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ABSTRACT
Extending on ideas of Lewin, Lieb, and Seiringer [Phys. Rev. B 100, 035127 (2019)], we present a modified “floating crystal” trial state for
jellium (also known as the classical homogeneous electron gas) with density equal to a characteristic function. This allows us to show that
three definitions of the jellium energy coincide in dimensions d ≥ 2, thus extending the result of Cotar and Petrache [“Equality of the Jellium
and uniform electron gas next-order asymptotic terms for Coulomb and Riesz potentials,” arXiv: 1707.07664 (2019)] and Lewin, Lieb, and
Seiringer [Phys. Rev. B 100, 035127 (2019)] that the three definitions coincide in dimension d ≥ 3. We show that the jellium energy is also
equivalent to a “renormalized energy” studied in a series of papers by Serfaty and others, and thus, by the work of Bétermin and Sandier
[Constr. Approximation 47, 39–74 (2018)], we relate the jellium energy to the order n term in the logarithmic energy of n points on the unit
2-sphere. We improve upon known lower bounds for this renormalized energy. Additionally, we derive formulas for the jellium energy of
periodic configurations.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0053494

I. INTRODUCTION
The jellium model is an important and very simple model, which models electrons in a uniformly charged background interacting via

Coulomb interaction. It was introduced by Wigner1 who conjectured that the minimal energetic configuration was that of a lattice configu-
ration (in two dimensions, the triangular lattice), called a Wigner crystal. The thermodynamic limit of jellium was established in dimension
d = 2 in Ref. 2 building on Ref. 3.

Another important object is the Uniform Electron Gas (UEG).4–7 It appears naturally in the local density approximation of density
functional theory and gives the correlation energy of the electrons (see Refs. 5 and 7). In this model, there is no background, and the density
of the electrons is a constant. The jellium model and the UEG are nonetheless related. Indeed, jellium is expected to crystallize.1 This crystal
has no preferred position or orientation, and so one may take the average over all translations of such a crystal. This gives a state with constant
density sometimes called the floating crystal.6 The energy of this floating crystal is the jellium energy of the crystal. This relation has been
explored in dimensions d ≠ 2.6,8–12 In dimensions d ≥ 3, the UEG and jellium ground state energy densities are known to coincide.6,12 In
dimension d = 1, they are known to differ.6,8–11 In dimension d = 2, Cotar and Petrache12 (Remark 1.7) conjectured that they coincide.

In this paper, we show that the jellium and UEG energy densities coincide in dimensions d ≥ 2, thus verifying the conjecture of Cotar and
Petrache. For this analysis, we will study a third definition of the energy density, namely, that of periodic jellium, meaning that the electrons
live on a torus and interact with all their periodic images. The thermodynamic limit of periodic jellium was established in Refs. 13–17 for both
the Coulomb case and various generalizations to Riesz interactions. We will use a similar method as in Ref. 6 to show that the three energy
densities are the same. This involves a modified “floating crystal” trial state for the UEG, for which the density is a characteristic function.
This requirement of having density a characteristic function was not needed in the three-dimensional case.6 We will discuss why it is needed
in the two-dimensional case and construct this trial state in Sec. V.

Additionally, we consider the question of periodic jellium configurations, where the electrons are confined to sites of a lattice. Here, we
find that the energy is given by the Epstein (or lattice) ζ-function associated with the lattice, on which the electrons sit.
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Finally, we relate the evaluation of the jellium energy to that of a “renormalized energy” W studied in Refs. 12 and 14–21. Here, we show
that minA1 W = 2πeJel (notation explained in Sec. IV). This gives another equivalent definition of the jellium energy. Bétermin and Sandier21

showed that the logarithmic energy on n points on S2 has a term of order n given by clog =
1
π minA1 W + log 4 π

2 (see Remark IV.6). Hence, we
get yet another equivalent definition of the jellium energy. The relation of eJel and minA1 W carries over the known bounds for the jellium
energy. The lower bound of eJel ≥ −0.661 18 by Lieb and Narnhofer3 and Sari and Merlini2 has been known for many years. It improves upon
known bounds for the constants clog and minA1 W. In particular, it gives the bound −0.0569 ≤ clog ≤ −0.0556 improving on the best-known
lower bound of clog ≥ −0.0954 due to Steinerberger.22 Since the proof of the lower bound in Ref. 2 is not very detailed, we give the proof in
Appendix B.

II. THREE DEFINITIONS OF THE JELLIUM ENERGY
We now introduce the three models. We will give the argument only in dimension d = 2, partly because this case is where the argument

is most complicated and partly because the physically interesting cases are dimensions d = 1, 2, 3, and the cases d ≥ 3 are solved.6,12 For
dimensions d ≥ 3, the argument is the same, and only one should replace every occurrence of − log with ∣ ⋅ ∣2−d.

The first model is what we will call jellium. By scaling, we may assume that the density of the background is ρ = 1. Then, the jellium
energy of N particles in a domain ΩN of size ∣ΩN ∣ = N is

EJel(ΩN , x1, . . . , xN) = −∑
j<k

log ∣xj − xk∣ +
N

∑
j=1
∫

ΩN

log ∣xj − y∣ dy −
1
2∬ΩN×ΩN

log ∣x − y∣ dx dy.

The electrons are thought of as discrete classical particles in a uniform (positive) background such that the entire system is neutral. The
electrons and background all interact through Coulomb interaction, in two dimensions given by − log∣x∣. The long range behavior of the
logarithm means that this setting is somewhat different from the three-dimensional case. In Ref. 2, it is shown that the thermodynamic
limit

eJel = lim
ΩN↗R2

min
x1 ,...,xN∈R2

EJel(ΩN , x1, . . . , xN)

∣ΩN ∣

exists under fairly non-restrictive conditions on the sequence of domains ΩN . For instance, ΩN = N1/2Ω for a fixed convex set Ω of size ∣Ω∣ = 1.
The second model is that of periodic jellium. Here, the n = ℓ2 electrons live on a torus of side length ℓ in a uniform background of

opposite charge. The Coulomb potential between the electrons is replaced by the periodic Coulomb potential, where the electrons interact
with all the periodic images of the other electrons and the uniform background. The functional is defined as follows.

First, we define the periodic Coulomb potential Gℓ as follows: Gℓ(x) = G1(x/ℓ), where G1 is the one-periodic Coulomb potential, sat-
isfying −ΔG1 = 2π(∑z∈Z2 δz − 1) and ∫C1

G1 dx = 0, where C1 = (−1/2, 1/2)2. It corresponds to the potential generated by a point charge
and all its images together with a uniform oppositely charged background. The background must be included for this not to diverge.
Then,

Gℓ(x) = G1(x/ℓ) =
2π
ℓ2 ∑

k∈ 2π
ℓ
Z2

k≠0

1
k2 eikx.

