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Abstract
We introduce a hierarchy of equivalence relations on the set of separated nets of a given
Euclidean space, indexed by concave increasing functions φ : (0,∞) → (0,∞). Two sep-
arated nets are called φ-displacement equivalent if, roughly speaking, there is a bijection
between them which, for large radii R, displaces points of norm at most R by something of
order at mostφ(R).We show that the spectrum ofφ-displacement equivalence spans from the
established notion of bounded displacement equivalence, which corresponds to bounded φ,
to the indiscrete equivalence relation, corresponding to φ(R) ∈ Ω(R), in which all separated
nets are equivalent. In between the two ends of this spectrum, the notions of φ-displacement
equivalence are shown to be pairwise distinct with respect to the asymptotic classes of φ(R)

for R → ∞. We further undertake a comparison of our notion of φ-displacement equiva-
lence with previously studied relations on separated nets. Particular attention is given to the
interaction of the notions of φ-displacement equivalence with that of bilipschitz equivalence.
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1 Introduction

In the present work, we compare the metric structures of separated nets by examining how
much mappings between them displace points. The notion of displacement of a mapping is
defined as follows:

Definition 1.1 Let f : A ⊆ R
d → R

d . We define the displacement constant of f as

disp( f ) := ‖ f − id‖∞ .

If disp( f ) < ∞, then we say that f is a mapping of bounded displacement.

Research into separated nets in Euclidean spaces has broadly centred around the question
of to what extent any two separated nets in a Euclidean space are similar, as metric spaces.
To formulate this question more precisely, it is necessary to prescribe what it means for two
separated nets to be considered similar, or put differently, to define a symmetric relation
on the class of separated nets in a Euclidean space. Two such notions, which are in fact
equivalence relations, have been studied most prominently.

The most narrow of these notions is that of bounded displacement equivalence. Two sep-
arated nets X , Y ⊆ R

d are said to be bounded displacement equivalent, or BD equivalent, if
there exists a bijection f : X → Y for which disp( f ) < ∞. To demonstrate how constrictive
BD equivalence is, we point out that for any separated net X ⊆ R

d , X is not B D equivalent
to 2X .1 Hence, even linear bijections Rd → R

d may transform a separated net to a BD
non-equivalent separated net.

For the second notion, two separated nets X , Y ⊆ R
d are called bilipschitz equivalent,

or BL equivalent, if there is a bilipschitz bijection f : X → Y . This defines a much looser
form of equivalence in comparison to BD equivalence. In fact, it is a highly non-trivial
question, posed by Gromov [6] in 1993, whether BL equivalence distinguishes at all between
the separated nets of a multidimensional Euclidean space. Moreover, we point out that BD
equivalence is easily seen to be stronger than BL equivalence.

For all Euclidean spaces of dimension at least two, Gromov’s question was answered
negatively in 1998 by Burago and Kleiner [1] and (independently) McMullen [9]; the papers
[1] and [9] verify the existence of a separated nets inRd , d ≥ 2, which are not BL equivalent
to the integer lattice.

In the recent work [3], the authors introduce the notion of ω-regularity of a separated net.

Definition 1.2 Given separated nets X , Y ⊆ R
d and a strictly increasing, concave function

ω defined on a positive open interval starting at 0 and satisfying

lim
t→0

ω(t) = 0,

a mapping f : X → Y is called a homogeneous ω-mapping if there are constants K > 1 and
a > 0 such that

‖ f (y) − f (x)‖2 ≤ K Rω

(‖y − x‖2
R

)

for all R > 0 and x, y ∈ X ∩ B(0, R) with ‖y − x‖2 < a R. The separated net X ⊆ R
d

is called ω-regular with respect to the separated net Y ⊆ R
d if there exists a bijection

f : X → Y such that both f and f −1 are homogeneous ω-mappings. Otherwise X is called

1 The reader may wish to verify this as an exercise; alternatively we note that this fact is a special case of
Proposition 3.3 of the present work.
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ω-irregular with respect to Y . In the case that Y = Z
d , these terms are shortened toω-regular

and ω-irregular respectively.

From now on, we will refer to functions ω with the properties given in Definition 1.2 as
moduli of continuity. The functionω(t) = t will be called the Lipschitz modulus of continuity
and functions ω(t) = tβ with β ∈ (0, 1) will be referred to as Hölder moduli of continuity.
When we prescribe a modulus of continuity ω by a formula such as ω(t) = tβ , it should be
understood that this formula defines ω on some interval (0, a) with a > 0. The precise value
of a and indeed the behaviour of ω(t) for t ≥ a is irrelevant to the notions of Definition 1.2.

It is clear that for two moduli of continuityω1,ω2 satisfyingω2(t) ∈ o(ω1(t)) for t → 0,2

the notion of ω1-regularity is formally weaker than that of ω2-regularity. Further for the
Lipschitz modulus of continuity ω(t) = t , ω-regularity of X with respect to Y is nothing
other than the BL equivalence of X and Y . Thus, the result of Burago and Kleiner and
(independently)McMullen discussed above can be formulated as follows: In every Euclidean
space Rd with d ≥ 2 there exists an ω-irregular separated net for the function ω(t) = t .

The notion of ω-regularity of separated nets is motivated by a result of McMullen [9, The-
orem 5.1], which stands in contrast to the existence of BL non-equivalent nets. McMullen [9]
proves that for any two separated nets X and Y in Euclidean space, X is ω-regular with
respect to Y for some Hölder modulus of continuity ω(t) = tβ for some β ∈ (0, 1). In the
work [3], the present authors investigate ω-regularity for ω lying asymptotically in between
the Lipschitz modulus of continuity and Hölder moduli of continuity. The paper [3] proves
that there are separated nets in every R

d , d ≥ 2, which are ω-irregular for the modulus of
continuity

ω(t) = t

(
log

1

t

)α0

, (1.1)

where α0 = α0(d) is a positive constant determined by the dimension d of the space. This is
formally a stronger result than the existence of BL non-equivalent separated nets.

Growth of restricted displacement constants.

Looking at the value of disp( f ) for bijections f between two separated nets X and Y gives
only a very crude comparison of their metric structures. Roughly speaking ‘most’ pairs of
separated nets X and Y are BD non-equivalent, so that disp( f ) = ∞ for every such bijection.
This motivates a more subtle form of metric comparison of separated nets in Euclidean space
via displacement:

Definition 1.3 Let f : A ⊆ R
d → R

d . We define a function (0,∞) → [0,∞) by

R 
→ dispR( f ) :=
{
disp

(
f |A∩B(0,R)

)
if A ∩ B (0, R) �= ∅,

0 otherwise.

Although we expect generally that disp( f ) = ∞ for any bijection between two separated
nets, so that limR→∞ dispR( f ) = ∞, it remains of interest in such cases to determine the
optimal asymptotic growth of dispR( f ) as R → ∞ among such bijections. Indeed, this
allows for a more flexible notion of displacement equivalence.

Definition 1.4 Let φ : (0,∞) → (0,∞) be an increasing, concave function and X and Y be
separated nets of Rd . We say that X and Y are φ-displacement equivalent if there exists a
bijection f : X → Y for which dispR( f ) ∈ O(φ(R)).

2 We use the standard asymptotic notation O, o,Ω and Θ; for the definitions, see Sect. 2.
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Remark 1.5 In Definitions 1.3 and 1.4 it may appear that the origin 0 ∈ R
d has a special role:

it is the reference point with respect to which the quantity dispR( f ) is defined. It is therefore
natural to ask, whether a different choice of reference point in Definition 1.3 would give rise
to a different notion of φ-displacement equivalence in Definition 1.4. However, this is not the
case, due to the conditions on the functions φ admitted in Definition 1.4 and the inequality

dispy
R( f ) ≤ dispz

R+‖z−y‖2( f ),

where dispw
R( f ) denotes the quantity of Definition 1.3 obtained when w ∈ R

d is used as the
reference point instead of 0 ∈ R

d .

Remark 1.6 We require the concavity of φ in Definition 1.4 in order to verify that φ-
displacement equivalence is a true equivalence relation. However, the readermay askwhether
it is possible to admit a larger class of functions φ. It is the authors’ view that admitting only
concave functionsφ inDefinition 1.4 is not amajor restriction. Recall that for every increasing
functionψ : (0,∞) → (0,∞)withψ ∈ O(R) there is a concavemajorant, that is, a concave
increasing function φ : (0,∞) → (0,∞) such that ψ ≤ φ pointwise and ψ(R) /∈ o(φ(R));
see Lemma 2.1.

Observe that the concave condition in Definition 1.4 implies that φ(R) ∈ O(R) and
thus superlinear functions such as φ(R) = R2 are excluded. However, excluding superlinear
functions φ is not any restriction because, were they to be admitted, then the resulting notions
of φ(R)-displacement equivalence for all functions φ(R) ∈ Ω(R) would coincide and equal
the trivial equivalence relation in which all separated nets of Rd are equivalent. This last
assertion is a consequence of Proposition 2.6 of the present work.

Structure of the paper andmain results

To finish this introduction, we outline the structure of the paper and summarise the main
contributions of the present work.

Sections 2 and 3 present preliminary results and observations which canmostly be thought
of as easy consequences of the new definition of φ-displacement equivalence, but are nev-
ertheless worth highlighting in view of the authors. In Sect. 2 we verify that the notions of
φ-displacement equivalence given by Definition 1.4 are equivalence relations:

Proposition 2.7 Let φ : (0,∞) → (0,∞) be an increasing, concave function. Then the
notion of φ-displacement equivalence of separated nets in R

d given by Definition 1.4 is an
equivalence relation on the set of separated nets of Rd .

We further show that the notion of φ-displacement equivalence for φ(R) ∈ Ω(R) does
not distinguish between separated nets:

Proposition 2.6 Let X , Y be two separated nets in R
d . Then there is a bijection f : X → Y

such that dispR( f ), dispR( f −1) ∈ O(R).

In contrast, Sect. 3 deals with negative results and identifies certain barriers to φ-
displacement equivalence for φ ∈ o(R).

