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An ordered graph is a graph with a linear ordering on its vertex 
set. We prove that for every positive integer k, there exists a 
constant ck > 0 such that any ordered graph G on n vertices 
with the property that neither G nor its complement contains 
an induced monotone path of size k, has either a clique or 
an independent set of size at least nck . This strengthens a 
result of Bousquet, Lagoutte, and Thomassé, who proved the 
analogous result for unordered graphs.
A key idea of the above paper was to show that any unordered 
graph on n vertices that does not contain an induced path 
of size k, and whose maximum degree is at most c(k)n for 
some small c(k) > 0, contains two disjoint linear size subsets 
with no edge between them. This approach fails for ordered 
graphs, because the analogous statement is false for k ≥ 3, 
by a construction of Fox. We provide some further examples 
showing that this statement also fails for ordered graphs 
avoiding other ordered trees.
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1. Introduction

Erdős and Hajnal [11] proved that graphs avoiding some fixed induced subgraph or 
subgraphs have very favorable Ramsey-theoretic properties. In particular, they contain 
surprisingly large homogeneous (that is, complete or empty) subgraphs and bipartite 
subgraphs. According to the celebrated Erdős-Hajnal conjecture, every graph G on n
vertices which does not contain some fixed graph H as an induced subgraph, has a 
clique or an independent set of size at least nc, where c = c(H) > 0 is a constant that 
depends only on H. There is a rapidly growing body of literature studying this conjecture 
(see, e.g., [1,2,5,6,8,12,14,16,24]).

For any graph G and any disjoint subsets A, B ⊂ V (G), we say that A is complete 
to B if ab ∈ E(G) for every a ∈ A, b ∈ B. If |A| = |B| = k and A is complete to 
B, then A and B are said to form a bi-clique of size k. Denote the maximum degree 
of the vertices in G by Δ(G). Following [14], a family of graphs G is said to have the 
Erdős-Hajnal property if there exists a constant c = c(G) > 0 such that every G ∈ G
has either a clique or an independent set of size at least |V (G)|c. The family G has the 
strong Erdős-Hajnal property if there exists a constant b = b(G) > 0 such that for every 
G ∈ G, either G or its complement G has a bi-clique of size b|V (G)|. It was proved in [1]
that if a hereditary family (that is, a family closed under taking induced subgraphs) has 
the strong Erdős-Hajnal property, then it also has the Erdős-Hajnal property.

The aim of this paper is to discuss Erdős-Hajnal type problems for ordered graphs. 
An ordered graph is a graph with a total ordering on its vertex set. With a slight abuse 
of notation, in every ordered graph, we denote this ordering by ≺. If the vertex set of 
G is a subset of the integers, then ≺ stands for the natural ordering. An ordered graph 
H is an ordered subgraph (or simply subgraph) of G if there exists an order preserving 
embedding from V (H) to V (G) that maps edges to edges. If, in addition, non-edges are 
mapped into non-edges, then H is called an induced ordered subgraph of G. If G does 
not have H as induced ordered subgraph, then we say that G avoids H. The ordered 
path with vertices 1, . . . , k and edges {i, i + 1}, for i = 1, . . . , k− 1, is called a monotone 
path of size k.

Our main result is the following.

Theorem 1. For any positive integer k, there exists c = c(k) > 0 with the following 
property. If G is an ordered graph on n vertices such that neither G nor its complement 
contains an induced monotone path of size k, then G has either a clique or an independent 
set of size at least nc.

One can deduce from our proof that c(k) = k−5−o(1) suffices, but in order to make 
the paper more readable, we will not include the computations. Our theorem obviously 
implies the analogous statement for unordered graphs, which was first established by 
Bousquet, Lagoutte, and Thomassé [5]. The idea of their proof was the following. We 
call a family of graphs, H, lopsided if there exists a constant c = c(H) > 0 with the 
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following property: any graph G on n vertices which does not contain any element of H
as an induced subgraph, and for which Δ(G) < cn, the complement of G has a bi-clique 
of size at least cn. If H consists of a single graph H, then H is called lopsided. They 
proved that the (unordered) path of size k is lopsided. It follows from the arguments of 
Bousquet et al. that if H is lopsided, then the family of all graphs which avoid every 
element of H as an induced subgraph, and whose complements also avoid them, has the 
strong Erdős-Hajnal and, thus, the Erdős-Hajnal property.

Since then, this idea has been exploited to prove the Erdős-Hajnal conjecture for 
various other families of graphs: the family of graphs avoiding a tree T and its comple-
ment [8], the family of graphs avoiding all subdivisions of a graph H and the complements 
of these subdivisions [9], the family of graphs avoiding a graph H as a vertex minor [7], 
families of graphs avoiding a fixed cycle as a pivot minor [17], etc.

However, for ordered graphs, this method does not work even in the simplest case: 
for monotone paths. A construction of Fox [13] shows that, for every n and δ > 0, there 
exists an ordered graph G with |V (G)| = n and Δ(G) < nδ which avoids the monotone 
path of size 3, and whose complement does not contain a bi-clique of size larger than 
cn

logn , for a suitable constant c = c(δ) > 0. Hence, using the above terminology, the 
monotone path of size at least 3 is not lopsided.

Although monotone paths are not lopsided, they satisfy a somewhat weaker property, 
as is shown by the following theorem of the authors.

Theorem 2. ([20]) For any positive integer k, there exists a constant c = c(k) > 0 with 
the following property. If G is an ordered graph on n vertices that does not contain an 
induced monotone path of size k, and Δ(G) < cn, then the complement of G contains a 
bi-clique of size at least cn

logn .