Now, G1(x) + log∣x∣ has a limit as x → 0, which we call Cmad. It is the Madelung constant, i.e., twice the energy per particle of the configuration
with one particle in the unit cell, i.e., a square lattice configuration. The functional Eper,ℓ may now be defined as

Eper,ℓ(x1, . . . , xn) =∑
j<k

Gℓ(xj − xk) +
n
2
(log ℓ + Cmad).

The first term is what one gets if one just naively replaces the Coulomb interaction in the jellium functional by the periodic version Gℓ. Note
that then the particle–background and background–background terms vanish due to the fact that ∫Cℓ

Gℓ dx = 0. We then define

eper = lim
ℓ→∞

min
x1 ,...,xn

Eper,ℓ(x1, . . . , xn)

ℓ2 .

The existence of this limit was established in Refs. 13–17. It will also follow from the Proof of Theorem II.1 that indeed this limit exists.
The third model is what has been called the uniform electron gas (UEG) in Refs. 5–7. For a complete description of this model, see

Ref. 5. Here, there is no background charge, and the electrons are no longer point particles. Instead, the electrons are distributed according to
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a probability density P (meaning P is a probability measure on R2N ), which we require to give a constant density ρP = 𝟙ΩN , where ρP is the
sum of all the marginals. The indirect energy of the distribution is then

EInd(P) = −∫ ∑
j<k

log ∣xj − xk∣ dP(x1, . . . , xN) +
1
2∬

log ∣x − y∣ρP(x)ρP(y) dx dy.

We are interested in keeping the density fixed, and so, for any density ρ with ∫ ρ dx = N, we define

EInd(ρ) = min
P:ρP=ρ

EInd(P).

Since the electrons are indistinguishable, we should, in principle, restrict to symmetric P’s. This, however, gives the same minimum. Again,
we are interested in the thermodynamic limit, and for a system of uniform density, i.e.,

eUEG = lim
ΩN↗R2

EInd(𝟙ΩN )

∣ΩN ∣
.

The existence of this limit was established in Ref. 5 (Theorem 2.6). Their proof is done in dimensions d ≥ 3 but works without change also in
dimensions d = 1, 2. Now, our main theorem is

Theorem II.1. We have eJel = eper = eUEG.

The analogous result in dimensions d ≥ 3 was proven by Cotar and Petrache12 using methods of optimal transport and later in dimension
d = 3 by Lewin, Lieb, and Seiringer6 using a “floating crystal” trial state, which our method builds on. Cotar and Petrache12 (Remark 1.7) note
that the case of d = 2 is an open problem. Our findings here thus solve this open problem.

One inequality is the following argument. Let P be any N-particle probability measure with ρP = 𝟙ΩN . Then,

− ∫ ∑
j<k

log ∣xj − xk∣ dP(x1, . . . , xN) +
1
2∬ΩN×ΩN

log ∣x − y∣ dx dy = ∫ EJel(ΩN , x1, . . . , xN) dP(x1, . . . , xN) ≥ minEJel(ΩN , x1, . . . , xN).

Optimizing over P and taking the thermodynamical limit, we thus get eEUG ≥ eJel. In order to get the inequality eUEG ≤ eper ≤ eJel, we will
superficially introduce a crystal structure to the jellium configuration. This is similar to (and inspired by) the floating crystal argument from
Ref. 6. We give the proof in Secs. V and VI.

III. LATTICE CONFIGURATIONS
We now consider the jellium energies of periodic configurations when the electrons are positioned on a lattice. We will consider these

configurations in any dimension d and for general Riesz interactions. These we first define. For s ∈ R, the Riesz potential V s on Rd is
given by

Vs(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∣x∣−s if s > 0,

− log ∣x∣ if s = 0,

−∣x∣−s if s < 0.

Then, Vd−2 is the Coulomb potential in d dimensions. With this, we may define for s < d the jellium energy in d dimensions with potential V s,

EJel,d,s(ΩN , x1, . . . , xN) =∑
j<k

Vs(xj − xk) −
N

∑
j=1
∫

ΩN

Vs(xj − y) dy +Dd,s(𝟙ΩN ),

where Dd,s( f , g) = 1
2∬Rd×Rd f (x)g(y)Vs(x − y) dx dy. Define for a lattice L ⊂ Rd with the Wigner–Seitz unit cell Q with ∣Q∣ = 1 and s satisfying

d − 4 < s < d the energy

eLJel,s = lim
ΩN↗R2

EJel,d,s(ΩN , x1, . . . , xN)

∣ΩN ∣
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as the thermodynamic limit of jellium, when the electrons are placed on the lattice. (The existence of this thermodynamic limit follows from
the proof of the Theorem III.1.) Here, ΩN = ⋃

N
i=1(Q + xi). Define for Re(s) > d the Epstein (or lattice) ζ-function

ζL(s) =
1
2 ∑x∈L/0

1
∣x∣s

.

This function has a meromorphic continuation to all of C with a simple pole at s = d (see Ref. 23). These more complicated ζ-functions can
oftentimes be expressed in terms of simpler functions (see Ref. 24). We prove the following theorem:

Theorem III.1. Let s satisfy d − 4 < s < d, and let L ⊂ Rd be a lattice with the Wigner–Seitz unit cell Q, ∣Q∣ = 1. Then, the jellium energy
of the lattice configuration is

eLJel,s =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ζL(s) if s > 0,

ζ′L(0) if s = 0,

−ζL(s) if s < 0.

Many similar results exist in the literature. In Refs. 23 and 25, a similar result is shown for a slightly different energy functional in the case
d − 2 < s < d via analytic continuation of the Epstein ζ-function. Extending upon these ideas, a partial result for the jellium energy is shown
in Ref. 4 (Appendix B). Other formulations also exist (see, for instance, Refs. 21, 26, and 27 for the case of logarithmically interacting points
on the unit two-sphere and Refs. 18 and 21 for the case of logarithmically interacting points on the plane). As we have not found a complete
proof of Theorem III.1 in the literature, we give a straightforward proof in Sec. VII. As an application of the theorem, we compute the energy
density of jellium in the triangular lattice (in two dimensions).

Example III.2. The triangular lattice is given by L = c(1, 0)Z⊕ c( 1
2 ,
√

3
2 )Z, where the constant c is such that ∣Q∣ = 1, i.e., c2

= 2√
3

. Thus,
by Ref. 24, we have

ζL(s) =
1
2 ∑x∈L/0

1
∣x∣s
=

1
2cs ∑
(n,m)∈Z2/(0,0)

1
(n2 +mn +m2)s/2 = 3c−sζ(

s
2
)L3(

s
2
),

where ζ is the Riemann zeta-function and L3(s) = L(s, χ) is the Dirichlet L-series for the nontrivial character mod 3, i.e.,

L3(s) =
∞
∑
n=1

χ(n)
ns = 1 − 2−s

+ 4−s
− 5−s

+ ⋅ ⋅ ⋅ = 3−s
(ζ(s, 1/3) − ζ(s, 2/3)),

where ζ(s, a) is the Hurwitz ζ-function. The values of these functions and their derivatives can be found in Ref. 28. We conclude that eLJel,s=0

= ζ′L(0) = 1
8 log( 48π

Γ(1/6)6 ) ≃ −0.660 56. In comparison, the best-known lower bound2,3 is eJel,s=0 ≥ −(
3
8 +

1
4 log π) ≃ −0.661 18. The triangular

lattice, which is what we expect to be the ground state, is remarkably close to this lower bound.

