
The Convergence of Slide-type Reductions

Michael Walter???

IST Austria
michael.walter@ist.ac.at

Abstract. In this work, we apply the dynamical systems analysis of
Hanrot et al. (CRYPTO’11) to a class of lattice block reduction al-
gorithms that includes (natural variants of) slide reduction and block-
Rankin reduction. This implies sharper bounds on the polynomial run-
ning times (in the query model) for these algorithms and opens the door
to faster practical variants of slide reduction. We give heuristic arguments
showing that such variants can indeed speed up slide reduction signifi-
cantly in practice. This is confirmed by experimental evidence, which also
shows that our variants are competitive with state-of-the-art reduction
algorithms.

1 Introduction

Lattice block reduction is a key tool in cryptanalysis, so understanding its poten-
tial and its limitations is essential for the security of many cryptosystems. The
basic idea of lattice block reduction is to use an oracle that solves the shortest
vector problem (SVP) on lattices with low dimension to find short vectors in lat-
tices with larger dimension. Most work in lattice block reduction has focused on
BKZ [Sch87,SE94] – the first generalization of the celebrated LLL [LLL82] algo-
rithm, see e.g. [GN08b,HPS11,CN11,Wal15,ADH+19,AWHT16,ABF+20,LN20]
to list just a few. Other reduction algorithms are known, like slide reduction
[GN08a,ALNS20] and SDBKZ [MW16], which allow proving better bounds on
the output quality, but in practice BKZ is still the go-to choice for finding short
vectors. Block reduction algorithms are usually judged by the shortness of the
vectors they are able to find within a given amount of time. The length of the
vector found can be quantified in two different ways: by its ratio with either 1)
the shortest non-zero vector of the lattice (the approximation factor) or 2) the
(n-th root of the) volume/determinant of the lattice (the Hermite factor).

Slide Reduction. The focus of this work is slide reduction and, to some degree,
its generalization to block-Rankin reduction [LN14]. When it was introduced,

? Supported by the European Research Council, ERC consolidator grant (682815 -
TOCNeT).

?? ©IACR 2021. This article is the final version submitted by the author to the IACR
and to Springer-Verlag on 02/25/2021. The version published by Springer-Verlag is
available at https://doi.org/10.1007/978-3-030-75245-3_3.

https://doi.org/10.1007/978-3-030-75245-3_3

slide reduction provided the best-known bounds on the approximation and Her-
mite factor and was easily proved to terminate in a polynomial number of calls
to the SVP oracle. Other algorithms achieving the same Hermite factor and
terminating in a (smaller) polynomial number of SVP calls are known at this
point [MW16,Neu17], but to date, slide reduction still achieves the best bound
on the approximation factor. The basic idea of slide reduction is simple: given
a basis B for an n-dimensional lattice, a block size d that divides1 n and an
oracle that solves SVP in dimension d, apply the SVP oracle to the n/d dis-
joint (projected) blocks

(
B[id+1,(i+1)d]

)
i

of the basis. Then apply the oracle to

the dual of the blocks shifted by 1, i.e. to
(
B̂[id+2,(i+1)d+1]

)
i
. This results in

“primal” and “dual” blocks that overlap by one index (and d− 1 indices). This
process is repeated until no more progress is made. The generalization to block-
Rankin reduction works similarly, but it solves a more general problem and
uses a more general tool. It approximates the densest sublattice problem (DSP)
[DM13], which is itself a generalization of SVP, by relying on an oracle that
solves the k-DSP in dimension d. (SVP corresponds to 1-DSP.) In this variant,
the dual blocks are shifted by k resulting in overlaps of size k. The analysis of
this algorithm is a straightforward adaptation of the one for slide reduction. Un-
fortunately, initial experimental evaluations of slide reduction [GN08a,GN08b]
found it to be not competitive in practice with BKZ and so far there has been
no research into practical variants of slide reduction and block-Rankin reduction
to the best of our knowledge. This is despite the fact that it offers some trivial
parallelization, since the disjoint blocks can be processed independently. This is
not true for other reduction algorithms and could give slide reduction a consid-
erable advantage in practice, especially because modern SVP solvers are hard to
distribute.

Dynamical Systems Analyses. Inspired by the analysis of LLL, [GN08a,LN14]
used an analysis based on a potential function to bound the number of oracle
calls in slide reduction and block-Rankin reduction. Such an analysis does not
work well for BKZ and for a long time it was open if the number of oracle calls
in BKZ may be polynomially bounded. This changed when [HPS11] proposed
an analysis based on dynamical systems to study BKZ and showed that one
can put a polynomial bound on the number of oracle calls while preserving its
output quality. Interestingly, this bound was much stronger than the one proven
for slide reduction (and block-Rankin reduction) using the potential function. It
was conjectured in [HPS11] that applying their approach to slide reduction may
give much better bounds than the ones proven in [GN08a,LN14].

A similar analysis was later used to study another reduction algorithm,
SDBKZ [MW16], where the analysis was simpler and cleaner. Unfortunately,
[MW16] left a gap, where for certain parameterizations of the algorithm the
bound on the number of oracle calls was not polynomial. The gap was closed

1 The restriction that d | n is lifted in [ALNS20] by combining it with the algorithm
of [MW16].

2

later by [Neu17], using a seemingly different analysis: “simple (and sharper) in-
duction arguments on a bound on the bit sizes”. On closer inspection, it turns
out that the analysis of [Neu17] can also be seen as an instance of the typical
dynamical systems analysis, but with a small tweak. We make this tweak ex-
plicit in Section 5, which allows us to apply a similar tweak in our analysis of
Slide-type reductions (see below).

1.1 Results

In this work, we consider a class of reduction algorithms that capture natural
variants of slide reduction and block-Rankin reduction. We apply the dynamical
systems analysis to the algorithms in this class and show that they converge
quickly. This implies sharper polynomial-time running time bounds in the query
model for slide reduction (when used to find short vectors in terms of the Hermite
factor) and block-Rankin reduction.

Theorem 1 (Informal). Let B ∈ Rm×n be an LLL-reduced lattice basis with

det(L(B)) = 1 and ε > 0 an arbitrary constant. After O
(

n3

dk(d−k) ln
(
n
ε

))
calls

to the (k, d)-DSP oracle, the output basis of block-Rankin reduction satisfies

det
(
L
(
B[1,k]

))1/k
. (1 + ε)γ

n−k
2k(d−k)

k,d .

The best previous bound on the number of oracle queries proven in [LN14]

is O
(
n3 logmaxi ‖bi‖

εd2

)
. For degenerate cases, maxi ‖bi‖ can be arbitrarily large

(within the restriction that its logarithm is polynomial in the input size) even
for LLL-reduced bases of lattices with determinant 1. (We focus on lattices with
determinant 1 in this work for convenience. This is w.l.o.g. since one can always
scale the lattice accordingly.) Theorem 1 confirms the conjecture of [HPS11].
Not only does it give a much stronger bound for slide reduction in case k = 1,
it also gives a bound for block-Rankin reduction that depends on the overlap k
and improves for increasing k. This can be viewed as formalizing the intuition
that a larger overlap leads to faster propagation of information within the basis.
Of course, solving the DSP for larger k is also harder and thus the complexity
of the oracle itself will be larger and so will the overall running time.