Unfortunately, Theorem 1 cannot be deduced from this weaker property. Our approach 
is based on a technique in [25], where it was shown that the family of string graphs has 
the Erdős-Hajnal property.

Recently, Seymour, Scott, and Spirkl [24] extended our Theorem 2 from monotone 
paths to all ordered forests T , albeit with a weaker bound n1−o(1) in place of cn

logn . They 
proved that for any 0 < c < 1, there exists ε = ε(T, c) > 0 with the following property. 
If G is an ordered graph on n vertices that does not contain T as an induced ordered 
subgraph and Δ(G) < εn, then the complement of G contains a bi-clique of size at least 
εn1−c. Therefore, if we want to guarantee a bi-clique of size n1−o(1) in G, we need to 
assume that the maximum degree of G is o(n). This is definitely a stronger condition 
than the one we had for monotone paths.

Our next construction shows that this stronger condition is indeed necessary. We also 
provide new examples of ordered trees T (that do not contain a monotone path of size 
3), for which one cannot expect to find linear size bi-cliques.

Theorem 3. For any ε > 0 there exist δ = δ(ε) > 0 and n0 = n0(ε) with the following 
property.
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For any positive integer n ≥ n0, there is an ordered graph G with n vertices and 
Δ(G) ≤ εn such that the size of the largest bi-clique in G is at most n1−δ, and G does 
not contain either of the following ordered trees as an induced ordered subgraph:

S:
1 2 3 4

P :
1 2 3 4

The investigation of bipartite variants of the problems considered in this paper were 
initiated in [18]; see also [3,23].

Our paper is organized as follows. In Section 2, we introduce the key concept needed 
for the proof of Theorem 1 and reduce Theorem 1 to another statement (Theorem 6). 
Sections 3 and 4 are devoted to the proof of this latter statement. The construction 
proving Theorem 3 will be presented in Sections 5.

Throughout this paper, we use the following notation, which is mostly conventional. 
For any graph G and any subset U ⊂ V (G), we denote by G[U ] the subgraph of G
induced by U . The neighborhood of U is defined as NG(U) = N(U) = {v ∈ V (G) \ U :
∃u ∈ U, uv ∈ E(G)}. If U = {u}, instead of N(U), we simply write N(u). For a vertex 
v ∈ V (G), let G − v stand for the graph obtained from G by deleting the vertex v. Also, 
if G is an ordered graph, the forward neighborhood of a vertex v ∈ V (G), denoted by 
N+

G (y) = N+(y) is the set of neighbors y such that x ≺ y.
For easier readability, we omit the use of floors and ceilings, whenever they are not 

crucial.

2. The quasi-Erdős-Hajnal property

After introducing some notation and terminology, we outline our proof strategy for 
Theorem 1.

For any k ≥ 3, let Pk denote the family of all ordered graphs G such that neither G
nor its complement contains a monotone path of size k as an induced subgraph. Instead 
of proving that Pk has the Erdős-Hajnal property, we prove that it has the quasi-Erdős-
Hajnal property. This concept was introduced by the second named author in [25], in 
order to show that the family of string graphs has the Erdős-Hajnal property.

Definition 4. A family of graphs, G, has the quasi-Erdős-Hajnal property if there is a 
constant c = c(G) > 0 with the following property. For every G ∈ G with at least 2 
vertices, there exist t ≥ 2 and t pairwise disjoint subsets X1, . . . , Xt ⊂ V (G) such that 
t ≥ ( |V (G)|

|Xi| )c holds for every i ∈ [t], and

(i) either there is no edge between Xi and Xj for 1 ≤ i < j ≤ t,
(ii) or Xi is complete to Xj for 1 ≤ i < j ≤ t.
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It was proved in [25] that in hereditary families, the quasi-Erdős-Hajnal property is 
equivalent to the Erdős-Hajnal property. We somewhat relax the definition of the quasi-
Erdős-Hajnal property, and with a slight abuse of notation, we overwrite the previous 
definition as follows.

Definition 5. A family of graphs, G, has the quasi-Erdős-Hajnal property if there are 
two constants, α, β > 0, with the following property. For every G ∈ G with at least 2 
vertices, there exist t ≥ 2 and t pairwise disjoint subsets X1, . . . , Xt ⊂ V (G) such that 
t ≥ α( |V (G)|

|Xi| )β holds for every i ∈ [t], and

(i) either there is no edge between Xi and Xj for 1 ≤ i < j ≤ t,
(ii) or Xi is complete to Xj for 1 ≤ i < j ≤ t.

It is easy to verify that the two definitions are in fact equivalent. If G satisfies Def-
inition 4, then, obviously, it also satisfies Definition 5. In the reverse direction, setting 
c = β

1−log2 α if α ≤ 1, and c = β if α > 1, if the inequality t ≥ α( |V (G)|
|Xi| )β holds for some 

t ≥ 2, then we also have t ≥ ( |V (G)|
|Xi| )c.

Therefore, it is enough to show that Pk has the quasi-Erdős-Hajnal property. The 
advantage of the quasi-Erdős-Hajnal property over the Erdős-Hajnal property is that it 
allows us to establish the following lopsided statement, which will imply Theorem 1.

Theorem 6. For every positive integer k, there exist two constants ε, α > 0 with the 
following property.