Our first main result demonstrates that the notions of φ-displacement equivalence for
increasing, concave functions φ : (0,∞) → (0,∞) form a fine spectrum starting from the
strictest form of φ-displacement equivalence, namely BD equivalence, which corresponds
to φ-equivalence for bounded φ(R) ∈ O(1), to the weakest form of φ-displacement equiva-
lence, namely that corresponding to φ(R) ∈ Ω(R). In the spectrum between O(1) andΩ(R)
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we show that the notions of φ-displacement equivalence are pairwise distinct with respect
to the asymptotic classes of functions φ(R) for R → ∞. We prove namely the following
statement:

Theorem 4.1 Let φ : (0,∞) → (0,∞) be an increasing, concave function with φ(R) ∈ o(R)

and X ⊆ R
d be a separated net. Then there exists a separated net Y ⊆ R

d such that every
bijection f : X → Y satisfies dispR( f ) /∈ o(φ(R)) and there exists a bijection g : X → Y
with dispR(g), dispR(g−1) ∈ O(φ(R)). Moreover, such Y can be found so that X and Y are
bilipschitz equivalent.

Corollary 1.7 Let φ1, φ2 : (0,∞) → (0,∞) be increasing, concave functions with φ1(R) ∈
o(φ2(R)). Then φ2-displacement equivalence of separated nets in R

d is a strictly weaker
notion than that of φ1-displacement equivalence.

Theorem 4.1 will be proved in Sect. 4; Corollary 1.7 is an immediate consequence of
Theorem 4.1. Note that Theorem 4.1 also verifies the optimality of Proposition 2.6.

The theme of Sects. 5 and 6 is the comparison of the established notion of BL equiva-
lence with the spectrum of φ-displacement equivalence for increasing, concave functions
φ : (0,∞) → (0,∞). We begin, in Sect. 5, with the strictest form of φ-displacement equiv-
alence, namely BD equivalence. In Sect. 6 we then move onto φ-displacement equivalence
for unbounded φ.

We compare the notions of BL equivalence and φ-displacement equivalence by looking at
the intersection of the BL equivalence classeswith the classes ofφ-displacement equivalence.
The cardinality of the set of equivalence classes of separated nets has already attracted
some research attention. Magazinov [8] shows that in every Euclidean space of dimension
at least two, the set of BL equivalence classes of separated nets has the cardinality of the
continuum. Since BD equivalence is stronger than BL equivalence, this also implies that
there are uncountably many distinct BD classes. In [5, Theorem 1.3], Frettlöh, Smilansky and
Solomon also verify the existence of uncountably many, pairwise distinct BD equivalence
classes of separated nets in R

2. Interestingly, the class representatives of the uncountably
many, pairwise distinct BD equivalence classes given in [5] all come from the same BL
equivalence class.

Independently of the aforementioned works [8] and [5], we are able to verify that every
Euclidean space has uncountablymany, pairwise distinct BD equivalence classes of separated
nets. Further, we provide new information, namely that there are uncountably many pairwise
distinct BD equivalence classes inside each BL equivalence class. Hence, we are able to
present a new result, which we prove in Sect. 5:

Theorem 5.1 For every d ∈ N, every bilipschitz equivalence class of separated nets in
R

d decomposes as a union of uncountably many pairwise distinct bounded displacement
equivalence classes.

For unbounded functions φ(R), the analysis of the interaction of the BL classes and the
φ-displacement equivalence classes of separated nets in R

d is more challenging. In light
of Theorem 5.1, the natural problem is to characterise the increasing, concave functions
φ(R) ∈ o(R) for which φ-displacement equivalence is stronger than BL equivalence; note
that Theorem 5.1 takes care of the functions φ(R) ∈ O(1). In Sect. 6 we resolve this matter.
We verify, namely, that φ-displacement is stronger than BL equivalence if and only if φ(R) ∈
O(1). In particular, this means that BD equivalence is the only form of φ-displacement
equivalence for which Theorem 5.1 holds.
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Section 6 should also be placed in the context of ω-regularity of separated nets. Recall
that BL equivalence corresponds to the notion of ω-regularity for the modulus of con-
tinuity ω(t) = t . For the weaker modulus of continuity ω of (1.1) and any function
φ(R) ∈ O

(
Rω
( 1

R

))
, the authors prove in [3] that the φ-displacement equivalence class

of the integer lattice does not contain any ω-irregular separated nets. This may support the
following conjecture:

Conjecture 1.8 Let d ≥ 2, ω be a modulus of continuity in the sense of Definition 1.2 and
φ : (0,∞) → (0,∞) be an increasing concave function. Then the class of ω-irregular
separated nets in R

d has non-empty intersection with the φ-displacement equivalence class
of the integer lattice Z

d if and only if Rω
( 1

R

) ∈ o(φ(R)).

Indeed the ‘only if’ implication of Conjecture 1.8 for the modulus of continuity ω of
(1.1) is precisely the result [3, Proposition 1.3] referred to above. In Sect. 6 of the present
work, we show that for every increasing, unbounded, concave functionφ : (0,∞) → (0,∞),
the φ-displacement class of the integer lattice intersects distinct BL classes; in particular it
containsω-irregular separated nets forω(t) = t . Amatter of interest is whether every such φ-
displacement equivalence class intersects every BL equivalence class. This question remains
open, but we are able to show that every such φ-displacement equivalence class intersects
uncountably many BL equivalence classes:

Theorem 6.1 Let d ≥ 2 and φ : (0,∞) → (0,∞) be an unbounded, increasing, concave
function. Then there is an uncountable family (Xψ)ψ∈Λ of pairwise bilipschitz non-equivalent
separated nets in R

d for which each Xψ is φ-displacement equivalent to Z
d .

We point out that Theorem 6.1 is a refinement of the lower bound from [8] and is obtained
entirely independently. Moreover, put together with the fact that BD equivalence is stronger
than BL equivalence, Theorem 6.1 verifies Conjecture 1.8 for the special case of the Lipschitz
modulus of continuity ω(t) = t . We further remark that equivalence of separated nets and
cardinality of sets of their equivalence classes have been studied in connectionwith the notion
of repetitivity of separated nets; see [2] and [11]. Our methods for constructing separated
nets verifying Theorem 6.1 appear to destroy repetitivity and so there seem to be serious
obstructions to employing them to, for example, prove a BL equivalence version of the
dichotomy [11, Theorem 1.1] for BD equivalence.

At this point,we alsowish to state formally the characterisation announced in the abovedis-
cussion of Sect. 6. This result is an immediate consequence of Theorem 5.1 and Theorem 6.1:

Theorem 1.9 Let d ≥ 2 and φ : (0,∞) → (0,∞) be an increasing, concave function. Then,
φ-displacement equivalence of separated nets in R

d is stronger than bilipschitz equivalence
if and only if φ is bounded.

Finally, we finish this article in Sect. 7 with a useful application of the φ-displacement
equivalence spectrum.Whilst [3] verifies the existence of separated netswhich areω-irregular
forω of the form (1.1), it leaves one important issue unresolved: namely, whetherω-regularity
for ω of the form (1.1) is distinct from the notion of bilipschitz equivalence (that is, ω-
regularity for ω(t) = t). In view of the results [9, Theorem 5.1] and [1, Theorem 1.1], it is
clear that there are Hölder moduli of continuity of the form ω1(t) = tβ for some β ∈ (0, 1)
so that for ω2(t) = t , the notions of ω1- and ω2-regularity are distinct; ω1-regularity is
strictly weaker than ω2-regularity. However, the most that can be established on the basis
of the existing literature is that there are at least two distinct notions of ω-regularity. In
particular, Dymond and Kaluža [3] does not address the issue of whether there are any
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moduli of continuity ω strictly in between the Hölder moduli of continuity and the Lipschitz
modulus of continuity, such as ω of the form (1.1), which define further distinct notions of
ω-regularity. This is quite unsatisfactory because it leaves open the possibility that the result
[3, Theorem 1.2] is in fact identical to [1, Theorem 1.1] and the corresponding result in [9],
although it is formally stronger.

In the present article we verify that for the modulus of continuity ω of the form (1.1), the
notion of ω-regularity is strictly weaker than BL equivalence. This confirms that the ‘highly
irregular’3 separated nets given in [3, Theorem 1.2] are indeedmore irregular in a meaningful
way than the BL non-equivalent separated nets of McMullen [9] and Burago and Kleiner [1,
Theorem 1.1].

Theorem 7.1 Let d ≥ 2, α0 = α0(d) be the quantity of [3, Theorem 1.2] and ω be a modulus
of continuity in the sense of Definition 1.2 such that ω(t) = t

(
log 1

t

)α0 for t ∈ (0, a) and
some a > 0. Then the set of ω-regular separated nets in R

d strictly contains the set of
separated nets bilipschitz equivalent to Z

d .

Despite this progress, we are only able to increase the number of known pairwise distinct
forms of ω-regularity by one:

Corollary 7.2 For any dimension d ≥ 2 there exist moduli of continuity ω1, ω2, ω3 in the
sense of Definition 1.2 so that whenever i, j ∈ {1, 2, 3} with i < j the set of ω j -regular
separated nets of Rd is strictly contained in the set of ωi -regular separated nets.

It therefore remains an interesting research objective to expose the hierarchy of notions
of ω-regularity. The authors would conjecture that, at least for moduli of continuity ω lying
asymptotically in between the Lipschitz modulus of continuity and the modulus of continuity
of (1.1), we get a fine hierarchy of notions of ω-regularity. More precisely, we conjecture
that whenever two moduli of continuity ω1 and ω2 satisfy ω2 ∈ o(ω1(t)), ω2(t) ∈ Ω(t) and

ω1(t) ∈ O
(

t log
( 1

t

)α0) for t → 0, then the notion of ω1-regularity of separated nets in R
d

is strictly weaker than that of ω2-regularity.

2 Preliminaries and notation

Functions and Asymptotics. Throughout the work we use the standard asymptotic notation
O, o,Ω,Θ, with the following meaning. Let f , g be two positive real-valued functions
defined on an unbounded domain in (0,∞). For example, this allows for f and g to be real
sequences. Then we write

f (x) ∈ O(g(x)) ⇐⇒ lim sup
x→∞

f (x)

g(x)
< ∞,

f (x) ∈ o(g(x)) ⇐⇒ lim sup
x→∞

f (x)

g(x)
= 0,

f (x) ∈ Ω(g(x)) ⇐⇒ g(x) ∈ O( f (x)),

f (x) ∈ Θ(g(x)) ⇐⇒ f (x) ∈ O(g(x)) and f (x) ∈ Ω(g(x)).

