2), and in whether they take into account indirect
information. c, Depending on the parameters of the game, there are up to four scenarios: (i) When there are few
rounds and many perception errors, cooperation is infeasible; (ii) When there are intermediately many rounds and
few perception errors, cooperation can be sustained by indirect but not by direct reciprocity; (iii) When there are
many rounds and many perception errors, cooperation can be sustained by direct but not by indirect reciprocity;
(iv) When there are many rounds and few errors, both direct and indirect reciprocity support cooperation. d, In case
direct and indirect observations are subject to the same error rate, there is no region in which direct reciprocity can
sustain cooperation but indirect reciprocity cannot. The figure shows the case of n=50, b=1.8 and c=1. In c, the
white lines depict the continuation probabilities δ0 and δ1 given by Eq. (3). In d, they are given by δ0 =c/

(
(1−2ε)b

)
and δ1 = c/

(
(n−1)(1−2ε)b− (n−2)c

)
, where ε is now the joint error probability for both direct and indirect

observations.
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Figure 3: Evolutionary dynamics of direct and indirect reciprocity. We use individual based simulations to
explore the dynamics if either all players engage in direct (blue) or indirect reciprocity (green). We consider two
scenarios: individuals either engage in only a few games (top) or in infinitely many games (bottom). a,b, We find
that over the course of evolution, populations cluster in two regions of the strategy space. Populations are either
in the vicinity of ALLD (where y ≈ p ≈ q ≈ 0), or in the vicinity of conditionally cooperative strategies (where
p≈ 1). Percentages represent the fraction of time spent in each of these two neighbourhoods. Dots represent the
500 most long-lived resident strategies. As the impact of the first round is negligible for δ = 1, the state space
degenerates to a square instead of a cube. c,d, We have recorded how many mutants it takes to invade a population
of defectors or conditional cooperators. We find that a larger number of rounds undermines the stability of ALLD,
and enhances the stability of the cooperators. e,f, In addition, we have recorded which mutant strategies invade
these two resident strategies. On average, defectors are invaded by conditionally cooperative strategies with p� q.
g,h Under direct reciprocity, the payoff of a discriminating mutant (TFT) in an ALLD population increases linearly
in the number of mutants. Under indirect reciprocity, the payoff of a discriminating mutant (SCO) is nonlinear.
As baseline parameters in our evolutionary simulations, we use n= 50 and b/c= 1. For the exact setup of these
simulations, see Methods.
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Figure 4: Impact of mutations on either direct or indirect reciprocity. We have run additional simulations to
explore how larger mutation rates affect the results in Fig. 3. We consider the same two scenarios with few games
and infinitely many games, and in addition a scenario where the number of games is large but finite. a–c, We have
first run simulations for a particular positive mutation rate (coloured). We compare them with the results for the
limit of rare mutations (grey). The bar diagrams depict how often we are to observe players to use strategies (y, p, q,
λ) either for direct or indirect reciprocity. Similar to Fig. 3, we find that players are clustered in two regions of the
strategy space. Either they tend to defect (y≈q≈0) or they are conditionally cooperative (p≈1, q<1). We note that
the scenario for infinitely many games yields similar results as the scenario with many games. However, now the
initial propensity to cooperate y becomes irrelevant. d–f, When we vary the mutation rate systematically, we find that
while cooperation is relatively stable for direct reciprocity, cooperation under indirect reciprocity is reduced (upper
panels). Interestingly, the number of different strategies that are simultaneously present in the population only differ
marginally between direct and indirect reciprocity (lower panels). g–i, To explore what would cause this reduction
in cooperation for indirect reciprocity, we have checked the stability of defectors and conditional cooperators for
various mutation rates, as in Fig. 3c,d. In the interval 0.01< µ< 0.1 where indirect reciprocity yields the lowest
cooperation rate, we find that the stability of defectors is enhanced, whereas the stability of cooperators is reduced.
For the exact setup of these simulations, see Methods.
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Figure 5: The coevolution of conditional cooperation and information use. To explore when individuals them-
selves learn to use indirect information, we ran simulations in which players can either use direct information only
(λ=0) or all information (λ=1). a–c, We started with three particular scenarios in the limit of rare mutations. The
scenarios differ in how often subjects interact on average and how noisy indirect information is. When there are
only a few interactions and considerable noise, cooperation does not evolve at all (a). In the other two scenarios,
cooperation either evolves due to indirect (b) or to direct (c) reciprocity. d, In a next step, we systematically varied
the continuation probability δ and the error rate ε. Again, indirect reciprocity evolves for intermediate continuation
probabilities. e–g, We obtain qualitatively similar results for positive mutation rates (µ = 0.02). h, However, the
green region in which individuals take into account indirect information is substantially diminished. For the exact
setup of these simulations, see Methods.
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Extended Data Figure 1: Schematic representation of the model. a, We consider a population of size n. To
