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Fig. 1. Pavilion and Carpet. Left : Photograph of a physical pavilion model, constructed by bending inexpensive strips of plane cardboard. The flat outline of
all strips is determined computationally within 0.3 seconds, in order to exactly match the design under their own weight. Right : Rendering of active-bending
design for a free-form structure. The beam stiffness profiles adapt to design edits in real time, and a form-finding algorithm improves manufacturability.

Elastic bending of initially flat slender elements allows the realization and

economic fabrication of intriguing curved shapes. In this work, we derive an

intuitive but rigorous geometric characterization of the design space of plane

elastic rods with variable stiffness. It enables designers to determine which

shapes are physically viable with active bending by visual inspection alone.

Building on these insights, we propose a method for efficiently designing

the geometry of a flat elastic rod that realizes a target equilibrium curve,

which only requires solving a linear program.

We implement this method in an interactive computational design tool

that gives feedback about the feasibility of a design, and computes the

geometry of the structural elements necessary to realize it within an instant.

The tool also offers an iterative optimization routine that improves the

fabricability of a model while modifying it as little as possible. In addition,

we use our geometric characterization to derive an algorithm for analyzing

and recovering the stability of elastic curves that would otherwise snap out

of their unstable equilibrium shapes by buckling. We show the efficacy of

our approach by designing and manufacturing several physical models that

are assembled from flat elements.
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1 INTRODUCTION
Slender beams in active bending allow the realization of intriguing

structures, with innovative uses in the construction of frames and

facades, furniture and product design, and even machine engineer-

ing, as seen in Fig. 2. Despite a firm grounding in history, such as its

centuries-old role in the construction of Turkmen tents, the aesthetic

of curves that emerge from pure bending still fascinates designers,

architects, and mathematicians today [Lienhard et al. 2013].

The primary allure of bending as part of the formation process

is its economic advantage: Curved members can be cut from flat,

inexpensive sheets of elastic material such as plywood, which al-

lows for easy transportation, and assembly on-site. This has the

promise of reducing the need for an individual mold per unique

structural member. Active bending also brings with it a singular

design and form-finding challenge: The design space of shapes that

can be physically realized is dictated by the underlying mechanics

of slender beams. Insights about the geometric structure of this

design space are therefore of practical value, because they can guide

the intuition of the designer towards feasible designs. As we will

show, they also open the door to extremely efficient optimization

algorithms that further support the form-finding process.

The design space of slender beams in plane bending is related

to the Elastica problem, a classical question in mechanics: Given

a straight, slender structural element with constant stiffness, enu-

merate all its static equilibria in the plane. Originally posed by

Bernoulli, a full enumeration as a one-parameter family was given

by Saalschütz in terms of elliptic functions in 1880. This result has

historically influenced the use of mechanical splines in design, but

the assumption of constant stiffness limits the space of equilibrium

curves attained within the Elastica framework.

Digital fabricationmethods simplify themanufacture of structural

elements with spatially varying cross-sectional profiles, and thus

variable stiffness. Yet, we are unaware of any work that enumerates

or classifies all shapes that can be attained as equilibrium states

of variable-stiffness elastic curves. This suggests two questions: Is

it possible to characterize all plane curves that can be attained as
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Fig. 2. Examples of Active Bending. Left to right, top to bottom: ICD/ITKE
Research Pavilion 2010 [Fleischmann and Menges 2011]. TR11 lamp by Tom
Rossau. PS1 Loop, Boston, by Höweler + Yoon Architecture. Bentwood type
"yourte" (CC BY 2.0 Jean-Pierre Dalbéra). Morphing rotor blade controlled
by a servomotor (CC BY 3.0 DLR). Arc lamp [Cuvilliers et al. 2018].

static equilibria of slender beams? And how can we construct the

geometry of a beam that realizes a given equilibrium curve?

In this work, we give positive answers to both questions. This

results in a geometric characterization of all variable-stiffness elastic

plane curves that is both intuitive andmathematically sharp.We also

show a method to compute the stiffness profile required to realize

a given elastic curve, which is globally optimal with respect to a

convenient fabricability objective. These computations only take a

fraction of a second, which makes them ideal for interactive design,

where they provide immediate feedback about the practicality of

a structure. At the same time, they can be integrated in iterative

form-finding algorithms that suggest design trade-offs to the user

at interactive speeds. We explore both use cases in this work.

For many real-world applications, the dead load and stability

of a member play an important role in the design process. This is

because a beam may deform considerably under its own weight,

and an unstable element will even change its shape completely by

snapping into a different equilibrium. These effects are not part of

the classical Elastica model, but we show that the dead load can

be incorporated into our construction method with virtually no

penalty to computation time. The stability problem is more difficult

and, in our experience, beyond the grasp of human intuition alone:

It is often impossible to tell by visual inspection whether a given

curve is stable, or even whether there could be a similar curve that

is stable. We show that our geometric characterization of elastic

curves is the key ingredient in designing an algorithm that can

modify an unstable curve to yield a similar—and sometimes visually

indistinguishable—stable curve.

Our contributions impact design with active bending in three pro-

found ways. First, the geometric characterization of elastic curves

informs a designer about the kinds of shapes that are physically

possible within active-bending structures. This prevents infeasible

designs even in the first phase of conception. Second, our gravity-

aware construction method for stiffness profiles gives instant feed-

back about the practicality of a design. Namely, it tells us whether it

can be realized with a given material and fabrication method. Third,

we enable optimization routines that automatically improve the

fabricability of a design with small changes to form—a process that

takes under one second per beam in all of our examples.

2 RELATED WORK
Research in computer graphics has made extensive contributions

to fabrication-aware design. They are covered by a number of com-

prehensive survey articles [Attene et al. 2018; Bermano et al. 2017;

Bickel et al. 2018]. In the following, we will focus on work closely

related to the simulation and design of rods and structures shaped

from flat configurations.

2.1 Fabrication-Aware Design
Geometry-based methods explore the design of objects without ex-

plicitly considering forces in the system. Numerous design tech-

niques have been developed for approximating shapes from flat

sheets, for example based on folding [Dudte et al. 2016], curved

developable surfaces [Ion et al. 2020; Stein et al. 2018], auxetic

shells [Konaković-Luković et al. 2018], wire meshes mapped to the

model of Chebyshev nets [Garg et al. 2014], or packable spirals that

can be pulled apart [Wolff et al. 2018]. Pillwein et al. [2020] show

that geodesic grids, spatial grids of bent lamellae, can be designed

purely based on a set of problem-specific geometric conditions. For

4D printing, Wang et al. [2019] build on geometric abstractions of

the actuation process of composite thermoplastics, and present an

interactive system to directly specify composites and preview their

actuation behavior.

Recently, Liu et al. [2020] proposed a method for designing elastic

planar sheets that can be bent into axisymmetric 3d structures with-

out gaps. Their approach relies on elastic strips whose thickness

and width are tapered. This model is tailored for a specific class of

shapes, namely surfaces of revolution with at most one inflection

point on the meridian curve. As demonstrated in our results section,

the characterization of equilibrium curves in our method can be

easily adjusted to cover this class of shapes, but is also more general.

Simulation-based techniques take the mechanical behavior of

the material into account, can provide accurate structural insights,

or solve for configurations under force equilibrium. Modeling the

mechanical behavior of rods has been extensively studied across

disciplines. In graphics, simulation of thin solids has been based on

Cosserat theory [Pai 2002] and piecewise helices [Bertails et al. 2006]

for example. In our work, we employ the discretization suggested by

Bergou et al. [2008] for stability analysis and numerical simulation.

Miguel et al. [2016] design sculptures made of bent wire. The

rest shape of the wires is optimized to ensure structural stability of

the assemblage with only frictional contact between wires. Com-

pliant bent wire structures can also be used to realize kinetic wire

characters [Xu et al. 2019]. Perez et al. [2015] numerically optimize

the radii and rest shape of flexible rod meshes to match a target

shape given boundary conditions. Introducing an interactive design

system, He et al. [2019] transform static shapes into deformable

objects by customizing the deformation behavior of helical springs.

These methods either rely on plastic wire bending or 3d printing

for fabrication.
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Panetta et al. [2019] propose an optimization-based designmethod

for a grid of elastic beams coupled through rotational joints, which

can be deployed into a 3d target shape. Their formulation ensures

structural integrity and uses a sparse set of actuation points for

deployment. FlexMaps [Malomo et al. 2019] customize the bending

and stretching properties of flat, flexible panels so their deformed

configuration matches a desired 3d shape after assembly. Combining

a pre-stretched sheet with a computer-optimized planar rod net-

work [Pérez et al. 2017], rods arranged in tiled star patterns [Jourdan

et al. 2020], or a thin layer of 3d printed tiles [Guseinov et al. 2017]

allow these structures to self-deploy into complex 3d surfaces. Gu-

seinov et al. [2020] propose an inverse design tool to encode spatial

and temporal morphing of initially flat, self-actuating shells by con-

trolling the softening rate through mesostructure geometry. Xu

et al. [2019] optimize for the flat initial configuration of a target

structure composed of elastic ribbons using a combination of finite

element analysis and a genetic algorithm.

Common to most of these design approaches is that they rely on

numerical simulation, define an objective function, and employ non-

linear gradient-based optimization or metaheuristics. In contrast, we

first derive a geometric characterization of all mechanically viable

shapes. This provides the insights to generate blueprints that are

ready for fabrication directly from the target shape, by solving a

small linear program. We also show how this method impacts other

design stages, like avoiding the costly forward-simulation step in

form-finding algorithms, and enabling stability optimization.

Design with bending-active elements also plays an important role

in architecture. An excellent overview has been compiled by Lien-

hard et al. [2013]. In addition to geometric and simulation-based

approaches, also experimental, hybrid analogue and digital pro-

cesses [Symeonidou 2015], or dedicated data-driven models that

map knowledge derived from physical form-finding experiments to

shapes [Fleischmann and Menges 2011] have been explored.

Beyond computational fabrication, there is work on determining

the geometry of a rod given its shape when suspended under gravity,

with applications to physics-based computer animation. Derouet-

Jourdan et al. [2010] compute the material parameters and natural

curvature of a plane elastic clamped-free rod that matches a given

curve under gravity. They also show that the equilibrium is stable

given a large enough stiffness-to-density ratio of the material. Simi-

lar in spirit, Bertails-Descoubes et al. [2018] show uniqueness of the

natural shape for framed curves inR3
up to torsion, for clamped-free

isotropic Kirchhoff rods under gravity.

In contrast to these works, we classify all plane elastic equilibrium

curves that can be achieved from flat initial configurations, for the
sake of simplifying fabrication. Our main result considers clamped-

clamped rods without gravity, but we show how it can be adapted

for all common types of boundary conditions, for fixed natural

curvature, and to account for gravity as well.

2.2 Stability Analysis
Most work treats the stability of constant-stiffness elastic curves,
such as an early proof that all non-inflectional curves with kine-

matic boundary conditions are stable [Born 1906, p. 17]. The most

comprehensive study notes that, for the constant-stiffness case “it

can readily be shown that the higher modes are all unstable. [...]

The case of variable stiffness is not so easily treated, and we reach

no conclusions.” [Maddocks 1981, p. 52]. Recent work examines

inflectional curves with different combinations of boundary con-

ditions [Batista 2015; Sachkov and Levyakov 2010]. Only a small

number of works treat the variable-stiffness case, for specific load

cases and stiffness profiles [Coşkun 2010; Lee and Lee 2018].

The main technical tools for analyzing stability are eigenvalue

analysis and the Jacobi criterion [Gelfand and Fomin 1963; Manning

et al. 1998]. Gradient-based optimization has been applied to modify

eigenvalues before [Bharaj et al. 2015], but we argue in Section 6 that

the Jacobi criterion is a much better fit to optimize stability of elastic

curves. We thereby avoid solving costly constrained eigenvalue

problems and computing their derivatives in every iteration, and

replace them with a computation of a matter of milliseconds. This

work is the first to derive the adjoint equations of the Jacobi criterion,

and to use them in iterative optimization.

3 OVERVIEW
We begin our considerations with the variable-stiffness version of

the classical Elastica problem: Which plane curves can be obtained

as equilibria of slender beams? In Section 4, we show that the main

geometric condition is the existence of a line that intersects a curve

in its inflection points, and nowhere else. Building on this, we de-

scribe a construction process for a stiffness profile that realizes a

given equilibrium curve, and which is optimal—in a well-defined

sense—for fabrication. Section 5 proposes a modification that lets

us incorporate the dead load of a member into this construction

process. In Section 6, we turn to the stability of elastic curves and

devise an algorithm that turns an unstable curve into a stable one,

sometimes by imperceptibly small modifications. We will see that

our solution to the variable-stiffness Elastica problem provides the

key insight to enable this application. Section 7 gives details about

the discretization and implementation of the concepts discussed

thus far. In Section 8, we describe and validate the fabrication pro-

cess behind the physical active-bending models that we present in

Section 9, along with rendered examples and quantitative data.

In particular, we consider these our main technical contributions:

• A geometric characterization of all plane elastic curves (Sec-

tions 4.2, 4.3, Appendix A);

• A fast and fabrication-friendly construction algorithm for

stiffness profiles of elastic curves (Section 4.4);

• An extension of this algorithm that accounts for the dead

load of the structural member (Sections 5.1–5.3);

• A derivation of the adjoint equations for the Jacobi stability

criterion, and their use in stability optimization of elastic

curves (Sections 6.2–6.4, Appendix B);

• Fabrication methods for realizing stiffness profiles as elastic

strips (Section 8.1).