Let G be an ordered graph on n vertices with maximum degree at most εn such that 
G does not contain a monotone path of size k as an induced subgraph. Then there exist 
t ≥ 2 and t pairwise disjoint subsets X1, . . . , Xt ⊂ V (G) such that t ≥ α( n

|Xi| )
1/2 holds 

for every i ∈ [t], and there is no edge between Xi and Xj for 1 ≤ i < j ≤ t.

Our proof shows that ε = 2−O(k) and α = 2−O(k) suffice. In the inequality t ≥
α( n

|Xi| )
1/2, the exponent 1/2 has no significance: the statement remains true with any 

0 < β < 1 instead of 1/2 (with the cost of changing ε and α). However, it is not true 
with β = 1, as it would contradict the aforementioned construction of Fox [13].

In the rest of this section, we show how Theorem 6 implies Theorem 1. Very similar 
ideas were used in [5,8,9]. The next two sections are devoted to the proof of Theorem 6.

By a classical result of Rödl [21], any graph G avoiding some fixed graph H contains 
a linear size subset that is either very dense or very sparse. A quantitatively stronger 
version of this result was proved by Fox and Sudakov [15].

Lemma 7. [21] For every graph H and ε0 > 0, there exists δ0 > 0 with the following 
property.
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For any graph G with n vertices that does not contain H as an induced subgraph, 
there is a subset U ⊂ V (G) such that |U | ≥ δ0n, and either |E(G[U ])| ≤ ε0

(|U |
2
)

or 
|E(G[U ])| ≥ (1 − ε0)

(|U |
2
)
.

Lemma 7 applies to unordered graphs, but it can be easily extended to ordered graphs, 
using the following statement.

Lemma 8. [22] For every ordered graph H, there exists an unordered graph H0 with the 
property that introducing any total ordering on V (H0), the resulting ordered graph H ′

0
always contains H as an induced ordered subgraph.

By the combination of these two lemmas, we obtain the following.

Lemma 9. For every ordered graph H and ε > 0, there exists δ > 0 with the following 
property.

For any ordered graph G with n vertices that does not contain H as an induced ordered 
subgraph, there exists a subset U ⊂ V (G) such that |U | ≥ δn, and either Δ(G[U ]) ≤ ε|U |
or Δ(G[U ]) ≤ ε|U |.

Proof. By Lemma 8, there exists a graph H0 such that introducing any total ordering 
on V (H0), the resulting ordered graph H ′

0 contains H as an induced ordered subgraph. 
Let ε0 = ε

2 , and let δ0 be the constant given by Lemma 7 with respect to H0 and ε0.
Let G be an ordered graph with n vertices that does not contain H as an induced 

ordered subgraph. Then the underlying unordered graph of G does not contain H0 as 
an induced subgraph. Hence, there exists U ′ ⊂ V (G) such that |U ′| ≥ δ0n, and either 
|E(G[U ′])| ≤ ε0

(|U ′|
2
)

or |E(G[U ′])| ≥ (1 − ε0)
(|U ′|

2
)
. Suppose that |E(G[U ′])| ≤ ε0

(|U ′|
2
)
, 

the other case can be handled similarly. Let W be the set of vertices in U ′ whose degree 
in G[U ] is larger than 2ε0|U |. Then

1
2(2ε0|W |)|U ′| ≤ |E(G[U ′])| ≤ ε0

(
|U ′|
2

)
,

so that |W | ≤ |U ′|
2 . Setting U = U ′ \W , we have Δ(G[U ]) ≤ 2ε0|U ′| ≤ ε|U | and

|U | ≥ |U ′|
2 ≥ δ0

2 n.

Hence, δ = δ0
2 will suffice. �

After this preparation, it is easy to deduce from Theorem 6 that Pk has the quasi-
Erdős-Hajnal property and, therefore, the Erdős-Hajnal property.

Proof of Theorem 1. Let ε, α > 0 be the constants given by Theorem 6, and let δ > 0
be the constant given by Lemma 9, where H is the monotone path of size k.
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Let G be an ordered graph on n vertices such that neither G nor its complement 
contains a monotone path of length k as an induced subgraph. Then there exists U ⊂
V (G) such that |U | ≥ δn, and either Δ(G[U ]) < ε|U | or Δ(G[U ]) < ε|U |. Suppose that 
Δ(G[U ]) < ε|U |, the other case can be handled similarly. Applying Theorem 6 to G[U ], 
we obtain that there exist t ≥ 2 and t pairwise disjoint sets X1, . . . , Xt ⊂ U such that

t ≥ α

(
|U |
|Xi|

)1/2

≥ αδ1/2
(

n

|Xi|

)1/2

for i = 1, . . . , t, and there is no edge between Xi and Xj for 1 ≤ i < j ≤ t.
Thus, the family Pk has the quasi-Erdős-Hajnal property with parameters α := αδ1/2

and β := 1/2. Therefore, Pk also has the Erdős-Hajnal property, see Lemma 8. in [25]. �
In the next two sections, we present the proof of Theorem 6.

3. The main lemma

The backbone of the proof of Theorem 6 is the following technical lemma, whose proof 
is already contained in [25], within the proof Lemma 7. For convenience and to make 
this paper self-contained, it is also included here. Recently, our lemma was also utilized 
by Chudnovsky et al. [10], who provided a different proof as well.

Lemma 10. There exist two constants 0 < ε, α < 1
4 with the following property. Let H be 

a bipartite graph with vertex classes A and B, |A| = |B| = n. Then at least one of the 
following three conditions is satisfied.