Example III.3. In dimension d = 1, there is only one lattice, namely, Z. Thus, eZJel,s=−1 = −ζ(−1) = 1
12 . It is, in fact, known that jellium is

crystallized in one dimension.8–10

IV. RELATION TO THE RENORMALIZED ENERGY
We now relate the jellium energy to the renormalized energy studied in Refs. 12 and 14–20, where it has been used in both the study of

Ginzburg–Landau theory and Coulomb gases. We give here the definition from Ref. 14.

Definition IV.1. Let E be a vector-field on R2. Let m > 0. We say that E ∈Am if

div E = 2π(ν −m), curl E = 0, sup
R>1

ν(BR)

∣BR∣
<∞, (1)

where ν = ∑ p∈Λδp for a discrete set Λ ⊂ R2.

Then, for any function χ, we define
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W(E, χ) = lim
η→0

⎛

⎝

1
2∫R2/⋃p∈ΛB(p,η)

χ∣E∣2 + π log η∑
p∈Λ

χ(p)
⎞

⎠
.

The renormalized energy is then defined as follows:

Definition IV.2. The renormalized energy of E is

W(E) := lim sup
R→∞

W(E, χR)

∣KR∣
,

where χR denotes any cut-off functions satisfying

∣∇χR∣ ≤ C, supp(χR) ⊂ KR, χR(x) = 1 if d(x, Kc
R) ≥ 1,

where KR = [−R, R]2 is the square of sides 2R.

We recall a few properties of W from Ref. 14. (These are proven in Ref. 18.)

● The renormalized energy W(E) does not depend on the choice of cut-off functions χR, and these need not be defined in terms of
squares either.

● If E ∈Am, then E′ = 1√
m E(⋅/

√
m) ∈A1 and W(E) = m(W(E′) − π

2 log m). In particular, minAm W = m(minA1 W − π
2 log m).

● If E ∈Am with W(E) <∞, then limR→∞
ν(BR)
∣BR ∣ = m.

● minA1 W is the limit of a sequence of periodic configurations with period n→∞.

For periodic Λ, we have the following result:

Proposition IV.3 [Ref. 18 (Proposition 3.1) and Ref. 14 (p. 2044)]. Suppose Λ is periodic with respect to some lattice L, and denote the
points of Λ in the torus T = R2

/L by {x1, . . . , xn}. Define H{xi} and E{xi} on T by

−ΔH{xi} = 2π(
n

∑
i=1

δxi −
n
∣T∣
), E{xi} := −∇H{xi}.

Then, W(E) ≥W(E{xi}) for any E satisfying Eq. (1).

Note that H{xi} is defined uniquely up to a constant, and thus, E{xi} is well-defined. Now, the relation of this renormalized energy to the
jellium energy is the following corollary:

Corollary IV.4. The renormalized energy is given by

min
A1

W = 2πeJel.

Cotar and Petrache12 showed a similar result for more general Riesz interactions, but not including the d = 2, s = 0 case, which is the one
considered here (see Remark IV.8). This relation between the renormalized energy and the jellium energy is also discussed in Ref. 18 for the
Coulomb case and in Ref. 16 for the Riesz case.

Proof. Since minA1 W is the limit of periodic configurations18 (Theorem 1) and any such periodic configuration clearly has energy at least
minA1 W, we have

min
A1

W = lim
ℓ→∞

min
E∈A1

E is ℓ−periodic

W(E).

Now, suppose E is ℓ-periodic. Denote the points of Λ in the torus R2
/ℓZ2 by {x1, . . . , xn}. Then, W(E) ≥W(E{xi}) by Proposition IV.3. Now,

by Ref. 19 (Lemma 2.7),

W(E{xi}) =
2π
n ∑i<j

Gℓ(xi − xj) + πlim
x→0
(Gℓ(x) + log ∣x∣) =

2π
n
Eper,ℓ(x1, . . . , xn).

Hence, by Theorem II.1,

min
A1

W = 2π lim
n→∞

min
x1 ,...,xn

Eper,ℓ(x1, . . . , xn)

n
= 2πeper = 2πeJel.

◻
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With this, the known bounds on eJel carry over. The upper bound of

min
A1

W = 2πeJel ≤ 2πeLJel ≃ −4.1504,

whereL is the triangular lattice, was previously known.18,21 It is, in fact, conjectured that we have equality.1,18 This is the famous “crystallization
conjecture” (see Ref. 29 for a review). As shown in Ref. 30, this crystallization would follow from the Cohn–Kumar conjecture. The
“crystallization conjecture” states roughly that the optimal configuration for the electrons is to arrange in a triangular lattice (at least in
the bulk). Thus, the energy density would be the one given by a triangular lattice configuration. This problem is solved in one dimension,8–10

where crystallization has been shown. In dimensions d ≥ 2, it is open. Partial results include the equidistribution of points.20

The lower bound2,3 eJel ≥ −(
3
8 +

1
4 log π) gives the following corollary:

Corollary IV.5. We have minA1 W = 2πeJel ≥ −π( 3
4 +

1
2 log π) ≃ −4.1543.

This is an improvement on previously known lower bounds. The previously known lower bound by Steinerberger,22 translated to this
setting using the results of Ref. 21, is minA1 W ≥ − π

2 (1 + γ + log π) ≃ −4.2756, where γ ≃ 0.577 is the Euler–Mascheroni constant.

Remark IV.6. The renormalized energy has also been used by Bétermin and Sandier21 in the problem of optimal point-configurations on
the sphere S2 with a logarithmic energy functional, i.e., points x1, . . . , xn ∈ S2 minimizing E(x1, . . . , xn) = −∑ i≠j log∣xi − xj∣. The problem of
minimizing the logarithmic energy of points on the sphere has received much study (see Refs. 21, 22, 26, 27, and 31) and is linked to Smale’s
seventh problem (see Ref. 32 for a review).

Let Elog(n) = min E(x1, . . . , xn) denote the minimal energy. Bétermin and Sandier21 showed that there exists a constant
clog =

1
π minA1 W + log 4 π

2 such that

Elog(n) = (
1
2
− log 2)n2

−
1
2

n log n + clogn + o(n)

as n→∞. The previously known lower bound of the constant clog due to Steinerberger22 is clog ≥
log 4−1−γ

2 ≃ −0.0954. Written in terms of the
constant clog, the improved lower bound gives the following corollary:

Corollary IV.7. We have clog = 2eJel +
log 4 π

2 ≥ log 2 − 3
4 ≃ −0.0569.