4 EQUILIBRIUM CURVES
This section treats the most straight-forward adaptation of the Elas-

tica problem to our setting: Characterize the set of plane curves

that occur as static equilibria of straight elastic rods. The crucial
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difference to the original Elastica problem is that we explicitly allow

the stiffness of a rod to vary across its length.

We show that this set of equilibrium curves is characterized by

an intuitive geometric property having to do with collinearity of

inflection points. In addition, the characterization is computationally

convenient and gives rise to an algorithm that finds the “best”—in

a well-defined sense—geometry of a rod that matches the desired

equilibrium curve.

We first introduce the mathematical model for kinematic elastic

rods and arrive at an equilibrium equation. Then, we characterize the

set of all curves satisfying this equation with a suitable constitutive

law. Finally, we present a linear program that finds the optimal

stiffness profile for a desired equilibrium shape, with respect to a

manufacturability objective.

4.1 Mathematical Model
Preliminaries. The deformed state of an inextensible elastic rod

in the plane is modeled as a curve 𝛾 : [0, 𝑙] → R2
, passing through

the centerline of the rod. For notational convenience, we assume

an arc-length parametrization, i.e., ∥𝛾 ′∥ ≡ 1. But for a computer

implementation of algorithms presented in this paper, any regular

parametrization will suffice. We only assume 𝛾 ∈ 𝐶2
, so the signed

curvature 𝜅 = det(𝛾 ′, 𝛾 ′′) is continuous. In addition, denote by

𝛼 ∈ 𝐶1
the turning angle of 𝛾 , so 𝛾 ′ = (cos𝛼, sin𝛼) and 𝛼 ′ = 𝜅 . The

notation used throughout this section is summarized in Fig. 3.

The resistance of a rod to bending is given by a stiffness function

𝐾 : [0, 𝑙] → R>0, which determines the ratio between curvature

and moment of force at any point. E.g., if a linearly elastic rod has a

rectangular cross section with width𝑤 and thickness ℎ at 𝑠 ∈ [0, 𝑙],
its stiffness will be 𝐾 (𝑠) = 1

12
𝐸𝑤ℎ3

, where 𝐸 is the Young’s modulus

of the material. Most examples presented in this paper will have

constant thickness ℎ, so the width 𝑤 scales linearly with 𝐾 . Real

materials cannot exhibit stiffnesses that are arbitrarily low or high,

which motivates:

Definition 1. Let 𝐾 : [0, 𝑙] → R>0 such that there exist 𝑐,𝐶 ∈ R
with 0 < 𝑐 ≤ 𝐾 (𝑠) ≤ 𝐶 for all 𝑠 ∈ [0, 𝑙]. Then 𝐾 is called admissible.

We will study the design space offered by admissible stiffness

functions, because they correspond to elastic rods that we can man-

ufacture in the real world. Note that the existence of a positive lower

bound 𝑐 is a strictly stronger requirement than 𝐾 > 0 and ensures

that the ratio between sup𝐾 and inf 𝐾 is finite.

Equilibrium Equation. Equilibrium configurations of an elastic

rod are characterized by extremals of the bending energy

∫
1

2
𝐾𝜅2

,

subject to boundary conditions and constraints that reflect how the

ends of the rod are fixed. We will assume kinematic rods, i.e., rods
in which 𝛼 (0), 𝛾 (0) and 𝛼 (𝑙), 𝛾 (𝑙) are all constrained. This leads to
a variational problem with Dirichlet boundary conditions and two

integral constraints, and we are looking for extremals of

𝑊 [𝛼] =
∫ 𝑙

0

1

2

𝐾 (𝛼 ′)2 s.t.

𝛼 (0) = 𝛼0,

𝛼 (𝑙) = 𝛼𝑙 ,
and

∫ 𝑙

0

(
cos𝛼

sin𝛼

)
= 𝛾𝑙 . (1)

The endpoint 𝛾 (0) is assumed to coincide with the origin, and the

endpoint 𝛾 (𝑙) =
∫ 𝑙
0
𝛾 ′ =

∫ 𝑙
0

(
cos𝛼
sin𝛼

)
is constrained to lie at 𝛾𝑙 .

𝛾 (𝑠)
𝛾 ′(𝑠)

𝛼 (𝑠)
𝛾 (0) = (0, 0)

𝑠

𝛾 (𝑙) = 𝛾𝑙
𝐿

𝑡

𝑛𝜅 = 𝛼 ′ = det(𝛾 ′, 𝛾 ′′)

Fig. 3. Curve Description. Plane curve 𝛾 with arc-length parameter 𝑠 ,
turning angle 𝛼 , signed curvature 𝜅 , and length 𝑙 . The endpoints are the ori-
gin and 𝛾𝑙 . The pair (𝑡, 𝑛) forms a right-handed coordinate system adapted
to 𝛾 at an inflection point, and 𝐿 is a line incident to all inflection points.

The constrained Euler–Lagrange equation of this problem is

−(𝐾𝜅)′ + ⟨𝜆, 𝑅𝛾 ′⟩ = 0, (2)

where 𝑅 =
(

0 −1

1 0

)
, and the Lagrange multiplier 𝜆 ∈ R2

needs

to be chosen to satisfy the integral constraints. Next, we rename

𝜆 = 𝑅𝑏, which simplifies ⟨𝜆, 𝑅𝛾 ′⟩ = ⟨𝑏,𝛾 ′⟩, and integrate the equa-

tion through. This adds an integration constant 𝑎 ∈ R and yields

the moment equilibrium equation

𝐾𝜅 = 𝑎 + ⟨𝑏,𝛾⟩. (3)

We characterize curves that satisfy this equation by:

Definition 2. Let 𝛾 ∈ 𝐶2 ( [0, 𝑙];R2) be an arc-length parametrized

plane curve with signed curvature 𝜅. If there exist 𝑎 ∈ R, 𝑏 ∈ R2
,

and an admissible stiffness function 𝐾 such that 𝐾𝜅 = 𝑎 + ⟨𝑏,𝛾⟩,
then 𝛾 is called an equilibrium curve.

This definition is chosen so a curve 𝛾 is an equilibrium curve if

and only if it is possible to manufacture a straight elastic rod that

has 𝛾 as an equilibrium shape when kinematic boundary conditions

are applied. In the next section, we show how the set of all equilib-

rium curves can be characterized geometrically. This results in a

description of the design space of plane kinematic rods that is both

intuitive and mathematically sharp.

4.2 Characterization of Equilibrium Curves
If 𝛾 is a line segment, the rod is undeformed, and Eq. 3 is trivially

solved by 𝑎 = 0, 𝑏 = 0, and 𝐾 arbitrary. The theorem below treats

the more interesting case, in which the rod undergoes bending.

It shows that the main geometric condition for

𝛾 to be an equilibrium curve is the existence of

a line that intersects 𝛾 exactly in its inflection

points (see inset). The only technical assumption

we make, apart from 𝛾 ∈ 𝐶2
, is that the number

of inflection points be finite, which is a natural

expectation in the context of design.

Before we state the theorem, we introduce one more definition:

Definition 3. A function 𝑓 : R → R with 𝑓 (𝑥0) = 0 is called

secant-bounded at 𝑥0 if there exist 𝜀 > 0 and𝑚,𝑀 ∈ R with either

𝑚,𝑀 > 0 or𝑚,𝑀 < 0 such that, for all ℎ ∈ (−𝜀, 𝜀),

min{𝑚ℎ,𝑀ℎ} ≤ 𝑓 (𝑥0 + ℎ) ≤ max{𝑚ℎ,𝑀ℎ}.
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(0, 0) ℎ

𝑚ℎ

𝑀ℎ

𝑓 (𝑥0+ℎ)

(0, 0)
ℎ

𝑚ℎ
𝑀ℎ

𝑓 (𝑥0+ℎ)

Fig. 4. Secant-boundedness. Top: A function 𝑓 : R→ Rwith 𝑓 (𝑥0) = 0 is
secant-bounded at 𝑥0 if its graph, restricted to some interval (𝑥0 − 𝜀, 𝑥0 + 𝜀) ,
is contained in a double cone that is bounded by two linear functions𝑚ℎ
and𝑀ℎ, where either𝑚,𝑀 > 0 (left) or𝑚,𝑀 < 0 (right). Bottom: Examples
of functions that fail to be secant-bounded at the origin.

Fig. 4 illustrates secant-boundedness and gives examples of func-

tions that do not have this property.
1
Now we are ready to state our

main theoretical result, which is proved in Appendix A:

Theorem 1. Let 𝛾 ∈ 𝐶2 ( [0, 𝑙];R2) be an arc-length parametrized
plane curve with signed curvature 𝜅 = det(𝛾 ′, 𝛾 ′′), and the set of
zero-curvature parameters 𝑆0 := {𝑠 ∈ [0, 𝑙] : 𝜅 (𝑠) = 0} finite. Then, 𝛾
is an equilibrium curve if and only if

(1) there exists a line 𝐿 that intersects𝛾 exactly in its zero-curvature
points, and that is not tangent to 𝛾 in any of these intersections;

(2) 𝜅 is secant-bounded at every 𝑠0 ∈ 𝑆0.

Remark 1. The secant-boundedness of 𝜅 on 𝑆0 implies that 𝜅 actu-

ally changes sign at every root; but it is even stronger, as seen in

Fig. 4 (bottom). In case 𝜅 ∈ 𝐶1
, the condition reduces to 𝜅 ′(𝑠0) ≠ 0.

Remark 2. In the context of design, condition (2) may seem overly

technical to be of practical relevance. However, in Section 6, we

will see that this condition is computationally significant because it

causes an algorithm to fail unless explicitly enforced.

4.3 Properties of Equilibrium Curves
The geometric characterization given above is intuitive enough that

we can usually tell by inspection whether a curve is an equilib-

rium curve. The main condition is that all inflection points lie on

a line which does not cross the curve in non-inflectional points.

In particular, this means that every curve without inflections is an

equilibrium curve. For curves with at least one inflection, it depends

on the global shape whether it has the equilibrium property, as

shown by example in Fig. 5. We can infer some more properties that

are useful in a design context:

Locality. Every curve that satisfies the technical requirements of

Theorem 1 is locally an equilibrium curve, i.e., it can be split into

1
Note that secant-boundedness is weaker than being locally bi-Lipschitz at 𝑥0 , which

is defined as follows: there exist 𝜀, 𝐿 > 0 such that for all 𝑥, 𝑦 ∈ (𝑥0 − 𝜀, 𝑥0 + 𝜀) , it
holds that |𝑥 − 𝑦 |/𝐿 ≤ |𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿 |𝑥 − 𝑦 |. In particular, locally bi-Lipschitz

functions are locally injective—secant-bounded functions need not be.

Fig. 5. (Non-)Equilibrium Curves. Top: Four equilibrium curves, from a
non-inflectional curve (left) to a curve with three inflections (right). Bottom:
Four curves that are not equilibrium curves because (from left to right) every
line through the inflection intersects the curve in further points; the unique
inflection line intersects the curve in a non-inflectional point; the inflection
line is tangent to the curve; the inflection points are not collinear.

a finite number of equilibrium curves. Thus, every curve can be

realized with an elastic rod if we introduce additional fixed points.

Projective invariance. The class of equilibrium curves is closed

under projective transformations. This holds because collinearity

of inflection points is a projective invariant. It is thus possible to

create new equilibrium curves by editing an existing curve with

projective transformation tools.

Smoothness of 𝐾 . The smoothness of the stiffness function will

affect the visual appearance of a manufactured rod, and may thus be

of interest. If𝛾 ∈ 𝐶𝑟 , we infer from𝐾 =
𝑎+⟨𝑏,𝛾 ⟩

𝜅 that𝐾 is at least𝐶𝑟−2

away from inflection points, and at least 𝐶𝑟−3
at inflection points.

E.g., to ensure that 𝐾 is continuous in a design with inflections,

one may use quartic splines, so 𝛾 ∈ 𝐶3
. Without inflections, cubic

splines suffice.

The applicability of Theorem 1 can be expanded by considering

the following variants, which can be proved in the same way as the

original statement:

Boundary conditions. Theorem 1 assumes kinematic boundary

conditions to maximize the design space, but we can account for

the effect of removing positional or angle constraints by imposing

additional requirements on 𝛾 and 𝐿. If the endpoint constraint on 𝑥

(𝑦) is removed, this constrains 𝐿 to be vertical (horizontal). If both

are removed, 𝛾 must not have inflections. If the angle constraint at

either endpoint is removed, the curvature of 𝛾 needs to vanish at

this endpoint, which in turn requires 𝐿 to intersect it.

Fixed natural curvature. By substituting every occurrence of “𝜅”

in Theorem 1 with “𝜅−𝜅0”, we can also characterize the equilibrium

curves of plane rods with fixed natural curvature 𝜅0.

4.4 Computation of Stiffness Profiles
To synthesize the geometry of a rod, it suffices to prescribe its

stiffness at every 𝑠 ∈ [0, 𝑙]. The stiffness can then be transformed

into a cross section, e.g., a rectangular cross section with width𝑤

and thickness ℎ, such that 𝐾 is proportional to𝑤ℎ3
everywhere.

The stiffness function of an equilibrium curve is not generally

unique, because it depends on the choice of 𝑎 ∈ R and 𝑏 ∈ R2
via
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Fig. 6. Stiffness Profiles. Top left: An elliptical arc 𝛾 and three lines rep-
resenting viable choices of 𝑎,𝑏. Top right: Stiffness profiles induced by the
lines; 𝐾3 was computed using Eq. 4 and minimizes 𝑅 globally. Bottom left:
Outlines of elastic strips realizing the stiffness profiles. Bottom right: De-
formed rods with boundary conditions applied, yielding identical shapes.