In light of this it is natural to replace the DSP oracle by an oracle that
approximates the DSP instead of solving it exactly. This suggests a variant,
where the DSP problem is approximated using an HKZ oracle. We call this
variant HKZ-slide reduction. It is inspired by recent observations in [ADH+19]
that modern SVP solvers do not only find the shortest vector but approximately
HKZ reduce the head of the basis essentially for free. Compared with slide reduc-
tion, increasing the overlap in HKZ-slide reduction decreases the running time
at the cost of slightly increasing the length of the shortest vector found. We give
heuristic arguments (Section 4.1) and experimental evidence (Section 4.2) that
demonstrate that this trade-off can be very favorable in practice. A well chosen
overlap yields a variant of slide reduction that we consider competitive with the

3

state-of-the-art in lattice block reduction [ADH+19]. When interpreting this re-
sult, it should be kept in mind that we did not explore all options to fine-tune
the oracle to our algorithm and that BKZ has received considerable research
effort to arrive at the performance level it is at now. This is not the case for
slide reduction. To the best of our knowledge, this work is the first attempt of
improving the practical performance of slide reduction beyond speeding up the
SVP oracle.

1.2 Techniques

We define a class of algorithms, which we call Slide-type reductions, and use
the dynamical systems analysis introduced in [HPS11] to analyze their behavior
by studying the properties of a system x 7→ Ax + b. Here, the variable x is a
function of the current basis during the execution and A and b depend on the
reduction algorithm (see Section 2.2 for details). The fixed point of the system
determines the result of the reduction and the norm of A its running time. After
modeling Slide-type reductions in this way, we confirm that the fixed point yields
the expected output quality as was proven in previous work for algorithms that
fall into the class of Slide-type reductions, but we are actually more interested
in the convergence of the system. Accordingly, we wish to study the norm of A,
which in our case has the following form:

A =


1− 2β β
β 1− 2β β

. . .
β 1− 2β


for some 0 < β ≤ 1/4 that depends on the parameters of the algorithm. Our
goal is to bound some norm (induced by some vector p-norm) of A away from
1, i.e. show that ‖A‖p ≤ 1 − ε for some large enough ε > 0. Clearly, this does
not work for the row or column sum norm (p = ∞ and p = 1, respectively),
since they are 1. We conjecture that the spectral norm (p = 2) is in fact smaller
than 1, but this seems hard to prove directly. Instead, we apply a trick implicitly
used by Neumaier [Neu17] to analyze SDBKZ: we apply a change of variable.
We make Neumaier’s trick explicit in Section 5 and then apply a similar change
to our system. This results in a new matrix, for which we can easily bound the
row sum norm (p =∞), which implies our results.

1.3 Open Problems

Our results show that slide reduction finds short vectors in terms of the Her-
mite factor much faster than was previously proven. By using a well-known
reduction due to Lovász [Lov86], one can also find short vectors in terms of
the approximation factor at the cost of calling slide reduction O(n) times, in-
creasing the running time by this factor. However, the resulting approximation
factor is somewhat worse than what is proved in [GN08a]. An interesting open

4

problem is whether one can prove that the approximation factor of [GN08a] can
also be achieved with a number of oracle calls similar to our bound. Conversely,
it might be that achieving this approximation factor does indeed require many
more oracle calls.

We show in Section 4.2 that our variant of slide reduction is competitive with
state-of-the-art reduction algorithms, but does not outperform them. However,
given the lack of research into practical variants of slide reduction, we believe
this might well be possible. We outline some avenues in Section 4.2 to improve
our variant.

2 Preliminaries

Notation. Numbers and reals are denoted by lower case letters. For n1 ≤ n2 ∈ Z
we denote the set {n1, . . . , n2} by [n1, n2]. For vectors we use bold lower case
letters and the i-th entry of a vector v is denoted by vi. Let 〈v,w〉 =

∑
i vi ·wi

be the scalar product of two vectors. If p ≥ 1 the p norm of a vector v is

‖v‖p = (
∑
|vi|p)1/p. We will only be concerned with the norms given by p = 1,

2, and ∞. Whenever we omit the subscript p, we mean the standard Euclidean
norm, i.e. p = 2. Matrices are denoted by bold upper case letters. The i-th
column of a matrix B is denoted by bi and the entry in row i and column j by
Bi,j . For any matrix B and p ≥ 1 we define the induced norm to be ‖B‖p =
max‖x‖p=1 (‖Bx‖p). For p = 1 (resp. ∞) this is often denoted by the column
(row) sum norm, since ‖B‖1 = maxj

∑
i |Bi,j | and ‖B‖∞ = maxi

∑
j |Bi,j |; for

p = 2 this is also known as the spectral norm, i.e. the largest singular value of
B.

2.1 Lattices

A lattice Λ is a discrete subgroup of Rm and is generated by a matrix B ∈ Rm×n,
i.e. Λ = L(B) = {Bx : x ∈ Zn}. If B has full column rank, it is called a basis
of Λ and dim(Λ) = n is the dimension (or rank) of Λ. Any lattice of dimension
larger than 1 has infinitely many bases, which are related to each other by
right-multiplication with unimodular matrices. We use the notion of projected
subblocks B[i,j] for i < j < n, i.e. B[i,j] is the matrix consisting of the columns
bi,bi+1, . . . ,bj projected onto the space orthogonal to spanR(b1,b2, . . . ,bi−1).
We define the Gram-Schmidt-Orthogonalization (GSO) B∗ of B, where the i-th
column b∗i of B∗ is defined as b∗i = bi −

∑
j<i µi,jb

∗
j and µi,j = 〈bi,b∗j 〉/‖b∗j‖2

(and b∗1 = b1). In other words, b∗i = B[i,i]. For every basis of a lattice with
dimension larger than 1 there are infinitely many bases that have the same GSO
vectors b∗i , among which there is a (not necessarily unique) basis that minimizes
‖bi‖ for all i. Transforming a basis into this form is commonly known as size-
reduction and is easily and efficiently done using a slight modification of the
Gram-Schmidt process. In this work, we will implicitly assume all bases to be
size-reduced. The reader can simply assume that any basis operation is followed
by a size-reduction.

5

Every lattice Λ has invariants associated to it. One of them is its determinant
det (L (B)) =

∏
i ‖b∗i ‖ for any basis B. Note that this implies that for any two

bases B and B′ of the same lattice we have
∏
i ‖b∗i ‖ =

∏
i ‖(b′i)∗‖ and the

determinant is efficiently computable given any basis. Furthermore, for every
lattice Λ we denote the length of its shortest non-zero vector (also known as its
first minimum) by λ1 (Λ), which is always well defined. We use the short-hand
notations det (B) = det (L (B)) and λ1 (B) = λ1 (L (B)) if no confusion may
arise.

Hermite’s constant is defined as γn = supΛ:dim(Λ)=n (λ1 (Λ) / det (Λ))
2
.