illustrate the basic workings of our model, we focus on three arbitrary players. b, Each player has a separate finite-
state automaton with two possible states G and B for each co-player. The current state is marked in bold. In this
example, player 1 considers player 2 as good and player 3 as bad. c, In each round, two players are chosen at
random to interact in a prisoner’s dilemma. Players cooperate if they consider their co-player to be good and they
defect otherwise. The other population members do not participate in the game, but they observe its outcome. d,
After the interaction, both active players update their respective automata, depending on their strategy and on the
co-player’s action. In addition, each observer independently updates her automata with respect to players 1 and 2
with probability λ each. e–h, We can mathematically describe how player i’s automaton with respect to player j
changes over time by distinguishing four possible events. First, player j is not chosen to interact, such that player i’s
automaton remains unaffected (e); second, players i and j interact with each other and update their respective states
accordingly (f); third, player j interacts with someone else, but player i does not take this interaction into account
(g); fourth, player j interacts with someone else, and player i updates j’s state accordingly (h).
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Extended Data Figure 2: Competition between conditional cooperators and defectors. We compare the perfor-
mance of conditional cooperators with strategy (1, 1, 1/3, λ) in a population of defectors, (0, 0, 0, λ). We consider
four scenarios, depending on whether players use direct or indirect reciprocity and depending on whether pairs
interact only a few times or often. Each panel shows the payoff of cooperators and defectors depending on how
many of the 50 population members are cooperators, for b= 5 and c= 1. In all four cases we find bistability (as
indicated by the arrows on the x-axis). That is, defectors have the higher payoff when there are few cooperators
and the lower payoff when there are many cooperators. However, the threshold number of cooperators necessary to
make cooperation beneficial differs. Indirect reciprocity has the lower threshold when there are only few rounds,
because cooperators are better able to restrict the payoff of defectors (as indicated by the smaller slope of the red
line in b compared to a). Direct reciprocity has the lower threshold when there are many rounds. Here, already a
few cooperators suffice to invade the defectors. In contrast, for indirect reciprocity cooperators need to establish a
critical mass because their payoffs increase nonlinearly.
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Extended Data Figure 3: Impact of different model parameters on the co-evolution of direct and indirect
reciprocity. We show how our evolutionary results in Fig. 5 are affected as we change different parameters of our
model. In each panel, we vary one parameter and leave all others constant. We consider the same three scenarios as
in Fig. 5a–c: few interactions and unreliable information (blue), intermediate interactions and reliable information
(orange), and many interactions and unreliable information (green). We employ two complementary simulation
techniques. In the upper half, each data point represents the average of a single simulation. This simulation was
run for sufficiently long such that the averages converge and are independent of the initial condition. This typically
happens after 107 mutant strategies have been introduced into the population. In the lower panels, each data point
represents the average of 200 simulations with a random initial population. Here, each simulation only introduces
105 mutant strategies. For the parameters, we consider variation in the benefit-to-cost ratio (a,b), the population
size (c,d), the selection strength (e,f), and the mutation rate (g,h). Our simulations suggest that each of these
parameters can have a considerable impact on the evolving cooperation rates and the player’s propensity to adopt
indirect reciprocity. For example, for the orange curve in panel e, we observe that the effect of selection strength
on cooperation can be non-monotonic. We further discuss these dependencies in Extended Data Fig. 4 and SI
Section 5. In general, however, we recover the following regularities from Fig. 5: (i) Substantial cooperation only
evolves in the second and third scenario (i.e., for the cooperation rates, the blue curve is systematically below the
other curves). (ii) If cooperation evolves, players prefer indirect reciprocity when there are intermediately many
interactions and outside information is reliable. They prefer direct reciprocity when there are may interactions and
when outside information is noisy (i.e., for the proportion of indirect reciprocity, the orange curve is systematically
above the green curve).
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Extended Data Figure 4: Impact of selection strength on indirect reciprocity. As shown in the upper panel of
Extended Data Fig. 3e, selection can sometimes have a non-monotonic effect on cooperation. For intermediate
interactions and reliable information (δ= 0.9, ε= 0.001, depicted by the orange curve in Extended Data Fig. 3e),
we have observed that the evolving cooperation rate is 53.4% for β=1, increases to 77.3% for β=10, and reduces
to 61.5% for β = 100. Here we present additional simulations to shed further light on this non-monotonicity.
a,b, We considered initial resident populations that either adopt a defective strategy or a conditionally cooperative
strategy. We recorded how long it takes the evolutionary process until the resident strategy is replaced, and what
the cooperation rate of the invading strategy is. Dots show the outcome of individual simulations, and the curves