(i) There exist t ≥ 2 and 2t pairwise disjoint sets W1, . . . , Wt ⊂ A and X1, . . . , Xt ⊂ B

such that t ≥ α( n
|Xi| )

1/2, and Xi ⊂ N(Wi) for i = 1, . . . , t, but Xi ∩N(Wj) = ∅ for 
i 
= j.

(ii) There exist X ⊂ A and Y ⊂ B such that |X|, |Y | > n
4 , and there is no edge between 

X and Y .
(iii) There exists v ∈ A such that |N(v)| ≥ εn.

Let us briefly outline the idea of the proof. We want to find an induced subgraph H ′

of H with vertex classes A′ ⊂ A and B′ ⊂ B such that

• H ′ is almost bi-regular, more precisely, the degree of every vertex in A′ is at most 
Δ, and the degree of every vertex in B′ is within a constant factor of some d,

• |A′| and |B′| are large with respect to d and Δ.

If we can find such an H ′, we construct our sets W1, . . . , Wt and X1, . . . , Xt as follows. 
By a probabilistic argument, we find S ⊂ A′ such that Ω(|B′|) vertices in B′ have exactly 



28 J. Pach, I. Tomon / Journal of Combinatorial Theory, Series B 151 (2021) 21–37
one neighbor in S. Then we can group the vertices in S into sets W1, . . . , Wt such that 
Xi := NH′(Wi) has size roughly Δ for i ∈ [t]. The 2t sets W1, . . . , Wt and X1, . . . , Xt

will satisfy (i). We find a suitable H ′ algorithmically: we either found our desired A′ or 
B′, or there are too few vertices with too large degrees, in which case we remove these 
vertices and continue. We show that if we cannot find H ′, then at least one of (ii) or (iii) 
must hold.

Proof of Lemma 10. We show that ε = 1
2000 and α = 1

200 meet the above requirements.
Suppose that (iii) does not hold. Then the number of edges of H is at most εn2, so 

the number of vertices w ∈ B such that |N(w)| > εn is at most n/2. Deleting all such 
vertices, and some more, we obtain a bipartite graph H ′ with vertex classes A′ and B′

of size n′ = n/2 such that the maximum degree of H ′ is at most 2εn = 4εn′.
Let ε′ = 4ε = 1

500 and α′ = 1
100 . From now on, we shall only work with H ′, so with 

a slight abuse of notation, write H := H ′, A0 := A′, B0 := B′, n := n′, ε := ε′ and 
α := α′. Therefore, we have Δ(H) ≤ εn.

In what follows, we describe an algorithm, which will be referred to as the main 
algorithm. It will output

(i)’ either an integer t ≥ 2 and 2t pairwise disjoint sets W1, . . . , Wt ⊂ A and 
X1, . . . , Xt ⊂ B such that t ≥ α( n

|Xi| )
1/2, and Xi ⊂ N(Wi) for i = 1, . . . , t, but 

Xi ∩N(Wj) = ∅ for i 
= j;
(ii)’ or two subsets X ⊂ A and Y ⊂ B such that |X|, |Y | > n

2 and there is no edge 
between X and Y .

We declare the following constants for the main algorithm. Let J0 := �log2 εn� + 1, 
and for j = 1, . . . , J0, let tj := n1/22j/2. Then

J0∑
i=1

ti =
J0∑
i=1

n1/22i/2 ≤ 2nε1/2 1
1 − 2−1/2 <

n

4 . (1)

Also, let A∗
0 := ∅ and B∗

0 := ∅.
In the q-th step of the main algorithm, we define Aq, A∗

q , Bq, B∗
q , Jq. We will think 

of A∗
q and B∗

q as a set of “leftovers”. That is, we get Aq and A∗
q by transferring certain 

elements from Aq−1 to A∗
q−1, and we get Bq and B∗

q by transferring certain elements 
from Bq−1 to B∗

q−1. Also, Jq will keep track of the maximum degree in Bq, and it will 
decrease after each step. We make sure that the following properties are satisfied:

1. Aq, A∗
q , Bq, B∗

q are pairwise disjoint and Aq ∪A∗
q = A, Bq ∪B∗

q = B,

2. |A∗
q |, |B∗

q | ≤ 2 
J0∑

i=Jq+1
ti,

3. for every v ∈ Bq, |N(v) ∩Aq| < 2Jq .
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Note that by (1) and conditions 1 and 2, we have |Aq|, |Bq| ≥ n
2 . Also, the conditions 1-3 

are certainly satisfied for q = 0. Next, we describe the q-th step of our main algorithm.

Main algorithm. If Jq−1 = 0, then stop the main algorithm, and output X := Aq−1, Y :=
Bq−1. In this case, there is no edge between Aq−1 and Bq−1 by condition 3, and 
|Aq−1|, |Bq−1| ≥ n

2 by condition 2. This output satisfies condition (ii)’.
Suppose next that Jq−1 ≥ 1. For i = 1, . . . , Jq−1, let Vi be the set of vertices v ∈ Bq−1

such that 2i−1 ≤ |N(v) ∩ Aq−1| < 2i, and let V0 be the set of vertices v ∈ Bq−1 such 
that N(v) ∩Aq−1 = ∅. Then, by condition 3, we have Bq−1 =

⋃Jq−1
i=0 Vi.