We sometimeswrite equations or inequalities using the above asymptotic notation. For exam-
ple, the inequalities cn ≤ n2 + O(n) ≤ O(n2) should be interpreted as follows: there exist

3 As asserted by the title of the work [3].
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sequences an ∈ O(n) and bn ∈ O(n2) such that cn ≤ n2 + an ≤ bn . Although the symbol ω
also belongs to the standard asymptotic notation, we will avoid using it in this context. The
reason for this is that we use the letter ω to denote moduli of continuity and for the notions
of ω-regularity of Definition 1.2. Since any asymptotic statement using the asymptotic ω

notation can be rephrased using the little o notation, this is not a problem.
A function f : A ⊆ R → R will be called increasing if f (t) ≥ f (s) whenever s, t ∈ A

and t ≥ s. If both inequalities ≥ in this condition may be replaced by the strict inequality
>, then we call f strictly increasing. The notions of decreasing and strictly decreasing are
defined analogously.

We will require the following basic fact relating to concave majorants:

Lemma 2.1 Let ψ : (0,∞) → (0,∞) be an increasing function, φ : (0,∞) → (0,∞) be a
concave increasing function and suppose that ψ(R) ∈ o(φ(R)). Then there exists a concave
increasing function Ψ : (0,∞) → (0,∞) with the following properties:

(a) ψ(t) ≤ Ψ (t) for all t ∈ (0,∞).
(b) ψ(R) /∈ o(Ψ (R)).
(c) Ψ (R) ∈ o(φ(R)).

Proof Consider the family M of all concave functions ζ : (0,∞) → (0,∞) such that
ψ(t) ≤ ζ(t) for all t ∈ (0,∞). We define Ψ : (0,∞) → (0,∞) by

Ψ (t) = inf {ζ(t) : ζ ∈ M} .

As the pointwise infimum of a family of concave functions,Ψ is itself concave.Moreover, the
definitions ofM andΨ ensure that (a) is satisfied. The concavity ofΨ , (a) and the fact thatψ
is increasing then imply thatΨ is also increasing. To verify (b), note first that boundedness of
ψ implies boundedness of Ψ . We may therefore assume thatψ is unbounded. Let θ ∈ (0, 1),
n ∈ N and observe that the concave function t 
→ θΨ (t) + ψ(n) does not belong toM. We
deduce from this the existence of Rn ≥ n such that θΨ (Rn) ≤ ψ(Rn) − ψ(n) ≤ ψ(Rn).
The sequence (Rn)n∈N obtained in this manner witnesses (b). Finally, we prove (c). Given
ε > 0, choose T > 0 large enough so that ψ(t)

φ(t) ≤ ε for all t ≥ T . Then the function
t 
→ ψ(T ) + εφ(t) belongs to M and so

Ψ (t)

φ(t)
≤ ψ(T ) + εφ(t)

φ(t)
≤ 2ε

for all t ≥ T . ��
Metric notions. In a metric space (M, distM ), a set Z ⊆ M will be called separated if

inf
{
distM (z, z′) : z, z′ ∈ Z , z �= z′} > 0,

and this infimum will be referred to as the separation constant (or just the separation) of Z
(in M). Moreover, Z will be called δ-separated if its separation constant is at least δ. We will
refer to the set Z as a net of M if

sup

{
inf
z∈Z

distM (z, x) : x ∈ M

}
< ∞,

and this supremum will be called the net constant of Z in M . We will call Z a θ -net of M if
its net constant is at most θ .

Thus, Z will be called a separated net of (or in) M if Z is both separated and a net of
M . Throughout the work, we will only be concerned with separated nets of subsets of a
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Euclidean space Rd . For a set F ⊆ R
d the separated nets of F are defined according to the

above discussion, where the relevant metric space M is given by the set F together with the
metric on F induced by the Euclidean distance in Rd .

Given two sets S, T ⊆ R
d we let

dist(S, T ) := inf {‖t − s‖2 : s ∈ S, t ∈ T } .

In the case that S = {s} is a singleton we just write dist(s, T ) instead of dist({s} , T ). We
write B(x, r) and B(x, r) respectively for the open and closed balls with centre x ∈ R

d

and radius r ≥ 0. Moreover, we use the same notation for neighbourhoods of sets, i.e,
B(A, r) :=⋃x∈A B(x, r), where A ⊆ R

d , and similarly for B(A, r).
Set related notions. The cardinality of a set A will be denoted by |A|. For m ∈ N we let
[m] := {1, 2, . . . , m}. We also write R+ for the set of positive real numbers.

Measures. The symbol L will be used to denote the Lebesgue measure on the given
Euclidean space Rd . Given a measurable function ρ : Q ⊆ R

d → (0,∞) we let ρL denote
the measure on Q defined by

ρL(E) =
∫

E
ρ dL, E ⊆ Q.

Moreover, if f : Q → R
d is a mapping and μ is a measure on Q, we write f�μ for the

pushforward measure on f (Q)

f�μ(G) := μ( f −1(G)), G ⊆ f (Q).

The displacement class of two separated nets. We also introduce some notation to
conveniently capture the φ-displacement equivalences of two separated nets.

Definition 2.2 Let X , Y ⊆ R
d be separated nets. By dispR(X , Y ), we denote the class of

increasing, concave functions φ : (0,∞) → (0,∞) for which X and Y are φ-displacement
equivalent, according to Definition 1.4.

Key properties of�-displacement equivalence

The next proposition records some sufficient conditions for deriving information on the
growth of dispR( f −1) from that of dispR( f ).

Proposition 2.3 Let X , Y be two separated nets inRd , φ : (0,∞) → (0,∞) be an increasing
concave function satisfying φ(R) ∈ o(R) and let f : X → Y be an injection with dispR( f ) ≤
φ(R) for every R > 0. Then dispR( f −1) ∈ O(φ(R)).

Proof The assumption dispR( f ) ≤ φ(R) implies that ‖ f (x)‖2 ≥ ‖x‖2 −φ(‖x‖2) for every
x ∈ X and by φ(R) ∈ o(R) there is R0 > 0 such that for every x ∈ X with ‖x‖2 ≥ R0 it
holds that ‖x‖2 − φ(‖x‖2) ≥ ‖x‖2 /2. Hence, using the concavity and the monotonicity of
φ, we can deduce that

‖x − f (x)‖2 ≤ φ(‖x‖2) ≤ 2 · φ

(‖x‖2
2

)
≤ 2 · φ(‖ f (x)‖2),

for every x ∈ X with ‖x‖2 ≥ R0, which proves that dispR( f −1) ∈ O(φ(R)). ��
Corollary 2.4 Let X , Y be two separated nets in R

d and f : X → Y be an injection with
dispR( f ) ∈ o(R). Then dispR( f −1) ∈ o(R).
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Proof Let Ψ : (0,∞) → (0,∞) be a concave majorant of the function R 
→ dispR( f ) with
Ψ (R) ∈ o(R) provided by Lemma 2.1. We may now apply Proposition 2.3 to φ = Ψ and f
to verify the corollary. ��

The next example shows that if the assumption φ(R) ∈ o(R) in Proposition 2.3 is weak-
ened to φ(R) ∈ O(R), then the proposition fails. It also shows, in contrast to Corollary 2.4,
that no conclusion on the asymptotic class of dispR( f −1) may be derived from the condition
dispR( f ) ∈ O(R).

Example 2.5 Let ζ : (0,∞) → (0,∞) be an increasing function. Then there exist separated
nets X , Y ⊆ R and a bijection f : X → Y such that dispR( f ) ∈ O(R) and dispR( f −1) /∈
O(ζ(R)).

Proof Let X ′ := 2Z and Y ′ := Z. Let ψ : N → 1
2 + N be any strictly increasing function

and define Sk := {ψ(n) : n ∈ N, n ≥ k} for k ∈ N. Finally, we set X := X ′ ∪ S2 and
Y := Y ′ ∪ S1. Obviously, X , Y are separated nets in R. Now we can define a bijection
f : X → Y as follows:

f (x) :=
{

1
2 x if x ∈ X ′,
ψ(n − 1) if x = ψ(n).

Clearly, dispR( f ) ∈ O(R), but dispψ(n−1)
(

f −1
) ≥ ψ(n) − ψ(n − 1). It remains to restrict

the choice of ψ so that ψ(n) − ψ(n − 1) ≥ nζ(ψ(n − 1)) for all n ≥ 2. ��
To finish Sect. 2, we prove two results announced in the introduction; their statements are

repeated here for the reader’s convenience.

Proposition 2.6 Let X , Y be two separated nets in R
d . Then there is a bijection f : X → Y

such that dispR( f ), dispR( f −1) ∈ O(R).

Proof We will assume that 0 /∈ X , Y ; this can be ensured by an arbitrarily small shift. Then
we observe that the condition dispR(h) ∈ O(R) for a mapping h : Z → R

d defined on a
separated set Z ⊆ R

d \ {0} is equivalent to the condition that there is C > 0 such that

‖x − h(x)‖2 ≤ C ‖x‖2 ∀x ∈ Z . (2.1)

Next we observe that the claim holds for X and Y if and only if there are r1, r2 > 0 such that
it holds for r1X and r2Y ; assume that g : r1X → r2Y is a bijection and C > 0 satisfies (2.1)
for g. Then f : X → Y defined as f (x) := 1

r2
g(r1x) is also a bijection and satisfies

‖ f (x) − x‖2 = 1

r2
‖g(r1x) − r2x‖2 ≤ ‖g(r1x) − r1x‖2 + ‖r1x − r2x‖2

r2

≤ Cr1 ‖x‖2 + |r1 − r2| ‖x‖2
r2

=
(

Cr1 + |r1 − r2|
r2

)
‖x‖2

for every x ∈ X .
Moreover, note that it is enough to prove that for every X , Y there is always an injection

f : X → Y satisfying dispR( f ), dispR( f −1) ∈ O(R) instead of a bijection—the result then
follows by Rado’s version of Hall’s marriage theorem [10] from infinite graph theory. Given
two injections fX : X → Y and fY : Y → X we can define a binary relation E ⊆ X × Y so
that {x, y} ∈ E if and only if fX (x) = y or fY (y) = x . Thus, E is the union of the graphs of
fX and f −1

Y . ByRado’s theorem there is a bijection f : X → Y such that ({x, f (x)})x∈X ⊆ E
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and then the condition dispR(h) ∈ O(R) for every h ∈
{

fX , f −1
X , fY , f −1

Y

}
ensures that

dispR( f ), dispR( f −1) ∈ O(R).
Now let s > 0 stand for the separation of X and b > 0 for the net constant of Y . We choose

r > 0 such that 2rb < s. For every x ∈ X we find g(x) ∈ rY such that ‖x − g(x)‖2 ≤ rb.
As 2rb < s, if g(x) = g(x ′), then x = x ′ for any x, x ′ ∈ X . Thus, g is injective and the
three observations above finish the proof. ��
Proposition 2.7 Let φ : (0,∞) → (0,∞) be an increasing, concave function. Then the
notion of φ-displacement equivalence of separated nets in R

d given by Definition 1.4 is an
equivalence relation on the set of separated nets of Rd .