Minkowski’s theorem is a classic result that shows that γn ≤ n. View-
ing a shortest vector as the basis of a 1-dimensional sublattice of Λ leads
to a straightforward generalization of the first minimum to the densest k-
dimensional sublattice µk (Λ) = minΛ′⊂Λ:dim(Λ′)=k det (Λ′). The correspond-
ing generalization of Hermite’s constant is known as Rankin’s constant γk,n =

supΛ:dim(Λ=n)

(
µk (Λ) / det (Λ)

k/n
)2

.

There is a heuristic version of Minkowski’s bound based on the Gaussian
heuristic which states that most lattices that arise in practice satisfy λ1 (Λ) ≈√
d/2πedet (Λ)

1/n
, unless there is an explicit reason to believe otherwise (e.g. an

unusually short vector is planted in the lattice). We note that there is a theory
of random lattices, which allows to turn this bound into a rigorous average-case
version of Minkowski’s bound, see e.g. [ALNS20] and references therein. For this
work it is sufficient to know that the Gaussian heuristic is precise enough for
lattices with dimension larger than 45 arising in lattice block reduction to predict
its behavior in practice [CN11,GN08b,MW16].

Heuristic 1 [Gaussian Heuristic] For any lattice Λ with dim(Λ) ≥ 45 arising

in lattice reduction we assume that λ1(Λ) ≈
√
d/2πedet (Λ)

1/n
.

For every lattice Λ, its dual is defined as Λ̂ = {w ∈ spanR (Λ) |〈w,v〉 ∈
Z for all v ∈ Λ}. It is a classical fact that det(Λ̂) = det (Λ)

−1
. For a lattice

basis B, let B̂ be the unique matrix that satisfies spanR (B) = spanR(B̂) and

BT B̂ = B̂TB = R, where R is the identity matrix with reversed columns (see

Section 5). Then L̂ (B) = L(B̂) and we denote B̂ as the reversed dual basis of

B. Note that B̂[i,j] = B̂[n+1−j,n+1−i].

Definition 1. Let B ∈ Zm×n be a lattice basis. We call B k-partial HKZ reduced
if ‖b∗i ‖ = λ1

(
B[i,n]

)
for all i ∈ [1, k].

An n-dimensional basis B is SVP reduced (HKZ reduced), if it is 1-partial
(n-partial, resp.) HKZ reduced. The root Hermite factor achieved by B is defined
as (‖b1‖/ det(B)1/n)1/n.

We use some notation from [HS07]:

Definition 2. For a lattice basis B we define π[j,k] (B) =
(∏k

i=j ‖b∗i ‖
)1/(k−j+1)

and Γn (k) =
∏d−1
i=d−k γ

1
2i
i+1. We sometimes omit B and simply write π[j,k] if B

is clear from context.

6

Using these definitions, [HS07] proves useful inequalities regarding the geom-
etry of (k-partial) HKZ reduced bases. We will use the following:

Lemma 1 ([HS07]). If B is k-partial HKZ reduced, then

π[1,k] ≤ Γd (k)
d/k

πk+1,d.

The proof is pretty straightforward using Minkowski’s bound and induction.

Definition 3. A basis B ∈ Rm×n is called LLL-reduced2 if ‖b∗i ‖ = λ1
(
B[i,i+1]

)
,

which implies ‖b∗i ‖ ≤ γ2‖b∗i+1‖, for all i ∈ [1, n− 1].

We will need the following two facts about LLL.

Fact 1 If B ∈ Rm×n is LLL-reduced, then we have

π[1,i] ≤ γ
n−i
2

2 π[1,n]

for all i ∈ [1, n].

See e.g. [PT09] for a proof.

Fact 2 Let B ∈ Rm×n be a lattice basis and B′ be the result of applying LLL to
B. Then we have

π[1,i] (B′) ≤ π[1,i] (B)

for all i ∈ [1, n].

Fact 2 can be seen to be true from a similar argument to the one showing
that the potential function used to analyze LLL may only decrease under the
swaps that LLL performs. More specifically, LLL reduction only applies two
types of operations: size-reduction, which does not change the value π[1,i] (B)
for any i, and swapping consecutive vectors. Swapping vectors only affects the
value π[1,i] (B) for exactly one i and the condition, under which such swaps are
performed, ensures that this value can only decrease.

Finally, BKZ is a block-wise generalization of LLL.

Definition 4. A basis B ∈ Rm×n is called d-BKZ reduced if ‖b∗i ‖ = λ1
(
B[i,`]

)
,

where ` = min (i+ d, n), for all i ∈ [1, n].

2 Technically, LLL reduction also requires size-reduction and usually contains a slack
factor in the inequality to guarantee termination in polynomial time. Neither of
these additional requirements are important for this work, so we ignore it here for
simplicity.

7

2.2 Discrete-Time Affine Dynamical Systems

Consider some dynamical system

x 7→ Ax + b (1)

and assume that ‖A‖p < 1 for some p. This implies two facts:

1. Equation (1) has at most one fixed point x∗ = Ax∗ + b, and
2. if Equation (1) has a fixed point x∗ it converges to x∗ exponentially fast in

the number of iterations (with base e−(1−‖A‖p)).

To see 1, note that two distinct fixed points x∗1 6= x∗2 would imply

0 6= ‖x∗1 − x∗2‖p = ‖A (x∗1 − x∗2) ‖p ≤ ‖A‖p‖x∗1 − x∗2‖p < ‖x∗1 − x∗2‖p

which is a contradiction. For 2, let x∗ be the unique fixed point of Equation (1).
We can write any input x′ as x′ = x∗ + e for some “error vector” e. When
applying the system to it, we get x′ 7→ Ax′ + b = x∗ + Ae. So the error vector
e is mapped to Ae. Applying this ` times maps e to A`e, which means after `
iterations the error vector has norm ‖A`e‖p ≤ ‖A`‖p‖e‖p. Let ‖A‖p ≤ 1− ε for

some ε > 0, then ‖A`‖p ≤ ‖A‖`p ≤ (1− ε)` ≤ e−ε`, so the error vector will decay
exponentially in ` with base e−ε and the system converges to the fixed point x∗.

Let D be an invertible matrix. We can use D for a change of variable to
y = Dx, which allows to rewrite Equation (1) to

y = Dx 7→ DAD−1y + Db (2)

It is easy to see that for any fixed point x∗ of Equation (1), y∗ = Dx∗ is a fixed
point of Equation (2). This can be useful as it is often more convenient to bound
‖DAD−1‖p for some D and p than ‖A‖p (as we will see). If additionally the
condition number κp (D) = ‖D‖p‖D−1‖p is small, then system (1) converges
almost as quickly as system (2):

Fact 3 Let x` be a vector resulting from applying system (1) ` times to the
input x0 and denote e` = x` − x∗. Let D be an invertible matrix such that
‖DAD−1‖p = 1− ε for some ε > 0. Then ‖e`‖p ≤ exp (−`ε)κp (D) ‖e0‖p.

