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Abstract
The quantum bits (qubits) on which superconducting quantum computers are based have energy
scales corresponding to photons with GHz frequencies. The energy of photons in the gigahertz
domain is too low to allow transmission through the noisy room-temperature environment, where
the signal would be lost in thermal noise. Optical photons, on the other hand, have much higher
energies, and signals can be detected using highly efficient single-photon detectors. Transduction
from microwave to optical frequencies is therefore a potential enabling technology for quantum
devices. However, in such a device the optical pump can be a source of thermal noise and thus
degrade the fidelity; the similarity of input microwave state to the output optical state. In order to
investigate the magnitude of this effect we model the sub-Kelvin thermal behavior of an
electro-optic transducer based on a lithium niobate whispering gallery mode resonator. We find
that there is an optimum power level for a continuous pump, whilst pulsed operation of the pump
increases the fidelity of the conversion.

1. Introduction

Quantum computers based on superconducting qubits [1] have seen enormous progress in recent years.
Quantum coherence is preserved as a consequence of reduced dissipation and the absence of thermal
photons, but this typically requires cooling to below 100 mK for qubits with characteristic frequencies of
∼10 GHz [2]. Communication between spatially separated qubits therefore presents a particular difficulty.
Outside the cryogenic environment, at room temperature, the microwave frequency photons carrying the
quantum information are completely swamped by thermal photons; however, visible or near infrared
photons are of much higher energy and are known to be able to carry quantum information over long
distances at room temperature. Therefore, a future quantum network [3, 4] will need a method of up- and
down-converting microwave photons to near infrared or visible frequency photons, to enable coherent
communication between different quantum systems [5–7].

A number of approaches to microwave up-conversion have been explored [8–11], using the
non-linearities offered by magneto-optic materials [12–16], cold atom clouds [17–20], quantum dots
[21, 22] and opto-mechanical devices [23–26]. The effect of this non-linearity is often increased by
resonant enhancement of one or more of the input field, output field and optical pump. Here we focus on
an electro-optic architecture [27–34], in which the required non-linearity is provided by the electro-optic
tensor of lithium niobate (LiNbO3) [35, 36]. The input field mode is defined by a metallic microwave cavity,
and the output and pump by whispering gallery modes (WGMs) [37] confined to the perimeter of a
LiNbO3 disc.
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Figure 1. (a) Schematic of the microwave cavity with an embedded dielectric whispering gallery mode (WGM) resonator. Light
is coupled through a silicon prism and the microwave tone is inserted through an antenna. The WGM is clamped between metal
rings to confine the microwave field to the optical mode volume. (b) Numerical finite element simulation of the temperature
distribution within the dielectric WGM assuming a critically coupled optical pump with Po = 1 mW. The initial temperature of
the device was TB = 20 mK. The optical mode is indicated by the tiny dot close to the rim. Only one half of the metallic cavity is
shown.

The optical pump is a feature common to all up-conversion techniques, providing both the energy for
the up-converted photon, and a reference frequency. The efficiency of the up-conversion process is typically
improved by increasing the power in the pump, which may be as high as 1.48 mW [36], or even 6.3 mW
[32] in an electro-optic realization. However, in these experiments almost all of the optical pump is
dissipated, and this can conflict with the cryogenic requirements for the environment in which
superconducting qubits must be hosted. Dilution fridges, which are the usual method of attaining
millikelvin temperatures, have cooling powers not significantly exceeding 1 mW [38, 39] at 100 mK with
around 400 μW being more typical. Higher dissipated powers result in a dynamical thermal equilibrium
with elevated temperatures. A balance exists, therefore, between choosing a pump power large enough for
the up-conversion efficiency to be useful, but not so large that heating produces a high enough thermal
photon population that the quality of the quantum state transfer is compromised.