Proof Reflexivity is obvious. The symmetry of φ-displacement equivalence follows from
Proposition 2.3 if φ(R) ∈ o(R) and from Proposition 2.6 otherwise. To verify the transitivity,
consider separated nets X , Y , Z ofRd for which X and Y are φ-displacement equivalent and
Y and Z are φ-displacement equivalent. Let the bijections f : X → Y and g : Y → Z
witness this. Then g ◦ f is a bijection X → Z and there is a constant K > 0 such that
dispR( f ), dispR(g) ≤ Kφ(R) for all R > 1. Let R > 1 and x ∈ X ∩ B(0, R). Then,

‖g ◦ f (x) − x‖2 ≤ ‖g( f (x)) − f (x)‖2 + ‖ f (x) − x‖2
≤ dispR+Kφ(R)(g) + dispR( f ) ≤ 2Kφ(R + Kφ(R)) ≤ K ′φ(R),

for some constant K ′ > 0 independent of R and x . The existence of K ′ satisfying the last
inequality is due to the conditions on φ. ��

3 Negative results

The present section deals with obstructions to the existence of a bijection f : X → Y between
two separated nets X , Y inRd with dispR( f ) ∈ o(R). The first lemma establishes that, in the
case that Y = Z

d and such a bijection f : X → Z
d exists, the separated net X is forced to

have quite a special property. In particular it is easy to come upwith examples of X not having
the property described in the next lemma and thus not admitting any bijection f : X → Z

d

with dispR( f ) ∈ o(R).

Lemma 3.1 Let X be a separated net in R
d and let f : X → Z

d be a bijection such that
dispR( f ) ∈ o(R). For any r > 0 let

μr (S) := 1

rd
|r S ∩ X | , S ⊆ B(0, 1),

stand for a normalised counting measure supported on the set 1
r X∩B(0, 1) and let (Rn)n∈N ⊂

R
+ be a sequence converging to infinity. Then the sequence

(
μRn

)
n∈N converges weakly to

L|B(0,1).

Proof We write B := B(0, 1). Let s, b > 0 be the separation and the net constants of X ,
respectively. We set Xn := 1

Rn
X ∩ B and observe that each Xn is an s

Rn
-separated 2b

Rn
-net of

B.
Next we define fn : Xn → R

d as fn(x) := 1
Rn

f (Rn x). The assumption dispR( f ) ∈ o(R)

implies that

‖ fn − id‖∞ = 1

Rn
‖ f ◦ Rn id − Rn id‖∞

n→∞−→ 0. (3.1)
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In other words, ‖ fn − id‖∞ ∈ o(1). We also observe that fn is o(Rn)-Lipschitz: for any
x, y ∈ Xn it holds that

‖ fn(x) − fn(y)‖2 ≤ ‖ fn(x) − x‖2 + ‖ fn(y) − y‖2 + ‖x − y‖2
≤ 2 ‖ fn − id‖∞ + ‖x − y‖2 .

Applying (3.1), we get that

‖ fn(x) − fn(y)‖2
‖x − y‖2

≤ 1 + o(1)

‖x − y‖2
.

As Xn is s
Rn
-separated, the right-hand side above belongs to o(Rn).

Therefore, usingKirszbraun’s Theorem [7], each fn can be extended to an o(Rn)-Lipschitz
mapping f n : B → R

d . Now for any x ∈ B we choose xn ∈ Xn such that ‖x − xn‖2 ≤ 2b
Rn
.

Considering that fn(xn) = f n(xn) and (3.1) we get that
∥∥ f n(x) − x

∥∥
2 ≤ ∥∥ f n(x) − f n(xn)

∥∥
2 + ‖ fn(xn) − xn‖2 + ‖xn − x‖2

≤ o(1) + 2b

Rn

n→∞−→ 0,

where the o(1) expression above is independent of x . This shows that f n converges uniformly
to id|B .

As a shortcut, we writeμn := μRn . By an application of Prokhorov’s theorem, we observe
that the sequence (μn) converges weakly to the Lebesgue measure on B if and only if all of
its weakly convergent subsequences do. Therefore, it is enough to verify the assertion of the
lemma for an arbitrary weakly convergent subsequence of (μn). We may assume, without
loss of generality, that this given weakly convergent subsequence is the original sequence
(μn) and write μ for its weak limit. Using [4, Lemma 5.6] we get that

(
f n
)
�
(μn) converges

weakly to
(
id|B

)
�
(μ) = μ. Consequently, it suffices to prove that

(
f n
)
�
(μn) converges

weakly to L|B .
We define

ε(R) := sup
R′≥R

dispR′( f )

R′ .

The definition implies that ε is decreasing and from the assumption dispR( f ) ∈ o(R) it
follows that ε(Rn) goes to zero as n goes to infinity. For every x ∈ X it holds that ‖ f (x)‖2 ≥
‖x‖2 − ε(‖x‖2) ‖x‖2. This inequality in combination with the bijectivity of f : X → Z

d

and the fact that ε is decreasing implies

f
(
X ∩ B(0, R)

) ⊇ Z
d ∩ B(0, (1 − ε(R))R). (3.2)

for every R > 0, where the ball on the right hand side should be interpreted as the empty set
if its radius is negative. Indeed, observe that any point in the set on the right hand side has the
form f (x) for some x ∈ X which satisfies (1 − ε(R))R > ‖ f (x)‖2 ≥ ‖x‖2 (1 − ε(‖x‖2))
and therefore ‖x‖2 < R.

Now we compare
(

f n
)
�
(μn) to the standard normalised counting measure νn supported

on 1
Rn
Z

d , i.e.,

νn(S) := 1

Rd
n

∣∣∣∣S ∩ 1

Rn
Z

d
∣∣∣∣ for S ⊆ R

d .
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It is clear that νn⇀L. Thus, it suffices to verify that for any continuous function ϕ : Rd → R

with compact support it holds that∣∣∣∣∣
∫

f n
(
B
) ϕ d

(
f n
)
�
(μn) −

∫
B

ϕ dνn

∣∣∣∣∣
n→∞−→ 0.

Since
(

f n
)
�
(μn) is supported on fn(Xn) ⊂ 1

Rn
Z

d , we can rewrite the absolute value above
as

1

Rd
n

∣∣∣∣∣∣∣
∑

x∈ fn(Xn)⊂ 1
Rn

Zd

ϕ(x) −
∑

x∈B∩ 1
Rn

Zd

ϕ(x)

∣∣∣∣∣∣∣
.

This expression can be bounded above by

1

Rd
n

‖ϕ‖∞
∣∣∣∣ fn(Xn)Δ

(
B ∩ 1

Rn
Z

d
)∣∣∣∣ . (3.3)

Further, we argue that (3.3) can be bounded above by

‖ϕ‖∞

∣∣∣ 1
Rn
Z

d ∩ B(0, 1 + ε(Rn)) \ B(0, 1 − ε(Rn))

∣∣∣
Rd

n
. (3.4)

For every n ∈ N (3.2) implies that fn (Xn) ⊇ 1
Rn
Z

d ∩ B (0, 1 − ε(Rn)). Therefore,
(

B ∩ 1

Rn
Z

d
)

\ fn(Xn) ⊆ 1

Rn
Z

d ∩ B \ B(0, 1 − ε(Rn)). (3.5)

Using the definition of ε(Rn) we immediately get that for any x ∈ X ∩ B(0, Rn) it
holds that ‖ f (x)‖2 ≤ ‖x‖2 + ε(Rn)Rn ≤ (1 + ε(Rn))Rn . Therefore, f (X ∩ B(0, Rn)) ⊆
Z

d ∩ B (0, (1 + ε(Rn))Rn). Consequently, we deduce that

fn(Xn) ⊆ 1

Rn
Z

d ∩ B(0, 1 + ε(Rn)),

which together with (3.5) proves (3.4).
By centering an axes-aligned cube of side length 1

Rn
at each point of the set 1

Rn
Z

d ∩B(0, 1+
ε(Rn))\B(0, 1 − ε(Rn)), we see that
∣∣∣∣ 1Rn

Z
d ∩ B(0, 1 + ε(Rn)) \ B(0, 1 − ε(Rn))

∣∣∣∣ ≤ Rd
nL
(

B

(
∂ B, ε(Rn) +

√
d

2Rn

))
.

The last quantity is easily seen to be of order Rd
n · O

(
ε(Rn) + 1

Rn

)
. This implies that the

upper bound of (3.4), and thus, also (3.3) go to zero as n goes to infinity. ��
We now recall the notion of natural density of a separated net. We will see that the natural

density of separated nets is invariant under bijections f with dispR( f ) ∈ o(R).

Definition 3.2 Let X be a separated net in R
d . Then its natural density4, denoted by α(X),

is defined as

α(X) := lim
R→∞

∣∣X ∩ B(0, R)
∣∣

L (B(0, R)
) ,

4 Sometimes the term asymptotic density is used instead in the literature.
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provided the limit exists; otherwise it is undefined.

Proposition 3.3 Let X , Y be two separated nets in R
d such that either α(X) �= α(Y ),

or exactly one of α(X), α(Y ) is not defined. Then there is no bijection f : X → Y with
dispR( f ) ∈ o(R).

Proof The assumption on α(X) and α(Y ) implies that there is an unbounded, increasing
sequence (Rn)n∈N such that

L := lim
n→∞

∣∣X ∩ B(0, Rn)
∣∣∣∣Y ∩ B(0, Rn)
∣∣

is defined, but L �= 1. We may assume without loss of generality that L > 1. Otherwise
just interchange X and Y and use Corollary 2.4. We choose C ∈ (1, L) and find n0 ∈ N

such that for every n ≥ n0 it holds that
∣∣X ∩ B(0, Rn)

∣∣ ≥ C
∣∣Y ∩ B(0, Rn)

∣∣. Because Y is a
separated net, there is K > 1 and n1 ∈ N such that

∣∣Y ∩ B(0, K Rn)
∣∣ < C

∣∣Y ∩ B(0, Rn)
∣∣

for every n ≥ n1. Therefore, for every n ≥ max {n0, n1} we see that
∣∣X ∩ B(0, Rn)

∣∣ >∣∣Y ∩ B(0, K Rn)
∣∣, and thus, there must be xn ∈ X ∩ B(0, Rn) such that ‖ f (xn)‖2 > K Rn .