𝐾 =
𝑎+⟨𝑏,𝛾 ⟩

𝜅 . For curves with two or more inflections, 𝐿 is unique

and thus defines 𝑎 and 𝑏 up to scalar multiples. But for curves with

zero or one inflection, additional degrees of freedom remain. This

raises the question of what the “best” stiffness function is, and how it

can be computed. In a fabrication setting, one is typically limited by

the range of stiffnesses that can be reliably achieved within a single

structural element. Thus, in our view, the best stiffness function is

the one that minimizes the max-to-min stiffness ratio 𝑅 [𝐾] :=
sup𝐾

inf 𝐾
.

To find the global minimizer of 𝑅, note that 𝑅 is naturally scale-

invariant: If 𝐾 is an admissible stiffness for 𝛾 , so is 𝜃𝐾 for any 𝜃 > 0.

Likewise, if 𝐾 is a minimizer of 𝑅, so is 𝜃𝐾 . This means that we can

eliminate scalar multiples without losing any solutions, for example

by imposing the affine constraint inf 𝐾 = 1. In the affine subspace

defined by this constraint, the objective simplifies to 𝑅 [𝐾] = sup𝐾 ,

which shows that the problem of minimizing 𝑅 is in fact linear, and

can be discretized using a linear program.

To do this, let 𝑆0 =
{
𝑠 infl
1
, . . . , 𝑠 infl𝑚

}
, and 0 = 𝑠1, . . . , 𝑠𝑛 = 𝑙 a

sampling of [0, 𝑙] that does not include any of the inflection points in
𝑆0. The sampling should be dense enough so max{𝐾 (𝑠1), . . . , 𝐾 (𝑠𝑛)}
approximates sup𝐾 well. Then, solve the following linear program

in the variables 𝑎, 𝑅 ∈ R and 𝑏 ∈ R2
:

minimize 𝑅,

subject to 1 ≤ 𝑎 + ⟨𝑏,𝛾 (𝑠𝑖 )⟩
𝜅 (𝑠𝑖 )

≤ 𝑅, 𝑖 = 1, . . . , 𝑛, (4)

0 = 𝑎 + ⟨𝑏,𝛾 (𝑠 infl𝑖 )⟩, 𝑖 = 1, . . . ,𝑚.

The fraction appearing in the linear program equals 𝐾 (𝑠𝑖 ), and
min𝑖 𝐾 (𝑠𝑖 ) = 1 is implicitly enforced by the inequality constraints

1 ≤ 𝐾 (𝑠𝑖 ). The equality constraints ensure that 𝐿 intersects all in-

flection points of the curve. Furthermore, it is guaranteed that 𝐿

does not intersect the curve in non-inflectional points, because this

would result in a negative stiffness value at a sample adjacent to the

−2

−2

−1

−1

0

0

1

1

2

2

[cm]

𝑥

[cm]𝑦

Fig. 7. Spiral underGravity. Top: Target curve (green) and predicted shape
if gravity is neglected in the linear program (purple); physical models, com-
puted with Eq. 4 (center), and with Eq. 6 (right). Bottom: Shapes of the elastic
strips cut from cardboard.

intersection. With only four variables and 2𝑛+𝑚 constraints, this lin-

ear program is very small and can be solved almost instantaneously

for arbitrary curves.

Fig. 6 shows how the stiffness profile for a curve varies with the

choice of 𝑎 and 𝑏. An arbitrary choice may result in unwieldy rod

geometries such as 𝐾1 and 𝐾2. The profile 𝐾3, which is the global

minimizer of 𝑅 [𝐾], was found by solving the linear program.

5 EQUILIBRIUM CURVES UNDER GRAVITY
The theory presented in the previous section suffices to create de-

signs on a scale where the effect of gravity is negligible. For ap-

plications in which the dead load of a beam significantly affects

the equilibrium shape, like the one shown in Fig. 7, we need to

model gravity explicitly. Although we cannot use Theorem 1 to

determine feasibility in this case, we show that it is possible to adapt

the computation of stiffness profiles to account for gravity exactly.

The main finding is that the problem of determining feasibility

and finding the “best” stiffness profile under gravity remains linear

if the thickness of the material is known a priori. Furthermore, the

complexity of the linear program used to solve it only increases

marginally, and solutions can still be found near instantaneously.

5.1 Mathematical Model
The gravity potential of a body 𝑉 ⊂ R3

with density 𝜌 in the

earth’s gravitational field is given by 𝑈 =
∫
𝑉
𝜌 (𝑥)⟨𝑥, 𝑔⟩d𝑥 , with

𝑔 the gravitational acceleration vector. For an elastic strip with

constant thicknessℎ and variable width𝑤 , we can write this integral

as 𝑈 =
∫ 𝑙
0
𝜌ℎ𝑤 (𝑠)⟨𝛾 (𝑠), 𝑔⟩d𝑠 . We can also express the stiffness in

terms of these quantities, which yields 𝐾 = 1

12
𝐸𝑤ℎ3

, with 𝐸 the

Young’s modulus of the material. Substituting𝑤 for 𝐾 and summing

gravity potential and bending energy gives the functional

𝑊 [𝛼] =
∫ 𝑙

0

𝐾

(
1

2

𝜅2 + ⟨𝛾, 𝑒⟩
)

with 𝑒 =
1

𝛽𝑙3
· 𝑔∥𝑔∥ , 𝛽 =

𝐸ℎ2

12𝜌 ∥𝑔∥𝑙3
,

where 𝛽 is the standard gravito-bending parameter [Audoly and

Pomeau 2010, 4.1.2]. We estimate this parameter by cutting a rect-

angular strip of a material, and measuring the displacement in a

cantilever experiment. Then, we fit the parameter so the minimizer
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of𝑊 matches the observed displacement. For 200 gsm cardboard,

we found 𝛽𝑙3 = 8.86 · 10
−4
m

3
, which we use for all examples.

The appearance of 𝛾 (𝑠) =
∫ 𝑠
0

(
cos𝛼
sin𝛼

)
in the energy means that

𝑊 depends on 𝛼 via a double integral. To find the Euler–Lagrange

equation of a functional like this, we compute the variational de-

rivative with respect to 𝛼 , and then test against a delta-distribution

centered at 𝑠 , as detailed in the supplemental document. This gives

−(𝐾𝜅)′(𝑠) + ⟨𝑏,𝛾 ′(𝑠)⟩ + ⟨𝑅𝑡𝑒,𝛾 ′(𝑠)⟩
∫ 𝑙

𝑠

𝐾 (𝑡) d𝑡 = 0,

where 𝑅 =
(

0 −1

1 0

)
. This equation can be integrated to yield the

moment equilibrium equation

−𝐾 (𝑠)𝜅 (𝑠) + ⟨𝑏,𝛾 (𝑠)⟩ + ⟨𝑅𝑡𝑒,𝛾 (𝑠)⟩
∫ 𝑙

𝑠

𝐾 (𝑡) d𝑡

−
∫ 𝑙

𝑠

⟨𝑅𝑡𝑒,𝛾 (𝑡)⟩𝐾 (𝑡) d𝑡 + 𝑎 = 0.

(5)

A comparison with Eq. 3 shows that two new summands involving

integrals have appeared due to the effect of gravity. Below, we show

how to account for them in the computation of stiffness profiles.

5.2 Computation of Stiffness Profiles
In Eq. 5, the stiffness 𝐾 appears in three different forms: evaluated

at 𝑠 , integrated from 𝑠 to 𝑙 , and once more integrated against ⟨𝑅𝑡𝑒,𝛾⟩.
All three appearances are linear in 𝐾 , so we can still cast this as a

linear program.

To do this, let 0 = 𝑠1, . . . , 𝑠𝑛 = 𝑙 be a dense sampling of [0, 𝑙].
Associate with the samples a set of weights 𝑤1, . . . ,𝑤𝑛 based on

the Voronoi lengths of the samples along the curve, so

∫ 𝑠𝑛
𝑠𝑘
𝑓 ≈∑𝑛

𝑖=𝑘
𝑤𝑖 𝑓 (𝑠𝑖 ). In addition to 𝑎, 𝑅 ∈ R and 𝑏 ∈ R2

, the linear program

has auxiliary variables for 𝐾 , and for the two types of integrals that

appear in Eq. 5, call them 𝐹 and 𝐺 . Then, the program is given by

minimize 𝑅,

subject to 1 ≤ 𝐾𝑖 ≤ 𝑅, 𝑖 = 1, . . . , 𝑛,

0 = −𝐾𝑖𝜅 (𝑠𝑖 ) + ⟨𝑏,𝛾 (𝑠𝑖 )⟩
+ ⟨𝑅𝑡𝑒,𝛾 (𝑠𝑖 )⟩𝐹𝑖 −𝐺𝑖 + 𝑎, 𝑖 = 1, . . . , 𝑛, (6)

𝐹𝑖 = 𝐹𝑖+1 +𝑤𝑖𝐾𝑖 , 𝑖 = 1, . . . , 𝑛,

𝐺𝑖 = 𝐺𝑖+1 +𝑤𝑖 ⟨𝑅𝑡𝑒,𝛾 (𝑠𝑖 )⟩𝐾𝑖 , 𝑖 = 1, . . . , 𝑛,

wherewe set 𝐹𝑛+1 = 0 = 𝐺𝑛+1. The last two lines constrain 𝐹𝑖 ≈
∫ 𝑙
𝑠𝑖
𝐾

and 𝐺𝑖 ≈
∫ 𝑙
𝑠𝑖
⟨𝑅𝑡𝑒,𝛾⟩𝐾 . In total, the program has 3𝑛 + 4 variables, 2𝑛

inequality constraints, and 3𝑛 equality constraints. It is possible to

eliminate the variables 𝐹𝑖 ,𝐺𝑖 and their defining equality constraints

by substitution. But even in its stated form, the program can be

solved to optimality within a few milliseconds for any curve.

Fig. 7 shows a challenging example, in which precise estima-

tion of the gravity parameter 𝑒 is paramount. The influence on the

stiffness profile is subtle, but shape reproduction is significantly

improved: Neglecting gravity yields a model that sags under gravity

and collides with the support structure; taking gravity into account

explicitly results in a uniform spiral that is only supported at the

endpoints.

𝑠
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Fig. 8. Inflectional Curves under Gravity. Stiffness functions after solv-
ing Eq. 6 (light green) and after solving the modified linear program (dark
green) for curves taken from the flower pot example, see Fig. 19.

5.3 Inflectional Curves
If admissible stiffness profiles exist for a given curve, Eq. 6 always

finds the one that minimizes 𝑅. However, this minimizer is some-

times surprisingly noisy near inflection points, which is a byproduct

of curve discretization. In particular, 𝐾 tends to have spikes like the

ones shown in Fig. 8 (light green), which allow for a small decrease

in 𝑅 compared to a more preferable, smooth solution.
2
To remove

these spikes, and still retain a solution to Eq. 5, we solve a second

linear program that is obtained from Eq. 6 by two modifications:

• Replace the objective function by a discretization of V(𝐾 ′) =∫ 𝑙
0
|𝐾 ′′ |, the total variation of 𝐾 ′.

• Add the constraint 𝑅 ≤ 𝑅1 · (1 + 𝜀), where 𝑅1 is the optimal

value obtained from solving Eq. 6. We always set 𝜀 = 0.01.

The new objective function favors solutions without noise, and

the original optimum is retained up to a margin of 𝜀. This new

linear program is feasible whenever the original problem is feasible,

because the optimal point of Eq. 6 is feasible in the new program.

We have used this two-phase optimization in every example that

treats inflectional curves under gravity, and it has yielded completely

noise-free results in every case, like the examples in Fig. 8.

6 STABILITY OF EQUILIBRIUM CURVES
A solution to a variational problem is said to be stable if it is a local

minimum of the energy functional. Unstable solutions are saddle

points, which means that there is a perturbation of the solution,

compatible with boundary conditions and constraints, that attains

lower energy. For a physical system, this means that force equilib-

rium holds at a saddle point, but any disturbance will cause it to

become dynamic, rendering it useless for most applications.

Overview. From visual inspection alone, it is far from obvious

whether a specific equilibrium curve will be stable, or even whether

there could be a similar equilibrium curve that is stable. The remain-

der of this section describes an optimization algorithm that, given

an unstable equilibrium curve, finds a similar equilibrium curve

which is stable. We believe this is the first algorithm of this type.

Our method is based on the theory of isoperimetric conjugate

points, which we review below. Then, we present our idea for sta-

bility recovery, based on applying the adjoint method to the isoperi-

metric Jacobi equations. Before discussing our final algorithm, we

2
Note that this only happens when gravity is taken into account. In contrast, solutions

to Eq. 4 are always noise-free, regardless of inflections, because the inflection line is

sufficiently constrained by the equation 0 = 𝑎 + ⟨𝑏,𝛾 (𝑠 infl𝑖 ) ⟩.
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outline why a simpler and more obvious version of the algorithm

fails. Theorem 1 plays a crucial role in formulating the method, so

it is currently limited to applications in which gravity is negligible.

6.1 Stability Criteria
There are two essential procedures for analyzing the stability of a

solution to an optimization problem: the eigenvalue test and the

Jacobi test. The eigenvalue test is used more frequently in practice,

but we will argue that the Jacobi test is better suited to the problem

at hand and leads to an elegant optimization algorithm at a low

computational cost.

The Eigenvalue Condition. A sufficient criterion for stability is the

positivity of all eigenvalues of the energy Hessian. For constrained

problems, there exists a similar criterion involving eigenvalues of

directions constrained to the orthogonal subspace of constraint

tangents. This method is very general, but it does not take advantage

of the structure inherited from continuous variational problems.