The quality of the state transfer is characterized by the fidelity, which is defined as the overlap between
the input and output quantum states; a fidelity of 1 corresponds to equal states (perfect conversion), and 0
to orthogonal states. Long distance quantum telecommunication [40], remote quantum state preparation
[41, 42] and quantum state coherent computing [43] are often based on continuous variable (CV) states,
and therefore, the fidelity between two such states lies on a continuum between 0 and 1. Examples include
states of the type |ψc〉 = (|α〉 ± | −α〉)/

√
2 (so-called ‘cat’ states), which are commonly used as CV-qubits

[43], and squeezed states such as |ψs〉 = |α, r〉, which are useful in telecommunication schemes [40, 44].
Up-conversion of thermal noise to the optical channel results in a reduced fidelity of state transfer.

However, so does a low conversion efficiency. In order to investigate this compromise further, we carried
out thermal simulations of an efficient electro-optic modulator consisting of an optical resonator coupled to
a microwave cavity [35, 36, 45]. The optical resonator is a WGM resonator made of monocrystaline
LiNbO3, into which light is coupled using a silicon prism (see figure 1(a)). The convex geometry of the
WGM resonator and transparency of LiNbO3 confine light in the rim of the resonator via total internal
reflection (see figure 1(b)). The confinement of the optical mode in a very small mode volume increases the
intensity of the optical field and enhances the nonlinear interaction of light in the LiNbO3. The WGM
resonator is embedded in a 3D copper microwave cavity, and the geometry of both resonators maximize the
overlap between microwave field and optical mode.

In order to study the effect of absorption-induced heating on our electro-optic device we numerically
model heat transport in a representative geometry comprising a LiNbO3 WGM resonator with major radius
R = 2.5 mm and side curvature Rc = 1.45 mm, embedded in a copper cavity (figure 1). The heat transfer
partial differential equations are solved using COMSOL Multiphysics software, which implements a finite
element method combined with a stiff ordinary differential equation solver [46, 47].

Experimental values for the thermal conductivity and heat capacity of LiNbO3 are only available down
to 4 K and for copper to around 1 K [48–51]. The thermal conductivity and specific heat capacity of
dielectrics such as LiNbO3 have a T3 dependence at cryogenic temperature. On the other hand, at very low
temperatures the thermal conductivity of copper is proportional to the temperature. To estimate thermal
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Table 1. Extrapolated thermal characteristics of LiNbO3 and copper with residual resistance ratio
RRR = 100 (thermal conductivity) and RRR = 30 (heat capacity) at temperatures below 1 K, assuming
the functional behaviour given in reference [48].

Thermal conductivity (W m−1 K−1) Heat capacity (J kg−1 K−1) Reference
LiNbO3 4 · T3 2.705 × 10−4 · T3 [49]
Cu 500 · T 0.01 · T [50]

Figure 2. (a) Time evolution of average temperature of the microwave mode volume in a LiNbO3 resonator with 200 μm
thickness and critically coupled optical pump with Po = 1 mW. Initially the cavity is at TB = 20 mK and heats within a timescale
of 3 μs to Tmax = 185 mK. (b) Dilution fridge mixing chamber temperature (TB) as a function of dissipated power.

conductivity and specific heat capacity of the materials, we make appropriate downwards extrapolations
from data above 4 K, as detailed in table 1. We neglect the thermal contact resistance at the LiNbO3–Cu
interface, due to the smoothness of the LiNbO3 and the softness of the copper generally giving a good
interface, and the low thermal conductivity of the dielectric dominating heat transport (see table 1).

In the heat transfer simulation of our microwave to optical converter, the optical pump is modelled as a
heat source occupying the same volume as the optical mode. The dissipated power follows an exponential
approach to the pump power Po as P = Po(1 − exp(−t/τ)), where τ is the rise time of optical mode (for
our optical resonator τ ∼ 1 μs, corresponding to a quality factor of Q ∼ 108). The thermal boundary
conditions are given by the temperature of the mixing chamber plate of the fridge. As the fridge cooling
power at T ∼ 100 mK is comparable to the heat load introduced by the optical pump, the boundary
temperature TB for CW operation is also a function of the power dissipated in our device. We determine
typical mixing chamber temperatures for different heat loads by putting a known load on a resistive heater
mounted at the mixing chamber of our BlueFors LD250, and then waiting for the temperature to stabilize
(see figure 2(b)). The precise details of this dependency will vary between cryogenic technologies and
environments.

