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Abstract

Real-world data typically contain a large number of features that are often heterogeneous in nature, relevance, and also units of
measure. When assessing the similarity between data points, one can build various distance measures using subsets of these features.
Finding a small set of features that still retains sufficient information about the dataset is important for the successful application
of many statistical learning approaches. We introduce a statistical test that can assess the relative information retained when using
2 different distance measures, and determine if they are equivalent, independent, or if one is more informative than the other. This
ranking can in turn be used to identify the most informative distance measure and, therefore, the most informative set of features,
out of a pool of candidates. To illustrate the general applicability of our approach, we show that it reproduces the known importance
ranking of policy variables for Covid-19 control, and also identifies compact yet informative descriptors for atomic structures. We
further provide initial evidence that the information asymmetry measured by the proposed test can be used to infer relationships of
causality between the features of a dataset. The method is general and should be applicable to many branches of science.
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Significance Statement:

In real-world data sets many characteristics are often associated with each data point, and one can imagine different ways to
define the similarity between 2 samples. For example, in a clinical database 2 patients might be compared based on their age, sex,
or height, or on the results of specific clinical exams. In this work, we introduce a method which allows studying the relationship
between different distances (or similarity) measures defined on the same dataset. One can find that 2 distances are unrelated, that
they bring equal information, or that 1 of the 2 distances allows predicting the other, while the reverse is not true. This allows
finding distances, which are maximally informative for a prediction, and detecting causality relationships.

Introduction
An open challenge in machine learning is to extract useful in-
formation from a database with relatively few data points, but
with a large number of features available for each point (1–3).
For example, clinical databases typically include data for a few
hundred patients with a similar clinical history, but an enormous
amount of information for each patient: the results of clinical ex-
ams, imaging data, and a record of part of their genome (4). In
cheminformatics and materials science, molecules and materi-
als can be described by a large number of features, but databases
are limited in size by the great cost of the calculations or the ex-
periments required to predict quantum properties (5, 6). In short,
real-world data are often “big data”, but in the wrong direction:
instead of millions of data points, there are often too many fea-
tures for a few samples. As such, training accurate learning mod-
els is challenging, and even more so when using deep neural net-

works, which typically require a large amount of independent
samples (7).

One way to circumvent this problem is to perform preliminary
feature selection, and discard features that appear irrelevant or
redundant (2, 8–10). Alternatively, one can perform a dimensional
reduction aimed at finding a representation of the data with few
variables built as functions of the original features (11–13).

In some cases, explicit features are not available, as in the case
of raw text documents or genome sequences. What one can al-
ways define, even in these cases, are distances between data points
whose definition, however, can be rather arbitrary (14, 15). How
can one select, among an enormous amount of possible choices,
the most appropriate distance measure for a given task? Finding
the correct distance is of course as difficult as performing fea-
ture selection or dimensionality reduction. In fact, these tasks can
be considered equivalent if explicit features are available, since
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Fig. 1. Distance ranks can be used to measure the relative informations contained in 2 distance measures. (a) Illustration of the distance rank of 2
points in different feature spaces A and B. The rank rij of point j relative to i is equal to 1 in space A, meaning that j is the 1st neighbor of i. This is not
the case in space B, where point j is the 3rd neighbor of point i. (b) Illustration of how ranks can be used to verify that space x is less informative than
space y. The figure shows how a distance bound in y automatically implies a distance bound in x. The opposite is not necessarily true: the 1st neighbor
of a point in the x space can be very far in y.

in this case a particular choice of features naturally gives rise
to a different distance function computed through the Euclidean
norm.

In this work, we approach feature/distance learning through
a novel statistical and information theoretic concept. We pose
the question: given 2 distance measures A and B, can we iden-
tify whether one is more informative than the other? If distance
A is more informative than distance B, even partial information
on the distance A can be predictive about B, while the reverse will
not necessarily be true. If this happens, and if the 2 distances have
the same complexity, e.g. they are built using the same number of
features, A should be generally preferred with respect to B in any
learning model.