Remark IV.8. The renormalized energy has also been defined for general Riesz potentials in Ref. 16 and jellium and periodic jellium in
Ref. 6. Let W be as defined in Ref. 16 (Definition 1.3) (this differs from the W considered above by a factor of 2 in the case d = 2, s = 0) and
eper(d, s) be the periodic jellium energy for the Riesz potential with parameter s and in dimension d as defined in Ref. 6. Exactly the same
proof as above shows that minA1W = 2cd,seper(d, s) for max(0, d − 2) ≤ s < d, where

cd,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2s
2πd/2Γ( s+2−d

2 )

Γ( s+2
2 )

if max(0, d − 2) < s < d,

(d − 2)
2πd/2

Γ(d/2)
if s = d − 2 > 0,

2π if s = 0, d = 1, 2.

In Refs. 6, 12, 16, and 17 and Theorem II.1, it is proved that eJel(d, s) = eper(d, s) for the relevant d, s. Thus, we have minA1W = 2cd,seJel(d, s).
This result was previously shown in Ref. 12 only not including the case d = 2, s = 0.

We now turn to the proofs of Theorems II.1 and III.1.

V. UPPER BOUND FOR THE UNIFORM ELECTRON GAS ENERGY
We first show that

eUEG ≤
Eper,ℓ(x1, . . . , xn)

n
.

The proof is very similar to the proof of the same result in dimension d = 3 presented in Ref. 6. The main difference is the different choice of
trial state P, which we will need to be a characteristic function. We now explain why we need this.
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In dimension d = 3, the thermodynamic limit of the uniform electron gas exists under weaker conditions by the Graf–Schenker inequal-
ity,33 as discussed in Refs. 5 and 6. There, it is only required that the density ρP is 1 in the bulk of ΩN , 0 outside, and bounded close to the
boundary. In dimension d ≠ 3, we do not have this weaker formulation, so we need that the density is a characteristic function for the ther-
modynamic limit to exist. (Actually, if we have the stricter bound ρP ≤ 1, then the thermodynamic limit5 still holds. The modification of the
argument in Ref. 5 to this case is trivial.) Additionally, due to the long range behavior of the logarithm, some error bounds are slightly more
complicated in two dimensions.

The construction of the trial state P is similar to that of Ref. 6. We consider a floating crystal immersed in a thin fluid layer (uncorrelated
electrons). The fluid is needed to counteract the charge build-up from translating the crystal, exactly as in Ref. 6. We want the density ρP to be
a characteristic function. In particular, we have to control the overlap of the fluid (under one translation) with the crystal (under a different
translation). This amounts to making a “hole” in the fluid, which is larger than the crystal. Additionally, the fluid layer is not chosen to have
constant density 1 but instead have some density profile β, which we describe below. The density profile β is chosen to fill out the gaps left by
having a larger hole in the fluid than the crystal.

We now give the construction of the trial state (see also Fig. 1). For the intuition of the construction, it is perhaps easiest to consider the
fluid layer to have constant density 1 (meaning β = 𝟙C in the notation below) and then a posteriori update the density profile to the stated β to
ensure that ρP is a characteristic function.

Consider any arrangement of n points x1, . . . , xn in the cube Cℓ = [−ℓ/2, ℓ/2]2 of side length ℓ = n1/2. Adding a background shifted by the
center of mass τ = 1

n∑
n
j=1xj, we get an arrangement with no dipole moment: ∫ y(∑n

j=1δxj(y) − 𝟙Cℓ+τ(y)) dy = 0. We copy this arrangement
periodically in the larger cube

ΩN = ⋃
k∈Z2

∣k1 ∣,∣k2 ∣≤K

(Cℓ + ℓk)

of volume N = ℓ2
(2K + 1)2. The electrons are located at the points xj = xj0 + ℓk. Let C be a square with C ⊃ ΩN + 5Cℓ and ∣C/ΩN ∣ =M

= O(N1/2
) be an integer. Define F = ΩN + 3Cℓ + τ (the “hole in the fluid”) and β = 𝟙C + 𝟙F ∗

𝟙Cℓ
ℓ2 −

1
n∑

n
j=1𝟙ΩN+xj . The trial state P is then

the average over all translations of the crystal, with the fluid moving opposite to counteract the build-up of charge (see Fig. 1). That is,

P = 1
ℓ2∫Cℓ

⊗
j=1,...,n

k∈Z2

∣k1 ∣,∣k2 ∣≤K

δxj+ℓk+a ⊗ (
β − 𝟙F+a

M
)

⊗M
da.

We choose F = ΩN + 3Cℓ + τ such that the fluid and the crystal have minimal overlap. (For the case of constant fluid density, there is no
overlap.) The term +τ is there to ensure the vanishing dipole moment, and the term +3Cℓ comes from the following considerations.

The crystal, when shifted around, gives some density in the region ΩN + Cℓ. We thus want that, for any shift F + a of F, the region
C/(F + a) does not overlap with the region ΩN + Cℓ. Since τ is, in general, just some vector τ ∈ Cℓ, this leads to our definition of F = ΩN
+ 3Cℓ + τ. In order for the fluid to have positive density, we need β ≥ 𝟙F+a for any shift a. This leads to β ≥ 𝟙C, with C ⊃ ΩN + 5Cℓ. This is true
by construction. Now, we compute that

ρP = β +
1
n

n

∑
j=1

𝟙ΩN+xj − 𝟙F ∗
𝟙ΩN+xj

ℓ2 = 𝟙C.

Thus, ρP is a characteristic function as desired.

FIG. 1. Slice of the crystal and fluid in the construction of the trial state. The gray circles indicate the positions of the electrons, and each square tile is one copy of the n-point
configuration. The gray areas at the left and right edges are the region C/(F + a). For the choice of a constant fluid density, this is exactly the region where the fluid is.
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As mentioned, the thermodynamic limit5 (Theorem 2.6) also holds for densities ρP ≤ 1. Thus, we can actually choose β any function
with 𝟙C ≤ β ≤ 𝟙C + 𝟙F ∗

𝟙Cℓ
ℓ2 −

1
n∑

n
j=1𝟙ΩN+xj . This will not change the argument. In the computations below, we will use the description of ρP

in terms of β, as this will make the computations slightly nicer.
We now use this trial state to show that

eUEG ≤ lim inf
N→∞

EJel(ΩN + τ, x1, . . . , xN)

N
.

To compute the energy EInd(P), we first introduce the notation

D(μ, ν) =
1
2∬

− log ∣x − y∣ dμ(x) dν(y), D(μ) = D(μ, μ)

for two (signed) measures μ, ν. This is the Coulomb interaction energy between charge distributions μ and ν. Mostly, we will use this in the
case where the measures are given by functions. The analogous object in dimensions d ≥ 3 has D( f ) ≥ 0 for any function. This is, however,
not true in dimension d = 2. In general, it is only true for functions with zero mean.

Proposition V.1. Suppose f has ∫ f dx = 0. Then, D( f ) ≥ 0.

This is well-known. A proof may, for instance, be found in Ref. 34 (Lemma 3.2). For completeness, we provide a short proof here.