There are two obstacles to using the eigenvalue method for opti-

mizing stability of kinematic elastic curves. First, such optimizations

are iterative, and require solving a constrained eigenvalue problem

at every step. These computations are very costly because stan-

dard numerical packages such as LAPACK do not support solution

procedures that preserve sparsity for this case. Second, unlike the

unconstrained case [Van der Aa et al. 2007], we have found no refer-

ence on computing derivatives for constrained eigenvalue problems.

The Jacobi Condition. A different stability criterion can be de-

rived directly from the continuous variational problem, and then

discretized. This condition, named after Jacobi, can be checked by

integrating simple initial-value problems on [0, 𝑙]. The result regard-
ing stability is equivalent to that of the eigenvalue test, despite a

significantly lower computational cost, and a complexity that is only

linear in the number of samples. In addition, the criterion we use for

establishing stability is differentiable via the adjoint method, and

not subject to singularities that might be present in the eigenvalue

structure. Below, we review a version of the Jacobi condition that

allows for multiple equality constraints [Manning et al. 1998].

6.2 Isoperimetric Conjugate Points
General Theory. In this section, we summarize the sufficient sta-

bility criterion for constrained variational problems based on conju-

gate points, omitting derivations. We start with a sufficiently regular

functional 𝐽 [𝑢] =
∫ 𝑙
0
𝑓 (𝑥,𝑢 (𝑥), 𝑢 ′(𝑥)) d𝑥 subject to Dirichlet b.c.,

and integral constraints

∫ 𝑙
0
𝑔𝑖 (𝑢 (𝑥)) d𝑥 = 𝑐𝑖 , for 𝑖 = 1, . . . , 𝑝 . Then,

the Lagrangian of the problem is given by L[𝑢] =
∫ 𝑙
0
𝑓 ∗ (𝑥,𝑢,𝑢 ′) d𝑥 ,

where 𝑓 ∗ = 𝑓 + ∑𝑖 𝜆𝑖𝑔𝑖 . The Lagrangian can be developed into a

second-order Taylor series as

L[𝑢+ℎ] = L[𝑢] +
∫ 𝑙

0

(
𝑓 ∗𝑢 −

d

d𝑥
𝑓 ∗𝑢′

)
ℎ + 1

2

∫ 𝑙

0

(
𝑃ℎ′2+𝑄ℎ2

)
+ 𝑜 (∥ℎ∥2𝑤),

with 𝑃 = 𝑓 ∗𝑢′𝑢′, 𝑄 = 𝑓 ∗𝑢𝑢 −
d

d𝑥
𝑓 ∗𝑢𝑢′, ∥ℎ∥2𝑤 = ∥ℎ∥2

𝐿2
+ ∥ℎ′∥2

𝐿2
.

In analogy to minimization problems with finite dimension, 𝐽 has

a constrained minimum at 𝑢 if the first-order term in the expan-

sion of L vanishes, and the second-order term is positive-definite
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Fig. 9. Stability and Conjugate Points. Left: Unstable equilibrium
(dashed), two stable equilibria (green, purple), and in-between non-
equilibrium states of the same rod. Right: Stability determinant Z(𝑠) for
unstable and stable equilibria, with 𝜎 marked (orange).

within the orthogonal subspace of constraint tangents. The first-

order condition is exactly the constrained Euler–Lagrange equation.

Positive-definiteness of the second-order term is guaranteed if the

so-called Legendre and Jacobi conditions are satisfied. The Legendre

condition is met if 𝑃 > 0 everywhere.

For the Jacobi condition, we need the concept of isoperimetric

conjugate points. First, let 𝜁 be the solution to the Jacobi equation,

−(𝑃𝜁 ′)′ +𝑄𝜁 = 0 s.t. 𝜁 (0) = 0, 𝜁 ′(0) = 1,

and let 𝜂𝑖 , for 𝑖 = 1, . . . , 𝑝 , be the solutions to

−(𝑃𝜂 ′𝑖 )
′ +𝑄𝜂𝑖 = 𝑇𝑖 s.t. 𝜂𝑖 (0) = 0, 𝜂 ′𝑖 (0) = 1,

where 𝑇𝑖 := d𝑔𝑖/d𝑢 are the constraint tangents. Next, we define the

running integrals

𝑀𝑖 (𝑥) =
∫ 𝑥

0

𝑇𝑖𝜁 and 𝑁𝑖 𝑗 (𝑥) =
∫ 𝑥

0

𝑇𝑖𝜂 𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑝 .

This gives the entries of the constrained stability matrix,

𝑍 (𝑥) =
©­­­­«
𝜁 (𝑥) 𝜂1 (𝑥) · · · 𝜂𝑝 (𝑥)
𝑀1 (𝑥) 𝑁11 (𝑥) · · · 𝑁1𝑝 (𝑥)
.
.
.

.

.

.
. . .

.

.

.

𝑀𝑝 (𝑥) 𝑁𝑝1 (𝑥) · · · 𝑁𝑝𝑝 (𝑥)

ª®®®®¬
.

Finally, letZ(𝑥) := det𝑍 (𝑥). A point 𝜎 ∈ RwithZ(𝜎) = 0 is called

an (isoperimetric) conjugate point. The Jacobi condition is satisfied if

there is no conjugate point in (0, 𝑙].
In summary: If, at 𝑢, the Euler–Lagrange equation is satisfied,

and 𝑃 (𝑥) > 0 for all 𝑥 ∈ [0, 𝑙], and there is no conjugate point in

(0, 𝑙], then 𝑢 is a minimizer.

Elastic Rods. Now, we apply this theory to kinematic elastic rods,

to determine whether an equilibrium curve 𝛾 is stable. Stability is

mostly an issue for curves with at least two inflection points, so

𝐾 and 𝜆 (see Eq. 2) are uniquely determined by 𝛾 up to positive

multiples. Using the variable names from above, we have

𝑔1 (𝛼) = cos𝛼, 𝑔2 (𝛼) = sin𝛼, 𝑇1 (𝛼) = − sin𝛼, 𝑇2 (𝛼) = cos𝛼,

𝑃 = 𝐾, 𝑄 = −𝜆1 cos𝛼 − 𝜆2 sin𝛼 = −⟨𝜆,𝛾 ′⟩,

so the Legendre condition 𝑃 = 𝐾 > 0 is always satisfied. The Jacobi

equation reads

−(𝐾𝜁 ′)′ − ⟨𝜆,𝛾 ′⟩𝜁 = 0 s.t. 𝜁 (0) = 0, 𝜁 ′(0) = 1, (7)
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and is readily solved by integrating it from 𝑠 = 0 to 𝑙 . The functions

𝜂1 and 𝜂2 are determined by solving with the right-hand sides𝑇1 and

𝑇2, respectively. Finally,𝑀1,𝑀2, 𝑁11, 𝑁12, 𝑁21, and 𝑁22 are obtained

by integrating the solutions against the constraint tangents. This

gives all entries in the 3-by-3 stability matrix 𝑍 , whose determinant

Z can be checked for zero-crossings on (0, 𝑙]. If the sign of Z
remains constant on this interval, then 𝛾 is a stable equilibrium

curve, and otherwise it is unstable. Fig. 9 shows how Z differs

between an unstable and a stable equilibrium of the same elastic

rod.

If an equilibrium curve is unstable, the location of the first isoperi-

metric conjugate point 𝜎 ∈ (0, 𝑙] indicates how close the curve is to

being stable—if 𝜎 is close to 𝑙 , then the curve is “almost” stable. (This

is analogous to the magnitude of the lowest negative eigenvalue.)

Our goal is to make a curve stable by pushing 𝜎 towards 𝑙 , and

finally out of the interval (0, 𝑙], while modifying the curve as little

as possible.

Adjoint Method. The functionZ(𝑠) depends on 𝐾 via the Euler–

Lagrange and Jacobi equations, so we write it asZ(𝑠, 𝐾). A conju-

gate point is implicitly defined viaZ(𝜎, 𝐾) = 0. We can apply the

implicit function theorem to find

−𝜕Z/𝜕𝑠 |(𝜎,𝐾) · d𝜎/d𝐾 = 𝜕Z/𝜕𝐾 |(𝜎,𝐾) .

If we can numerically compute d𝜎/d𝐾 , this gives us a way to apply

gradient-based optimization on 𝐾 in order to push 𝜎 towards 𝑙 . But

the equation shows that d𝜎/d𝐾 coincides with 𝜕Z/𝜕𝐾 |(𝜎,𝐾) up
to a scaling factor −𝜕Z/𝜕𝑠 |(𝜎,𝐾) , which can be shown to always

be positive. Because Z depends on 𝐾 via a series of differential

equations and integrals, we need to derive its adjoint equations

in order to compute 𝜕Z/𝜕𝐾 |(𝜎,𝐾) analytically. A full overview of

these equations can be found in Appendix B, and a derivation in the

supplemental document.

The result of solving the adjoint equations is a differential that

lets us evaluate the first-order change to a conjugate point 𝜎 implied

by changing 𝐾 , up to a proportionality factor:

𝜎 [𝐾 + 𝛿𝐾] ≈ 𝜎 [𝐾] + 𝛿𝜎 [𝛿𝐾] = 𝜎 [𝐾] + 𝛿𝐹 [𝛿𝐾]/(−𝜕Z/𝜕𝑠 |(𝜎,𝐾) ) .

This differential, which we call 𝛿𝐹 , can be used to compute a search

direction to increase 𝜎 in an optimization algorithm.

ALGORITHM 1: Failed Attempt at Stability Recovery

Input :equilibrium curve 𝛾0
with stiffness 𝐾0

and Lagrange

multipliers 𝜆0
, step size ℎ

Output :a stable equilibrium curve 𝛾𝑛

𝑛 ← 0;

while 𝛾𝑛 unstable do
Compute Z, 𝜎 ;

Compute ∇𝐹 via adjoint method;

𝐾𝑛+1 ← 𝐾𝑛 + ℎ · ∇𝐹 ;
Compute 𝛾𝑛+1, 𝜆𝑛+1 based on 𝐾𝑛+1, with 𝛾𝑛, 𝜆𝑛 as initial guess;

𝑛 ← 𝑛 + 1;

end
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Fig. 10. Stability Optimization. Iterations of stability optimization, from
initial unstable state (light green) to stable state (dark green). Changes to 𝛾
(top left) are almost imperceptible, but its curvature (bottom left) changes
visibly around inflection points (arrows). This causes stronger stiffness
variations (bottom right) and pushes the conjugate point (orange) out of
(0, 𝑙 ] (top right). Iterations 0, 8, 15, 23, 30 shown.

6.3 A Failed Attempt at Stability Recovery
The most obvious way of using 𝛿𝐹 is to parametrize 𝐾 by densely

sampling it, and assigning one parameter 𝐾𝑖 per sample. With this

finite parametrization, 𝛿𝐹 gives the gradient ∇𝐹 with respect to 𝐾𝑖 ,

which can be used for “steepest ascent” on 𝜎 . The data flow of this

algorithm is

𝐾 ↦→ (𝛾, 𝜆) ↦→ (Z, 𝜎) ↦→ 𝐹 .

Algorithm 1, which outlines this idea, makes initial progress

in moving 𝜎 closer to 𝑙 , but necessarily fails to cross the stability

threshold. The reason is the bifurcation that occurs between unsta-

ble and stable equilibria at 𝜎 = 𝑙 . At this point, the curve becomes

“uncontrollable” through 𝐾 , meaning that small changes to 𝐾 may

induce arbitrarily large changes to 𝛾 , and 𝛾 may not even be (locally)

uniquely defined by 𝐾 . The consequence is that Newton-type meth-

ods that compute 𝛾 from 𝐾 diverge, and even if they are stabilized,

any similarity of 𝛾 to the original curve is lost in the process.

Theorem 1 offers the tools to tackle the stability optimization

problem with a more successful approach: It describes the exact

requirements on 𝛾 under which the inverse map 𝛾 ↦→ 𝐾 exists. This

map is well-behaved even through bifurcations, and we will use it

to construct a working algorithm for stability recovery below.

6.4 The Stability Recovery Algorithm
The key to repairing the stability recovery algorithm is to avoid the

“forward simulation” step, in which𝛾 is computed from𝐾 . To do this,

we exchange the primary variables of the optimization problem, and

parametrize 𝛾 instead of 𝐾 . We opt for a B-Spline representation of

at least quartic order, and use the control point coordinates 𝑞 ∈ R2𝑚

as parameters to optimize, with𝑚 the number of control points. The

data flow of the new algorithm is

𝑞 ↦→ 𝛾
!↦→ (𝐾, 𝜆) ↦→ (Z, 𝜎) ↦→ 𝐹 .

The step marked by “!” is only well-defined if 𝛾 is an equilibrium

curve, because otherwise, an admissible stiffness function𝐾 does not

ACM Trans. Graph., Vol. 40, No. 4, Article 126. Publication date: August 2021.



126:10 • Christian Hafner and Bernd Bickel

Fig. 11. Stabilized S-curve. From left to right: Initial curve is kept in its unstable equilibrium state by a little friction; initial curve snaps into stable equilibrium
once friction is removed; optimized curve is stable in S-shape; side view of stable S-shape.

exist. This shows the significance of Theorem 1—it gives necessary

and sufficient conditions that we can enforce computationally in

order to retain the equilibrium property of 𝛾 .