We introduce the concept of “information imbalance”, a mea-
sure able to quantify the relative information content of 1 dis-
tance measure with respect to another. We show how this tool
can be used for feature learning in different branches of science.
For example, by optimizing the information content of a distance
measure, we are able to select from a set of more than 300 mate-
rial descriptors, a subset of around 10, which is sufficient to define
the state of a material system, and predict its energy. Moreover, we
use the information imbalance to verify that the national policy
measures implemented to contain the Covid-19 epidemic are in-
formative about the future state of the epidemic. In this case, we
also show that the method can be used to detect causality rela-
tionship between variables.

The information imbalance
Inspired by the widespread idea of using local neighborhoods to
perform dimensional reduction (16) and classification (17), we
quantify the relative quality of 2 distance measures by analyzing
the ranks of the 1st neighbors of each point. For each pair of points
i and j, the rank rij of point j relative to point i, is obtained by sort-
ing the pairwise distances between i and rest of the points from
smallest to largest. For example, rA

i j = 1 if point j is the 1st neighbor
of point i according to the distance dA. The rank of 2 points will
be, in general, different when computed using a different distance
measures B, as illustrated in Fig. 1(a).

The key idea of our approach is that distance ranks can be used
to identify whether 1 metric is more informative than the other.
Take the example given in Fig. 1(b), depicting a schematic repre-
sentation of a noisy curved dataset. In this dataset, the distance
along the y-axis is clearly more informative than the one along
the x-axis since one could construct a function able to predict x
from the knowledge of y, but not the opposite. This asymmetry
is well-captured by the ranks between points. Take for example
point i (red circle in the figure). Its 1st neighbor according to the y-
distance is j (blue circle), while according to the x-distance (green
lines) j is the 7th neighbor of i. Conversely, the nearest neighbor of
i according to the x-distance is k (green circle), which is the 35th
neighbor of i according to the y-distance (blue lines). We, hence
find that rx

i j � ry
ik, i.e. the rank in space x of the 1st neighbor mea-

sured in space y is much smaller than the rank in space y of 1st
neighbor measured in space x.

To give a more quantitative example, let us consider a dataset
of points harvested from a 3D Gaussian whose standard deviation
along the z direction is a tenth of those along x and y. In this case,
one can define a Euclidean distance between data points either
using all the 3 features, d2

xyz = (xi − xj )2 + (yi − yj )2 + (zi − z j )2, or
using a subset of these features ( dxy, dyz, and so on).

Intuitively, dxyz and dxy are almost equivalent since the stan-
dard deviation along z is small, while there are information im-
balances, say, between dx and dxy, which would allow saying that
dxy is more informative than dx. In the first row of Fig. 2, we plot the
ranks computed using 1 distance against the ranks computed us-
ing a second distance (for example the ranks in dxy as a function of
those in dxyz for panel a). In the second row of the figure, we show
the probability distribution p(rA|rB = 1) of the ranks rA

i j in space
A restricted to those pairs (i, j) for which rB

i j = 1, namely to the
nearest neighbors according to distance B. In panels (a) and (b),
we compare the most informative distance containing all 3 coor-
dinates to the one containing only the x and y coordinates. Given
the small variance along the z direction, these 2 distance mea-
sures are practically equivalent, and this results in rank distribu-
tions strongly peaked around 1. In panels c and d, we compare the
2 metrics dxy and dx. In this case, the former is clearly more infor-
mative than the latter, and we find that the distribution of ranks
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Fig. 2. Classifying and visualizing the relationship between any 2 distance measures using the information imbalance. (a), (c), and (e) scatter plots of
the ranks between ordered pairs of points for different distance measures evaluated on a 3D Gaussian dataset with a small variance along z. The red
and blue bands indicate, respectively, the points for which the rank on the x- and y-axis is equal to 1 (proportions were exaggerated for clarity). The
histogram of the points inside each band is plotted in the bottom plots using the same color. (b), (d), and (f) probability of that 2 nearest neighbor
points (r = 1) for 1 distance have rank r for the other distance. The 3 columns represent different pairs of representations. (g) The 4 different types of
relationships that can characterize the relative information content of 2 spaces A and B. (h) Information imbalance plane for the discussed 3D
Gaussian dataset with small z-axis variance (gray markers), and for a 4D isotropic Gaussian dataset (black star). The different colors (light blue, red,
green, and orange) roughly mark the regions corresponding to the 4 types of relationships listed in panel (g).
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when passing from dxy to dx is more peaked around small values
than when going in the opposite direction. Finally, for 2 metrics
built using independent coordinates (x and y, in panels c and f)
the rank distributions are completely uniform.