Proof. Let y0 = Dx0 and y`+1 = DAD−1y`+Db for all ` > 0. Induction shows
that y` = Dx`. By above argument, we have ‖y`−y∗‖p ≤ exp (−`ε) ‖y0−y∗‖p.
Now the result follows from

‖e`‖p = ‖x` − x∗‖p
= ‖D−1y` −D−1y∗‖p
≤ ‖D−1‖p‖y` − y∗‖p
≤ exp (−`ε) ‖D−1‖p‖y0 − y∗‖p
≤ exp (−`ε) ‖D−1‖p‖D‖p‖e0‖p.

ut

8

Application to Lattice Reduction. Dynamical systems are a useful tool to study
lattice reduction algorithms. As was first observed in [HPS11], for an iteration
of some lattice reduction algorithm we can often show that y ≤ Ax+b, where x
(y) is some characterization of the input (output, resp.) basis for this iteration.
If all entries in A are non-negative, we can iterate this inequality to derive
inequalities for consecutive iterations. So the system x 7→ Ax + b describes
valid upper bounds for the vector x characterizing the current basis during the
execution of the algorithm.

3 Slide-type Reductions

Let Ok,d be an oracle that takes as input an n-dimensional basis B and an index
i < n− d and modifies B such that π[i,i+k−1] ≤ α ·π[i,i+d−1] (and leaves the rest
unchanged). In Algorithm 1, we present a class of algorithms which resemble
slide reduction and are parameterized by such an oracle Ok,d. The algorithm
runs in primal and dual tours. During a primal tour, the n/d disjoint blocks of
the basis are reduced using Ok,d. Then the reversed dual basis is computed and
n/d− 1 disjoint blocks are passed to the oracle. The blocks in the dual tour are
chosen such that the corresponding primal blocks are shifted by k with respect to
the blocks in the primal tour. Slide reduction itself (or rather a natural variant)
can be recovered by instantiating Ok,d with an SVP oracle in dimension d, hence
k = 1 and α =

√
γd. Block-Rankin reduction corresponds to using a (k, d)-DSP

oracle, in which case α = γ
1/2k
k,d . Finally, we can also define a new algorithm by

letting Ok,d be an algorithm that k-partial HKZ reduces a d-dimensional basis.

In that case, Lemma 1 implies α = Γd (k)
(d−k)/k

.

Definition 5. Let Ok,d be an algorithm that k-partial HKZ reduces a d-
dimensional basis. We call Algorithm 1 instantiated with Ok,d (k, d)-HKZ-slide
reduction.

Algorithm 1 Slide-type Reduction. Ok,d is an oracle that takes as input a basis
B and an index i and modifies B such that π[i,i+k−1] ≤ α · π[i,i+d−1] (and leaves
the rest unchanged.)

procedure Slide-type Reduction(B,Ok,d (·, ·))
while progress is made do

B← Ok,d (B, id + 1) for all i ∈ [0, n/d− 1]

B← B̂
B← Ok,d (B, id− k) for all i ∈ [1, n/d− 1]

B← B̂
end while

end procedure

We remark that it is customary in lattice reduction theory to apply LLL
reduction in between the calls to the oracle. This is important to control the

9

size of the numbers, which in turn allows to bound the complexity of the oracle
itself. Since we focus on the number of calls to the oracle, we chose to present
Algorithm 1 without any calls to LLL. Note that none of such calls will have
any effect on our bounds due to Fact 2, since we will work with upper bounds
on the subdeterminants π[1,i]. These can only decrease during the application of
LLL, so any upper bound that held before applying LLL also holds afterwards.

3.1 Convergence

The following theorem contains the main technical contribution of this work and
the remainder of this subsection is devoted to proving it.

Theorem 2. Let B ∈ Rm×n be a lattice basis with det (L (B)) = 1. Let k ≤ d ∈
Z such that n = pd for some d ∈ Z, p ≥ 2 and Ok,d be an oracle that on input
a basis B′ and index i < n− d produces a basis C such that

– π[i,i+k−1] (C) ≤ α · π[i,i+d−1] (B′) and
– cj = b′j for all j /∈ [i, i+ d− 1].

Let µi = i (p− i) d
d−k lnα, B` the basis after the `-th iteration and ε` =

maxi∈[1,p] | ln
(
π[1,id] (B`)

)
− µi|. Then we have

ε` ≤ exp

(
−4k (d− k)

n2
`

)
p2

4 (p− 1)
ε0

after ` iterations of Slide-type reduction with oracle Ok,d.

Proof. During a primal tour, Slide-type reduction turns a basis B into a basis
B′ such that

lnπ[id+1,id+k] (B′) ≤ lnπ[id+1,id+d] (B) + lnα (3)

for i ∈ [0, p− 1]. Similarly, a dual tour yields

lnπ[id+1,id+k] (B′) ≥ lnπ[(i−1)d+2,id+1] (B)− lnα (4)

We consider the leading subdeterminants corresponding to the blocks con-
sidered by Algorithm 1. Let yi = id lnπ[1,id] (B) for i ∈ [1, p − 1]. (Note
that yp = 0, since we assume that the lattice has unit determinant, so we
may ignore this variable.) Now we apply a primal tour and denote xi =
((i− 1) d+ k) lnπ[1,(i−1)d+k] (B′) for i ∈ [1, p] after that tour. Then we have
by Equation (3)

xi ≤
d− k
d

yi−1 +
k

d
yi + k lnα

for i ∈ [1, p], where we define y0 = yp = 0. In matrix form we have x ≤ Apy+bp
with

Ap =



k
d

ω k
d

ω k
d
. . .

k
d
ω

 ∈ R
p×(p−1)

10

where ω = d−k
d and bp = k lnα · 1 ∈ Rp.

Now let y′i as yi above but after the next dual tour. From Equation (4) we
get

xi − y′i−1 ≥
k

d
(xi − xi−1)− k lnα

or equivalently

yi ≤ ωxi+1 +
k

d
xi + k lnα

for i ∈ [1, p−1]. Again, in matrix form y ≤ Adx+bd, where bd = k lnα·1 ∈ Rp−1
and

Ad =


k
d ω
k
d ω
. . .

k
d ω

 = AT
p

By combining the two set of inequalities, we obtain:

y′ ≤ Adx + bd ≤ Ad (Apy + bp) + bd = AT
p Apy +

(
AT
p bp + bd

)
Thus, the general matrix that characterizes a primal and dual tour is

A = AT
p Ap =


ω̃ kω

d
kω
d ω̃ kω

d
. . .
kω
d ω̃

 =


1− 2β β
β 1− 2β β

. . .
β 1− 2β

 ∈ R(p−1)×(p−1)

(5)

where ω̃ = ω2 + (k/d)
2

and β = k(d−k)
d2 . And with b = AT

p bp + bd = 2 · bd the
dynamical system we are interested in is

y 7→ Ay + b. (6)

The theorem now follows from Lemma 2 and 3 below, in which we analyze the
fixed point and the convergence of system (6), resp. ut

Lemma 2. For the system in Equation (6) and the vector y∗ ∈ Rp−1 with

y∗i = i (p− i) d2

d− k
lnα

we have Ay∗ + b = y∗.