Consequently, ‖xn − f (xn)‖2 ≥ ‖ f (xn)‖2 − ‖xn‖2 ≥ (K − 1)Rn . ��
In view of Proposition 3.3 it is natural to ask whether for two separated nets X , Y ⊆ R

d

the condition that both natural densities α(X) and α(Y ) are well defined and coincide is
sufficient for the existence of a bijection f : X → Y with dispR( f ) ∈ o(R). We finish this
section with an example which demonstrates that this is not the case:

Example 3.4 There is a separated net X in R
d such that α(X) = α(Zd), but there is no

bijection f : X → Z
d with dispR( f ) ∈ o(R).

Proof Fix a hyperplane H going through 0. We will denote the closed positive and the open
negative half-spaces that it determines by H+ and H−, respectively. Moreover, fix c ∈ (1, 2)
and define

X :=
(

c− 1
d Z

d ∩ H+) ∪
(
(2 − c)−

1
d Z

d ∩ H−) .

Then, clearly,μRn defined as in the statement of Lemma 3.1 converges weakly to themeasure
cL|B∩H+ +(2−c)L|B∩H− �= L|B . On the other hand, α(X) = α(Zd) by construction. Thus,
Lemma 3.1 finishes the proof. ��

4 The spectrum of �-displacement equivalence

In the present section we prove Theorem 4.1:

Theorem 4.1 Let φ : (0,∞) → (0,∞) be an increasing, concave function with φ(R) ∈ o(R)

and X ⊆ R
d be a separated net. Then there exists a separated net Y ⊆ R

d such that every
bijection f : X → Y satisfies dispR( f ) /∈ o(φ(R)) and there exists a bijection g : X → Y
with dispR(g), dispR(g−1) ∈ O(φ(R)). Moreover, such Y can be found so that X and Y are
bilipschitz equivalent.

Let us begin working towards a proof of Theorem 4.1. The proof is based on the following
construction, which we present in a bit more general form than what is strictly needed for
the proof of Theorem 4.1:
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Construction 4.2 Let X be a separated net in Rd and let (Ri )i∈N ⊂ R
+ be a strictly increas-

ing sequence converging to infinity. Moreover, let φ : (0,∞) → (0,∞) be an unbounded
increasing function. The aim is to construct a set Y in Rd which will, roughly speaking, be a
piecewise rescaled version of X and such that dispR(Y , X) ⊆ Ω(φ(R)). In the applications,
we will choose φ and (Ri )i∈N in a way that will ensure that Y is a separated net. However,
the construction described here is more general.

Formally, we will construct Y as an image of X . For any R > 0 we set R := R + φ(R).
We also define R0 := R0 := 0. The desired mapping g : X → R

d will be radial, so we
first define its radial part γ : [0,∞) → [0,∞). We set γ (Ri ) := Ri and prescribe that in
between these specified values the function γ interpolates linearly. Thus, γ is a piecewise
linear function with breaks precisely at the points Ri . Finally, we define g(x) := γ (‖x‖2)‖x‖2 x
and Y := g(X).

For later use we introduce a sequence (ci )i∈N representing the slopes of γ . That is, for
every i ∈ N we require that γ (Ri ) = γ (Ri−1)+ ci (Ri − Ri−1). This is equivalent to setting

ci := γ (Ri )−γ (Ri−1)

Ri −Ri−1
= Ri −Ri−1

Ri −Ri−1
.

We also record the maximum distance between consecutive ‘spherical layers’ in X . Let
{�1 < �2 < · · · < �k < · · ·} := {‖x‖2 : x ∈ X}. Additionally, we put �0 := 0. Then we
define s := sup {�k − �k−1 : k ∈ N}. Since X is a net, s is finite.

Proposition 4.3 Assume, additionally to the assumptions of Construction 4.2, that φ(R) ∈
O(R) and that there is K > 1 such that Ri ≥ K Ri−1 for every i ∈ N. Then γ and g are
bilipschitz and Y is a separated net.

Proof Assuming that γ is bilipschitz, it is easy to see that g is bilipschitz as well, as g is a
radial map with radial part γ ; just consider the points in spherical coordinates. Moreover, a
bilipschitz image in R

d of a separated net in Rd is a separated net in R
d .

The function γ is bilipschitz if and only if the sequence (ci )i∈N is bounded and bounded
away from zero. As φ is increasing and (Ri )i∈N is strictly increasing, we immediately obtain

ci = Ri − Ri−1

Ri − Ri−1
= Ri − Ri−1

Ri − Ri−1 + φ(Ri ) − φ(Ri−1)
≤ 1.

By the assumption on φ and the definition R = R + φ(R) there is C > 1 such that
R ≤ R ≤ C R for every R ≥ R1. We note that (Ri )i∈N is increasing. Using the assumption
on the growth of (R j ) j∈N, we obtain

ci = Ri − Ri−1

Ri − Ri−1
≥ Ri − Ri/K

Ri
≥ K − 1

C K
> 0.

��

Lemma 4.4 Let φ, (Ri )i∈N, X , Y and s be as in Construction 4.2 and let f : Y → X be an
injective mapping. If, in addition, there is K > 0 such that φ(Ri+1) ≤ Kφ(Ri ) for every
i ∈ N, then dispR( f ) ∈ Ω(φ(R)).

Proof By Construction 4.2, for every i ∈ N it holds that
∣∣X ∩ B(0, Ri + φ(Ri ))

∣∣ = ∣∣Y ∩ B (0, Ri )
∣∣ .

This implies that dispRi
( f ) ≥ Ri + φ(Ri ) − s − Ri = φ(Ri ) − s.
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Let R > R1 be given and let i ∈ N be the unique index such that Ri−1 < R ≤ Ri . Then
using the assumption on the growth of φ(Ri+1), we can write

dispR( f ) ≥ dispRi−1
( f ) ≥ φ(Ri−1) − s ≥ φ(Ri )

K
− s ≥ φ(R)

K
− s.

The last quantity is greater than, say, φ(R)/2K for every R large enough. ��
Lemma 4.5 Let φ, (Ri )i∈N, X , Y and g be as in Construction 4.2. If, in addition, there is
K > 0 such that φ(Ri+1) ≤ Kφ(Ri ) for every i ∈ N, then dispR(g) ∈ O(φ(R)).

Proof Since Ri is strictly increasing and φ is increasing, we have ci ≤ 1 for every i ∈ N.
Because γ is a piecewise affine function with slopes ci ≤ 1 and γ (0) = 0 the distance from
γ to the identity is an increasing function (with respect to [0, R] with R variable). This, in
turn, means that the displacement of g on the ball B(0, R) is realised on the points of X
closest to the boundary of the ball. Now, we immediately get the bound

dispRi
(g) ≤ Ri − γ (Ri ) = Ri + φ(Ri ) − Ri = φ(Ri ).

Fix R > R1 + φ(R1) and choose the smallest i ∈ N such that R ≤ Ri + φ(Ri ). Then the
growth condition on φ(Ri ) allows us to derive the bound

dispR(g) ≤ dispRi +φ(Ri )
(g) ≤ φ(Ri ) ≤ Kφ(Ri−1)

≤ Kφ(Ri−1 + φ(Ri−1)) ≤ Kφ(R),

where the last inequality is true thanks to the choice of i . ��
Finally, we are ready to finish off the proof of Theorem 4.1:

Proof of Theorem 4.1 Wemay assume that φ is unbounded, otherwise we may simply choose
Y as a non-zero but small perturbation of X . Such Y is B D, and thus, also BL equivalent
to X , while every bijection X → Y needs to displace the perturbed points by a non-zero
distance.

We choose any K > 1 and set Ri := K i for ever i ∈ N. This choice satisfies all the
assumptions on (Ri ) in Proposition 4.3 and Lemmas 4.4 and 4.5, where the φ(Ri+1) ≤
Kφ(Ri ) assumption of the latter two statements is satisfied due to the concavity of φ. We
apply Construction 4.2 using these objects and obtain a set Y and a bijection g : X → Y .
Proposition 4.3 says that Y is a separated net and g : X → Y witnesses the BL equivalence of
X and Y . Applying Lemma 4.5 we get that dispR(g) ∈ O(φ(R)), from which dispR(g−1) ∈
O(φ(R)) follows via Proposition 2.3. Now let f : X → Y be a bijection. By Lemma 4.4, it
holds that dispR( f −1) ∈ Ω(φ(R)). LetΨ : (0,∞) → (0,∞) be a concave majorant of t 
→
dispt ( f ) with dispR( f ) /∈ o(Ψ (R)), given by Lemma 2.1. Then, applying Proposition 2.3,
we infer that dispR( f −1) ∈ O(Ψ (R)) ∩ Ω(φ(R)), which implies φ(R) ∈ O(Ψ (R)). This,
together with dispR( f ) /∈ o(Ψ (R)), implies dispR( f ) /∈ o(φ(R)). ��

5 Continuously many, pairwise distinct BD equivalence classes

The objective of the present section is to prove Theorem 5.1, whose statement we repeat for
the reader’s convenience:

Theorem 5.1 For every d ∈ N, every bilipschitz equivalence class of separated nets in
R

d decomposes as a union of uncountably many pairwise distinct bounded displacement
equivalence classes.
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The proof of Theorem 5.1 is based on the following proposition:

Proposition 5.2 Let d ∈ N, X be a separated net in R
d and φ1, φ2 : (0,∞) → (0,∞)

be increasing, unbounded and concave functions such that φi (R) ∈ o(R) for i ∈ [2] and
φ1(R) ∈ o(φ2(R)). Let Y1, Y2 ⊆ R

d be separated nets such that φ1 ∈ dispR(X , Y1) and
dispR(X , Y2) ∩ o(φ2(R)) = ∅. Then Y1 and Y2 are BD non-equivalent.

Proof Assume for a contradiction that Y1 and Y2 are BD equivalent and consider a bijection
f : Y2 → Y1 for which

disp( f ) = sup
x∈Y2

‖ f (x) − x‖2 < ∞.