We, hence propose to assess the relationship between any 2
distance measures dA and dB by using the properties of the condi-
tional rank distribution p(rB|rA = 1). The closer this distribution is
to a delta function peaked at 1, the more information about space
B is contained within space A.

This intuition can be made more rigorous through the statisti-
cal theory of copula variables. We can define a copula variable cA

as the cumulative distribution cA = ∫ dA

0 pA(w | x)dw, where pA(w|x)
is the of probability of sampling a data point within distance w
from x in the A space. The value of cA can be estimated from a
finite dataset by counting the fraction of points that fall within
distance dA of point x, cA ≈ rA/N. Copula variables and distance
ranks can be considered continuous-discrete analogues of each
other. As a consequence, the distributions p(rB|rA = 1) shown in
Fig. 2 are nothing else but estimates of the copula distributions
p(cB|cA) with cA conditioned to be very small. This is important,
since Sklar’s theorem guarantees that the copula distribution p(cA,
cB) contains the entire correlation structure of the metric spaces A
and B, independently of any details of the marginal distributions
p(dA|x) and p(dB|x) (18–20).

Using the copula variables, we define the “information imbal-
ance” from space A to space B as

�(A → B) = 2 lim
ε→0

〈cB | cA = ε〉, (1)

where we used the conditional expectation 〈cB | cA = ε〉 =
∫

cB p(cB | cA = ε )dcB to characterize the deviation of p(cB|cA =
ε) from a delta function. In the limit cases where the 2 spaces
are equivalent or completely independent, we have that 〈cB|cA =
ε 〉 = ε and 〈cB|cA = ε 〉 = 1/2, respectively, so that the definition
provided in Eq. (1) statistically confines � in the range (0,1). The
information imbalance defined in Eq. (1) is estimated on a dataset
with N data points as

�(A → B) ≈ 2〈rB | rA = 1〉/N. (2)

We remark that the conditional expectation used in Eq. (1) is only
one of the possible quantities that can be used to characterize the
deviation of the conditional copula distribution from a delta func-
tion. Another attractive option is the entropy of the distribution.
In S1.C (Supplementary Material), we show how these 2 quantities
are related and we demonstrate that the specific choice does not
substantially affect the results. In S1.B and Figure S1 (Supplemen-
tary Material), we also show how copula variables can be used to
connect the information imbalance to the standard information
theoretic concept of mutual information.

By measuring the information imbalances �(A → B) and �(B →
A), we can identify 4 classes of relationships between the 2 spaces
A and B. We can find whether A and B are equivalent or indepen-
dent, whether they symmetrically share both independent and
equivalent information, or whether one space contains the infor-
mation of the other. These relationships are presented in Fig. 2(g).
These relationships can be identified visually by plotting the 2 im-
balances �(A → B) and �(B → A) against each other in a graph as
done in Fig. 2(h). We will refer to this kind of graphs as information
imbalance planes. In Fig. 2(h), we present the information imbal-
ance plane of the 3D Gaussian dataset discussed so far, and used
for Fig. 2(a)–(f). Looking at this figure, one can immediately verify
that the small variance along the z axis makes the 2 spaces xyz

and xy practically equivalent (gray circle). Similarly, one can ver-
ify that space x is correctly identified to be contained in xyz (gray
square) and that the 2 spaces x and y are classified as orthogo-
nal (gray triangle). The figure also includes a point correspond-
ing to a different dataset sampled from a 4D isotropic Gaussian
with dimensions x̃, ỹ, z̃, and w̃. This point (black star) shows that
the spaces x̃ỹz̃ and ỹz̃q̃ are correctly identified as sharing symmet-
ric information. Importantly, the information imbalance only de-
pends on the local neighborhood of each point and, for this reason,
it is naturally suited to analyze data manifolds, which are arbitrar-
ily nonlinear. In S2.A and Figure S2 (Supplementary Material), we
show that our approach is able to correctly identify the best fea-
ture for describing a spiral of points wrapping around 1 axis, and a
sinusoidal function. More numerical tests are available online at
(21) along with the corresponding code. In the examples discussed
so far, we have chosen the Euclidean metric as distance measure
for any subset of coordinates considered. We will make the same
choice throughout the rest of this work.