For pulsed operation of the optical pump, the average heat load will be decreased by the duty cycle of
the pump; for example, if the pump is on for only 1% of the operation cycle, then the heat load will be 1%
of the pulsed power. A upper limit on the time scale for the operation of current quantum systems is the
lifetime of superconducting qubits (1 ms [52]). For optical pulses of this length the temperature of the
cryogenic environment will stay stable and close to its base temperature, as the thermal response time scales
of the fridge are of the order of seconds. To study this mode of operation, we fix our thermal boundary
around the base temperature at TB = 20 mK.

We expect the optical rise time, and therefore heating, of the device to be orders of magnitude slower
than the diffusion of the heat within the dielectric. By considering the lowest order component of solutions
to the heat diffusion equation, we find t ∼ ρCd2/K, with heat capacity C, thermal conductivity K and
density ρ. For LiNbO3 with a thickness of 2d = 200 μm, the characteristic time for the heat to be
redistributed is t = 3 ns.

The evolution of the temperature in the LiNbO3, considering the full geometry, is calculated as a
function of time, with the LiNbO3 temperature at t = 0 set to the same temperature as the mixing chamber
TB = 20 mK. In figure 2(a) we plot the average temperature Tav of LiNbO3 integrated over the microwave
mode volume within the dielectric as a function of time for a WGM resonator thickness of 200 μm and a
pump power of 1 mW. The heating occurs on a timescales of ∼3 μs for the parameters of our cavity. We
compare this calculation for the case where the optical power immediately reaches its maximum within the
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Figure 3. Numerical simulation of the optical heating of the LiNbO3 resonator. (a) Time to reach 90% (red) and 99% (blue) of
the maximum temperature integrated over the microwave mode volume within the LiNbO3 resonator versus thicknesses of the
resonator for P0 = 1 mW. (b) Average equilibrium temperature of the mode volume within the LiNbO3 resonator for different
thicknesses for P0 = 1 mW at t = 0.1 ms. (c) Average equilibrium temperature of microwave mode volume as a function of
optical pump power for CW (red) and pulsed (blue) operation for 500 μm thickness at t = 0.1 ms. (d) Thermal photon
occupancy as a function of optical pump power for CW (red) and pulsed (blue) operation for 500 μm thickness at t = 0.1 ms.

optical mode volume. Here the temperature saturates after only ∼6 ns, corresponding well to the analytical
toy model above.

One of the parameters affecting the time evolution of temperature is the thickness of the LiNbO3

resonator, which is often reduced in order to increase the strength of the electric field across it. In
figures 3(a) and (b) we show the saturation time and the asymptotic average temperature as a function of
thickness. Since LiNbO3 has a very low thermal conductivity compared to copper, an increase in thickness
corresponds to an increase in average temperature, as well as an increase in the time taken to reach that
temperature.

We now fix the thickness of the resonator at 500 μm, and study the equilibrium thermal occupancy of
the microwave cavity as a function of pump power. For a mode of temperature T and angular frequency ω,
the thermal photon number occupancy is

n =
1

exp
(

�ω
kBT

)
− 1

. (1)

The total thermal photon number of the mode is given by

n̄Ω =
κi

κ
nth,i +

∑
j

κe,j

κ
nth,j. (2)

Here nth,j is the thermal occupancy of the jth port of the cavity. κ = κi +
∑

j κe,j is the total intensity loss
rate of the cavity and is the sum of the internal loss rate, κi, and the loss rate via the jth port κe,j [8]. nth,i is
the thermal occupancy of the mode due to internal fluctuations. This is directly related to internal losses by
the fluctuation–dissipation theorem [53]. Because of the large loss tangent of LiNbO3, dielectric losses are
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the dominant contribution to κi. The microwave electric field within the LiNbO3 is uniform, and so we use
the spatial average of the temperature within the microwave mode volume inside the dielectric (figure 3(c)),
as calculated for the asymptotic temperature distribution.

We calculate thermal photon numbers for the microwave mode of our single port cavity with angular
frequency Ω = 2π × 10 GHz as a function of pump power, while fixing the coupling rate of the port to
critical coupling (κ = κi + κe,1, κi = κe,1). In figure 3(d) we present data for two possibilities, one in which
the port temperature rises with increasing pump power due to the elevated mixing chamber temperature
(CW operation of the optical pump) and one in which the port temperature remains constant at 20 mK
(pulsed operation of the pump).