Let 1 ≤ k ≤ Jq−1 be the largest integer for which tk < |Vk|. First, consider the case 
where there is no such k. Then

n−
J0∑

i=Jq−1+1
ti − |V0| ≤ n− |B∗

q−1| − |V0| = |Bq−1| − |V0| =
Jq−1∑
i=1

|Vi| ≤
Jq−1∑
i=1

ti,

where the first inequality follows from condition 2, and the first equality is the conse-
quence of condition 1. Comparing the left-hand and right-hand sides, and using (1), we 
get |V0| ≥ n/2. In this case, stop the algorithm and output X := Aq−1 and Y := V0. 
This output satisfies condition (ii)’.

Suppose that there exists k with the desired property. Let Bq,0 = Bq−1 \ (
⋃Jq−1

i=k+1 Vi), 
and let B∗

q,0 = B∗
q−1 ∪ (

⋃Jq−1
i=k+1 Vi). Then |B∗

q,0| ≤ |B∗
q−1| +

∑Jq−1
i=k+1 ti holds. Also, set 

J ′
q := k, Aq,0 = Aq−1 and A∗

q,0 = A∗
q−1. Note that properties 1-3 are satisfied with 

Aq,0, A∗
q,0, Bq,0, B∗

q,0, J
′
q instead of Aq, A∗

q , Bq, Bq∗, Jq, respectively.

Now we shall run a sub-algorithm. Let Z0 = Vk. With help of the sub-algorithm, we 
construct a sequence Z0 ⊃ · · · ⊃ Zr satisfying the following properties. During the �-th 
step of the sub-algorithm, we either find an output satisfying (i)’, or we will transfer 
certain elements of Aq,�−1 to A∗

q,�−1, resulting in the sets Aq,� and A∗
q,�. At the end of 

the �-th step of this algorithm, Z� will be the set of vertices in Bq,0 that still have at 
least 2k−1 neighbors in A. We stop the algorithm if Z� is too small. Let us describe the 
�-th step of the algorithm.

Sub-algorithm. Suppose that Z�−1, Aq,�−1, A∗
q,�−1 have already been defined. If |Z�−1| <

2tk, then let r = � − 1, stop the sub-algorithm. Set Bq := Bq,0 \ Z�−1, B∗
q :=

B∗
q,0 ∪ Z�−1, Aq := Aq,�−1, A∗

q := A∗
q,�−1, and Jq := k − 1. Move to the next 

step of the main algorithm. Note that conditions 1 and 3 are satisfied, and B∗
q

satisfies condition 2. Later, we will see that A∗
q satisfies 2. as well.

On the other hand, if |Z�−1| ≥ 2tk, we define Z� as follows. Let x� = |Z�−1|
tk

. 
Say that a vertex v ∈ Aq,�−1 is heavy if

|N(v) ∩ Z�−1| ≥
x�−12k |Z�−1| =

(
|Z�−1|

)2

2k = |Z�−1|2 =: Δ�,

tk tk n
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and let K� be the set of heavy vertices. Counting the number of edges f between 
K� and Z�−1 in two ways, we can write

|K�| · Δ� ≤ f < |Z�−1| · 2k,

which gives

|K�| <
|Z�−1| · 2k

Δ�
= tk

x�
,

where the equality holds by the definition of Δ�. Set Aq,� := Aq,�−1 \ K� and 
A∗

q,� = A∗
q,�−1 ∪K�. Examine how the degrees of the vertices in Z�−1 changed, 

and consider the following two cases:

Case 1. At least |Z�−1|
2 vertices in Z�−1 have at least 2k−1 neighbors in Aq,�.

Let T be the set of vertices in Z�−1 that have at least 2k−1 neighbors 
in Aq,�, so |T | ≥ |Z�−1|

2 . Pick each element of Aq,� with probability 
p = 2−k, and let S be the set of selected vertices. We say that v ∈ T is 
good if |N(v) ∩ S| = 1, and let D be the set of good vertices. We have

P (v is good) = |N(v) ∩Aq,�|p(1 − p)|N(v)∩Aq,�|−1 ≥ 1
2(1 − 2−k)2

k ≥ 1
6 ,

so that E(|D|) ≥ |T |
6 ≥ |Z�−1|

12 . Therefore, there exists a choice for S
such that |D| ≥ |Z�−1|

12 . Let us fix such an S. For each v ∈ S, let Dv be 
the set of elements w ∈ D such that N(w) ∩ S = {v}. Also, note that

|Dv| ≤ |N(v) ∩ Z�| ≤ min{εn,Δ�} =: Δ′
�.

In other words, the sets Dv for v ∈ S partition D into sets of size at 
most Δ′

�. Here, we have

|D|
Δ′

�

≥ |Z�−1|
12Δ′

�

≥ max
{

n

12|Z�−1|
,
|Z�−1|
εn

}
.

By the choice of ε, the right-hand side is always at least 6. But then we 
can partition S into t ≥ |D|

3Δ′
�
≥ 2 parts W1, . . . , Wt such that the sets 

Xi =
⋃

v∈Wi
Dv have size at least Δ′

� for i = 1, . . . , t. The integer t and 
the resulting sets X1, . . . , Xt satisfy that

t ≥ |D|
3Δ′

�

≥ n

36|Z�−1|
≥ 1

36

(
n

Δ�

)1/2

≥ 1
36

(
n

|Xi|

)1/2

.

Stop the main algorithm, and output t and the 2t pairwise disjoint sets 
W1, . . . , Wt and X1, . . . , Xt. By the choice of α, this output satisfies (i)’.
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Case 2. At most |Z�−1|
2 vertices in Z�−1 have at least 2k−1 neighbors in Aq,�.