In practice, this means enforcing conditions (1) and (2) of Theo-

rem 1 throughout optimization. The collinearity of inflection points

can be formulated as a non-linear equality constraint on 𝑞, and is

enforced via an underdetermined Newton procedure after every up-

date 𝑞 ← 𝑞 + Δ𝑞. This step is also used to enforce other constraints,

such as keeping endpoints and tangents fixed, and fixing the arc

length of the curve. We describe this procedure in Appendix C.
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−0.02
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0.02

0.04
𝜅

𝑠

At this stage, the algorithm converges for

some examples, but fails for others. The rea-

son for failure is that the optimization often

drives 𝛾 towards a state in which the secant-

boundedness of 𝜅 is violated, i.e., with 𝜅 ′(𝑠0) ≈
0 at an inflection point 𝑠0, as seen in the inset. The easiest way to

remedy this, and safeguard against other violations of (1) and (2),

is to add a constraint that bounds 𝑅 [𝐾] = sup𝐾

inf 𝐾
from above. The

upper bound 𝑅max can be chosen to reflect the limitations of the

fabrication method, or other requirements on the geometry of the

ALGORITHM 2: Stability Recovery

Input :equilibrium curve 𝛾0
, step size ℎ, stiffness ratio bound 𝑅max

Output :a stable equilibrium curve 𝛾𝑛

𝑛 ← 0;

while 𝛾𝑛 unstable do
Compute 𝑎 ∈ R, 𝑏 ∈ R2

from inflection line;

𝐾 ← 𝑎+⟨𝑏,𝛾𝑛 ⟩
𝜅

; 𝑅 ← sup𝐾

inf 𝐾
;

Compute Z, 𝜎 ;

Compute 𝛿𝐹/𝛿𝐾 via adjoint method;

Compute d𝐾/d𝑞 and d𝑅/d𝐾 via chain rule;

∇𝐹 ← 𝛿𝐹/𝛿𝐾 · d𝐾/d𝑞; ∇𝑅 ← d𝑅/d𝐾 · d𝐾/d𝑞;
Δ𝑞 ← ℎ · ∇𝐹 ;
// Project Δ𝑞 so 𝑅 ≤ 𝑅max is satisfied to first order

Δ𝑞eff ← ProjectStep(𝑞,Δ𝑞, 𝑅, ∇𝑅, 𝑅max) ;
𝑞 ← 𝑞 + Δ𝑞eff;
𝑞 ← EnforceConstraints(𝑞) ; // Make inflections collinear, enforce b.c.

𝛾𝑛+1 ← BSpline(𝑞) ; 𝑛 ← 𝑛 + 1;

end

rod. This is a single non-linear inequality constraint, and it can

be enforced by linearizing the constraint in 𝑞 and projecting Δ𝑞
onto the tangent space of the constraint boundary, if it violates the

constraint to first order. We have found that it is not necessary to

iteratively project 𝑞 back onto the (non-linear) constraint bound-

ary, because violations of 𝑅 ≤ 𝑅max due to the linearization are

typically small and temporary if the step size is kept small enough.

Algorithm 2 summarizes all steps of computation.

Example. Fig. 10 shows iterations of optimizing the stability of

a quartic spline curve with three inflections, where 𝑅max = 3. Re-

markably, the curve itself changes very little during optimization,

but the stiffness profile implied by the curve changes drastically.

This is possible because curvature changes close to inflection points

are amplified by the computation 𝐾 =
𝑎+⟨𝑏,𝛾 ⟩

𝜅 .

The first two photos in Fig. 11 show a physical model of the

unstable elastic curve, which can be kept in unstable equilibrium

with a small amount of force, but otherwise snaps into one of the

stable equilibria. The last two photos show a model of the stabilized

curve, whose equilibrium shape is almost identical to the unstable

one. Note that the model does not touch the ground, so no fric-

tional force is provided. The supplemental video demonstrates the

qualitative difference between the two models in motion.

Remarks. There are two technical details that we have brushed
over so far. First, instead of using 𝑅 [𝐾] = sup𝐾

inf 𝐾
directly, we replace

it by the differentiable approximation 𝑅 [𝐾] ≈ ∥𝐾 ∥𝑝 · ∥1/𝐾 ∥𝑝 , with
∥ 𝑓 ∥𝑝 = (

∫
|𝑓 |𝑝 )1/𝑝 and 𝑝 large; 𝑝 > 20 worked well in our examples.

Second, we did not carefully discuss differentiability of 𝛾 ↦→
(𝐾, 𝜆). This map is only defined on the manifoldM ⊂ R2𝑚

corre-

sponding to control point coordinates 𝑞 such that 𝛾 has collinear

inflections. Thus, the domain of the differential is the tangent space

𝑇𝑞M, and not all of R2𝑚
. In our implementation, we account for this

by computing an explicit basis of 𝑇𝑞M after enforcing constraints,

and performing all subsequent calculations within this subspace.

A current limitation of the stabilization algorithm is that it ne-

glects gravity because it uses Theorem 1 to formulate constraints.

Heuristically, we can account for gravity by enforcing Eq. 5 after

stabilization while changing 𝐾 minimally, but this gives no formal

stability guarantee.
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Fig. 12. Discretization.Quantities used in the discretization of the bending
energy: edge and boundary angles (green), edge weights (orange), nodal
stiffnesses (gray), nodal weights (purple).

7 IMPLEMENTATION
Here, we give details about the discretization and form-finding

algorithm that are part of our design system.

7.1 Discretization
Our discretization of plane elastic rods is similar to that of Bergou

et al. [2008], and we distinguish between nodal quantities and edge

quantities. This discretization is not needed for implementing the

results from Sections 4 and 5, but we use it to discretize the stability

criterion and its adjoint (Section 6), as well as for numerical testing

with forward simulation.

A curve is represented as a polygonal chain (Fig. 12) with edge

lengths 𝑙𝑖 , which function as weights for edge quantities. Nodal

quantities have as weights the Voronoi area𝑤𝑖 of a node, i.e., half

the sum of incident edge lengths. The bending energy and endpoint

constraints of a rod are discretized as

𝑊 =
1

2

𝑛∑
𝑖=0

𝐾𝑖
(𝛼𝑖+1 − 𝛼𝑖 )2

𝑤𝑖
and

𝑛∑
𝑖=1

𝑙𝑖

(
cos𝛼𝑖
sin𝛼𝑖

)
= 𝛾𝑙 ,

where 𝐾0, . . . , 𝐾𝑛 are nodal stiffnesses; 𝛼1, . . . , 𝛼𝑛 are edge angles;

and 𝛼0 and 𝛼𝑛+1 are angle boundary values. The solution 𝜁 to Eq. 7

is an edge quantity, with one fictitious edge added on either side of

the curve. This gives samples 𝜁0, . . . , 𝜁𝑛+1, with 𝜁0 = 0 and 𝜁1 = 𝑤0

by the initial conditions, and

− 1

𝑙𝑖

(
𝐾𝑖
𝜁𝑖+1 − 𝜁𝑖
𝑤𝑖

− 𝐾𝑖−1

𝜁𝑖 − 𝜁𝑖−1

𝑤𝑖−1

)
− ⟨𝜆,𝛾 ′𝑖 ⟩𝜁𝑖 = 0,

with 𝛾 ′
𝑖
= (cos𝛼𝑖 , sin𝛼𝑖 ), which can be solved for 𝜁𝑖+1. The same

edge discretization is used for 𝜂𝑖 . Finally, 𝑀𝑖 and 𝑁𝑖 𝑗 are nodal

quantities, which are computed by summing over edges in the same

manner as for the endpoint constraints. The adjoint quantities can

be discretized in the same way as the primal quantities. To compute

𝛿𝐹 [𝛿𝐾], the derivatives 𝛼 ′, 𝛼 ′, 𝜁 ′, ¯𝜁 ′, etc. are computed as nodal

quantities, and initial values like 𝜁 ′
0
= 1 can be recovered exactly

from the fictitious border edges that were added earlier.

7.2 Implementation of the Design System
The algorithms for computing a stiffness profile with or without

gravity can be implemented by sampling an input curve and setting

up the corresponding linear programs from Eqs. 4 and 6. We solve

these programs to optimality using the Gurobi library.

Our design system offers different modes of user interaction. On

the one hand, the user can directly edit a design by manipulating

the control points of spline curves or surfaces, and modifying planes

that are intersected with input surfaces to yield curves. The program

generates a preview of the beam geometry necessary to realize these

curves in a split second (see Fig. 16), which allows for a fast and

interactive workflow.

The user can also give more control to the application by run-

ning a fabricability optimization routine that improves the design

automatically. This is especially useful if the optimal stiffness ratio

𝑅 =
sup𝐾

inf 𝐾
of a curve is too high for the chosen fabrication method,

and the user cannot decrease it further with manual edits. At the

core of this optimization method is a local/global approach.

The local step computes the derivative of 𝑅 with respect to coordi-

nates of the spline control points, and modifies them using gradient

descent with line search. The parameters 𝑎 and 𝑏 are modified as

little as possible in the process. E.g., if there is a single inflection

point, only 𝑏 is modified so 𝐿 still intersects the inflection point

after the control points have been updated. These minimal changes

to 𝑎 and 𝑏 are accounted for when computing the gradient.

The global step solves the linear program in Eq. 4 to regain the

global optima for 𝑎 and 𝑏, while keeping the control points fixed.

This step is only necessary if there are fewer than two inflection

points, because otherwise𝑎 and𝑏 are defined up to positivemultiples

by the inflection line.

Neither step can increase 𝑅, given a small enough step size. For

inflectional curves, we call EnforceConstraints after the local

step. Optimization stops once a user-defined target stiffness ratio has

been reached, or after a fixed number of iterations. We account for

gravity in a post-process, by solving for 𝐾 once more with the linear

program from Eq. 6 after the local/global algorithm terminates.

Naturally, the user can mix these modes of interaction freely,

in order to converge to the best possible design. Once a design is

finalized, the system outputs CADfiles that include the outlines of all

beams in their flat configuration, and the placement and orientation

of fixtures for all beam endpoints.

8 FABRICATION & VALIDATION
Next, we present ways of manufacturing elastic strips that exhibit

the stiffness profiles we have computed in previous sections. We

show two methods that let us control the stiffness and width of

a strip independently, by using either perforation or layering. To

quantify the accuracy of deformed shapes, we 3d scanned physi-

cal models and compared them with the intended design. We also

present numerical tests to assess the robustness of fabrication using

elastic strips. Extensions that allow the use of nonlinearly elastic

materials and account for mild plasticity effects are discussed in

Appendix D.

8.1 Fabrication
The most straight-forward way of producing an elastic strip is to

cut it from a sheet with constant thickness ℎ, such that the width

𝑤 (𝑠) of the strip is directly proportional to the stiffness 𝐾 (𝑠). This
achieves the desired behavior because 𝐾 ∼ 𝑤ℎ3

for elastic rods with

a rectangular cross section.

The disadvantage of this method is that we relinquish direct

control over the appearance of the strip, because all degrees of
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Fig. 13. Perforated and Composite Strips. Top: Examples of perforated
(left) and composite (right) strip with section lines. Bottom: Cross sections.
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Fig. 14. 3d Scans. Scans of physical models (gray) superimposed with
simulated equilibrium shape (green). Arrows show maximal displacement
error. Left: Cardboard model of arch with two inflections (max err. 1.7 mm).
Right: Five interlocking arches of pavilion example (max err. 2.5 mm).

freedom go into realizing the stiffness. In particular, this makes it

impossible to close gaps between adjacent strips in a model, because

we cannot control the width independently of the stiffness. We

found two ways to circumvent this limitation, shown in Fig. 13.

Perforated Strips. To prescribe the width and stiffness indepen-

dently, we can remove material from a strip with width 𝑤 (𝑠) by
adding holes in order to achieve an effective stiffness𝐾 (𝑠). Our design
removes diamond-shaped regions of material to reveal a network of

smaller-scale strips, such that the total width integrated over a cross

section is proportional to 𝐾 , see Fig. 13 (left). We chose this type

of perforation so the smaller-scale strips are approximately aligned

with the direction of the main strip, in order to ensure uniform

bending.

Composite Strips. Another way of decoupling𝑤 and 𝐾 is to use a

composite of two strips that are rigidly glued, see Fig. 13 (right). We

use a broader strip (purple) with thickness ℎ1 and width 𝑤1 (𝑠) to
determine the outer shape of the strip, and a narrower strip (lilac)

with thickness ℎ2 and width 𝑤2 (𝑠) to add stiffness control. The

stiffness of the composite strip can be approximated by
3

𝑐𝐾 = 𝑤2 (ℎ1 + ℎ2)3 + (𝑤1 −𝑤2)ℎ3

1
= 𝑃1𝑤1 + 𝑃2𝑤2,

with 𝑃1 = ℎ3

1
, 𝑃2 = (ℎ1+ℎ2)3−ℎ3

1
, and 𝑐 a scaling constant. We want

to prescribe 𝐾 and𝑤1, and compute𝑤2 subject to 0 ≤ 𝑤2 ≤ 𝑤1 to

satisfy this equation with some 𝑐 > 0. The bounds on 𝑤2 lead to

constraints on 𝑐 ,

𝑐min (𝑠) :=
𝑃1𝑤2 (𝑠)
𝐾 (𝑠) ≤ 𝑐 ≤

(𝑃1 + 𝑃2)𝑤2 (𝑠)
𝐾 (𝑠) =: 𝑐max (𝑠),

for all 𝑠 ∈ [0, 𝑙]. These constraints can be satisfied simultaneously

if and only if max 𝑐min ≤ min 𝑐max. If this is the case, we use

3
In this formula, we neglect the small offset between the overhang of the broad strip and

the neutral line of the cross section. Instead, we assume that all mass is symmetrically

distributed around the neutral line.
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Fig. 15. Robustness Study. We show the effect of fabrication errors and
parameter uncertainties on elastic curves on five representative examples.
Rows 3–6: original curve (dashed) and curve affected by errors. Top to bottom:
Curve and curvature normals; stiffness profile; stiffness range smaller (light
green) or larger (dark green) than intended by 50%; gravity parameter
underestimated (light) or overestimated (dark) by 50%; boundary angles off
by 10

◦; plasticity affecting top 25% (light) or top 50% (dark) of curvature.