Proof. Note that we can extend the definition of y∗i to i = 0 and i = p, in which
case we have y∗0 = y∗p = 0. So the lemma follows if we can show that

βy∗i−1 + (1− 2β) y∗i + βy∗i+1 + 2k lnα = y∗i

for all i ∈ [1, p− 1]. This is equivalent to

β
(
y∗i−1 + y∗i+1 − 2y∗i

)
+ 2k lnα = 0

which is easily seen to be true by straightforward calculation. ut

11

Lemma 3. Let A as in Equation (5). Then there exists an invertible matrix D

with κ∞ (D) = p2

4(p−1) such that

‖DAD−1‖∞ ≤ 1− 4k (d− k)

n2

for any p ≥ 2.

Proof. Let D be the diagonal matrix such that

D−1 =


p− 1

2 (p− 2)
. . .

p− 1


We now analyze the matrix

DAD−1 =


1− 2β 2(p−2)

p−1 β
p−1

2(p−2)β 1− 2β 3(p−3)
2(p−2)β

2(p−2)
3(p−3)β 1− 2β 4(p−4)

3(p−3)β

. . .
(p−2)2
p−1 β 1− 2β


The sum of the i-th row is

Si = 1− 2β + β
(i− 1) (p− i+ 1) + (i+ 1) (p− i− 1)

i (p− i)

= 1− 2β

(
1− ip− i2 − 1

ip− i2

)
= 1− 2β

ip− i2

≤ 1− 8β

p2

= 1− 8k (d− k)

n2

for i ∈ [2, . . . , p− 2]. Finally, we have

S1 = Sp−1 ≤ 1− 2pk (d− k)

n2

from which the lemma follows. ut

3.2 Implications

We now show how Theorem 2 implies bounds for the running time of Slide-type
reduction algorithms.

12

Corollary 1. Let B ∈ Rm×n be an LLL-reduced lattice basis with det (L (B)) =

1 and ε > 0 an arbitrary constant. After ` ≥ n2

4k(d−k) ln

(
n2

2d + n3

4d3
lnα

ε

)
tours of

Slide-type reduction with oracle Ok,d such that α ≥ γ2, the output basis satisfies

π[1,d] =

d∏
i=1

‖b∗i ‖
1
d ≤ exp (ε+ µ1) ≈ (1 + ε)α

n−d
d−k .

Accordingly, the number of oracle queries is bounded by n3

2dk(d−k) ln

(
n2

2d + n3

4d3
lnα

ε

)
.

Proof. Theorem 2 shows that in order to obtain ε` ≤ ε for arbitrary ε > 0, it is
sufficient to set

` ≥ n2

4k (d− k)
ln

(
p2ε0

4 (p− 1) ε

)
.

By Fact 1 we have

ε0 = max
i∈[1,p]

| lnπ[1,id] (B)− µi| ≤
n− 1

2
ln γ2 +

n2

4d (d− k)
lnα ≤ n+

n2

2d2
lnα

where we assume that k ≤ d/2. Finally, notice that p2/ (4 (p− 1)) ≤ p/2 = n/2d
for all p ≥ 2. ut

Corollary 1 implies the following corollaries.

Corollary 2. Let B ∈ Rm×n be an LLL-reduced lattice basis with det (L (B)) =

1 and ε > 0 an arbitrary constant. After O
(

n3

dk(d−k) ln
(
n
ε

))
calls to the (k, d)-

DSP oracle, the output basis of block-Rankin reduction satisfies

π[1,d] =

d∏
i=1

‖b∗i ‖
1
d ≤ exp (ε+ µ1) = exp (ε) γ

n−d
2k(d−k)

k,d ≈ (1 + ε) γ
n−d

2k(d−k)

k,d .

One more call to the oracle yields

π[1,k] ≤ exp (ε) γ
n−k

2k(d−k)

k,d ≈ (1 + ε) γ
n−k

2k(d−k)

k,d .

The case of slide reduction follows as a special case (k = 1) and we note that
the number of SVP calls matches the one proven for other lattice reduction
algorithms using this technique [HPS11,LN20,MW16]. Recall that the bound

on the number of oracle queries proven in [LN14] is O
(
n3 logmaxi ‖bi‖

εd2

)
. For

degenerate cases maxi ‖bi‖ can be arbitrarily large (within the restriction that
its logarithm is polynomial in the input size) even for LLL-reduced bases of
lattices with determinant 1. Similar to the recent work of [LN20], we are able to
achieve a bound that is independent of maxi ‖bi‖ using the dynamical systems
approach. The length of the vectors just contributes to the log n factor in our
bound. ([HPS11] does not claim to achieve this but obtains a bound with a

13

doubly logarithmic dependence on maxi ‖bi‖.) Furthermore, the dependence on
ε is much tighter in two ways: 1) in [LN14] the slack factor in the output quality

is (1 + ε)
(n−k)/(4(d−k))

, while in Corollary 2 it is just exp (ε) ≈ (1 + ε). 2) The
dependence of the bound on the number of oracle queries is linear in 1/ε, while
in our bound it is only logarithmic. Finally, the remaining polynomial factor
matches in the two bounds for small values of k, but our bound depends on k
and actually decreases with growing k up to an improvement of 1/d for k = d/2.
This seems to be a feature of the dynamical systems analysis as it is unclear
if the LLL-style potential function analysis of [LN14] can be used to study the
dependence of the number of calls on k.

Corollary 3. Let B ∈ Rm×n be an LLL-reduced lattice basis with det (L (B)) =

1 and ε > 0 an arbitrary constant. After O
(

n3

dk(d−k) ln
(
n
ε

))
calls to the k-partial

HKZ oracle, the output basis of (k, d)-HKZ-slide reduction satisfies

π[1,d] =

d∏
i=1

‖b∗i ‖
1
d ≤ exp (ε+ µ1) = exp (ε)Γd (k)

n−d
k ≈ (1 + ε)Γd (k)

n−d
k .

One more call to the oracle yields

‖b1‖ ≤ exp (ε)
√
γdΓd (k)

n−d
k ≈ (1 + ε)

√
γdΓd (k)

n−d
k .

We can try to get bounds on the Hermite factor of (k, d)-HKZ-slide reduction
in terms of γd by using some straightforward bounds on Γd(k).

Lemma 4. For a (k, d)-HKZ-slide reduced basis we have

‖b1‖ ≤
√
d
1+n−d

k log d
d−k det (B)

1
n ≤
√
d

n−k
d−k det (B)

1
n (7)

‖b1‖ ≤
√
γd−k+1

n−1
d−k det (B)

1
n (8)

Proof. Both follow from Corollary 3. For Equation (7) use the bound Γd (k) ≤
√
d
log d

d−k proven in [HS07] and log 1 + x ≤ x.

For Equation (8), recall Mordell’s inequality γ
1

n−1
n ≤ γ

1
k−1

k , which shows that

Γd (k) ≤ √γd−k+1
k

d−k . So we have

‖b1‖ ≤
√
γd
√
γd−k+1

n−d
d−k det (B)

1
n .

Finally, use Mordell’s inequality again to see that
√
γd ≤

√
γd−k+1

d−1
d−k to con-

clude. ut

The bound on the Hermite factor achieved by HKZ-slide reduction suggests
that running (k, d)-HKZ-slide reduction is no better than running (1, d − k +
1)-HKZ-slide reduction, i.e. vanilla slide reduction with block size d − k + 1.
Since solving SVP in dimension d − k + 1 is easier by a factor 2Ω(k) than k-
partial HKZ reduction in dimension d, it stands to reason that using k = 1 is
optimal. However, in the next sections we will make heuristic arguments and
show experimental evidence that using larger k can be worthwhile in practice.