In this case, define Z� as the set of elements of Z�−1 with at least 
2k−1 neighbors in Aq,� (then Z� is the set of all elements in Bq,0 with at 
least 2k−1 neighbors in Aq,� as well). Also, move to the next step of the 
sub-algorithm.

We show that conditions 1-3 are still satisfied for Aq,�, A∗
q,�, B�,0,

B∗
�,0, J

′
q instead of Aq, A∗

q , Bq, B∗
q , Jq. Conditions 1 and 3 are clearly 

true, and 2 holds for B∗
q,0. It remains to show that 2 holds for A∗

q,� as 
well. Note that, as |Zj | ≤ |Zj−1|

2 for j = 1, . . . , �, and |Z�−1| ≥ 2tk, we 
have |Zj | ≥ 2�−jtk, and xj ≥ 2�+1−j . Therefore,

|A∗
q,�| = |A∗

q−1| +
�∑

j=1
|Kj | ≤ |A∗

q−1| +
�∑

j=1

tk
xj

≤ |A∗
q−1| +

�∑
j=1

tk
2�+1−j

< |A∗
q−1| + tk.

Hence, condition 2 is also satisfied.

As we have J0 > J1 > · · · ≥ 0, the main algorithm will stop after at most J0 steps. 
When the algorithm stops, its output will satisfy either (i)’ or (ii)’. �

Let us remark that if (i) holds, then the 2t sets W1 . . . , Wt and X1, . . . , Xt have the 
additional property that every vertex in 

⋃t
i=1 Xi has exactly one neighbor in 

⋃t
i=1 Wi.

4. The proof of Theorem 6

Now we are in a position to prove Theorem 6. Let G be an ordered graph. The 
transitive closure of G is the ordered graph G′ on the vertex set V (G) in which x and y
are connected by an edge if and only if there exists a monotone path in G with endpoints 
x and y.

Let us briefly outline the proof idea. We assume that for G there is no integer t ≥ 2 and 
t sets X1, . . . , Xt with the desired properties. Then we show that G contains a monotone 
path x1, . . . , xk with the following additional property. For s = 1, . . . , k, there are Ω(n)
vertices in G that can be reached by a monotone path from xs, which avoids all the 
neighbors of x1, . . . , xs−1. This additional property lets us do induction on s, allowing 
us to find x1, . . . , xk one-by-one.

Proof of Theorem 6. Let 0 < ε1, α1 < 1
4 be the constants given by Lemma 10 as ε, α, 

respectively. Furthermore, define the following constants: c1 = ε1
2 , ci+1 = ε1ci

4 (for i =
1, 2, . . . ), ε = ck

2 , and α = α1c
1/2
k

2 .
Let G be an ordered graph on n vertices such that
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1. the maximum degree of G is at most εn,
2. there exists no t ≥ 2 such that for some pairwise disjoint sets X1, . . . , Xt ⊂ V (G) we 

have t ≥ α( n
|Xi| )

1/2 and there is no edge between Xi and Xj for 1 ≤ i < j ≤ t.

Then we show that G contains a monotone path of size k as an induced subgraph. In 
particular, we find k vertices x1 ≺ · · · ≺ xk with the following properties. For s = 1, . . . , k,

(a) x1, . . . , xs form an induced monotone path.
(b) Let

Us = V (G) \
(

s−1⋃
i=1

N(xi)
)
,

let Gs = G[Us ∪ {xs}], and let G′
s be the transitive closure of Gs. Then the forward 

degree of xs in G′
s is at least csn.

First, we find a vertex x1 with the desired properties, that is, if G′ is the transitive 
closure of G, then the forward degree of x1 must be at least c1n. Let A0 be the set of the 
first n/2 elements of V (G), and set B0 = V (G) \ A0. Also, let H0 denote the bipartite 
subgraph of G′ with parts A0 and B0. By Lemma 10, at least one of the following three 
conditions is satisfied.

(i) There exist t ≥ 2 and 2t pairwise disjoint sets W1, . . . , Wt ⊂ A0 and X1, . . . , Xt ⊂
B0 such that

t ≥ α1

(
|A0|
|Xi|

)1/2

= 2−1/2α1

(
n

|Xi|

)1/2

≥ α

(
n

|Xi|

)1/2

,

and Xi ⊂ NH0(Wi) for i = 1, . . . , t, but Xi ∩NH0(Wj) = ∅ for i 
= j.
(ii) There exist X ⊂ A0 and Y ⊂ B0 such that |X|, |Y | ≥ n

8 , and there is no edge 
between X and Y .

(iii) There exists v ∈ A0 such that |NH0(v)| ≥ ε1|A0| = c1n.

As the non-edges of G′ are also non-edges of G, (ii) cannot hold. Otherwise, t = 2
and X1 = X, X2 = Y contradicts property 2 of G. Suppose that (i) holds. Note that 
there is no edge between Xi and Xj in G, for 1 ≤ i < j ≤ t. Suppose for contradiction 
that x ∈ Xi and y ∈ Xj are joined by an edge in G, for some x ≺ y. Then there exists 
w ∈ Wi such that wx ∈ E(G′), but wy /∈ E(G′). This is a contradiction, as this means 
that there is a monotone path from w to x in G, so there is a monotone path from w to y
as well. Hence, there is no edge between Xi and Xj for 1 ≤ i < j ≤ t, which contradicts 
2. Therefore, (iii) must hold: there exists a vertex x1 ∈ V (G) whose forward degree in 
G′ = G′