Let g : Y1 → X be a bijection forwhich dispR(g) ∈ O(φ1) and let K > 0 be sufficiently large
so that dispR(g) ≤ Kφ1(R) for all R > 1. Then, we may define a bijection h : Y2 → X by
h := g◦ f . Let us estimate the asymptotic growthof dispR(h): fix R > 1 and x ∈ Y2∩B(0, R).
Then f (x) ∈ Y1 ∩ B(0, R + disp( f )), from which it follows that ‖g( f (x)) − f (x)‖2 ≤
Kφ1(R + disp( f )). Now we may write

‖h(x) − x‖2 ≤ ‖g( f (x)) − f (x)‖2 + ‖ f (x) − x‖2
≤ Kφ1(R + disp( f )) + disp( f )

≤ K ′φ1(R),

which is true for some K ′ > K independent of R. We deduce that h : Y2 → X is a bijection
satisfying dispR(h) ∈ O(φ1(R)) ⊆ o(φ2(R)), contrary to dispR(X , Y2) ∩ o(φ2(R)) = ∅. ��
Proof of Theorem 5.1 Fix d ∈ N and a representative X of a given BL equivalence class of
separated nets inRd . LetΛ denote the set of all increasing, unbounded and concave functions
(0,∞) → (0,∞). For each φ ∈ Λ, we apply Theorem 4.1 to obtain a separated net Yφ inRd

belonging to the sameBL equivalence class as X and satisfying dispR(X , Yφ)∩o(φ(R)) = ∅.
Now, Proposition 5.2 verifies that the family of separated nets (Yφ)φ∈Λ contains uncountably
many pairwise BD non-equivalent separated nets. ��

6 The intersection between the BL classes and the classes of bounded
growth of displacement

In this section we prove Theorem 6.1:

Theorem 6.1 Let d ≥ 2 and φ : (0,∞) → (0,∞) be an unbounded, increasing, concave
function. Then there is an uncountable family (Xψ)ψ∈Λ of pairwise bilipschitz non-equivalent
separated nets in R

d for which each Xψ is φ-displacement equivalent to Z
d .

The proof of Theorem 6.1 will require several lemmas, some of which are quite technical.
Therefore, we first describe the main ideas of the proof informally.

The proof consists of three main ingredients. The first one is an observation that in order
to construct a separated net X in R

d that is not bilipschitz equivalent to Z
d it is possible to

start with Z
d and modify it only inside a collection of pairwise disjoint cubes (Sk)k∈N of

increasing size; see Fig. 1. The actual position of these cubes, as long as they remain disjoint,
is irrelevant with respect to bilipschitz non-equivalence with Z

d .
Moreover, we can actually get that there is even no bilipschitz injection X → Z

d which
would also be a bijection between a neighbourhood of Sk and a certain neighbourhood of
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Fig. 1 Examples of ‘very different’ separated nets X1 (left) and X2 (right). The cubes in (S1k ) are the same as

in (S2k ), but the distance of S1k to the origin grows with k much slower than that of S2k

the image of Sk , for each k separately; this is based on the work of Burago and Kleiner [1,
Lemma 2.1] and formalised in Lemma 6.3 below.

The second ingredient is exploiting the last property of the construction of X mentioned
above. It sometimes allows us to rule out bilipschitz bijections between two different nets
X1 and X2 arising in the way described above, instead of just bilipschitz bijections between
X and Z

d . We will see that if f : X1 → X2 is a bijection such that infinitely many of the
cubes (S1

k ) used to construct X1 are mapped by f to parts of X2 equal to Z
d , then f is not

bilipschitz; see Lemma 6.6. Thus, if we place the cubes (S1
k ) ‘very differently’ inside R

d

in comparison to the cubes (S2
k ) used to define X2 (see Fig. 1), we may hope that for every

bilipschitz mapping f : X1 → R
d there will be infinitely many i ∈ N such that the image

f (S1
i ) will miss all cubes in (S2

k ); this is substantiated in Lemma 6.2. Since it is possible to
come up with uncountably many ‘very different’ ways how to place the cubes (Sk) inRd , we
will obtain an uncountable family (Xψ)ψ∈Λ of pairwise bilipschitz non-equivalent separated
nets.

The last ingredient is responsible for showing that each of the nets Xψ in the family
described above is φ-displacement equivalent to Z

d . We observe that the construction of
each X := Xψ inside its corresponding collection (Sk) can ensure that |X ∩ Sk | = ∣∣Zd ∩ Sk

∣∣
for every k ∈ N—this is the purpose of Lemma 6.4. Since outside

⋃
Sk each X is equal toZd ,

this allows us to define a bijection X → Z
d with controlled growth of displacement: Outside

(Sk) we use the identity function and inside Sk we can use any bijection X ∩ Sk → Z
d ∩ Sk .

The displacement of the resulting bijection on B(0, R) is then no larger than the diameter of
the largest Sk intersecting B(0, R); this is formalized in Lemma 6.7.

We continue providing formal arguments for the claims outlined above.

Lemma 6.2 Let F : D ⊆ R
d → R

d be a bilipschitz mapping, ψ1, ψ2 : (0,∞) → (0,∞) be
two increasing functions such that ψ2(R + K ) ∈ o(ψ1(R)) for any fixed K ∈ N and (Uk)k∈N
be a sequence of cubes in R

d with diamUk increasing and diamUk ∈ o(ψ2(k)). Moreover,
we assume that g1, g2 : ⊔k∈N Uk → R

d are mappings such that

1. dist
(

g1(Uk), g1
(⋃

j �=k U j

))
≥ ψ1(k) for every k ∈ N,

2. dist
(

g2(Uk), g2
(⋃

j �=k U j

))
= dist (g2(Uk), g2 (Uk−1)) = ψ2(k) for every k ≥ 2,
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3. gi |Uk is a translation for every i = 1, 2 and k ∈ N.

Then there are infinitely many i ∈ N such that

F

(
D ∩

⋃
k∈N

g1(Uk)

)
∩ g2(Ui ) = ∅.

Proof Since F is defined only on the set D, in every application of F in this proof the
argument of F should always be intersected with D to ensure that the whole expression is
well-defined; however, to improve the readability of formulas, we omit it.

We define i(k) := max {i ∈ N : F(g1(Uk)) ∩ g2(Ui ) �= ∅}; if the set over which the
maximum is taken is empty, we set i(k) to ∞. Let

C := max
{
Lip(F),Lip(F−1)

}
.

We split the proof into two cases. First, we assume that there is A ∈ N such that for every
k ∈ N there is n := n(k) ∈ N, n ≥ k such that i(n) ≤ n + A. Fix k ∈ N and n = n(k).
Condition 2 on g2 implies that dist(g2(Ui(n)), g2(Ui(n)+1)) ≤ ψ2(n + A + 1). From

Condition 1 we get that dist
(

F ◦ g1(Un), F ◦ g1
(⋃

j �=n U j

))
≥ ψ1(n)/C . Next, we write

dist

⎛
⎝F

⎛
⎝⋃

j �=n

g1(U j )

⎞
⎠ , g2(Ui(n)+1)

⎞
⎠

≥ ψ1(n)

C
− diam g2(Ui(n)) − ψ2(n + A + 1) − diam g2(Ui(n)+1).

Note that diam g2(Ui(n)), diam g2(Ui(n)+1) ∈ o(ψ2(n+A+1)) according to the assumptions.

Using that ψ2(R + A +1) ∈ o(ψ1(R)), we get that F
(⋃

j∈N g1(U j )
)

∩ g2(Ui(n)+1) = ∅
provided k (and thus n) is large enough. This establishes the assertion in the present case.

Next we assume that for every A ∈ N it holds that i(k) > k + A for every k large enough.
In particular, there exists k0 ∈ N such that i(k) > k for every k ≥ k0. Moreover, we assume
that k0 is large enough so that whenever k ≥ k0 and F ◦ g1(Uk) ∩ g2(Ui ′) �= ∅, we have
i ′ = i(k). This is possible, as either no such indices i ′ exist, or F ◦ g1(Uk) ∩ g2(Ui(k)) �= ∅
and dist

(
g2(Ui(k)), g2

(⋃
j �=i(k) U j

))
= ψ2(i(k)) ≥ ψ2(k) according to Condition 2 in the

present case. Now it suffices to use the fact that diam F ◦ g1(Uk) ∈ o(ψ2(k)), which follows
from the assumptions.

We continue by contradiction: assume that there is i0 ∈ N such that for every
i ≥ i0 it holds that F

(⋃
k∈N g1(Uk)

) ∩ g2(Ui ) �= ∅. We will also assume that i0 >

max {i( j) : j ∈ N, j ≤ k0, i( j) < ∞}. Given the property of i(·) proven above, this means
that for every i ≥ i0 there is k ≥ k0 such that i = i(k). Let k1 ∈ N, k1 ≥ k0 be a number
satisfying i(k) ≥ i0 for every k ≥ k1. Next we choose K ∈ N such that either i(k) ≤ k + K ,
or i(k) = ∞ for every k < k1. Furthermore, we choose k2 ∈ N, k2 ≥ k1 large enough so
that i(k) > k + K for every k ≥ k2. In consequence, for every k ≥ k2 the set⎧⎨

⎩i ∈ N : F ◦ g1

⎛
⎝⋃

j≤k

U j

⎞
⎠ ∩ g2(Ui ) �= ∅

⎫⎬
⎭

can contain at most k − k1 numbers within the set {k1 + K , . . . , k + K }. But this, in turn,
means that there is l ∈ N, l > k such that i(l) ≤ k + K . At the same time, i(l) > l + K ≥
k + K + 1; a contradiction. ��
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Lemma 6.3 Let ρ : [0, 1]d → (0,∞) be a measurable function with 0 < inf ρ ≤ sup ρ < ∞
and the property that the equation Φ�ρL = L|Φ([0,1]d ) has no bilipschitz solutions
Φ : [0, 1]d → R

d . Let (Rk)k∈N and (Sk)k∈N be sequences of pairwise disjoint cubes in
R

d such that diam Rk and diam Sk are unbounded and increasing and 2Sk ⊆ Rk for every
k ∈ N, where 2Sk denotes the cube with the same midpoint as Sk and sidelength twice the
sidelength of Sk . For each k ∈ N, let φk : Rd → R

d denote the unique affine mapping
R

d → R
d with scalar linear part satisfying φk([0, 1]d) = Sk. For each k ∈ N, let Υk be

a finite subset of Rk such that
⋃

k∈N Υk is a separated net of
⋃

k∈N Rk and the normalised
counting measure on the set φ−1

k (Υk ∩ Sk) converges weakly to ρL. Let h : ⋃k∈N Υk → Z
d

be an injective mapping such that

B(h(Υk ∩ Sk), diam Sk) ∩ Z
d ⊆ h(Υk) (6.1)

for each k ∈ N. Then h is not bilipschitz. In fact,

sup
k∈N

max
{
Lip(h|Υk ),Lip((h|Υk )

−1)
} = ∞. (6.2)

Proof The argument of the present proof in its original form is due to Burago and Kleiner;
see [1, Proof of Lemma 2.1]. Moreover, a more detailed presentation of the argument is given
by the present authors in [3, Proof of Lemma 3.4]. Therefore, we present the first part of the
proof here quite succinctly, leaving several verifications to the reader, which may be thought
of as exercises. For further details, we refer the reader to the works [1] and [3].