𝑐 := min 𝑐max, which makes the narrow strip as wide as possi-

ble without protruding beyond the broad strip, as shown in Fig. 13

(right). Should the problem be infeasible, one can either change the

design or reduce the thickness of the broad strip relative to that of

the narrow strip. This works because the problem always becomes

feasible as ℎ1/ℎ2 → 0. All of our results that use composite strips

were realized with ℎ1/ℎ2 = 1/2.4

8.2 Validation
3d Scans. To better quantify the predictive capabilities of our

model, we used a dual-camera light scanner to capture the geom-

etry of two physical models in their deformed state. The scanned

models were then registered to the 3d models that served as input

for computing the stiffness profiles. Fig. 14 shows a superimposition

of the scanned and input models.

The first scan is of an arch with two inflections and a total length

of 25 cm, yielding a maximum displacement error of 1.7 mm; this

is about 1% of the model diagonal. The second scan shows a sec-

tion of the pavilion example, composed of five interlocking elastic

4
The gravity potential of a composite strip is linear in the unknown, 𝑤2 , so the model

from Section 5 can easily be adapted to solve for 𝑤2 of a composite strip with 𝑤1 given.
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Fig. 16. Lantern Design Session. Top: B-Spline curve modeled by the user
(left) and optimal stiffness profile computed by Eq. 4 (right). Bottom: Result
of automatic fabricability optimization to guarantee 𝑅 ≤ 3.

strips, each approximately 34 cm in length. Here, the maximum

displacement error is 2.5 mm, also about 1% of the model diagonal.

Numerical Testing. In addition to conducting 3d scans, we per-

formed a series of numerical tests that simulate the effects of mate-

rial parameter uncertainty and fabrication error. This helps analyze

the robustness of the fabrication process with elastic strips. Fig. 15

shows a few representative equilibrium curves, taken from the ex-

amples we show in Section 9. They include curves with zero to

three inflection points, and one curve with a high turning number.

In particular, we show the consequences of the following defects

(rows 3–6):

• The ratio between minimal and maximal stiffness is lower

(higher) than assumed.

• The gravity parameter
𝜌

𝐸ℎ2
is lower (higher) than assumed.

• The enforced boundary angles are defective.

• The highest-curvature regions deform plastically.

The exact impact of these errors will depend on the equilibrium

curve in question, but we found curves with high total variation of

turning angle, V(𝛼) =
∫ 𝑙
0
|𝜅 |, to be affected the most. On the other

hand, inflection points close to the endpoints of a curve (e.g., column

4) seem to have a stabilizing effect.

9 RESULTS
We combine the design methods from Sections 4–7 and the fabri-

cation techniques from Section 8 to manufacture physical models

that demonstrate applications in architecture, model building, and

interior design. Our stiffness construction algorithm reacts to user

edits within a fraction of a second, which allows for fast iteration

on the design of these models, and a quick evaluation of ideas. We

also use the fabricability optimization routine of our design system

(see Section 7.2) in order to suggest trade-offs between the original

concept and ease of fabrication. For a detailed summary of all re-

sults, along with material, size, complexity, and computation times,

consult Table 1.

We showcase a variety of materials such as cardboard, paper,

polyacetal, and plywood, as well as different design processes such

as approximation of existing 3d models, and direct specification

1
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Fig. 17. Pavilion. Top left: Three arches from the pavilion model (dark); poor
shape reproduction if gravity is neglected during optimization (light). Top
right: Stiffness profiles computed with gravity (dark) and without gravity
(light). Bottom: Final strip geometry with cuts for interlocking.

using mathematical expressions. Some models use perforated or

composite strips for maximal control, while others benefit from

the naturally emergent shapes dictated by the stiffness distribution.

Many of the models are between 50 and 100 cm in length, which

would make it cost-prohibitive to 3d print all beams in their curved

state, or to manufacture molds for all of them. Photographs of the

physical models are shown in Figs. 1 (left) and 24, and renderings

of two additional examples in Figs. 1 (right) and 23.

9.1 Emergent Strip Designs
We designed two objects that take their elastic strip geometry di-

rectly from the stiffness profiles computed with linear programming.

Lantern. The first is a lantern encased by twenty strips lasercut

from a POM sheet with a thickness of 0.5 mm. The shape of the

elastic strips was drafted in our software design tool using B-Spline

curves, as seen in Fig. 16. The tool gives immediate visual feedback

about the geometry of the strip resulting from the current design.

The user can then either manually adapt the design to achieve better

fabricability and appearance, or use the automatic optimization

routine to decrease the max-to-min stiffness ratio of the strip. For

this example, the optimization terminates under 1 second, giving

real-time feedback and enabling an iterative design loop.

Pavilion. The second object is a pavilion composed of 31 inter-

locking cardboard strips that form an archway about one meter

long, and 15 cm high. Every strip is designed as a segment of an

ellipse, rotated around its center point, which gives the model a

corkscrew-shaped appearance. The design uses 200 gsm cardboard,

which is flexible enough for gravity to play a significant role, so we

used the model from Section 5 to compute the width profile of every

strip. Fig. 17 shows the effect of gravity, along with the resulting

stiffness and width profiles.

The strips are spaced closely enough so neighboring strips in-

tersect by a few millimeters each. These intersections are found

computationally and show up as slotted cuts in the final model, to

allow the strips to interlock. Note that little to no force is transmit-

ted through these cuts, because every strip is in equilibrium even

without neighboring strips as support. Fig. 14 validates the physical

shape by 3d scanning.
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Fig. 18. Horse. Left: 3d model with planes and intersection curves. Right: A
selection of input curves (light green) and optimized equilibrium curves sat-
isfying 𝑅 ≤ 2 (dark green); composite strips realizing these curves (purple).

9.2 Composite Strip Designs
If the goal is to cover a closed 3d model with elastic strips, it is

useful to have explicit control over the width profile of every strip,

so gaps between strips can be minimized. We can achieve this by

using composite strips, as discussed in Section 8, and demonstrate

the technique on two 3d models.

Horse. This object is based on a pre-existing 3d model of a horse
5

that was not modified by the authors in any way prior to approx-

imating it with equilibrium curves. To design the strip model, we

specify a family of twenty planes spanning the body, neck, and

head of the model, and compute the intersection curves, as shown

in Fig 18. All remaining steps are automatic, except for choosing

parameters such as spline curve degree and step sizes.

Each intersection curve is split at the spine, yielding a total of

fourty sampled curves, which are then smoothed to remove high

frequencies and approximated by quartic spline curves. Curves

that do not have the equilibrium curve property initially are post-

processed by removing spurious inflection points. Then, we run

the auxiliary routine to optimize fabricability (see Section 7.2) until

a value of 𝑅 ≤ 2 is reached for each curve. As Fig. 18 shows by

example, most curves only change slightly as a result. The final step

is to solve for𝑤2 of the composite strip as described in Section 8.1.

5
https://free3d.com/3d-model/palomino-horse-walking-v1–643031.html

𝑅

10
0

10
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10
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Fig. 19. Flower Pot. Left: NURBS model with input curves (light green)
and optimized curves (dark green). Center: Stiffness ratio objective 𝑅 of all
curves before optimization (light) and after optimization (dark). Right: Three
composite strips used in the physical model.

Fig. 20. Shell. Left: 3d model partitioned into ten sections. Center: Coverage
of each elastic strip after fabricability optimization, using composite or
perforated strips. Right: Sparse coverage if width is proportional to stiffness.

The physical model consists of 3d printed parts for the legs and

tail of the horse, as well as a slender frame structure to hold the

elastic strips. The composite strips are cut from 200 gsm cardboard

and 100 gsm paper using a Cricut cutting machine, and then glued

in their flat state. After insertion in the frame, they form the body,

neck, and head of the horse. Some strips are tilted relative to the

direction of gravity. This causes out-of-plane forces, but their effect

is negligible on this scale, so planarity of deformations is retained.

Flower Pot. We designed this model by intersecting an asymmetric

NURBS surface with radially arranged planes, which gives a total of

16 curves that we want to approximate as closely as possible with

elastic strips (see Fig. 19). All curves initially satisfy the conditions

Table 1. List of Results. Summary of all models. Design: Curves based on 3d models, on analytical expression, or modeled directly by hand. #Strips: Total
(Individually optimized). #SpC: Number of samples per curve. Size: length x width x height. Timings for stiffness computation, fabricability optimization,
geometry processing, and sum of all three.

Name Material Design Grvty. Fabrication #Strips #SpC Size [cm] Stfns. Fbrcblty. Gmtry. Total

Shell Cardboard Model No Perforated 60 (10) 200 50x49x10 0.05 s 1.39 s 0.57 s 2.01 s

Flower Pot Cardboard Model Yes Composite 16 (16) 500 30x27x17 1.26 s 13.3 s 1.46 s 16.0 s

Horse Cardboard Model No Composite 40 (40) 200 56x14x39 0.15 s 2.84 s 11.6 s 14.6 s

Pavilion Cardboard Analytical Yes Emergent 31 (31) 200 91x23x14 0.30 s - 3.93 s 4.23 s

Lantern POM Direct No Emergent 20 (2) 240 28x28x26 0.003 s 0.47 s - 0.47 s

Lamp Plywood Model No Perforated 32 (32) 200 93x66x17 0.11 s 14.0 s 0.12 s 14.2 s

Vase Cardboard Analytical No Emergent 20 (1) 1.3k 26x26x14 - - - 0.01 s

Carpet - Model Yes - 15 (15) 400 46x29x12 0.89 s 2.47 s 1.76 s 5.12 s

Façade - Direct No - 8 (8) 300 55x12x43 0.17 s 7.36 s 1.33 s 8.86 s
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Fig. 21. Lamp Optimization. Left: Evolution of equilibrium curve (green)
and its control polyline (purple) during fabricability optimization, from
initial state (light) to final state (dark). Right: Evolution of stiffness profile
𝐾 , normalized to min𝐾 = 1.

of Theorem 1, but the optimal values of 𝑅 lie between 30 and 110,

making it impractical for fabrication.

We opt to run automatic fabricability optimization to guarantee

𝑅 ≤ 3.5 for all 16 strips, which takes 13 s in total. The curves change

slightly in the process, as shown in Fig. 19, but the overall shape of

the object is preserved. Finally, we use the technique from Section 5.3

to arrive at a smooth stiffness profile, and compute the shapes of

composite strips as discussed in Section 8.1.

9.3 Perforated Strip Designs
Another way of decoupling stiffness and strip width is to use perfo-

ration, which gives the physical object a more stylized appearance.

We demonstrate this technique by manufacturing a miniature of an

architectural shell from cardboard, and a large ceiling lamp made

from plywood.

Shell. This model is based on a curved shell with three-fold mirror

symmetry, initially given as a quad mesh. Fig. 20 (left) shows one

sixth of the shell, along with a partition into ten slender sections.

Each section grows wider towards the far end, which would cause

large gaps between strips if the stiffness profile was used to directly

determine strip width. To achieve better coverage (center), and an

even distribution of material across the shell, we use the perforation

technique described in Section 8.1.

The physical model shown in Fig. 24 (row 2) has a uniform texture

with no large gaps and contains regions of both negative and positive

apparent curvature. In total, sixty strips of 200 gsm cardboard with

diamond-shaped cutouts are used to form the curved surface.

Lamp. Our largest model, with a footprint of 93 x 66 cm and

a height of 17 cm, uses a 3d printed base with a thickness of 7

mm, and 32 elastic strips that have been lasercut from 0.8 mm

plywood. Furthermore, the base is clad in a plywood veneer, so the

lamp appears to be entirely done in woodwork. Without the use of

active bending, a model like this would be extremely costly to make,

requiring individual molds for all curved elements.

Fig. 22. Surfaces of Revolution. Examples of surfaces of revolution that
can be tessellated without gaps. Lines mark kinematic boundary conditions.

The design takes an existing shell model [Gavriil et al. 2020],

which was not modified by the present authors, and approximates

planar sections with equilibrium curves. As shown in Fig. 21, the

stiffness profiles of these curves can be significantly improved by

tiny changes near the endpoints. Our optimization algorithm does

this automatically, in less than 0.5 s per curve.

9.4 Surfaces of Revolution
Elastic strips with constant thickness can be used to tessellate a

family of surfaces of revolution without gaps. We can characterize

this family with a small modification to Eq. 3. Note that the tessella-

tion constraint requires the width𝑤 (𝑠) of each strip to be directly

proportional to the distance from the axis of revolution (cf. Fig. 22).

If we identify the axis of revolution with 𝑒2, and a direction orthog-

onal to it with 𝑒1, this constraint reads ⟨𝑒1, 𝛾 (𝑠)⟩ ∼ 𝑤 (𝑠), where𝑤
is proportional to 𝐾 . Plugging this into Eq. 3 yields

⟨𝑒1, 𝛾⟩𝜅 = 𝑎 + ⟨𝑏,𝛾⟩,
where the proportionality constants have been absorbed into the

right-hand side. We can use this equation to generate all surfaces of

revolution with the tessellation property by picking 𝑎, 𝑏, and initial

conditions 𝛾 (0) and 𝛼 (0). Then, we integrate through the equation

to solve for a meridian of the surface.

This application was inspired by Liu et al. [2020], who show a con-

struction for surfaces of revolution with at most one inflection point.

As the examples in Fig. 22 and our physical model in Fig. 24 show,

our construction also supports more than one inflection, assuming

kinematic boundary conditions. The subfamily with symmetric b.c.

on one end is described by restricting 𝑏 to multiples of 𝑒2.