1 is at least c1n.
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Suppose that we have already found x1, . . . , xs with the desired properties, for some 
1 ≤ s ≤ k − 1. Then we define xs+1 as follows. Let Fs be the forward neighborhood of 
xs in Gs, let Ks be the forward neighborhood of xs in G′

s, and let Ls = Ks \ Fs. As 
|Fs| ≤ εn and |Ks| ≥ csn, we have |Ls| ≥ cs

2 n. Let As be the set of the first |Ls|
2 elements 

of Ls with respect to ≺, and let Bs = Ls \As. A monotone path in Gs is said to be good
if none of its vertices, with the possible exception of the first one, belongs to Fs. For 
every v ∈ As, there exists at least one element x ∈ Fs such that v ∈ N+

G′
s
(x); assign the 

largest (with respect to ≺) such element x to v. Then there is a good monotone path 
from x to v.

Define a bipartite graph Hs between As and Bs as follows. If v ∈ As and y ∈ Bs, 
and x ∈ Fs is the vertex assigned to v, then join v and y by an edge if there is a good 
monotone path from x to y. Applying Lemma 10 to Hs, we conclude that at least one 
of the following three statements is true.

(i) There exist t ≥ 2 and 2t pairwise disjoint sets W1, . . . , Wt ⊂ As and X1, . . . , Xt ⊂ Bs

such that

t ≥ α1

(
|As|
|Xi|

)1/2

>
α1c

1/2
s

2

(
n

|Xi|

)1/2

≥ α

(
n

|Xi|

)1/2

,

and Xi ⊂ NHs
(Wi) for i = 1, . . . , t, but Xi ∩NHs

(Wj) = ∅ for i 
= j.
(ii) There exist X ⊂ As and Y ⊂ Bs such that |X|, |Y | ≥ |As|

4 ≥ csn
16 , and there is no 

edge between X and Y in Hs.
(iii) There exists v ∈ As such that |NHs

(v)| ≥ ε1|As| = ε1cs
4 n = cs+1n.

Suppose first that (i) holds. Then, as before, we show that there is no edge between 
Xi and Xj in G for 1 ≤ i < j ≤ t. Suppose that u ∈ Xi and w ∈ Xj are joined by 
an edge in G, for some u ≺ w. Then there exists v ∈ Wi such that vu ∈ E(Hs), but 
vw /∈ E(Hs). Let x ∈ Fs be the vertex assigned to v. Then we can find a good monotone 
path from x to u. Since uw is an edge of G, there is a good monotone path from x to w, 
contradicting the assumption vw /∈ E(Hs). Therefore, there cannot be any edge between 
Xi and Xj in G, which means that (i) contradicts 2.

Suppose next that (ii) holds. Again, we can show that there is no edge between X
and Y in G, which then contradicts 2. by setting t = 2 and X1 = X, Y1 = Y . Suppose 
that v ∈ X and y ∈ Y are joined by an edge in G, and let x ∈ Fs be the vertex assigned 
to v. There is a good monotone path from x to v in Gs, so there is a good monotone 
path from x to y, contradicting the assumption that vy is not an edge of Hs.

Therefore, we can assume that (iii) holds. Let v ∈ As be a vertex of degree at least 
cs+1n in Hs, and let xs+1 ∈ Fs be the vertex assigned to v. We show that xs+1 satisfies 
the desired properties. We have Us+1 = Us \Fs, and the forward degree of xs+1 in G′

s+1
is exactly the number of vertices y such that there is a good monotone path from xs+1
to y. That is, the forward degree of xs+1 is at least |NHs

(v)| ≥ cs+1n, as required. This 
completes the proof. �
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5. The construction—Proof of Theorem 3

In this section, we present our construction for Theorem 3. The construction involves 
expander graphs, which are defined as follows.

The closed neighborhood of U in a graph H is defined as U ∪NH(U), and is denoted 
by N [U ] = NH [U ]. The graph H is called an (n, d, λ)-expander if H is a d-regular graph 
on n vertices, and for every U ⊆ V satisfying |U | ≤ |V |/2, we have |NH [U ]| ≥ (1 +λ)|U |. 
By a well-known result of Bollobás [4], a random 3-regular graph on n vertices is a 
(n, 3, λ0)-expander with high probability for some absolute constant λ0 > 0. In the rest 
of this section, we fix such a constant λ0. For explicit constructions of expander graphs 
see, e.g., [19].

For any positive integer r, let Hr denote the graph with vertex set V (H) in which 
two vertices are joined by an edge if there exists a path of length at most r between 
them in H. Here we allow loops, so that in Hr every vertex is joined to itself. We need 
the following simple property of expander graphs.

Claim 11. Let H be an (n, d, λ)-expander graph and let r ≥ 1. For any subsets X, Y ⊆
V (H) such that there is no edge between X and Y in Hr, we have |X| ·|Y | ≤ n2(1 +λ)−r.

Proof. Let Xi = NHi [X] and Yi = NHi [Y ] for i = 1, . . . , r, and let X0 = X, Y0 = Y . It 
follows from the definition of expanders that, if |Xi| ≤ n

2 , then

|X| ≤ 1
2n(1 + λ)−i.

Similarly, if |Yi| ≤ n
2 , then |Y | ≤ 1

2n(1 + λ)−i. If X and Y are not connected by any 
edge in Hr, then Xi and Yr−i must be disjoint for every i. Let � be the largest number 
in {0, 1, . . . , r} such that |X�| ≤ n/2.