We calculate the effect of the simulated thermal noise on the fidelity of converted states using
input–output theory from reference [55] for feasible experimental parameters [35]. We use the

multi-photon cooperativity C =
4npg2

κoκΩ
, where κo(Ω) = κi,o(Ω) + κe,o(Ω) is the total loss rate of the optical

(microwave) mode, with κi,o(Ω) and κe,o(Ω) being the intrinsic and the extrinsic damping rates of the optical
(microwave) modes, respectively. We calculate the fidelity of the system where the optical mode is
overcoupled, κe,o = 4 × κi,o = 2π × 2.8 MHz, and the microwave mode is critically coupled,
κe,Ω = κi,Ω = 2π × 32.4 MHz. np = 4ηo

κo

Po
�ωp

is the photon number corresponding to optical pump power

Po, g is the coupling strength and for our system g = 2π × 7.4 Hz. Here, ηΩ(o) =
κe,Ω(o)
κΩ(o)

is the

waveguide-cavity coupling.
The fidelity of the transferred coherent squeezed state |α, r〉 is given by [56]

FG
tr (α, r, C) =

exp
(
−2|α|2(ε3 − 1)2

(
cos(φα)

V−
+ sin(φα)

V+

))
√

ε2
2 (1 − ε4

3) + ε4
3

(
1 +

n̄Ω

(
ε2+ε2 ε̄

2
3−2+

n̄Ω
Cηo

)

Cηo

) , (3)

where V± = 1 + ε2
3(e±2r − 1 + 2n̄Ω

ηoC ), ε2 = 1 + cosh(2r), ε3 =

√
4ηoηΩC

1+C is the square root of the quantum
conversion efficiency, |α| is field amplitude, φα is the phase of the field, and n̄Ω is the equilibrium mean
thermal photon numbers of the microwave field equation (1). The fidelity of the transferred cat state is
given by [56]

Fcat
tr (α, C) =

1

ε4(1 + ε5)

[(
1 + e

8α2ε3
1+ε5

)
e−

2α2(1+ε2
3)2

1+ε5 + 2 cos(φ)

(
e−

2α2(ε2
3+ε5)

1+ε5 + e−
2α2(1+ε2

3ε5)
1+ε5

)

+ cos(2φ)e
− 2α2(ε3+ε5)2

ε5(1+ε5) + e
− 2α2(ε3−ε5)2

ε5(1+ε5)

]
, (4)

where ε4 = (1 + cos(φ)e−2α2
)(1 + cos(φ)e−2α2ε2

3 ) and ε5 = 1 + 8ηΩ n̄Ω
(1+C)2 .

The fidelity for states with cooperativity C < 1 [35], is shown vs the optical pump power Po in
figure 4(a), where the dashed lines show the noiseless case of a cat state |ψ〉 = |1〉 − | − 1〉 (top) and
squeezed state |ψ〉 = |1, 0.5〉 (bottom). The red markers indicate CW pump operation and the blue crosses
pulsed operation. The maximum fidelity for CW operation is achieved at Po ≈ 0.58 mW for the cat state
and Po ≈ 0.12 mW for squeezed state. Fidelities for pulsed operation are shown in blue. These do not
exhibit a peak, but still diverge from the fidelities for noiseless operation as the power increases. At Po = 0
the fidelity is non-zero due to the state’s overlap with the vacuum.

The added noise due to dielectric heating causes a degradation of the fidelity of around 4.6% (cat state)
and 4.1% (squeezed state) from the noiseless case. This problem can be reduced by over-coupling the
microwave system; in this case the waveguide temperature, which is always less than the mode temperature,
increases the fidelity by acting to cool the mode [36, 57, 58]. In figure 4(b), we fix the optical pump power
to the maximum fidelity of figure 4(a) with Po ≈ 0.58 mW for the cat state and Po ≈ 0.12 mW for the
squeezed state, and vary the microwave coupling from under-coupling (ηΩ = 0) to over-coupling (ηΩ = 1).
For each state the red curve includes heating of the coupling waveguide (CW operation) and the blue curve
describes pulsed operation which leaves the waveguide at the base temperature. We find optimal couplings
for pulsed operation of ηΩ = 0.60 (cat state) and ηΩ = 0.66 (squeezed state), and for CW operation of
ηΩ = 0.61 (cat state) and ηΩ = 0.66.