9.5 Applications in Lighting Design
Figs. 1 (right) and 23 show two more applications of active bending

in the form of renderings. The first is a flowing pavilion design

(“Carpet”) realized with 15 inflectional curves whose lowest points

hover just above ground. The gap in-between allows indirect light to

enter through the back and flood the space underneath the structure.

We further explore the role of active bending in lighting design

with a kinetic façade inspired by the work of Knippers et al. [2012].

Elastic beams are placed vertically to form a façade that can be

actuated by compression, in order to control the amount of indirect
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Fig. 23. Renderings of Carpet and Façade. Top: Carpet viewed from the front, and from the inside out. Bottom: Façade closed, partly open, and fully open.

light entering through. We used our design system to determine the

deformed shape of the beams, to allow more light to enter through

the top of the mechanism, as seen in Fig. 23 (bottom center).

10 DISCUSSION
In this work, we characterized the design space of plane elastic

curves. Different spatial arrangements of these curves give rise

to a variety of appealing forms, but we have yet to explore the

possibilities offered by connecting elastic strips with joints, allowing

them to undergo torsion, and accounting for the effect of creep over

time. Understanding the complex design space offered by these

mechanisms in geometric terms may offer new ways to support

designers and enable flexible workflows with quick feedback loops.

We believe that our approach to characterizing plane elastic curves

geometrically can be generalized to the case of several jointed curves

and non-planar deformations by considering appropriate variational

problems and constraints.

Another useful extension would be to integrate standard beams,

bending-active beams, and external forces in a single system. Pos-

sibly, our geometric characterization of bending-active beams can

be combined with graphical statics to promote an intuitive under-

standing of these mixed constructions.

Furthermore, the present work does not consider the assembly

process of bending-active structures. Deployment with light-weight

mechanisms that respect stress bounds is an active area of research,

and an essential part in the scaling up of designs with active bending.

In terms of application, we have only scratched the surface of

kinetic structure design, in which actuation is used to alternate

between different shapes. This idea offers an interesting challenge,

because it is necessary to optimize structural elements for several

deformed shapes at once, and to preserve the functionality of a

design. A related problem is that of designing multi-stable elastic

structures, which need only be actuated during a shape switch, but

stay in each target shape without external force. We hope that our

idea for stability optimization can contribute to this area of research.
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Fig. 24. Photographs of Physical Models. Top to bottom, left to right: Pavilion, Horse, Shell, Vase, Lantern, Flower Pot, Lamp.
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A PROOF OF GEOMETRIC CHARACTERIZATION
Here we give a proof of Theorem 1. It uses a short lemma, which

we show first.

Lemma 2. With the notation from Theorem 1, let 𝑠0 ∈ 𝑆0. Further-
more, let (𝑡, 𝑛) be the right-handed orthonormal basis adapted to 𝛾
at 𝑠0, i.e., 𝑡 = 𝛾 ′(𝑠0). Then, (1) there exists a neighborhood of 𝑠0, in
which 𝑠0 is the only root of 𝑠 ↦→ ⟨𝛾 ′′(𝑠), 𝑛⟩; (2) it holds that

lim

𝑠→𝑠0

𝜅 (𝑠)
⟨𝛾 ′′(𝑠), 𝑛⟩ = 1.

Proof. (1) We can find 𝜀 > 0 small enough, such that for all

𝑠 ∈ 𝑆𝜀 := (𝑠0−𝜀, 𝑠0)∪ (𝑠0, 𝑠0+𝜀), we have 𝜅 (𝑠) ≠ 0 and ⟨𝛾 ′(𝑠), 𝑡⟩ > 1

2
.

Assume for the sake of contradiction that there exists 𝑠1 ∈ 𝑆𝜀 with
⟨𝛾 ′′(𝑠1), 𝑛⟩ = 0. Then, it follows from 0 ≠ |𝜅 (𝑠1) | = ∥𝛾 ′′(𝑠1)∥ that
⟨𝛾 ′′(𝑠1), 𝑡⟩ ≠ 0. This lets us compute

⟨𝛾 ′(𝑠1), 𝑡⟩ =
1

⟨𝛾 ′′(𝑠1), 𝑡⟩
⟨𝛾 ′(𝑠1), 𝛾 ′′(𝑠1)⟩ = 0,

because ⟨𝛾 ′, 𝛾 ′′⟩ ≡ 0. But this contradicts ⟨𝛾 ′(𝑠1), 𝑡⟩ > 1

2
.

(2) By expressing 𝜅 in the coordinate system (𝑡, 𝑛), we get
𝜅

⟨𝛾 ′′, 𝑛⟩ =
det(𝛾 ′, 𝛾 ′′)
⟨𝛾 ′′, 𝑛⟩ = ⟨𝛾 ′, 𝑡⟩ − ⟨𝛾

′, 𝑛⟩⟨𝛾 ′′, 𝑡⟩
⟨𝛾 ′′, 𝑛⟩ .

For the first term on the right-hand side, we have lim𝑠→𝑠0
⟨𝛾 ′(𝑠), 𝑡⟩ =

1. For the second term, write ⟨𝛾 ′, 𝛾 ′′⟩ ≡ 0 in coordinates to get

⟨𝛾 ′, 𝑛⟩⟨𝛾 ′′, 𝑛⟩ + ⟨𝛾 ′, 𝑡⟩⟨𝛾 ′′, 𝑡⟩ = 0, so ⟨𝛾 ′′, 𝑡⟩ = − ⟨𝛾
′, 𝑛⟩⟨𝛾 ′′, 𝑛⟩
⟨𝛾 ′, 𝑡⟩ ,
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where the denominator is non-zero in 𝑆𝜀 . Using this equality, the

second term becomes

− ⟨𝛾
′, 𝑛⟩⟨𝛾 ′′, 𝑡⟩
⟨𝛾 ′′, 𝑛⟩ =

⟨𝛾 ′, 𝑛⟩2
⟨𝛾 ′, 𝑡⟩ ,

which goes to zero as 𝑠 → 𝑠0, because ⟨𝛾 ′(𝑠0), 𝑛⟩ = 0. This shows

the statement. □

Proof of Theorem 1. Direction “⇒”: Assume 𝛾 is an equilib-

rium curve, so there exist 𝑎 ∈ R, 𝑏 ∈ R2
, and an admissible stiffness

function 𝐾 with 𝐾𝜅 = 𝑎 + ⟨𝑏,𝛾⟩. We show that then (1) and (2) hold.

From 𝐾 > 0, it follows that either 𝑎 ≠ 0 or 𝑏 ≠ 0, because otherwise

𝜅 ≡ 0, which contradicts that 𝑆0 is finite.

Case 𝑏 = 0: Then, 𝑎 ≠ 0, and 𝜅 has the same sign as 𝑎 everywhere,

so there are no zero-curvature points, and (2) is vacuously true.

Choose any line 𝐿 that does not intersect 𝛾 to satisfy (1).

Case 𝑏 ≠ 0: Proof of (1): The level sets of the function 𝑓 : R2 →
R : 𝑥 ↦→ 𝑎 + ⟨𝑏, 𝑥⟩ form a family of parallel lines. Let 𝐿 be the

zero-level set of 𝑓 . We have 0 = 𝐾 (𝑠)𝜅 (𝑠) if and only if 𝑠 ∈ 𝑆0, and

thus 0 = 𝑎 + ⟨𝑏,𝛾 (𝑠)⟩ if and only if 𝑠 ∈ 𝑆0. This shows that 𝛾 and 𝐿

intersect exactly in 𝛾 (𝑆0).
Next, we show that 𝐿 is not tangent to 𝛾 in any of the zero-

curvature points. With the notation from Lemma 2, assume for the

sake of contradiction that 𝐿 is tangent to𝛾 at 𝑠0, i.e., ⟨𝑏, 𝑡⟩ = 0, which

implies 𝑏 = ⟨𝑏, 𝑛⟩𝑛.

𝛾 (𝑠0)
𝑡 𝐿

𝑛
𝜅 > 0

𝑏

⌈Claim: ⟨𝑏, 𝑛⟩ > 0. Proof of claim: By 𝑆0

finite, we know that 𝜅 is non-zero in (𝑠0, 𝑠0 +𝜀)
for 𝜀 > 0 small enough, so it does not change

sign in this interval. If 𝜅 > 0 in (𝑠0, 𝑠0 + 𝜀),
then 𝛾 winds counterclockwise in this interval,

and thus ⟨𝛾 − 𝛾 (𝑠0), 𝑛⟩ > 0 in some interval

(𝑠0, 𝑠0 + 𝜀1), because (𝑡, 𝑛) is right-handed. From 0 = 𝑎 + ⟨𝑏,𝛾 (𝑠0)⟩,
it follows that

𝐾𝜅 = 𝑎 + ⟨𝑏,𝛾⟩ = ⟨𝑏,𝛾 − 𝛾 (𝑠0)⟩ = ⟨𝑏, 𝑛⟩⟨𝛾 − 𝛾 (𝑠0), 𝑛⟩.
From 𝐾𝜅 > 0, we see that ⟨𝑏, 𝑛⟩ > 0. The case 𝜅 < 0 in (𝑠0, 𝑠0 + 𝜀)
proceeds analogously: Then, 𝛾 winds clockwise in (𝑠0, 𝑠0 + 𝜀), so
⟨𝛾 − 𝛾 (𝑠0), 𝑛⟩ < 0 in some interval (𝑠0, 𝑠0 + 𝜀1). Because 𝐾𝜅 < 0, we

have ⟨𝑏, 𝑛⟩ > 0 again. This shows the claim. □⌋
Because ⟨𝑏, 𝑛⟩ > 0, and 𝐾 is bounded from below by a positive

constant, there exists 𝐴 > 0 such that for all 𝑠 ∈ (𝑠0, 𝑠0 + 𝜀1),
⟨𝛾 (𝑠) − 𝛾 (𝑠0), 𝑛⟩

𝜅 (𝑠) =
𝐾 (𝑠)
⟨𝑏, 𝑛⟩ ≥ 𝐴.

By Lemma 2, we know that

lim inf

𝑠→𝑠0

⟨𝛾 (𝑠) − 𝛾 (𝑠0), 𝑛⟩
⟨𝛾 ′′(𝑠), 𝑛⟩ = lim inf

𝑠→𝑠0

⟨𝛾 (𝑠) − 𝛾 (𝑠0), 𝑛⟩
𝜅 (𝑠) ≥ 𝐴, (8)

and that ⟨𝛾 ′′, 𝑛⟩ does not change sign in some interval (𝑠0, 𝑠0+𝜀]. Let
𝑠𝜀 be a maximizer of |⟨𝛾 ′′, 𝑛⟩| in (𝑠0, 𝑠0 + 𝜀]. Note that a maximizer

exists because |⟨𝛾 ′′, 𝑛⟩| is continuous, and the supremum is not

attained at 𝑠0 because ⟨𝛾 ′′(𝑠0), 𝑛⟩ = 0. Then,

|⟨𝛾 (𝑠𝜀 ) − 𝛾 (𝑠0), 𝑛⟩| =
∫ 𝑠𝜀

𝑠0

∫ 𝑠1

𝑠0

|⟨𝛾 ′′(𝑠2), 𝑛⟩| d𝑠2 d𝑠1 ≤ 𝜀2 |⟨𝛾 ′′(𝑠𝜀 ), 𝑛⟩|,

where the equality follows from applying the fundamental theorem

of calculus twice, and the inequality from bounding the integration

area by 𝜀2
, and the integrand by its maximum. This shows that

| ⟨𝛾 (𝑠)−𝛾 (𝑠0),𝑛⟩ |
| ⟨𝛾 ′′ (𝑠),𝑛⟩ | becomes arbitrarily small close to 𝑠0, which implies

lim inf

𝑠→𝑠0

⟨𝛾 (𝑠) − 𝛾 (𝑠0), 𝑛⟩
⟨𝛾 ′′(𝑠), 𝑛⟩ = lim inf

𝑠→𝑠0

|⟨𝛾 (𝑠) − 𝛾 (𝑠0), 𝑛⟩|
|⟨𝛾 ′′(𝑠), 𝑛⟩| = 0.

This contradicts Eq. 8, and our indirect assumption is proven false.

We conclude that 𝐿 is not tangent to 𝛾 in 𝑠0.

Proof of (2): To show secant-boundedness of 𝜅 at 𝑠0 ∈ 𝑆0, write
6

𝛾 ′(𝑠0 + ℎ) = 𝛾 ′(𝑠0) + ℎ𝛾 ′′(𝑠0) + 𝑜 (ℎ) = 𝑡 + 𝑜 (ℎ),

and, by integrating, 𝛾 (𝑠0 + ℎ) = 𝛾 (𝑠0) + ℎ𝑡 + 𝑜 (ℎ2). The equilibrium
equation gives

𝐾 (𝑠0 + ℎ)𝜅 (𝑠0 + ℎ) = 𝑎 + ⟨𝑏,𝛾 (𝑠0) + ℎ𝑡 + 𝑜 (ℎ2)⟩ = ℎ⟨𝑏, 𝑡⟩ + 𝑜 (ℎ2).

Because of the non-tangency property, we have ⟨𝑏, 𝑡⟩ ≠ 0, so the

right-hand side is secant-bounded at ℎ = 0. On the other hand, 𝐾

is bounded from below and above by positive constants. Thus, 𝜅 is

secant-bounded at 𝑠0.

Direction “⇐”: We assume that (1) and (2) hold and show the

existence of𝐾 admissible and𝑎 ∈ R,𝑏 ∈ R2
that solve𝐾𝜅 = 𝑎+⟨𝑏,𝛾⟩.