Influence of national policy measures on
the Covid-19 epidemic
We now use the information imbalance to analyze the “Covid-
19 Data Hub”, a dataset which provides comprehensive and up
to date information on the Covid-19 epidemic (22), including epi-
demiological indicators such as the number of confirmed infec-
tions and the number of Covid-19 related deaths for nations where
this is available, as well as the policy indicators that quantify the
severity of the governmental measures such as school and work-
place closing, restrictions on gatherings and movements of peo-
ple, testing, and contact tracing (23). More details on the dataset
are available in S2.B.1 (Supplementary Material).

We first illustrate how the information imbalance can be used
to recover the arrow of time from time series data. In Fig. 3(a), we
show the information imbalance between the space [Tt, Ct], con-
taining the number of tests Tt and the number of confirmed cases
Ct in a given week t, and the space of the number of deaths occur-
ring in week t + δt (Dt + δt). The imbalance is shown as a function
of δt. All the points lay above the diagonal, indicating that, in the
language of Fig. 2(h), the number of deaths is marginally contained
in the 2 variables [Tt, Ct] if δt is small; and the optimal information
imbalance occurs at δt = 1. Importantly, for each pair of opposite
time lags (δt, −δt) we find that the 2 variables [Tt, Ct] always con-
tain more information on future deaths than on past deaths. In
this scenario, this result represents an obvious verification of the
known arrow of time of the dataset, but it suggests that further
dedicated investigations could bring to the development of accu-
rate tests to detect nontrivial causality relationships (24).

We now analyze the relationship between the space of policy
measures Pt at week t, and the state of the epidemic Et + δt, with δt
= 2 (namely after 2 weeks). In S2.B.2 and Figure S3 (Supplemen-
tary Material), we show that the analysis with time lags of one or 3
weeks bring to similar results. While we consider several different
choices for the policy space, the epidemic state is defined by the
number of weekly deaths Dt and the ratio Rt = Ct/Tt of confirmed
cases Ct over total number of tests performed Tt per week. We esti-
mate the information imbalance �(Pt → Et + δt) between the spaces
defined by all the possible combination of policy measures Pt and
the space of epidemiological variables Et + δt. A low value of �(Pt →
Et + δt) means that Pt can predict Et + δt. In Fig. 3(b), we present the
minimum information imbalance �(Pt → Et + δt) achievable with
any set of d policy measures.
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Fig. 3. The information imbalance allows for a straightforward verification of the impact of national policy measures on the Covid-19 epidemic. (a)
Information imbalance between the space [Tt, Ct] of the number of tests and number of confirmed cases Ct in a given week t, and the number of
deaths Dt + δt occurred in week t + δt. The time shift δt ranges from −5 (5 weeks before) to +5 (5 weeks after). (b) Minimum information imbalances
from growing sets of policy variables Pt to the state of the epidemic after 2 weeks Et + 2. (c) The corresponding information imbalance plane with the
number of policy variables going from 1 to 10 reported in the gray circles. Point 10 is not visible as it lies below point 9. The figure shows that the policy
measures space Pt can predict the state of the epidemic Et + 2, while Et + 2 cannot predict Pt.

For d ≤ 2, �(Pt → Et + δt) is close to 1, indicating that no sin-
gle or couple of policy measure is significantly predictive about
the state of the epidemic, consistently with (25). When 3 or more
policy measures are considered, the information imbalance de-
creases rapidly reaching a value of about 0.28 when almost all
policy measures are considered. This sharp decrease and the low
value of the information imbalance clearly indicate that policy
measures do contain information on the future state of the epi-
demic, and the more policy measures are considered, the more
the future state of the epidemic can be considered as contained in
the space of the policies. As a sanity check, a dummy policy vari-
able was introduced for this test (blue hexagon). This variable is
never selected by the algorithm, and its addition deteriorates the
information content of the policy space.