Observe that

φ−1
k (2Sk) =

[
−1

2
,
3

2

]d

⊃ [0, 1]d = φ−1
k (Sk)

for all k. Suppose for a contradiction that the supremum of (6.2) is finite. Then, denoting by
lk the sidelength of the square Sk , we deduce that the mappings fk := 1

lk
h ◦ φk , extended

using Kirszbraun’s theorem from

Γ k := φ−1
k (Υk) ∩

[
−1

2
,
3

2

]d

to the cube
[− 1

2 ,
3
2

]d
, are uniformly Lipschitz and, after composing each fk with a transla-

tion if necessary so that the image of every fk contains 0, they are also uniformly bounded.
Applying the Arzelà-Ascoli theorem, we may pass to a subsequence of ( fk)k∈N which con-

verges uniformly to a Lipschitz mapping f : [− 1
2 ,

3
2

]d → R
d . Using the fact that each fk is

bilipschitz on the finer and finer net Γ k of
[− 1

2 ,
3
2

]d
, we deduce that f is also bilipschitz.

Let μk denote the normalised counting measure on

Γk := φ−1
k (Υk ∩ Sk)

so, by hypothesis, μk converges weakly to ρL. We claim that the pushforward measures
( fk |[0,1]d )�μk converge weakly to the Lebesgue measure on f ([0, 1]d). This claim, together
with the uniform convergence of fk to f , implies that f�ρL = L| f ([0,1]d ), contrary to the
hypothesis on ρ.

Therefore, to complete the proof, it only remains to verify the claim, that is, to prove that
( fk |[0,1]d )�μk convergesweakly toL| f ([0,1]d ). This remaining part of the proof ismore subtle.
The argumentwegive here is not present in [1], but is an adaptation of [3, Proof ofLemma3.2].
Although the adaptation is quite simple, it requires good familiarity with the proof in [3] to
construct it. Therefore, we provide more details here.
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Consider the sequence of measures

νk(A) := 1

ld
k

∣∣∣∣A ∩ 1

lk
Z

d
∣∣∣∣ , A ⊆ R

d , k ∈ N,

which clearly converges weakly to the Lebesgue measure on R
d . For a given continuous

function ϕ : Rd → R with compact support we need to verify∣∣∣∣
∫

f ([0,1]d )

ϕ dνk −
∫

fk ([0,1]d )

ϕ d( fk |[0,1]d )�μk

∣∣∣∣ −→[k→∞] 0. (6.3)

We bound the expression in (6.3) above by the sum of two terms:∣∣∣∣
∫

f ([0,1]d )

ϕ dνk −
∫

fk ([0,1]d )

ϕ dνk

∣∣∣∣+
∣∣∣∣
∫

fk ([0,1]d )

ϕ dνk −
∫

fk ([0,1]d )

ϕ d( fk |[0,1]d )�μk

∣∣∣∣
(6.4)

The first term is at most ‖ϕ‖∞ νk( f ([0, 1]d)Δ fk([0, 1]d)), which vanishes as k → ∞ due
to the weak convergence of νk to L, the uniform convergence of fk to f and the fact that f is
bilipschitz. We do not provide further details here; the verification is left as an exercise with
reference to [3, Lemma 3.1]. The second term may be bounded above by

‖ϕ‖∞
ld
k

|Ak | , where Ak := fk([0, 1]d) ∩ 1

lk
Z

d \ fk(Γk). (6.5)

We will argue that

Ak ⊆ B
(
∂ f ([0, 1]d), ‖ fk − f ‖∞

)
(6.6)

for all k sufficiently large. Once this is established the quantity of (6.5) is seen to be at most

‖ϕ‖∞ L
(

B

(
∂ f ([0, 1]d), ‖ fk − f ‖∞ +

√
d

lk

))
,

which converges to zero as k → ∞. Hence, to complete the verification of the weak
convergence of ( fk |[0,1]d )�μk to L| f ([0,1]d ), we prove (6.6).

Fromnowonwe treat k as fixed but sufficiently large. Recall that the sequence ofmappings
fi |Γ i

: Γ i → 1
li
Z

d , i ∈ N, is uniformly bilipschitz and set

U := sup
i∈N

max
{
Lip( fi |Γ i

),Lip( fi |Γ i

−1)
}

< ∞.

Since the mappings fi :
[− 1

2 ,
3
2

]d → R
d were obtained as Kirszbraun’s extensions of fi |Γ i

,
we additionally note that Lip( fi ) ≤ U for all i ∈ N. We also write b for the maximum of the
net constants of

⋃∞
i=1 Υi ∩ Si in

⋃∞
i=1 Si and of

⋃∞
i=1 Υi in

⋃∞
i=1 Ri . The condition (6.1)

translates, after application of the homeomorphism x 
→ x
lk
, to

B
(

fk(Γk),
√

d
)

∩ 1

lk
Z

d ⊆ fk(φ
−1
k (Υk)).

At the same time, Γk is a b
lk
-net of [0, 1]d , so that fk([0, 1]d) ⊆ B( fk(Γk),

Ub
lk

). Since k is
sufficiently large, it follows that

Ak ⊆
(

B
(

fk(Γk),
√

d
)

∩ 1

lk
Z

d
)

\ fk(Γk) ⊆ fk(φ
−1
k (Υk)) \ fk(Γk).
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Thus, any point in Ak has the form fk(x) for some

x ∈ φ−1
k (Υk \ Sk) = Γ k \ [0, 1]d .

If fk(x) /∈ f ([0, 1]d) then fk(x) ∈ Ak\ f ([0, 1]d) ⊆ fk([0, 1]d)\ f ([0, 1]d), and therefore,
dist( fk(x), ∂ f ([0, 1]d)) ≤ ‖ fk − f ‖∞.

In the remaining case we have fk(x) ∈ f ([0, 1]d). Since f is defined at x ∈ Γ k\[0, 1]d ⊆[− 1
2 ,

3
2

]d \[0, 1]d and f is injective, we additionally have f (x) /∈ f ([0, 1]d). Thus, we
deduce that

dist( fk(x), ∂ f ([0, 1]d)) ≤ ‖ fk(x) − f (x)‖2 ≤ ‖ fk − f ‖∞ ,

as required. ��

Lemma 6.4 Let ρ : [0, 1]d → (0,∞) be a measurable function with 0 < inf ρ ≤ sup ρ < ∞
and

∫
[0,1]d ρ dL = 1. Let (Sk)k∈N be a sequence of pairwise disjoint cubes in R

d such that
the sidelength lk ∈ N of Sk is unbounded and increasing. Let (φk)k∈N denote the sequence
of affine mappings φk with scalar linear part lk and φk([0, 1]d) = Sk. Then there exists a
sequence (Ξk)k∈N of finite sets Ξk ⊆ Sk with the following properties:

(i) |Ξk | = ld
k for every k ∈ N,

(ii)
⋃

k∈N Ξk is a separated net of
⋃

k∈N Sk,
(iii) The sequence (μk)k∈N, where μk is the normalised counting measure on the set φ−1

k (Ξk),
converges weakly to ρL.

Proof If property (i) is omitted, the proof is contained in [1, Proof of Lemma 2.1]; similar
constructions are also given in [4] and [3]. Getting property (i) only requires taking a little
extra care in the construction of [1, Proof of Lemma 2.1]. Therefore, we present onlyminimal
details here; the calculations and the verification of (i)–(iii) are left to the reader.

Let mk := �√lk� for k ∈ N. Fix k ∈ N. We describe how to obtain the set Ξk ⊆ Sk .
Consider the standard partition (Tk,i )i∈[md

k ] of the cube Sk into md
k subcubes of equal size

and choose a sequence (nk,i )i∈[md
k ] satisfying

nk,i ∈
{⌊

ld
k

∫
φ−1

k (Tk,i )

ρ dL
⌋

,

⌊
ld
k

∫
φ−1

k (Tk,i )

ρ dL
⌋

+ 1

}
, i ∈ [md

k ],
∑

i∈[md
k ]

nk,i = ld
k .

It is now enough to define Ξk so that
∣∣Ξk ∩ Tk,i

∣∣ = nk,i for all i ∈ [md
k ] and the separation

and net constants of Ξk in Sk may be bounded respectively below and above independently
of k. For each i ∈ [md

k ], we suggest the following prescription of the set Ξk ∩ Tk,i : imagine
we have a pot containing nk,i points. In the first step, we take one point out of the pot and
place it at the centre of the cube Tk,i . Assume now that j ≥ 1 and that after j steps we
have placed exactly one point from the pot at the centre of each cube in each of the the first
j − 1 dyadic partitions of the cube Tk,i . In step j + 1, we consider the j th dyadic partition
of Tk,i and arbitrarily transfer remaining points from the pot onto the vacant centres of each
of the 2d j cubes in this partition until either the pot is empty or all of the 2d j centres are
occupied. When the pot is empty, the procedure terminates and the placement of the nk,i

points determines the set Ξk ∩ Tk,i . ��
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Construction 6.5 Let ρ : [0, 1]d → (0,∞) be a measurable function with 0 < inf ρ ≤
sup ρ < ∞ and

∫
[0,1]d ρ dL = 1, l = (lk)k∈N be a strictly increasing sequence of natural

numbers and ψ : (0,∞) → (0,∞) be an increasing function. We define a separated net
X(ρ, l, ψ) as follows: Let

Uk := [0, l2k
]d

, k ∈ N.

and choose arbitrarily a mapping gψ : ⊔Uk → R
d such that gψ and the sequence (Uk)k∈N

satisfy the conditions (2) and (3) of Lemma 6.2 and additionally 0 ∈ gψ(U1). Set Rk :=
gψ(Uk) for each k ∈ N. Next, fix a sequence (Sk)k∈N of cubes such that each Sk has sidelength

lk , Sk ⊆ Rk , dist(Sk,R
d\Rk) ≥ l2k

4 and the vertices of ∂Sk belong to the lattice 1
2Z

d \ Z
d .

Let (Ξk)k∈N be the sequence of finite sets Ξk ⊆ Sk given by Lemma 6.4. Finally, we define
the separated net X(ρ, l, ψ) by

X(ρ, l, ψ) :=
⋃
k∈N

Ξk ∪
(
Z

d \
⋃
k∈N

Sk

)
.