If � = r, then |X| < n(1 + λ)−r, and hence |X||Y | ≤ n2(1 + λ)−r.
If � < r, then |X�+1| > n/2 and |Yr−�−1| ≤ n/2. Therefore, we have |Y | ≤ n(1 +

λ)−(r−�−1). Using the inequality 1 + λ ≤ 2, we obtain

|X| · |Y | ≤ 1
4n

2(1 + λ)−r+1 ≤ n2(1 + λ)−r. �
Claim 12. For any d-regular graph H and r ≥ 1, we have Δ(Hr) ≤ (d + 1)r.

Our construction is based on the following key lemma.

Lemma 13. Let k, m, f be positive integers. Let A1, . . . , Ak be pairwise disjoint sets of 
size m, and suppose that there exists an (m, 3, λ0)-expander.

Then there is a graph G on the vertex set V =
⋃k

i=1 Ai such that

1. Δ(G) ≤ 4f2k ;
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2. if x, y, z ∈ V such that x ∈ Aa, y ∈ Ab, z ∈ Ac for some a < b < c, and xy, xz ∈
E(G), then yz ∈ E(G) as well;

3. for any a 
= b and any pair of subsets X ⊂ Aa and Y ⊂ Ab that are not connected 
by any edge of G, we have |X| · |Y | ≤ m2(1 + λ0)−f .

Proof. Let H be an (m, 3, λ0)-expander. Let φ : V → V (H) be an arbitrary function 
such that φ is a bijection when restricted to the set Ai, for i = 1, . . . , k. Define the graph 
G, as follows. Suppose that x ∈ Aa and y ∈ Ab for some a < b. Join x and y by an edge 
if there exists a path of length at most f2a−1 between φ(x) and φ(y) in H. By Claim 12, 
the maximum degree of G is at most 

∑k−1
i=1 4f2i ≤ 4f2k , so that G has property 1.

To see that G also has property 2, consider x ∈ Aa, y ∈ Ab, z ∈ Ac such that 
a < b < c and xy, xz ∈ E(G). We have to show that yz ∈ E(G). By definition, there 
exists a path of length at most f2a−1 between φ(x) and φ(y) in H, and there exists a 
path of length at most f2a−1 between φ(x) and φ(z). But then there exists a path of 
length at most f2a ≤ f2b−1 between φ(y) and φ(z), so yz is also an edge of G.

It remains to verify that G has property 3. If 1 ≤ a < b ≤ k and X ⊂ Aa and Y ⊂ Ab

are not connected by any edge in G, then there is no edge between φ(X) and φ(Y ) in 
Hf2a−1 . By Claim 11, we have |X| · |Y | ≤ m2(1 + λ0)−f2a−1 ≤ m2(1 + λ0)−f . �

Now we are in a position to prove Theorem 3.

Proof of Theorem 3. Let k = 2
ε , f = log2 n

2·2k , and m = n
k . We show that the theorem 

holds with δ = log2(1+λ0)
2k .

Let A1, . . . , Ak be pairwise disjoint sets of size m. By Lemma 13, there exists a graph 
G0 on V =

⋃m
i=1 Ai satisfying conditions 1-3 with the above parameters.

Define the ordered graph G on the vertex set V as follows. Let ≺ be any ordering on 
V satisfying A1 ≺ · · · ≺ Ak. For any x ∈ Aa and y ∈ Ab, join x and y by an edge of G if 
xy ∈ E(G0), or a = b. Then the maximum degree of G is at most nk +Δ(G0) ≤ εn. Notice 
that the complement of G does not contain a bi-clique of size n1−δ. Indeed, if (X, Y ) is a 
bi-clique in G, then there exists a 
= b such that |X∩Aa| ≥ |X|

k and |Y ∩Ab| ≥ |Y |
k = |X|

k . 
Thus,

|X|2
k2 ≤ |X ∩Aa| · |Y ∩Ab| ≤ m2(1 + λ0)−f = m2

n2δ ,

which implies that |X| ≤ n1−δ.
It remains to show that G contains neither S, nor P as an induced ordered subgraph. 

Let us start with S. Suppose that there are four vertices, v0 ≺ v1 ≺ v2 ≺ v3, in G such 
that v0v1, v0v2, v0v3 ∈ E(G), but v1v2, v2v3, v1v3 /∈ E(G). Let v0 ∈ Aa, v1 ∈ Ab, v2 ∈ Ac, 
and v3 ∈ Ad, then a ≤ b ≤ c ≤ d. If c = a, then b = a, which implies v1v2 ∈ E(G), 
contradiction. Therefore, a < c ≤ d. As v2v3 /∈ E(G), we must have c < d as well. But 
then the three vertices v0, v2, v3 contradict property 2, so that G does not contain S an 
induced ordered subgraph.
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To show that G does not contain P , we can proceed in a similar manner. Suppose 
for contradiction that there are four vertices, v0 ≺ v1 ≺ v2 ≺ v3, in G such that 
v0v2, v0v3, v1v2 ∈ E(G), but v0v1, v1v3, v2v3 /∈ E(G). Let v0 ∈ Aa, v1 ∈ Ab, v2 ∈ Ac, and 
v3 ∈ Ad, where a ≤ b ≤ c ≤ d. We have a < b, otherwise v0v1 ∈ E(G). In the same way, 
c < d, otherwise v2v3 ∈ E(G). Therefore, a < c < d, and the vertices, v0, v2, and v3, 
contradict condition 2 of Lemma 13. �
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