The described analysis verifies that policy interventions have
been effective in containing the spreading of the Covid-19 epi-
demic, a result which has been shown in a number of studies (25–
28). In accordance with these studies, we also find that multiple
measures are necessary to effectively contain the epidemic, with
no single policy being sufficient on its own (29), and that the im-
pact of policy measures increases monotonically with the num-
ber of measures put in place. We find that a small yet effective
set of policy measures has been the combination of testing, stay
home restrictions, and restrictions on international movement
and gatherings. While our results are computed as averages over
all nations considered, further analysis carried out in S2.B.3 and
Figure S5 (Supplementary Material) on disjointed subsets of na-
tions give results which are consistent with our main findings.

We finally note that the information imbalance �(Et + 2 → Pt)
(shown in Fig. 3c) remains considerably high for any number of
policy variables. This indicates that the state of the epidemic is
not informative about past policy measures. Surprisingly, the state
of the epidemic is not informative even on future policy measures
(see S2.B.2 and Figure S4, Supplementary Material), a result which
seems to indicate that that different nations have reacted to the
epidemic through widely different strategies.

The information imbalance can also be used to optimally
choose the relative scale of heterogeneous variables. For instance,
in S2.B.4 and Figure S6 (Supplementary Material), we use the in-
formation imbalance to select the relative scale of heterogeneous
epidemiological variables such as the total number of tests and
the ratio of confirmed cases over total number of tests. This is im-
portant in real-world applications, where features are often char-

acterized by different units of measure and different scales of
variations.

Selection and compression of descriptors in
materials physics
We now show that the information imbalance criterion can be
used to assess the information content of commonly used numer-
ical descriptors of the geometric arrangement of atoms in mate-
rials and molecules, as well as to compress the dimension (num-
ber of features) of a given descriptor with minimal loss of infor-
mation. Such atomistic descriptors are needed for applying any
statistical learning algorithm to problems in physics and chem-
istry (30–34), and the problem of choosing optimally informative
atomic descriptors has recently attracted attention (35). We first
consider a database consisting of an atomic trajectory of amor-
phous silicon generated from a molecular dynamics simulation
at 500 K (see S2.C.1 (Supplementary Material) for details). At each
time step of this trajectory, we select a single local environment
by including all the neighboring atoms within the cutoff radius
of 4.5 Å; from a given central atom. In this simple system, which
does not undergo any significant atomic rearrangement, one can
define a fully informative distance measure as the minimum over
all rigid rotations of the root mean square deviation (rmsd) of 2
local environments (details in S2.C.2 (Supplementary Material)).

In Fig. 4(a), this ground truth distance measure is compared
with some of the descriptors most commonly used for materials
modeling: the “Atom-centered Symmetry Functions” (ACSF) (36,
37), the “Smooth Overlap of Atomic Positions” (SOAP) (38, 39), and
the 2- and 3-body kernels (40, 41). Unsurprisingly, all descriptors
are contained in the ground truth distance measure. For ACSF
and SOAP representations, one can increase the resolution by in-
creasing the size of the descriptor in a systematic way, and we
found that doing this allows both representations to converge to
the ground truth.

A materials descriptor typically involves a few hundred com-
ponents. Following a procedure similar to the one used in the
last section to select policy measures, we use the information
imbalance to efficiently compress these high-dimensional vec-
tors with minimal loss of information (more details are given in
S2.C.3 (Supplementary Material)). We perform this compression
for a database consisting of complex geometric arrangements of
carbon atoms (42). As illustrated in Fig. 4(b) and (c), the selection
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Fig. 4. The information imbalance can be used to perform an effective information-driven feature selection in materials systems. (a) Information
imbalances between ground truth “rmsd” distance metric and standard atomistic descriptors. (b) Information imbalances between a full description
and the most informative d-plet of components (d = 1, …, 4). (c) Convergence of the “symmetric” information imbalance with the number of
components for 3 different compression strategies. The symmetric information imbalance is defined as �̄(A, B) = [�(A → B) + �(B → A)]/