represent averages. The results suggest that the non-monotonicity of cooperation is not due to a reduced stability of
cooperative strategies. They remain highly robust even for large selection strengths. Moreover, when selection is
strong, they are typically invaded only by other cooperative strategies. c,d In a next step, we recorded the distribution
of cooperation over time for three different selection strengths for the process considered in Extended Data Fig. 3e.
We find that this distribution becomes more extreme with increasing selection strength: individuals either become
highly cooperative or highly non-cooperative. However, the proportion of non-cooperative populations grows faster
than the proportion of cooperative populations.
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Extended Data Figure 5: Effect of different types of errors and incomplete information on cooperation. a, To
explore how sensitive our results are to different kinds of errors and incomplete information, we have repeated the
rare mutation simulations shown in Fig. 5d, reproduced here. b, While the baseline model assumes that only indirect
observations are subject to perception errors, here we explore the effects when direct observations are equally
prone to errors. We find that cooperation is substantially reduced compared to the baseline scenario. Moreover,
direct reciprocity is only favoured for very large continuation probabilities. c, We have also explored the effect
of additional implementation errors on cooperation. To this end, we assume here that players mis-implement their
intended action with fixed probability e = 0.01. Compared to the baseline model without such errors, we find
that there is less cooperation and less direct reciprocity. d, To mimic the dynamics that arises when defectors
strategically conceal their bad actions, we have also considered a model in which defective actions are misperceived
with probability ε, whereas cooperative actions are always observed faithfully. Because this assumption reduces
the total rate at which errors occur compared to the baseline scenario, we observe more cooperation and players
are more reliant on indirect reciprocity. e, Here we assume that individuals observe third-party interactions only
with probability ν = 0.01. Due to the scarcity of information, players who take any third-party information into
account are almost indistinguishable from those players who do not. As a result, cooperation is largely independent
of observation errors, and the region in which indirect reciprocity is favoured has vanished. Unless noted otherwise,
all parameters are the same as in Fig. 5d.
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Extended Data Figure 6: Direct and indirect reciprocity for finite-state automata with three states. In an
extension of our model, we allow players to assign more nuanced reputations to their co-players. We illustrate this
approach by considering finite state automata with three states - good (G), neutral (N ) and bad (B), with G as the
initial state. We assume n−1 residents employ the respective finite-state automaton strategy, while the remaining
player uses either ALLC or ALLD. We simulate the players’ payoffs for various values of λ ∈ [0, 1]. We consider
three different automaton strategies employed by the residents. The automata differ in how they deal with co-
players that are assigned a neutral reputation. a, Players with the first automaton A1 are fully cooperative when
they encounter a co-player with neutral reputation. This strategy can sustain cooperation among itself. However, a
single ALLC player obtains approximately the same payoff as the residents, and hence can invade by (almost) neutral
drift. b, According to the second automaton A2, players cooperate against neutral opponents with 50% probability.
This strategy can be invaded by ALLC for all λ> 0. c, According to A3, players defect against co-players with a
neutral reputation. This strategy is not stable against ALLC for λ>0, and residents fail to cooperate with each other
altogether.
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Extended Data Figure 7: Evolutionary competition between finite state automata, ALLC, and ALLD. We
have explored the evolutionary dynamics when population members can choose between ALLC, ALLD, and one of
the three finite-state automata introduced in Extended Data Fig. 6. a–c, First, we have explored the limit of rare
mutations, using the same game payoffs as in Extended Data Fig. 6, and a fixed receptivity λ= 0.1. The numbers
in each circle denote how often the respective strategy is played on average. Arrows illustrate how likely a single
mutant fixes in the respective resident population. Solid arrows indicate that the fixation probability is larger than the
neutral 1/n, whereas for dotted arrows this probability is smaller than neutral. We find that only the first automaton
A1 can outperform both ALLC and ALLD. d–f, In a next step, we have explored the same scenario for a positive
mutation rate µ = 0.01. The triangles represent the possible population compositions. Each corner corresponds
to a homogeneous population, whereas the center corresponds to a perfectly mixed population. The color code
reflects how often we observe the respective population composition over the course of evolution. We find that
most of the time, populations are either in the neighborhood of ALLD, or they represent some mixture between the
automaton strategy and ALLC. g–i, We have re-run the simulations in panels d–f, but now varying either the benefit
of cooperation, the selection strength, or the mutation rate. In all cases, we observe that the first automaton is most
favorable to cooperation. Interestingly, we observe the largest cooperation rate for intermediate mutation rates. This
result, however, may be due to the fact that players can only choose from an unbalanced strategy space, as discussed
in detail in SI Section 6.3.