Because 𝜅 is secant-bounded on 𝑆0, it changes sign at every 𝑠0 ∈ 𝑆0.

Because of the non-tangency condition, 𝛾 crosses from one side of

𝐿 to the other at every 𝑠0 ∈ 𝑆0. Thus, the portion of the curve with

𝜅 > 0 lies fully on one side of 𝐿, and the portion with 𝜅 < 0 lies fully

on the other. Choose 𝑎 and 𝑏 such that 𝐿 = {𝑥 ∈ R2
: 𝑎 + ⟨𝑏, 𝑥⟩ = 0}

and such that 𝑎 + ⟨𝑏, 𝑥⟩ > 0 on the same side of 𝐿 as 𝜅 > 0.

Then, formally set 𝐾 (𝑠) :=
𝑎+⟨𝑏,𝛾 (𝑠) ⟩

𝜅 (𝑠) for 𝑠 ∈ [0, 𝑙]. Away from

𝑆0, this function is positive and continuous, and thus bounded from

above. Furthermore, 𝜅 is continuous on [0, 𝑙] and thus bounded,

which implies that 𝐾 is also bounded from below by a positive

constant, away from 𝑆0.

It remains to show that 𝐾 is also bounded from above and below

by positive constants as 𝑠 → 𝑠0 ∈ 𝑆0. By the same argument as

above, we have

𝐾 (𝑠0 + ℎ) =
⟨𝑏, 𝑡⟩ℎ + 𝑔(ℎ)
𝜅 (𝑠0 + ℎ)

, where 𝑔(ℎ) = 𝑜 (ℎ2). (9)

Both numerator and denominator are secant-bounded at ℎ = 0,

and the signs of their secant bounds coincide. This is enough to

guarantee that 𝐾 has the desired bounds. To see this, one analyzes

𝐾 as ℎ → 0
+
and ℎ → 0

−
, for the cases where the secant bounds

are either all positive or all negative.

For example, take the all-positive case and analyze ℎ → 0
+
: There

exist 𝑑, 𝐷, 𝑒, 𝐸 > 0 and 𝜀 > 0 such that 𝑑ℎ < ⟨𝑏, 𝑡⟩ℎ + 𝑔(ℎ) < 𝐷ℎ

and 𝑒ℎ < 𝜅 (𝑠0 + ℎ) < 𝐸ℎ for all ℎ ∈ (0, 𝜀). Then, we can bound

𝑑/𝐸 < 𝐾 (𝑠0 + ℎ) < 𝐷/𝑒 . This shows that 𝐾 is admissible. □

B ADJOINT EQUATIONS FOR CONJUGATE POINTS
We show how to compute 𝜕Z/𝜕𝐾 |(𝜎,𝐾) by applying the adjoint

method to the Euler–Lagrange equations and the Jacobi criterion.

Let us define the functional 𝐹 [𝐾] :=
∫
𝛿𝜎 (𝑠)Z(𝑠, 𝐾) d𝑠 with 𝛿𝜎 the

delta distribution centered at𝜎 , so 𝛿𝐹/𝛿𝐾 = 𝜕Z/𝜕𝐾 |(𝜎,𝐾) . For easier

6
We write 𝑜 (𝑧 (ℎ)) as a shorthand for some function 𝑔 (ℎ) such that

limℎ→0 𝑔 (ℎ)/𝑧 (ℎ) = 0. This means that 𝑔 (ℎ) decays strictly faster than 𝑧 (ℎ)
as ℎ → 0. Therefore, if 𝑓 ∈ 𝐶1

, then 𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + ℎ𝑓 ′ (𝑥) + 𝑜 (ℎ) .
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implementation, 𝛿𝜎 can also be replaced with a bump function that

has small support, is centered at 𝜎 , and integrates to one.

The cofactors of the matrix 𝑍 =

(
𝜁 𝜂1 𝜂2

𝑀1 𝑁11 𝑁12

𝑀2 𝑁21 𝑁22

)
appear in the ad-

joint equations, and we will denote them by 𝐶 ( ·) , e.g., 𝐶𝜁 is the

cofactor associated with the top-left entry 𝜁 in 𝑍 . The adjoint vari-

ables will be denoted by overbars. First, we compute 𝑀̄𝑖 , 𝑁𝑖 𝑗 , ¯𝜁 , and

𝜂𝑖 via the following sequence of adjoint equations:

𝑀̄ ′𝑖 = 𝛿𝜎𝐶𝑀𝑖 , 𝑀̄𝑖 (𝑙) = 0,

𝑁 ′𝑖 𝑗 = 𝛿𝜎𝐶𝑁𝑖 𝑗 , 𝑁𝑖 𝑗 (𝑙) = 0,

−(𝐾 ¯𝜁 ′)′ − ⟨𝜆,𝛾 ′⟩ ¯𝜁 =
∑
𝑘 𝑀̄𝑘𝑇𝑘 − 𝛿𝜎𝐶𝜁 , ¯𝜁 (𝑙) = 0, ¯𝜁 ′(𝑙) = 0,

−(𝐾𝜂 ′𝑖 )
′ − ⟨𝜆,𝛾 ′⟩𝜂𝑖 =

∑
𝑘 𝑁𝑘𝑖𝑇𝑘 − 𝛿𝜎𝐶𝜂𝑖 , 𝜂𝑖 (𝑙) = 0, 𝜂 ′𝑖 (𝑙) = 0.

Then, we solve for the extremal of the variational problem∫ 𝑙

0

1

2

(
𝐾𝛼 ′2 − ⟨𝜆,𝛾 ′⟩𝛼2

)
+
[
¯𝜁𝜁 ⟨𝑅𝜆,𝛾 ′⟩ +∑𝑖 𝜂𝑖 (𝜂𝑖 ⟨𝑅𝜆,𝛾 ′⟩ + 𝑔𝑖 )

+∑𝑖 𝑀̄𝑖𝑔𝑖𝜁 +∑𝑖 𝑗 𝑁𝑖 𝑗𝑔𝑖𝜂 𝑗 ]𝛼
s.t.

𝛼 (0) = 0,

𝛼 (𝑙) = 0,
and

∫ 𝑙

0

𝑇𝑖𝛼 =

∫ 𝑙

0

𝑔𝑖
(
¯𝜁𝜁 +∑𝑘𝜂𝑘𝜂𝑘 ) for 𝑖 = 1, 2

to compute 𝛼 . Finally, the variational derivative of 𝐹 reads

𝛿𝐹 [𝛿𝐾] =
(
¯𝜁 (0) +∑𝑖𝜂𝑖 (0))𝛿𝐾 (0) +∫ 𝑙

0

(
𝛼 ′𝛼 ′+ ¯𝜁 ′𝜁 ′+∑𝑖𝜂 ′𝑖𝜂 ′𝑖 )𝛿𝐾.

C CONSTRAINT SATISFACTION

Algorithm 2 calls the routine EnforceConstraints, which acts

on the control points of a spline curve. Its objective is to restore the

equilibrium property of the curve through collinearity of inflection

points, and to enforce boundary conditions and fixed arc length.

We assume a spline parametrization 𝛾 (𝑡, 𝑞) = ∑
𝑖 𝐵𝑖 (𝑡) 𝑞𝑖 with

𝐵𝑖 piecewise polynomial and control points 𝑞1, . . . , 𝑞𝑚 ∈ R2
. For a

total number of 𝑁 constraints, we denote the constraint manifold

as 𝐺 (𝑞) = 0 with 𝐺 : R2𝑚 → R𝑁 , and its Jacobian as 𝐽𝐺 : R2𝑚 →
R𝑁×2𝑚

. Rows of 𝐽𝐺 corresponding to linear constraints may be

precomputed at the beginning, and the remaining rows are updated

every time the routine is called. First, we discuss all constraint types,

and then the Newton-type iteration by which they are enforced.

Collinearity of Inflections. We over-constrain inflection points

by keeping the inflection line 𝐿 constant during optimization. For

each inflection, this produces one equality constraint of the form

𝐺
infl
(𝑞) := 𝑎 + ⟨𝛾 (𝑡0 (𝑞), 𝑞), 𝑏⟩ = 0, where 𝑡0 depends on 𝑞 implicitly

via det(𝛾 ′(𝑡0, 𝑞), 𝛾 ′′(𝑡0, 𝑞)) = 0. Derivatives can be evaluated as

𝜕𝑡0

𝜕𝑞𝑖, 𝑗
= − 1

det(𝛾 ′, 𝛾 ′′′)
[
det

(
𝜕𝛾 ′/𝜕𝑞𝑖, 𝑗 , 𝛾 ′′

)
+ det

(
𝛾 ′, 𝜕𝛾 ′′/𝜕𝑞𝑖, 𝑗

) ]
,

𝜕𝐺
infl

𝜕𝑞𝑖, 𝑗
=

〈
𝜕𝛾

𝜕𝑞𝑖, 𝑗
+ 𝛾 ′ 𝜕𝑡0

𝜕𝑞𝑖, 𝑗
, 𝑏

〉
,

where 𝑞𝑖, 𝑗 represents the 𝑗-th coordinate of 𝑞𝑖 . Note that regularity

of the constraint 𝐺
infl
(𝑞) = 0 is guaranteed by the upper bound on

𝑅 [𝐾] that is introduced in Algorithm 2.

Boundary Conditions. Boundary points are fixed by constraints

𝛾 (0) = 𝛾0 and 𝛾 (𝑙) = 𝛾𝑙 , and tangents by constraining ⟨𝛾 ′(0), 𝑛0⟩ =
0 = ⟨𝛾 ′(𝑙), 𝑛𝑙 ⟩, where 𝑛0 and 𝑛𝑙 are the initial normals to the curve

at its endpoints. These constraints are linear in 𝑞, so the derivatives

𝜕𝛾/𝜕𝑞𝑖, 𝑗 and 𝜕𝛾 ′/𝜕𝑞𝑖, 𝑗 can be precomputed at the beginning.

Fixed Arc Length. The arc length of a curve is discretized as 𝑙 (𝑞) =∑𝑛−1

𝑖=0
∥𝛾 (𝑡𝑖+1, 𝑞) − 𝛾 (𝑡𝑖 , 𝑞)∥, and fixed with a constraint 𝐺arc (𝑞) :=

𝑙 (𝑞) − 𝑙0 = 0. Here 𝑡0, . . . , 𝑡𝑛 is a sampling of the parameter domain,

and 𝑙0 is the initial arc length.

Enforcing Constraints. The input to EnforceConstraints is a

set of control points 𝑞0 ∈ R2𝑚
that might violate the constraints,

and the goal is to find 𝑞𝑛 such that 𝐺 (𝑞𝑛) = 0, and 𝑞𝑛 close to

𝑞0
. We achieve this using an underdetermined Newton iteration

𝑞𝑖+1 = 𝑞𝑖 + Δ𝑞, where Δ𝑞 is the least-norm solution to 𝐽𝐺 Δ𝑞 = −𝐺 .
This iteration does not converge to the orthogonal projection of 𝑞0

onto {𝑞 ∈ R2𝑚
: 𝐺 (𝑞) = 0}, but it is a good approximation that can

be computed robustly.

D NONLINEAR MATERIALS
Our design system can be extended to account for certain material

nonlinearities. We have not explored these models in our physical

results, except for the spiral example shown in Fig. 7, which uses

plasticity to account for the curvature of the innermost winding.

Nonlinear Elasticity. The left-hand side of Eq. 3 represents the

internal moment 𝑀 (𝑠) = 𝐾 (𝑠)𝜅 (𝑠) integrated over a cross section

of an elastic strip. We can further decompose 𝐾 (𝑠) = 𝑃 𝑤 (𝑠), where
𝑤 (𝑠) is the width of the strip, and 𝑃 represents a linear material law.

A wide class of nonlinear material laws take the similar form

𝑀 (𝑠) = 𝑃 (𝜅 (𝑠))𝑤 (𝑠) 𝜅 (𝑠),
for 𝑃 : R → R>0 an even function, and thus 𝑃 ′(0) = 0. This class

includes for example strain-hardening behaviors (𝑃 ′′(0) > 0), and

strain-softening behaviors (𝑃 ′′(0) < 0). Perhaps surprisingly, the

theory developed in Section 4 applies to these laws as well, as long

as the moment-per-unit-width function𝑚(𝜅) := 𝑃 (𝜅)𝜅 is injective

in the relevant curvature range. If this is the case, we can solve for

𝑎 ∈ R and 𝑏 ∈ R2
using the same linear program, and then compute

𝑤 (𝑠) from the equation𝑤 (𝑠)𝑚(𝜅 (𝑠)) = 𝑎 + ⟨𝑏,𝛾 (𝑠)⟩.

Plasticity. If an elastic strip is bent beyond the elastic limit of

the base material, some of the deformation will become permanent,

and the strip does not return to its original flat state after removing

external forces. This effect was noticeable in our experiments with

bending cardboard (200 gsm) for curvature radii below 2 cm.

The simplest plasticity model is that of an ideally plastic mate-

rial, which assumes that the linear stress-strain law is replaced by

a constant law at the elastic limit. Applied to elastic strips, this

model postulates the existence of a curvature limit 𝜅
lim

, such that

all curvature beyond this point becomes plastic. We implemented

this model in our design system by replacing 𝜅 (𝑠𝑖 ) in Eq. 4 by an

effective curvature 𝜅
eff
(𝑠𝑖 ) := min{𝜅 (𝑠𝑖 ), 𝜅lim}. This implementation

does not account for path-dependent deformation during the bend-

ing process, or the formation of plastic hinges. As such, it is only

an approximation of ideally plastic behavior.
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