We now study the effects of thermal noise on an optimised transducer. The principle route to higher
efficiencies in electro-optic up-convertors is by increasing the co-operativity g. In figure 4(c) we plot fidelity
as a function of pump power for a device with g = 2π× 200 Hz. We find that there still exists optimal
pump powers. Furthermore, in figure 4(d) the maximum fidelity is found to be at higher microwave
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Figure 4. Dependence of fidelity on optical power and microwave coupling. (a) and (c) Fidelity versus optical pump power for
cat |ψ〉 = |1〉 − | − 1〉 (top) and squeezed |ψ〉 = |1, 0.5〉 (bottom) states for critical microwave coupling and overcoupled optical
fields (κo,e = 4κo,i). Panel (a) is for g = 2π × 7.4 Hz, and panel (c) for an optimised configuration with g = 2π × 200 Hz [54].
Results for pulsed (blue circles) and CW (red crosses) operation are shown, and dashed lines correspond to the system with no
heating (where everything remains at 20 mK). The inset in panel (c) shows the internal quantum conversion efficiency (left axis)
and external efficiency (right axis) vs optical pump power for high g = 2π × 200 Hz (orange) and low g = 2π × 7.4 Hz (green),
scaled by a factor of 50. (b) and (d) Shows the fidelity versus microwave coupling for the same devices as (a) and (c). Here the
optical mode remains overcoupled, while the microwave coupling ηΩ =

κe,Ω
κΩ

has fixed internal losses κΩ and variable external
coupling κe,Ω. The maxima in fidelity are observed in the overcoupled regime.

overcouplings for pulsed operation of ηΩ = 0.74 (cat state) and ηΩ = 0.78 (squeezed state), and for CW
operation of ηΩ = 0.73 (cat state) and ηΩ = 0.74.

For quantum state conversion a maximum number of added noise photons in the output mode of 0.5 is
required [59]. In electro-optic devices this corresponds to a fidelity of FG = 0.42, and Fcat = 0.61. This is
therefore a threshold necessary for useful quantum operation. To reach this threshold it is evident that
besides high g careful thermal management in terms of optimal pump power and microwave coupling is
paramount.

Finally, we note that in our calculations, the rise in the temperature of the copper cavity is negligible due
to the relatively large heat capacity and thermal conductivity of copper, even at cryogenic temperatures.
This may not be the case for superconducting cavities, in which the heat capacity is exponentially
suppressed below the superconducting transition temperature. In order to consider the fidelity of
conversion for discrete quantum states, such as Fock states, approximate methods such as those developed
in [60] could be used. Furthermore, stray photons in a superconducting cavity may lead to a significant
non-equilibrium quasiparticle population. For superconducting materials such as aluminium, an
appreciable rise in the cavity material temperature may occur on longer timescales [36, 60]. Further analysis
of this is beyond the scope of the present work.

In conclusion, we have demonstrated that the fidelity of quantum state transfer in electro-optic
microwave-to-optical transducers is significantly affected by heating due to the absorption of the optical
pump. In particular, the choice of pump power must take into account the competition between increased
efficiency and increased heating that follow increased optical power. We find that, for some parameter
regimes, there is an optimal power which maximises state transfer fidelity. Furthermore, there is also an
optimal coupling to the microwave input waveguide which is significantly more than critical coupling.
Whilst our calculations have used an electro-optic structure as an archetype, the universality of the need for
an optical pump in quantum transducers means that our conclusions can be extended to other platforms.
Recently optomechanical micro-devices have been demonstrated with efficient microwave-optical photon
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conversion [61, 62]. However, they too suffer from large thermal noise even at millikelvin temperatures
when pump power is increased over a certain limit (∼625 pW [61], ∼40 mW [62]), showing the universal
applicability of our analysis.
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