32



g b

g g g g g g g g

g g gb b b

g g g g g g g g

g g g b b b bg

b b b b b b b b

g g g g g g g g

b b b b b b b b

b b g g g b bg

C C C C C C C C

D D D D D D D D

C C C C C C C C

D D D D D DC C

Assessment rule

Good cooperates 

 

        with Bad

Bad cooperates 

        with Bad

Good defects 

against Bad

Bad defects 

Action rule

Good meets

Bad

Bad meets 

Bad

L1 L2 L3 L4 L5 L6 L7 L8
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0

1

2

3

4

5

P
a
y
o
ff

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■ ■ ■ ■ ■ ■
■

0

1

2

3

4

5

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0

1

2

3

4

5

P
a
y
o
ff

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0

1

2

3

4

5

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■
■ ■ ■ ■ ■ ■ ■

■
■

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0

1

2

3

4

5
P
a
y
o
ff

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0

1

2

3

4

5

L5

L6
ALLC

ALLD

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■
■

■ ■ ■ ■ ■ ■ ■ ■

0.0 0.5 1.0
0

1

2

3

4

5

Receptivity λ

P
a
y
o
ff

■

■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0.0 0.5 1.0
0

1

2

3

4

5

Receptivity λ

L7 L8

ALLC

ALLC

ALLD
ALLD

with Good

with Good

against Good

against Good

against Bad

Good

Good

L1 L2 L3 L4 L5 L6 L7 L8

ALLD

ALLD ALLD

ALLD ALLD

ALLC

ALLC ALLC

ALLC

ALLC

L1

L2

L3 L4

a b c

d e

f g

h i

Extended Data Figure 8: Performance of leading-eight strategies under direct and indirect reciprocity. a, Pre-
vious research has suggested that there are eight stable third-order strategies of indirect reciprocity that can sustain
cooperation22, called the leading eight, L1–L8. They consist of two components, an assessment rule and an ac-
tion rule. The assessment rule determines how players evaluate each other’s actions, depending on the previous
reputations of the involved players. The action rule determines how to interact in the game, depending on one’s
own reputation and on the reputation of the co-player. b–i, To explore the stability of these strategies, we consider a
population in which n−1 players adopt one of the leading-eight strategies. The remaining player either adopts ALLC
or ALLD. Our results for λ > 0 reflect previous findings32: in the presence of perception errors, all leading-eight
strategies are susceptible to invasion by either ALLC or ALLD. Only for λ= 0 (when perception errors are absent),
the leading-eight strategies are stable against both mutant strategies.
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Extended Data Figure 9: Evolutionary dynamics of the leading-eight. Similar to Extended Data Fig. 7 for finite
state automata, this figure explores how each of the leading-eight fares in an evolutionary competition against ALLC
and ALLD for a fixed receptivity λ= 0.1. a–h, When mutations are rare, only ‘Judging’ (L8) is played in notable
proportions. However, in the presence of perception errors, this strategy tends to assign a bad reputation to other
players with the same strategy, such that everyone defects eventually32. i–p, When mutations are more common,
some of the leading-eight strategies can stably coexist with ALLC. We observe such cooperative coexistences for
L1, L2, and L7. q–s, These three strategies also yield substantial cooperation rates when we vary the benefit
of cooperation, the selection strength, and the mutation rate. With respect to mutation, we again observe that
intermediate mutation rates are most favorable to cooperation. However, this finding may not be robust, because the
strategy space is again unbalanced. For a more detailed discussion, see SI Section 6.4.
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Extended Data Figure 10: Simulations of the game dynamics confirm the results of the analytical payoff
calculations. Here, we explore whether equation (7) gives an accurate prediction of the resulting payoffs when
all players adopt some (reactive) strategy (y, p, q, λ). To this end, we consider n−1 conditional cooperators with