Proof. By density, we may assume that f ∈ S, i.e., that f is rapidly decreasing. Define f #
(x) = f (−x). Note that f̂ # = f̂ . First we show

that f̂ # f̂
p2 =

∣f̂ (p)∣
p2 is the Fourier transform of some function. Define g := −1

2π log∗ f #
∗ f . Then, by Ref. 35 (Theorem 6.21), we have that g ∈ L1

loc

and −Δg = f #
∗ f in D′. Since log ∈ S′, we have that g ∈ S′ and so p2ĝ = f̂ # ∗ f in S′. Hence, ĝ(p) = 2π ∣f̂ (p)∣

2

p2 as functions. By the assumption

∫ f dx = 0, we have that the right-hand-side actually stays bounded (and smooth) as p→ 0. We conclude that ĝ ∈ S and so g ∈ S has a Fourier
transform as a function.

Now, with ⟨⋅∣⋅⟩ denoting application of a distribution, we have

⟨− log∗ f ∣ f ⟩ = ⟨−̂ log∣f̂ # ∗ f ⟩ = 2π⟨p2
⋅ −̂ log∣

∣f̂ (p)∣2

p2 ⟩ = 2π∫
∣f̂ (p)∣2

p2 dp ≥ 0,

since by Ref. 35 (Theorem 6.20), we have −Δ(−log∣ ⋅ ∣) = 2πδ in D′. ◻

Remark V.2. In dimension d = 1, an analogous statement also holds.

Now, we may calculate the energy (with xj, for j > n denoting the points xj + ℓk for k ≠ 0)

EInd(P) = ∑
1≤j<k≤N

− log ∣xj − xk∣ +
N

∑
j=1

1
ℓ2∫Cℓ

∫ − log ∣xj + a − y∣(β(y) − 𝟙F+a(y)) dy da + (1 −
1
M
)

1
ℓ2∫Cℓ

D(β − 𝟙F+a) da −D(ρP)

=∑
j<k
− log ∣xj − xk∣ +

1
n

n

∑
j=1

2D(𝟙ΩN+xj , β) − 2D
⎛

⎝

N

∑
j=1

δxj ,𝟙F
⎞

⎠
+D(β) +D(𝟙F) − 2D(β,𝟙F ∗

𝟙Cℓ

ℓ2 ) −D(ρP) −
1

Mℓ2∫Cℓ

D(β − 𝟙F+a) da

= EJel(ΩN + τ, x1, . . . , xN) + 2D
⎛

⎝

N

∑
j=1

δxj ,𝟙ΩN+τ − 𝟙F
⎞

⎠
−D(𝟙ΩN+τ) + 2D

⎛

⎝
β,

1
n

n

∑
j=1

𝟙ΩN+xj − 𝟙F ∗
𝟙Cℓ

ℓ2

⎞

⎠
+D(β) +D(𝟙F) −D(ρP)

−
1

Mℓ2∫Cℓ

D(β − 𝟙F+a) da.

First, we claim that

−
1

Mℓ2∫Cℓ

D(β − 𝟙F+a) da ≤ o(N).

Remark V.3. In dimensions d ≥ 3, the analogous term is ≤ 0 since D( f ) ≥ 0 for any function f.
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For any a, denote by A = supp(β − 𝟙F+a). Then, we have ∣A∣ = O(N1/2
) and diamA = O(N1/2

). Thus,

D(β − 𝟙F+a) =
1
2∬A×A

− log ∣x − y∣(β − 𝟙F+a)(x)(β − 𝟙F+a)(y) dx dy

≥ C∬
A×A
− log diam A dx dy = O(N log N).

Hence,

−
1

Mℓ2∫Cℓ

D(β − 𝟙F+a) da ≤ O(N1/2 log N) = o(N).

We are thus left with the error term

2D
⎛

⎝

N

∑
j=1

δxj ,𝟙ΩN+τ − 𝟙F
⎞

⎠
+ 2D

⎛

⎝
β,

1
n

n

∑
j=1

𝟙ΩN+xj − 𝟙F ∗
𝟙Cℓ

ℓ2

⎞

⎠
−D(𝟙ΩN+τ) +D(β) +D(𝟙F) −D(ρP).

Plugging in the value of ρP, we may calculate this term as

− 2D
⎛

⎝

N

∑
j=1

δxj − 𝟙ΩN+τ , f
⎞

⎠
+D(𝟙F − 𝟙F ∗

𝟙Cℓ

ℓ2 , g) +D
⎛

⎝

1
n

n

∑
j=1

𝟙ΩN+xj − 𝟙ΩN+τ , g
⎞

⎠
, (2)

where

f = 𝟙F − 𝟙ΩN+τ , g = 𝟙F + 𝟙F ∗
𝟙Cℓ

ℓ2 − 𝟙ΩN+τ −
1
n

n

∑
j=1

𝟙ΩN+xj .

We claim that Eq. (2) is O(N1/2 log N) and thus vanishes in the desired limit. This will follow from appropriate Taylor expansions of −log∣ ⋅ ∣
and the following two propositions:

Proposition V.4. Let A be a square of size ∣A∣ = O(N). Let μ be a measure satisfying μ(BR) = O(R2
) as R→∞. Let B be the boundary

region of A, meaning B = {x ∈ R2 : d(x,∂A) ≤ ℓ} for some fixed ℓ > 0. Then,

∫
A
∫

B∩{∣x−y∣>1}

1
∣x − y∣2

dy dμ(x) = O(N1/2 log N).

One should think that μ is either the Lebesgue measure or a sum of appropriately distributed δ-measures. To show this, note that for
any fixed y ∈ B, we can bound the x-integral by the integral over a ball of radius L = O(N1/2

) centered at y (removing the ball of radius 1).
Thus,

∫
A
∫

B∩{∣x−y∣>1}

1
∣x − y∣2

dy dμ(x) ≤ ∫
B
∫

BL/B1

1
∣z∣2

dμ(z) dy ≤ C∫
B

log L dy = O(N1/2 log N).

Proposition V.5. Let A, B be as in Proposition V.4 and μ be a probability measure supported in Bℓ. Denote by τ the first moment of μ, i.e.,
τ = ∫ adμ(a). Let b be a function supported in B, which is bounded uniformly in N. Then,

D(𝟙A+τ − 𝟙A ∗ μ, b) = O(N1/2 log N).

Remark V.6. In dimension d ≥ 1, we similarly have

∫
A
∫

B∩{∣x−y∣>1}

1
∣x − y∣d

dy dμ(x) = O(N
d−1

d log N),

D(𝟙A+τ − 𝟙A ∗ μ, b) = O(N
d−1

d log N).