14

4 HKZ-Slide Reduction in Practice

In this section we give heuristic arguments (Section 4.1) and experimental ev-
idence showing that HKZ-slide reduction can outperform slide reduction and
yield a faster algorithm in practice.

4.1 Heuristic Analysis

Note that the convergence analysis in Section 3.1 is agnostic to the value α.
So we can use the same analysis for a heuristic evaluation, but instead of
using Minkowski’s inequality, we use the Gaussian heuristic. So by defining

gd =
√
d/2πe and α = Gd (k) =

∏d−1
i=d−k g

1
i
i+1 we can get a bound on the density

of the first block of a (k, d)-HKZ-slide reduced basis based on Heuristic 1, which
is

π[1,d] ≈ Gd (k)
n−d
k det (B)

1
n

which implies

‖b1‖ ≈ gdGd (k)
n−d
k det (B)

1
n .

Now we can compare the quality that we achieve by using different overlaps and
block sizes. See Figure 1 for an example. Running (k, d)-HKZ-slide reduction
yields a better basis than running slide reduction with block size k − d+ 1 (but
also needs a partial HKZ oracle in larger dimension).

To estimate the practical behavior of HKZ-slide reduction and slide reduc-
tion, we make the following assumptions: 1) we assume that the dependence of
the running time of (k, d)-HKZ-slide reduction on the overlap k is 1/k(d − k),
and 2) that the complexity of the k-partial HKZ oracle is 2d/3+O(1) and inde-
pendent of k. The first assumption is supported by our analysis in Section 3.1.
The second assumption is supported by the observation in [ADH+19] that SVP
oracles in practice tend to not only find the shortest vector in a lattice, but
additionally HKZ reduce the head of the basis “for free”. The complexity of the
oracle is a crude estimate of heuristic bounds on the complexity of sieving. More
accurate estimates are a little smaller than what we assumed above. Adapting
the following argument would thus provide slightly better results.

As a baseline for our comparison we select 90-slide reduction on a 270 dimen-
sional lattice and analyze how reducing the block size to 90− k′ and increasing
the overlap to k compare in terms of speed-up while ensuring that both yield
similar output quality. Specifically, for every k we numerically compute k′ < k
such that (90−k′)-slide reduction achieves similar root Hermite factor as (k, 90)-
HKZ-slide reduction. The speed-up of (k, 90)-HKZ-slide reduction over 90-slide
reduction is k(d− k)/ (d− 1) given our assumptions. The speed-up achieved by
(90 − k′)-slide reduction is 2k

′/3 (d− k′ + 1) /d. (We ignore the issue of divisi-
bility of block size and lattice dimension here for simplicity.) The ratio of the
two quantities is given in Figure 2. The figure suggests that (k, 90)-HKZ-slide
reduction with a well-chosen overlap k can be up to 4 times faster than slide
reduction with similar output quality.

15

10 20 30 40
k

1.01e

1.01e

1.011e

1.012e

1.012e

root Hermite factor

(k, d)-HKZ-slide reduction
(d− k+ 1)-slide reduction

Fig. 1: Comparison of root Hermite
factor for running (k, 90)-HKZ-slide
reduction on a basis with dimension
270 vs (90− k)-slide reduction

10 20 30 40
k

1

1.5

2

2.5

3

3.5

4

speed-up

Fig. 2: Speed-up factor of running
(k, 90)-HKZ-slide reduction on a ba-
sis with dimension 270 vs (90 − k′)-
slide reduction with comparable Her-
mite factor.

4.2 Experiments

We provide an implementation of HKZ-slide reduction3 in the G6K framework of
[ADH+19], which (among a lot of other things) provides an interface to an SVP
algorithm based on sieving. The authors observe that, in fact, the output of this
algorithm seems to approximate partial-HKZ reduction. Their work also shows
that basic (called naive in [ADH+19]) BKZ based on sieving starts outperforming
state-of-the-art enumeration based methods for block sizes below 80, and more
carefully tuned variants well below 65.

For our implementation we treat the SVP algorithm of G6K as a k-partial-
HKZ oracle for arbitrary k ≤ 15, which seems justified by the observations made
in [ADH+19]. To test the hypothesis of the previous section, we run (k, d)-HKZ-
slide reduction for k ∈ {1, 5, 10, 15} and d ∈ {60, 85} on lattices from the lattice
challenge [BLR08]. To avoid issues with block sizes not dividing the dimension we
select the dimension as the largest integer multiple of d such that the algorithm
does not run into numerical issues. For d = 60 and d = 85, this is n = 180 (i.e.
p = 3 blocks) and n = 170 (i.e. p = 2 blocks), respectively. The results are shown
in Figures 3a and 3c. All data points are averaged (in both axes) over the same
10 lattices (challenge seeds 0 to 9), which are preprocessed using fplll [dt16]
with block size 45 (for d = 60) and 60 (for d = 85).

Figure 3a demonstrates that for relatively small block sizes, the behavior of
k-HKZ-slide reduction is actually better than expected: not only does a larger
k lead to a faster convergence (which is expected), all of the tested k also lead
to better output quality. This can at least in part be explained by the relatively
small block size and the corresponding approximation error of the Gaussian

3 Code available at: http://pub.ist.ac.at/~mwalter/publication/hkz_slide/

hkz_slide.zip

16

http://pub.ist.ac.at/~mwalter/publication/hkz_slide/hkz_slide.zip
http://pub.ist.ac.at/~mwalter/publication/hkz_slide/hkz_slide.zip

heuristic. This is supported by Figure 3c, where at least the overlaps k = 5
and k = 15 behave as expected: faster convergence but poorer output quality.
(Note though that the difference in output quality between overlaps 1 and 5 is
minor.) However, the case of k = 10 seems to be a special case that behaves
exceptionally well even for large block size. We cannot explain this phenomenon
beyond baseless speculation at this point and leave an in-depth investigation
to future work. In summary, we believe that the results give sufficient evidence
that the trade-off achieved by HKZ-slide reduction can indeed be very favorable
when considering overlaps larger than 1 (i.e. beyond slide reduction).

To put the results into context, we also compare HKZ-slide reduction with
the BKZ variants implemented in G6K on the same lattices. For HKZ-slide
reduction we chose k = 10. We compared to three “standard” variants of BKZ:
1) naive BKZ, which treats the SVP algorithm as a black box; 2) the “Pump and
Jump” (PnJ) variant, which recycles computation done during previous calls to
the SVP algorithm to save cost in later calls; 3) a progressive variant of the
PnJ strategy, which starts with smaller block sizes and successively runs BKZ
tours with increasing block size. We leave all parameters for the PnJ versions
at their default. [ADH+19] reported that some fine-tuning can improve the PnJ
variant further, but since our goal is only to demonstrate the competitiveness of
HKZ-slide reduction rather than a fine-grained comparison, we do not believe
such fine-tuning is necessary here. Naive BKZ and the PnJ variant is called with
the same block size (on the same bases as HKZ-slide reduction) and the number
of tours is chosen such that the running time is roughly in the ballpark of the
HKZ-slide reduction experiments. For progressive PnJ, we run 1 tour of each
block size starting from d− 10 up to d+ 5, where d is the block size chosen for
the other algorithms. The results are shown in Figure 3b and 3d respectively.
They show that HKZ-slide reduction can outperform the naive version of BKZ
significantly, but it also seems to be better than PnJ. However, progressive PnJ
seems to have the edge over HKZ-slide reduction, but we consider the latter at
least competitive.