Lemma 6.6 Let ρ : [0, 1]d → (0,∞) be a measurable function with 0 < inf ρ ≤ sup ρ < ∞
and the property that the equation Φ�ρL = L|Φ([0,1]d ) has no bilipschitz solutions
Φ : [0, 1]d → R

d . Let l = (lk)k∈N be a strictly increasing sequence of natural numbers.
Let ψ1, ψ2 : (0,∞) → (0,∞) be increasing functions such that ψ2(R + K ) ∈ o(ψ1(R))

for any fixed K ∈ N and l2k ∈ o(ψ2(k)). Then the separated nets

Xi := X(ρ, l, ψi ), i = 1, 2,

given by Construction 6.5 are bilipschitz non-equivalent.

Proof Assume that X1 and X2 are BL equivalent and let f : X2 → X1 be a bijection with

L := max
{
Lip( f ),Lip( f −1)

}
< ∞.

Let the sequences (Uk)k∈N, (Ri,k := gψi (Uk))k∈N, (Si,k)k∈N and (Ξi,k)k∈N and the mapping
gi := gψi :

⊔
k∈N Uk → R

d be given by Construction 6.5 with the setting ψ = ψi for
i = 1, 2. In particular, this means that

Xi =
⋃
k∈N

Ξi,k ∪
(
Z

d \
⋃
k∈N

Si,k

)
, i = 1, 2. (6.7)

Observe that the conditions of Lemma 6.2 are satisfied byψ1,ψ2, (Uk)k∈N, g1, g2, F := f −1

and D := X1. Therefore, by Lemma 6.2, there is a subsequence (Unk )k∈N of (Un)n∈N such
that f −1

(
X1 ∩ g1

(⋃
n∈N Un

)) ∩ g2(Unk ) = ∅ for every k ∈ N. This translates to

f (X2 ∩ R2,nk ) ∩
⋃
n∈N

R1,n = ∅ for every k ∈ N. (6.8)

Inwhat follows it is occasionally necessary to assume that the first index n1 of the subsequence

Unk is chosen sufficiently large so that, for example, an inequality like
l2nk
4 > 2lnk holds for

all k ∈ N. We will no longer mention this explicitly.
For each k ∈ N, we set R̃k := R2,nk , S̃k := S2,nk and Υk := X2 ∩ R2,nk . Observe that

Υk ∩ S̃k = Ξ2,nk and that Υk ∩ (R̃k\S̃k) = Z
d ∩ R̃k\S̃k . Moreover, the function f |⋃

k∈N Υk

has its image in Z
d due to Υk ⊆ R̃k = R2,nk , (6.8), (6.7) and S1,n ⊆ R1,n . Thus, the

123



15 Page 24 of 26 Geometriae Dedicata (2024) 218 :15

only condition of Lemma 6.3 which is not clearly satisfied by the sequences R̃k , S̃k , Υk

and the function h := f |⋃
k∈N Υk : ⋃k∈N Υk → Z

d is (6.1); we verify it shortly. However,
first we point out that, once these conditions are verified, applying Lemma 6.3 in the above
setting gives that h = f |⋃

k∈N Υk and therefore also f is not bilipschitz, which is the desired
contradiction.

It therefore only remains to verify condition (6.1) of Lemma 6.3 for (R̃k)k∈N, (S̃k)k∈N,
(Υk)k∈N and the function h. Let

v ∈ B( f (Υk ∩ S̃k), diam S̃k) ∩ Z
d .

We claim that v ∈ X1. If v is not in X1 then, by the definition of X1 in Construction 6.5
and (6.7), we must have v ∈ ⋃

n∈N S1,n ⊂ ⋃
n∈N R1,n . Let b denote the net constant of

X1 ∩⋃n∈N R1,n in
⋃

n∈N R1,n and choose v′ ∈ X1 ∩⋃n∈N R1,n so that
∥∥v′ − v

∥∥
2 ≤ b. Let

u′ ∈ X2 with f (u′) = v′ and fix a point w ∈ Υk ∩ S̃k . Then∥∥u′ − w
∥∥
2 ≤ L

∥∥ f (u′) − f (w)
∥∥
2 ≤ L

(
diam f (Υk ∩ S̃k) + diam S̃k + b

)

≤ 3
√

d L2lnk <
l2nk

4
.

This bound on
∥∥u′ − w

∥∥
2 together with w ∈ S̃k and dist(S̃k,R

d\R̃k)) ≥ l2nk
4 implies that

u′ ∈ X2 ∩ R̃k . But, according to (6.8), this in turn requires v′ = f (u′) /∈ (⋃n∈N R1,n
)
,

contrary to the choice of v′. We conclude that v ∈ X1.
Now, we can choose z ∈ X2 such that v = f (z). Then

‖z − w‖2 ≤ L ‖ f (z) − f (w)‖2 ≤ L
(
diam f (Υk ∩ S̃k) + diam S̃k

)

≤ L2
√

dlnk + L
√

dlnk <
l2nk

4
≤ dist(S̃k,R

d \ R̃k).

It follows that z ∈ X2 ∩ R̃k = Υk and so v = f (z) ∈ f (Υk). ��
Lemma 6.7 Let ρ : [0, 1]d → (0,∞) be a measurable function with 0 < inf ρ ≤ sup ρ < ∞
and

∫
[0,1]d ρ dL = 1, l = (lk)k∈N be a strictly increasing sequence of natural numbers and

ψ : (0,∞) → (0,∞) be an increasing function. Let Xψ := X(ρ, l, ψ) be the separated net
given by Construction 6.5 and φ : (0,∞) → (0,∞) be an increasing, concave function such
that φ(ψ(k)) ∈ Ω(lk). Then φ ∈ dispR(Xψ,Zd).

Proof The conditions on the sidelength and the location of Sk and on the size of |Ξk | in
Construction 6.5 and Lemma 6.4(i) ensure that

∣∣Xψ ∩ Sk
∣∣ = ∣∣Zd ∩ Sk

∣∣. Therefore, we may
define a bijection h : Xψ → Z

d as follows: on the set Xψ\⋃k∈N Sk wedefine h as the identity.
Finally, for each k ∈ N we define h|Xψ∩Sk arbitrarily as a bijection Xψ ∩ Sk → Z

d ∩ Sk .
The mapping h defined above clearly satisfies

sup
x∈B(0,R)

‖h(x) − x‖2 = max
x∈B(0,R)∩⋃k∈N Sk

‖h(x) − x‖2 ≤ max
k : Sk∩B(0,R)�=∅

diam Sk . (6.9)

On the other hand, the conditions of Construction 6.5, in particular the properties of the
mapping gψ coming from Lemma 6.2 and 0 ∈ gψ(U1), ensure that

Sk ⊆ R
d \ B(0, ψ(k)) (6.10)

for every k > 1. Moreover, given R > infx∈S2 ‖x‖2, there is a maximal n ∈ N, n ≥ 2 such
that infx∈Sn ‖x‖2 ≤ R. We infer, using (6.10), that R ≥ ψ(n). This, in combination with
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(6.9) implies

supx∈B(0,R) ‖h(x) − x‖2
φ(R)

≤ maxk∈[n] diam Sk

φ(ψ(n))
=

√
dln

φ(ψ(n))
∈ O(1).

��
Putting together Lemmas 6.6 and 6.7 it is easy to finish the proof of Theorem 6.1:

Proof of Theorem 6.1 Let ρ : [0, 1]d → (0,∞) be a measurable function with 0 < inf ρ ≤
sup ρ < ∞ and the property that the equationΦ�ρL = L|Φ([0,1]d ) has no bilipschitz solutions
Φ : [0, 1]d → R

d . Let l = (lk)k∈N be a strictly increasing sequence of natural numbers.
Let Λ′ denote the collection of all increasing functions ψ : (0,∞) → (0,∞) for which
φ(ψ(k)) ∈ Ω(lk) and l2k ∈ o(ψ(k)). For each ψ ∈ Λ′ let Xψ := X(ρ, l, ψ) be the separated
net of Rd given by Construction 6.5. Define an equivalence relation ∼ on Λ′ by ψ1 ∼ ψ2 if
Xψ1 and Xψ2 are BL equivalent. Finally, we may define Λ := Λ′/ ∼. The assertions of the
theorem are now readily verified using Lemmas 6.6 and 6.7. ��

7 Hierarchy of !-regularity of separated nets

Here we prove Theorem 7.1 and Corollary 7.2. The statements are repeated for the reader’s
convenience. We also recall from the introduction that for two moduli of continuity ω1, ω2,
in the sense of Definition 1.2, satisfying ω2 ∈ o(ω1) the notion of ω1-regularity is formally
weaker than ω2-regularity. That is, the set of ω2-regular separated nets is contained in the set
of ω1-separated nets.

Theorem 7.1 Let d ≥ 2, α0 = α0(d) be the quantity of [3, Theorem 1.2] and ω be a modulus
of continuity in the sense of Definition 1.2 such that ω(t) = t

(
log 1

t

)α0 for t ∈ (0, a) and
some a > 0. Then the set of ω-regular separated nets in R

d strictly contains the set of
separated nets bilipschitz equivalent to Z

d .

Proof Define φ : (0,∞) → (0,∞) by φ(t) = (log t)α0 . Then, by Theorem 6.1 there is a
separated net X ⊆ R

d which is BL non-equivalent to the integer lattice Zd , but for which
dispR(X ,Zd)∩ O(φ(R)) �= ∅. At the same time, [3, Theorem 1.2 and Proposition 1.3] assert
that there are ω-irregular separated nets Y ⊆ R

d and that all such separated nets Y satisfy
dispR(Y ,Zd) ∩ O(φ(R)) = ∅. We conclude that the separated net X must be ω-regular. ��
Corollary 7.2 For any dimension d ≥ 2 there exist moduli of continuity ω1, ω2, ω3 in the
sense of Definition 1.2 so that whenever i, j ∈ {1, 2, 3} with i < j the set of ω j -regular
separated nets of Rd is strictly contained in the set of ωi -regular separated nets.

Proof Let ω2(t) = t
(
log 1

t

)α0 , where α0 = α0(d) is given by Theorem 7.1, ω3(t) = t and
let X ⊆ R

d be a separated net given by [3, Theorem 1.2], meaning that X is both ω2- and
ω3-irregular. According to [9, Theorem 5.1] there exists a Hölder modulus of continuity
ω1(t) = tβ for some β ∈ (0, 1) such that X is ω1-regular. In light of Theorem 7.1, it is now
clear that the sets of ωi -regular separated nets in Rd , i ∈ [3], are pairwise distinct. ��
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