Thus, our argument also works in higher dimensions.
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We postpone the Proof of Proposition V.5 to Appendix A. Proposition V.5 immediately gives that the second and third terms of Eq. (2)
are O(N1/2 log N). For the first term, we use that by Taylor expansion,

− log ∣z + a∣ = − log ∣z∣ −
z ⋅ a
∣z∣2
+ ∫

1

0
(1 − t)[

∣a∣2

∣z + ta∣2
−

2((z + ta) ⋅ a)2

∣z + ta∣4
] dt

= − log ∣z∣ −
z ⋅ a
∣z∣2
+O(

1
∣z∣2
)

for a bounded and ∣z∣ bounded from below. Thus, for the term

2D
⎛

⎝

N

∑
j=1

δxj − 𝟙ΩN+τ , f
⎞

⎠
=∬ f (x)(− log ∣x − y∣)

⎛

⎝

N

∑
j=1

δxj − 𝟙ΩN+τ
⎞

⎠
(y) dy dx,

we have

= ∑
j=1,...,n

k∈Z2

∣k1 ∣,∣k2 ∣≤K

∬ f (x)(− log ∣x − y∣)[δxj+ℓk −
1
ℓ2 𝟙Cℓ+τ+ℓk](y) dy dx

=∑
j,k

1
ℓ2∫F/(ΩN+τ)

∫
Cℓ

− log ∣x − ℓk − xj∣ + log ∣x − ℓk − τ + a∣ da dx

Hence, since ∣x − kℓ∣ is bounded from below on F/(ΩN + τ), we have

= ∫
F/(ΩN+τ)

∑
j,k
−
(x − ℓk − τ) ⋅ (τ − xj)

∣x − ℓk − τ∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by ∑ xj=∑ τ

dx +∑
j,k
∫

F/(ΩN+τ)
O(

1
∣x − ℓk∣2

) dx

+∑
j,k

1
ℓ2∫F/(ΩN+τ)

∫
Cℓ

(x − ℓk − τ) ⋅ a
∣x − ℓk − τ∣2

da

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by ∫ a da=0

dx +∑
j,k
∫

F/(ΩN+τ)
O(

1
∣x − ℓk∣2

) dx

= O(N1/2 log N)

by Proposition V.4. This gives the bound EInd(ρP) ≤ EInd(P) ≤ EJel(ΩN + τ, x1, . . . , xN) + o(N). Hence, by taking the thermodynamic limit,
we get the desired.

We now show that

lim
N→∞

EJel(ΩN + τ, x1, . . . , xN)

N
=
Eper,ℓ(x1, . . . , xn)

n
.

This argument is more or less the same as in Ref. 6. There are slight differences in the case d = 2 compared to the case d ≥ 3, which is why we
present the argument here. We really only need the bound ≤, and this is what we now show.

Note that the inter-particle distance is bounded uniformly from below (since there are only finitely many particles in the “unit cell”
Cℓ). Hence, by replacing the point charges by smeared out charges of some small radius η smaller than all the inter-particle distances,
Newton’s theorem says that all the particle–particle energies are preserved, but the particle–background interaction only increases (decreases
in numerical size, but this energy is negative). Writing χη =

1
πη2 𝟙B(0,η), we thus have

EJel(ΩN + τ, x1, . . . , xN) ≤ −∑
j<k
∬ log ∣(xj + y) − (xk + z)∣χη(y)χη(z) dy dz

+
N

∑
j=1
∫

ΩN+τ
∫ log ∣(xj + z) − y∣χη(z) dz dy −

1
2∬(ΩN+τ)×(ΩN+τ)

log ∣x − y∣ dx dy

=∑
j<k

2D(χη(⋅ − xj), χη(⋅ − xk)) −
N

∑
j=1

2D(χη(⋅ − xj),𝟙Ω+τ) +D(𝟙ΩN+τ)

= D
⎛

⎝

N

∑
j=1

χη(⋅ − xj) − 𝟙ΩN+τ
⎞

⎠
−N(D(χ1) −

1
2

log η).
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We now investigate the first term more closely. We may write

N

∑
j=1

χη(⋅ − xj) − 𝟙ΩN+τ = ∑
k∈Z2

∣k1 ∣,∣k2 ∣≤K

f (⋅ + ℓk),

where f = ∑n
j=1χη(⋅ − xj) − 𝟙Cℓ+τ . Thus,

D
⎛

⎝

N

∑
j=1

χη(⋅ − xj) − 𝟙ΩN+τ
⎞

⎠
= D(∑

k
f (⋅ + ℓk)) = π∫

∣ f̂ (p)∣2

p2 ∣∑
k

eipkℓ
∣

2

dp.

Since f is of compact support and satisfies ∫ f dx = 0 and ∫ xf (x)dx = 0 (this is where the zero dipole moment is used), we have that f̂ is
smooth and satisfies f̂ (p) = o(p) as p→ 0, and thus, ∣f̂ (p)∣

2

p2 vanishes at zero. Thus, we need to consider the behavior of ∣∑keipkℓ
∣
2

in the limit
K →∞ (i.e., N →∞).

We have

1
(2K + 1)2

RRRRRRRRRRRRRRRRR

∑
k∈Z2

∣k1 ∣,∣k2 ∣≤K

eipkℓ

RRRRRRRRRRRRRRRRR

2

=
2

∏
ν=1

sin2
(ℓpν(K + 1/2))
sin2(ℓpν/2)

⇀ (
2π
ℓ
)

2

∑
p∈ 2π

ℓ
Z2

δp

weakly, and so

1
N

D(∑
k

f (⋅ + ℓk)) N→∞
ÐÐÐÐ→

π
ℓ2 ∫

∣f̂ (p)∣2

p2 (
2π
ℓ
)

2

∑
p∈ 2π

ℓ
Z2

δp dp

=
π
ℓ4∑

p
∫

Cℓ+τ
∫

Cℓ+τ
f (x)eipx f (y)e−ipy 1

p2 dx dy

=
1

2n∫Cℓ+τ
∫

Cℓ+τ
Gℓ(x − y) f (x) f (y) dx dy.

Plugging in the definition of f and using that ∫Cℓ
Gℓ dx = 0, we thus have

1
2n∫Cℓ+τ

∫
Cℓ+τ

Gℓ(x − y) f (x) f (y) dx dy

=
1
2∬

Gℓ(x − y)χη(x)χη(y) dx dy +
1
n∑j<k
∬ Gℓ(x − y)χη(x − xj)χη(y − xk) dx dy.

Since χη ⇀ δ as η→ 0, the second term converges to 1
n∑j<kGℓ(xj − xk). This is exactly the first term in the functional Eper,ℓ as desired. We now

deal with the other term in the limit η→ 0,

1
2∬

Gℓ(x − y)χη(x)χη(y) dx dy =
1
2∬

(− log η − log ∣x − y∣ + log ℓ + Cmad + oη→0(1))χ1(x)χ1(y) dx dy,

where oη→0(1) vanishes as η→ 0 uniformly in x, y by the compact support of χ1. Hence,

1
2∬

Gℓ(x − y)χη(x)χη(y) dx dy = −
1
2

log η +D(χ1) +
1
2

log ℓ +
Cmad

2
+ oη→0(1).