Caveats. We focus our attention in these experiments on the root Hermite factor
that the different algorithms achieve in a given amount of time. This has been
established as the main measure of output quality for lattice reduction, since they
are usually used to find short vectors. When targeting a short vector, (HKZ-)
slide reduction has the advantage that it focuses on improving a set of pivot
points distributed across the basis, while BKZ attempts to improve the entire
basis. This seems to result in a lower cost for slide reduction. But finding short
vectors is not the only use case: often one is interested in a basis that is reduced
according to a more global measure, e.g. one wants all basis vectors to be short
or the GSO vectors should not drop off too quickly. In this case, BKZ seems to
be the more natural choice.

Potential Improvements. We do not make any attempts to fine-tune the SVP or-
acle to HKZ-slide reduction and its parameters. The SVP-oracle itself has several

17

0. 0 500. 0 1000. 0 1500. 0

1. 0114

1. 0116

1. 0118

1. 012

1. 0122

1. 0124

root Hermite factor

running time in seconds

overlap 1
overlap 5
overlap 10
overlap 15

(a) HKZ-slide reduction on a lattice with
dimension 180 and block size 60

0 500 1000 1500

1.011e

1.012e

1.012e

1.012e

1.012e

1.012e

1.013e

root Hermite factor

running time in seconds

HKZ slide, overlap 10
naive BKZ
BKZ, pump_and_jump
progressive BKZ, pump_and_jump

(b) Comparison of HKZ-slide reduction
and BKZ on a lattice with dimension 180
and block size 60

0. 0 5000. 0 10000. 0 15000. 0 20000. 0 25000. 0

1. 0098

1. 01

1. 0102

1. 0104

1. 0106

1. 0108

root Hermite factor

running time in seconds

overlap 1
overlap 5
overlap 10
overlap 15

(c) HKZ-slide reduction on a lattice with
dimension 170 and block size 85

0 5000 10000 15000 20000 25000

1.01e

1.01e

1.01e

1.01e

1.011e

1.011e

1.011e

1.011e

root Hermite factor

running time in seconds

HKZ slide, overlap 10
naive BKZ
BKZ, pump_and_jump
progressive BKZ, pump_and_jump

(d) Comparison of HKZ-slide reduction
and BKZ on a lattice with dimension 170
and block size 85

Fig. 3: Comparison of HKZ-slide-reduction with different overlaps and with var-
ious BKZ variants

parameters which potentially influence how well it performs as a k-partial-HKZ
oracle. We leave such a fine-tuning as interesting future work.

Furthermore, we note that applying BKZ/PnJ with increasing block sizes re-
sults in significant improvements. It stands to reason that including an element
of “progressiveness” could significantly improve HKZ-slide reduction. However,
the strength of HKZ-slide reduction of focusing its attention on pivot points in-
stead of the entire basis could be a disadvantage here: it may not be as suitable
as a preprocessing for other algorithms, possibly including itself. Still, finding
an effective way of naturally progressing slide reduction might lead to improve-
ments, but we believe simply increasing the block size is unlikely to be sufficient
here. Finally, given the above observations, a natural approach seems to be to
use progressive BKZ/PnJ as a preprocessing and only apply HKZ-slide reduction
in the final step to find a short vector.

18

5 SDBKZ: Revisiting Neumaier’s Analysis

We conclude this work by revisiting Neumaier’s analysis [Neu17] of SDBKZ
[MW16]. Using a change of variable allows us to recast it as a variant of the
conventional dynamic analysis. The matrix used in Section 3 for the change of
variable was inspired by this reformulation.

5.1 Reminders

We first give a brief description of the SDBKZ algorithm and the analysis from
[MW16]. The algorithm can be viewed as iterating the following 2 steps:

1. perform a forward tour by applying the SVP oracle successively to the pro-
jected blocks of the basis (i.e. a truncated BKZ tour)

2. compute the reversed dual of the basis.

For convenience, the SDBKZ lattice reduction algorithm is provided as Algo-
rithm 2.

Algorithm 2 SDBKZ. Od is an oracle that takes as input a basis B and an
index i and modifies B such that B[i,i+d−1] is SVP reduced (and leaves the rest
unchanged.)

procedure SDBKZ(B,Od(·, ·))
while progress is made do

B← Od(B, i) for all i ∈ [0, n− d]

B← B̂
end while

end procedure

Let B be a lattice basis. In [MW16], the following variables were considered

x = (log det(b1, . . . ,bd+i−1))1≤i≤n−d.

When applying the two steps of SDBKZ to a lattice basis, [MW16] showed that
for the output basis B′ we have x′ ≤ RAx + Rb, where

b = αd

 1− ω
...

1− ωn−d

 A =
1

d


1
ω 1
...

. . .
. . .

ωn−d−1 · · · ω 1



R =


1

1
...

1



19

α = 1
2 log γd and ω = (1− 1

d). This lead to the analysis of the dynamical system

x 7→ RAx + Rb. (9)

[MW16] showed that this system has exactly one fixed point x∗ with

x∗i =
(d+ i− 1)(n− d− i+ 1)

d− 1
α

which can be used to obtain bounds on the output quality of the algorithm. Here
we are more interested in the convergence analysis. For this, note that

‖RA‖∞ = ‖A‖∞ = 1− ωn−d

which means that the number of tours required to achieve ‖e‖∞ ≤ c for some
constant c is proportional to exp((n− d)/d). This is polynomial as long as d =
Ω(n), but for d = o(n) this results in a superpolynomial bound.

5.2 Neumaier’s Analysis

As stated above, Neumaier’s analysis of SDBKZ [Neu17] can be viewed as a
change of variable for x. Neumaier implicitly chose the diagonal matrix

D−1 =


d(n− d)

(d+ 1)(n− d− 1)
. . .

n− 1


which yields the new fixed point y∗ = α

d−11 (cf. µs from [Neu17]). We now

analyze the matrix A′ = DRAD−1: First, we observe that

Aij =

{
1
dω

i−j i ≥ j
0 i < j

and so

(RA)ij =

{
1
dω

(n−d+1−i)−j i+ j ≤ n− d+ 1

0 i+ j > n− d+ 1

and finally

A′ij = (DRAD−1)ij =

{
(d+j−1)(n−d−j+1)
d(d+i−1)(n−d−i+1)ω

(n−d+1−i)−j i+ j ≤ n− d+ 1

0 i+ j > n− d+ 1

(10)

Lemma 5. Let A′ as defined in Equation (10). Then, ‖A′‖∞ ≤ 1 − ε, where

ε =
(

1 + n2

4d(d−1)

)−1
.