√
2; more

details can be found in S2.C.3 (Supplementary Material). (d) Force error on a validation set of a machine learning potential energy model built on the
compressed descriptors.

leads to a rapid decrease of the information imbalance, and con-
verge much more quickly than other strategies such as random
selection (blue squares) and standard sequential selection (green
triangles). Figure 4(d) depicts the test error of a potential energy
model constructed using a state-of-the-art Gaussian process re-
gression model (43) (see S2.C.5 (Supplementary Material)) on the
compressed descriptors, as a function of the size of the descriptors
and for the different compression strategies considered. Remark-
ably, the graph shows that a very accurate model can be obtained
using only 16 out of the 324 original components of the descrip-
tor considered (39). Figures 4(c) and (d) show that when the in-
formation imbalance has converged, the validation error does not
diminish further. This suggests that one can select the optimal
descriptor dimension as the one for which no improvement in the
information imbalance is observed. In S2.C.6 and Figure S8 (Sup-
plementary Material), we show how a similar criterion can be also
used to select the hyperparameters of materials descriptors, and
we demonstrate how the order of the components selected by our
procedure can be understood considering the fundamental struc-
ture of the descriptor. In S2.C.7 and Figure S7 (Supplementary Ma-
terial), we show that, for this prediction task, the feature selection
scheme based on the information imbalance is marginally more
efficient than other well known compression schemes for materi-
als descriptors.

Conclusions
In this work, we introduce the information imbalance, a new
method to assess the relative information content between 2 dis-
tance measures. The key property which makes the information
imbalance useful is its asymmetry: it is different when computed
using a distance A as a reference and a distance B as a target, and
when the 2 distances are swapped. This allows distinguishing 3
classes of similarity between 2 distance measures: a full equiv-
alence, a partial but symmetric equivalence, and an asymmetric
equivalence, in which 1 of the 2 distances is observed to contain
the information of the other.

The potential applications of the information imbalance cri-
terion are multifaceted. The most important one is probably the
long-standing and crucial problem of feature selection (11–13).
Low-dimensional models typically allow for more robust predic-
tions in supervised learning tasks (2, 8). Moreover, they are gener-
ally easier to interpret and can be used for direct data visualiza-
tion if sufficiently low dimensional. We design feature selection
algorithm by selecting the subset of features which minimizes the

information imbalance with respect to a target property, or to the
original feature space.

As we have showcased, such algorithms can be “exact” if the
distances to be compared are relatively few (as done for the Covid-
19 database) or approximate, if one has to compare a very large
number of distances (as done for the atomistic database). Such
algorithms work well even when in the presence of strong non-
linearities and correlations within the feature space. This is ex-
emplified by the analysis of the Covid-19 dataset, where 4 pol-
icy measures which appear similarly irrelevant when taken sin-
gularly, were instead identified as maximally informative when
taken together with regards to the future state of the epidemic.

Other applications include dimensionality reduction schemes
that directly use the information imbalance as an objective func-
tion. Admittedly, such function will in general be nondifferen-
tiable and highly nonlinear, but efficient optimization algorithms
could still be developed by exploiting recent results on the com-
putation of approximate derivatives for sorting and ranking oper-
ations (44).

Another potentially fruitful line of research would be exploiting
the information imbalance to optimize the performance of deep
neural networks. For example, in S2.C.8 and Figure S9 (Supple-
mentary Material), we show that one can reduce the size of the
input layer of a neural network that predicts the energy of a ma-
terial, yielding more computationally efficient and robust predic-
tions. However, one can imagine to go much further, and compare
distance measures built using the representations in different
hidden layers, or in different architectures. This could allow for
designing maximally informative and maximally compact neural
network architectures. We finally envision potential applications
of the proposed method in the study of causal relationships: we
have seen that in the Covid-19 database the use of information
imbalance makes it possible to distinguish the future from the
past, as the former contains information about the latter, but not
vice versa. We believe that this empirical observation can be made
robust by dedicated theoretical investigations, and used in practi-
cal applications in other branches of science.
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