Putting everything together, we now conclude

1
N

D
⎛

⎝

N

∑
j=1

χη(⋅ − xj) − 𝟙ΩN+τ
⎞

⎠
− (D(χ1) −

1
2

log η)

N→∞
ÐÐÐÐ→

1
n∑j<k

Gℓ(xj − xk) +
1
2∬

Gℓ(x − y)χη(x)χη(y) dx dy −D(χ1) +
1
2

log η

η→0
ÐÐÐ→

1
n∑j<k

Gℓ(xj − xk) +
1
2

log ℓ +
1
2

Cmad.
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This proves the one inequality. To conclude the other inequality, note that the error we made in replacing the point charges with smeared out
ones can be bounded by ∫ − log∣y∣χη(y)dy = O(−η2log η) per particle by Newton’s theorem. This vanishes as η→ 0, and thus, we conclude
the equality

lim
N→∞

EJel(ΩN , x1, . . . , xN)

N
=
Eper,ℓ(x1, . . . , xn)

n
.

This proves that eUEG ≤
Eper,ℓ(x1 ,...,xn)

n .

VI. UPPER BOUND FOR THE PERIODIC ENERGY
We now show that

lim sup
N→∞

min
x1 ,...,xN∈CL

Eper,L(x1, . . . , xN)

N
≤ eJel.

This finishes the Proof of Theorem II.1. This argument is again more or less the same as in Ref. 6. Again, there are some slight differences in
the case d = 2, which is why we give the argument here.

First, we show that a version of Newton’s theorem hold for the periodic potential Gℓ. In particular, that separated neutral radial charge
densities have zero total interaction. More precisely, let ρ be any compactly supported radial neutral charge distribution, i.e., supp ρ ⊂ BR for
some R > 0, ρ is radial, and ∫ ρdx = 0. Let L be large enough so that BR ⊂ CL. Then, we have that V = ∑k∈Z2(ρ ∗ − log)(⋅ + Lk) satisfies

−ΔV = 2π∑
k

ρ(⋅ + Lk) = ρ ∗ (2π(∑
k

δLk −
1
L2 )) = −Δ(ρ ∗GL).

(Note the importance of ρ being neutral, so ρ ∗ 1 = 0.) Since both V and ρ ∗GL are CL-periodic, this shows that they differ by a periodic
harmonic function, i.e., a constant. Moreover, by Newton’s theorem, we have that V vanishes on CL/BR; thus, we see that ρ ∗GL is constant
on CL/BR, and so for another neutral radial charge distribution ρ′ supported in this region, their interaction vanish, ∬ GL(x − y)ρ(x)ρ′(y)
dxdy = 0.36

We use the Swiss cheese theorem [Ref. 37 (sect. 14.5)] to fill (most of) the cube CL with balls of integer volume ranging in sizes from
some fixed ℓ0 to a largest size of order ℓ. The ratio of the volume not covered by the balls is small in comparison to the volume of the cube in
the sense that if we take ℓ→∞ after taking L→∞, this ratio vanishes.

We now construct a trial state using these balls. In each ball Bn, we place Nn = ∣Bn∣ particles in the optimal jellium configuration for the
ball Bn. (Note that n refers to the index of the ball, and not its radius.) The remaining M = N −∑ n∣Bn∣ particles are placed uniformly in the
remainder S = CL/⋃ nBn, meaning that we smear the particles out in this region. This yields

minEper,L(x1, . . . , xN) ≤ ∑
1≤j<k≤N−M

GL(xj − xk) +
N−M

∑
j=1
∫

S
GL(xj − y) dy

+
1
2
(1 −

1
M
)∬

S×S
GL(x − y) dx dy +

N
2
(log L + Cmad)

= ∑
1≤j<k≤N−M

GL(xj − xk) −∑
n

N−M

∑
j=1
∫

Bn

GL(xj − y) dy

+
1
2
(1 −

1
M
)∑

n,m
∬

Bn×Bm

GL(x − y) dx dy +
N
2
(log L + Cmad),

where x1, . . . , xN−M denote the points in⋃ nBn and we used that ∫CL
GL dx = 0. Now, by rotating the charges inside each of the balls separately

and taking the average over all such rotations, we may use the modified Newton’s theorem above to conclude that the balls do not interact
with each other. Writing G̃L for the rotational average of GL, we thus get the upper bound

∑
n

⎛

⎝
∑

1≤j<k≤∣Bn ∣
G̃L(x(n)j − x(n)k ) −

∣Bn ∣
∑
j=1
∫

Bn

G̃L(x(n)j − y) dy +
1
2
(1 −

1
M
)∬

Bn×Bn

G̃L(x − y) dx dy +
∣Bn∣

2
(log L + Cmad)

⎞

⎠
.

As L→∞, we have that GL(x) = −log∣x∣ + log L + Cmad + o(1). Plugging this into the bound above, the 1
M -term is o(1) and the remaining

log L and Cmad-terms cancel. What we are left with is the bound

∑
n
(EJel(Bn, x(n)1 , . . . , x(n)∣Bn ∣) + oL→∞(1)),
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where the term oL→∞(1) depends on ℓ but not on n. Dividing by N = L2 and taking the consecutive limits L→∞, ℓ→∞, and ℓ0 →∞, this
gives eJel by the existence of the thermodynamic limit for jellium.2 We conclude that

lim sup
N→∞

min
x1 ,...,xN∈CL

Eper,L(x1, . . . , xN)

N
≤ eJel.

Hence, we have shown

eUEG ≤ lim inf
N→∞

min
x1 ,...,xN∈CL

Eper,L(x1, . . . , xN)

N
≤ lim sup

N→∞
min

x1 ,...,xN∈CL

Eper,L(x1, . . . , xN)

N
≤ eJel.

Thus, eUEG = eper = eJel.

VII. PROOF OF THEOREM III.1
We now give the Proof of Theorem III.1.

Proof of Theorem III.1. First, we extend V s to complex-valued s as follows. For s ∈ C/R, we define V s(x) = ∣x∣−s. Now, define the functions
Ws and W̃s for any s ∈ C by

Ws = Vs − 2Vs ∗ 𝟙Q + Vs ∗ 𝟙Q ∗ 𝟙Q = Vs ∗ (δ − 𝟙Q) ∗ (δ − 𝟙Q), and W̃s = ∣ ⋅ ∣
−s
∗ (δ − 𝟙Q) ∗ (δ − 𝟙Q).

Note that Ws = W̃s if s ∈ C/(−∞, 0], that Ws = −W̃s if s < 0, and that Ws =
d
ds W̃s∣s=0

if s = 0.
By a tedious but straightforward Taylor expansion, one checks that W̃s(x), Ws(x) ∼ ∣x∣−Re(s)−4 for large ∣x∣. Let x1, . . . , xN be N points on

the lattice, say, {x1, . . . , xN} = L ∩ BR for some R, and set ΩN = ⋃
N
j=1(Q + xj). Consider now s < d. Then,

∑
j<k

Ws(xj − xk) =∑
j<k

Vs(xj − xk) − 2∑
j<k
∫

Q
Vs(xj − xk − y) dy +∑

j<k
∬

Q×Q
Vs(xj − xk − y − z) dy dz

=∑
j<k

Vs(xj − xk) −
⎛

⎝

N

∑
j=1
∫

ΩN

Vs(xj − y) dy −N∫
Q

Vs(y) dy
⎞

⎠
+

1
2∬ΩN×ΩN

Vs(y − z) dy dz −
1
2

N

∑
j=1
∬

Q×Q
Vs(y − z) dy dz

= EJel,d,s(ΩN , x1, . . . , xN) +N∫
Q

Vs(y) dy −
N
2∬Q×Q

Vs(y − z) dy dz.