20

Proof. Let Si =
∑
j A′ij be the sum of every row in A′. We have

Si =
1

d(d+ i− 1)(n− d− i+ 1)

n−d−i+1∑
j=1

(d+ j − 1)(n− d− j + 1)ωn−d+1−i−j

=
(d+ i)(n− d− i)

(d+ i− 1)(n− d− i+ 1)
ωSi+1 +

i(n− i)
d(d+ i− 1)(n− d− i+ 1)

(where we set Sn−d+1 = 0.) We now show by induction on i that Si ≤ 1 − ε.
Clearly, the bound holds for Sn−d+1 since ε ≤ 1. So now we have

Si =
(d+ i)(n− d− i)

(d+ i− 1)(n− d− i+ 1)
ωSi+1 +

i(n− i)
d(d+ i− 1)(n− d− i+ 1)

≤ (d+ i)(n− d− i)
(d+ i− 1)(n− d− i+ 1)

ω(1− ε) +
i(n− i)

d(d+ i− 1)(n− d− i+ 1)

=
(d− 1)(d+ i)(n− d− i)
d(d+ i− 1)(n− d− i+ 1)

(1− ε) +
i(n− i)

d(d+ i− 1)(n− d− i+ 1)

by assumption. Showing that the RHS is less than 1− ε is equivalent to showing
that

(d− 1)(d+ i)(n− d− i)(1− ε) + i(n− i) ≤ d(d+ i− 1)(n− d− i+ 1)(1− ε)

which is equivalent to

i(n− i) ≤ [d(d+ i− 1)(n− d− i+ 1)− (d− 1)(d+ i)(n− d− i)] (1− ε).

It is straightforward (though a little tedious) to verify that

d(d+ i− 1)(n− d− i+ 1)− (d− 1)(d+ i)(n− d− i) = i(n− i) + d(d− 1).

which yields the condition

i(n− i) ≤ [i(n− i) + d(d− 1)] (1− ε)

which again is equivalent to

ε [i(n− i) + d(d− 1)] ≤ d(d− 1)

and thus ε ≤
(

1 + i(n−i)
d(d−1)

)−1
. We note this quantity is minimized for i = n/2

and thus by definition of ε, this condition holds. Since all our transformations
were equivalences, this proves the bound on Si. ut

Readers familiar with Neumaier’s work will recognize the calculations. It is

easy to see that κ(D) = n2

4(n−1) , which is small enough so that the number of

tours required for the algorithm is proportional to 1 + n2

4d(d−1) . This matches the

bound obtained in [Neu17].

21

Acknowledgment This work was initiated in discussions with Léo Ducas, when
the author was visiting the Simons Institute for the Theory of Computation
during the program “Lattices: Algorithms, Complexity, and Cryptography”. We
thank Thomas Espitau for pointing out a bug in a proof in an earlier version of
this manuscript.

References

ABF+20. Martin R. Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Damien
Stehlé, and Weiqiang Wen. Faster enumeration-based lattice reduction:
Root hermite factor k1/(2k) time kk/8+o(k). In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of
LNCS, pages 186–212. Springer, Heidelberg, August 2020.

ADH+19. Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Ea-
monn W. Postlethwaite, and Marc Stevens. The general sieve kernel and
new records in lattice reduction. In Yuval Ishai and Vincent Rijmen, edi-
tors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 717–746.
Springer, Heidelberg, May 2019.

ALNS20. Divesh Aggarwal, Jianwei Li, Phong Q. Nguyen, and Noah Stephens-
Davidowitz. Slide reduction, revisited - filling the gaps in SVP ap-
proximation. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part II, volume 12171 of LNCS, pages 274–295. Springer,
Heidelberg, August 2020.

AWHT16. Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi. Im-
proved progressive BKZ algorithms and their precise cost estimation by
sharp simulator. In Marc Fischlin and Jean-Sébastien Coron, editors, EU-
ROCRYPT 2016, Part I, volume 9665 of LNCS, pages 789–819. Springer,
Heidelberg, May 2016.

BLR08. Johannes A. Buchmann, Richard Lindner, and Markus Rückert. Explicit
hard instances of the shortest vector problem. In Johannes Buchmann
and Jintai Ding, editors, Post-quantum cryptography, second international
workshop, PQCRYPTO 2008, pages 79–94. Springer, Heidelberg, October
2008.

CN11. Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security esti-
mates. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 1–20. Springer, Heidelberg, December 2011.

DM13. Daniel Dadush and Daniele Micciancio. Algorithms for the densest sub-
lattice problem. In Sanjeev Khanna, editor, 24th SODA, pages 1103–1122.
ACM-SIAM, January 2013.

dt16. The FPLLL development team. fplll, a lattice reduction library. Available
at https://github.com/fplll/fplll, 2016.

GN08a. Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within
Mordell’s inequality. In Richard E. Ladner and Cynthia Dwork, editors,
40th ACM STOC, pages 207–216. ACM Press, May 2008.

GN08b. Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages
31–51. Springer, Heidelberg, April 2008.

HPS11. Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise
lattice algorithms using dynamical systems. In Phillip Rogaway, editor,

22

https://github.com/fplll/fplll

CRYPTO 2011, volume 6841 of LNCS, pages 447–464. Springer, Heidelberg,
August 2011.

HS07. Guillaume Hanrot and Damien Stehlé. Improved analysis of kannan’s short-
est lattice vector algorithm. In Alfred Menezes, editor, CRYPTO 2007,
volume 4622 of LNCS, pages 170–186. Springer, Heidelberg, August 2007.

LLL82. Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and László Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261:513–
534, 1982.

LN14. Jianwei Li and Phong Nguyen. Approximating the densest sublattice from
rankin’s inequality. LMS Journal of Computation and Mathematics [elec-
tronic only], 17, 08 2014.

LN20. Jianwei Li and Phong Q. Nguyen. A complete analysis of the bkz lattice
reduction algorithm. Cryptology ePrint Archive, Report 2020/1237, 2020.
https://eprint.iacr.org/2020/1237.

Lov86. Lásló Lovász. An algorithmic theory of numbers, graphs and convexity,
volume 50 of CBMS. SIAM, 1986.

MW16. Daniele Micciancio and Michael Walter. Practical, predictable lattice ba-
sis reduction. In Marc Fischlin and Jean-Sébastien Coron, editors, EU-
ROCRYPT 2016, Part I, volume 9665 of LNCS, pages 820–849. Springer,
Heidelberg, May 2016.

Neu17. Arnold Neumaier. Bounding basis reduction properties. Des. Codes Cryp-
togr., 84(1-2):237–259, 2017.

PT09. G. Pataki and Mustafa Tural. Unifying lll inequalities. 2009.
Sch87. Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction

algorithms. Theoretical Computer Science, 53(2–3):201–224, August 1987.
SE94. Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved

practical algorithms and solving subset sum problems. Mathematical pro-
gramming, 66(1-3):181–199, August 1994. Preliminary version in FCT 1991.

Wal15. Michael Walter. Lattice point enumeration on block reduced bases. In Anja
Lehmann and Stefan Wolf, editors, ICITS 15, volume 9063 of LNCS, pages
269–282. Springer, Heidelberg, May 2015.

23

https://eprint.iacr.org/2020/1237

	The Convergence of Slide-type Reductions