strategy (1, 1, 0.01, λ). The remaining player is a defector. We calculate payoffs in two different ways, by using
the formula (7), and by simulating the game dynamics explicitly. a, When errors are rare and the continuation
probability is comparably small, cooperators can only outperform defectors when they take indirect information
into account. b, In contrast, when information is noisy and there are many pairwise interactions, cooperators obtain
a better payoff when they ignore indirect information. In both cases, our analytical results agree with the simulations.
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Extended Data Figure 11: The coevolution of conditional cooperation and information use in a model of “pu-
rified” indirect reciprocity. For the model discussed in the main text, we assume that after a direct interaction,
players always update their co-player’s reputation. After a indirect interaction, they update their co-player’s reputa-
tion with probability λ. These assumptions imply that even if λ= 1, players may occasionally react based on their
direct experiences. This happens, for example, if two players have two consecutive interactions. In that case, the
players’ behavior in the second round will depend on the outcome of the first. While such an assumption seems
realistic, it can be useful to compare purified versions of both kinds of reciprocity. We explore such a model in SI
Section 6.2. There, the players’ strategies take the form (y, p, q, κ). A value of κ= 0 means players ignore all of
a co-player’s third party interactions (similar to the case λ= 0 discussed before). A value of κ= 1, however, now
means that players ignore all direct information they may have. In the limit of large populations, the two strategy
spaces (y, p, q, λ) and (y, p, q, κ) yield identical results. Here we repeat the simulations performed in Fig. 5a–d for a
finite population of n= 50, using the alternative strategy space (y, p, q, κ). The results are almost indistinguishable
from the results shown in Fig. 5a–d.
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Extended Data Figure 12: Evolution of cooperation for players with intermediate degrees of receptivity. In
the main text figures Fig. 3–Fig. 5, we explore situations in which individuals can choose strategies where they
either only take direct information into account (λ = 0), or where they take all information into account (λ = 1).
Here we repeat these simulations in a setup where intermediate values of λ are permitted. To this end, we define
a quantity γ. This quantity is the probability that a player’s decision is based on the co-player’s behavior towards
third parties, see Eq. (10) in Methods. For 0≤ λ≤ 1 we obtain 0≤ γ ≤ γmax := (n−2)/(n−1). a,b, We repeat
the simulations in Fig. 3a,b for various values of γ. We observe that cooperation is never most likely to evolve
for intermediate values of γ. Either most cooperation evolves for γ = γmax (in panel a), or for γ = 0 (in panel b).
c,d, Similarly, we repeat the simulations in Fig. 4d,f for various values of γ. Again, the average cooperation rates
for intermediate γ are strictly in between the results for γ=0 and γ=γmax. e–h, Finally, we repeat the simulations
shown in Fig. 5a–d, allowing for mutant strategies (y, p, q, λ) that lead to arbitrary values of γ between 0 and γmax.
Especially for larger error rates, we observe that the evolving cooperation rates are now smaller. Nevertheless, the
general patterns of Fig. 5 remain: (i) When there are only few rounds and many observation errors, cooperation
does not evolve. (ii) When there are intermediately many rounds and few errors, cooperation evolves and players
tend to put more weight on indirect information (that is, γ tends to be larger than 1/2). In particular, strategies
with γ ≈ γmax are most abundant. (iii) When there are many rounds and intermediately many errors, cooperation
evolves and players tend to put more weight on direct information. Here, players are most likely to adopt a strategy
with γ≈0. See SI Section 5.4 for details.
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