For s > d − 4, the sum∑x∈L/0Ws(x) converges, and so we may take the thermodynamic limit

eLJel,s = lim
N

1
N∑j<k

Ws(xj − xk) − ∫
Q

Vs(y) dy +Dd,s(𝟙Q) = ∑
x∈L/0

Ws(x) − ∫
Q

Vs(y) dy +Dd,s(𝟙Q).

Let now s ∈ C, Re(s) > d. We may then write

ζL(s) =
1
2 ∑x∈L/0

1
∣x∣s

=
1
2 ∑x∈L/0

Ws(x) + ∑
x∈L/0
∫

Q
Vs(x − y) dy −

1
2 ∑x∈L/0

∬
Q×Q

Vs(x − y − z) dy dz

=
1
2 ∑x∈L/0

Ws(x) + ∫R/Q
Vs(y) dy −

1
2∫R/Q∫Q

Vs(y − z) dy dz.

We now want to write this in a form that makes sense for all s ≠ d satisfying Re(s) > d − 4.
For any fixed ϵ > 0 such that Bϵ ⊂ Q, we have

∫R/Q
Vs(y) dy = ∫

∣y∣>ϵ
Vs(y) dy − ∫

Q/Bϵ

Vs(y) dy = ∣Sd−1
∣ϵd−s 1

s − d
− ∫

Q/Bϵ

1
∣y∣s

dy.

Both of these terms are holomorphic for s ≠ d for any fixed ϵ > 0. For Re(s) < d, we may take ϵ→ 0. Hence, the analytic continuation of this
term is − ∫Q ∣y∣

−sdy when Re(s) < d.
For the second term, we write

∫R/Q∫Q

1
∣y − z∣s

dy dz = ∫
Q
∫R/(Q+z)

1
∣w∣s

dw dz.
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We now split this integral according to

∫
Q
∫R/(Q+z)

= ∫
Q
∫
∣w∣>ϵ∣z∣

− ∫
Q
∫
(Q+z)/Bϵ∣z∣

= ∫
Q/Bδ
∫
∣w∣>ϵ∣z∣

+ ∫
Bδ
∫
∣w∣>ϵ∣z∣

− ∫
Q/Bδ
∫
(Q+z)/Bϵ∣z∣

− ∫
Bδ
∫
(Q+z)/Bρ

− ∫
Bδ
∫

Bρ/Bϵ∣z∣
,

where ϵ, δ, ρ > 0 are all sufficiently small. The terms

∫
Q/Bδ
∫
(Q+z)/Bϵ∣z∣

∣w∣−s dw dz, ∫
Bδ
∫
(Q+z)/Bρ

∣w∣−s dw dz

are analytic in s. We calculate the remaining terms. The term

∫
Q/Bδ
∫
∣w∣>ϵ∣z∣

∣w∣−s dw dz = ∣Sd−1
∣

1
s − d

ϵd−s
∫

Q/Bδ

∣z∣d−s dz

makes sense for Re(s) > d and extends analytically to s ≠ d. The term

∫
Bδ
∫
∣w∣>ϵ∣z∣

∣w∣−s dw dz = ∣Sd−1
∣
2 1

s − d
1

2d − s
ϵd−sδ2d−s

makes sense for d < Re(s) < 2d and extends analytically to s ≠ d, 2d. The term

∫
Bδ
∫

Bρ/Bϵ∣z∣
∣w∣−s dw dz = ∣Sd−1

∣∣B1∣
1

d − s
δdρd−s

− ∣Sd−1
∣
2 1

d − s
ϵd−s 1

2d − s
δ2d−s

makes sense for d < Re(s) < 2d and extends analytically to s ≠ d, 2d. The “poles” at s = 2d, in fact, cancel out, so 2d is not a pole of ζL(s).
For Re(s) < d, we may take ϵ, δ, ρ→ 0 in a suitable order. All these terms combined then give the limit

−∫
Q
∫

Q+z
∣w∣−s dw dz = −∬

Q×Q

1
∣w − z∣s

dw dz.

Thus, for d − 4 < Re(s) < d, we have that (for the analytic continuation)

ζL(s) =
1
2 ∑x∈L/0

W̃s(x) − ∫
Q

1
∣y∣s
+

1
2∬Q×Q

1
∣y − z∣s

dy dz.

Thus, for real d − 4 < s < d with s ≠ 0, we have

ζL(s) =
⎧⎪⎪
⎨
⎪⎪⎩

eLJel,s if s > 0,

−eLJel,s if s < 0.

For s = 0, we have Ws=0 =
d
ds W̃s∣s=0

and similarly Vs=0 =
d
ds ∣ ⋅ ∣

−s
∣
s=0

. Thus,

eLJel,s=0 = ∑
x∈L/0

Ws=0(x) − ∫
Q

Vs=0(y) dy +Dd,s=0(𝟙Q)

=
d
ds

⎡
⎢
⎢
⎢
⎢
⎣

∑
x∈L/0

W̃s(x) − ∫
Q

1
∣y∣s

dy +
1
2∬Q×Q

1
∣y − z∣s

dy dz
⎤
⎥
⎥
⎥
⎥
⎦s=0

= ζ′L(0).

This finishes the Proof of Theorem III.1. ◻
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APPENDIX A: PROOF OF PROPOSITION V.5

Proof of Proposition V.5. Let L = ∣A∣1/2 be the side length of A, and find an ℓ′ ≥ 4ℓ of order 1 such that L/ℓ′ is an integer. Let Q denote
the square of side length ℓ′ centered at zero. Tile the plane with translates of Q such that, for the relevant translates, the centers yj lie on the
boundary ∂A. That is, R2

= ⋃j(yj +Q) and if yj +Q intersect both A and Ac, then yj ∈ ∂A. Now, for any x ∈ B we have that x ∈ yj +Q for some
(unique) yj ∈ ∂A (see Fig. 2). Thus,

D(𝟙A+τ − 𝟙A ∗ μ, b) = −
1
2 ∑j:yj∈∂A

∫
yj+Q

b(x)∫ log ∣x − y∣(𝟙A+τ − 𝟙A ∗ μ)(y) dy dx.

We now split the y-integral into two according to whether y is “close” to x, namely, if y ∈ yj + 2Q or if y is “far” from x, namely, if y ∉ yj + 2Q.
For the close y’s, we get the contribution

−
1
2 ∑j:yj∈∂A

∫
yj+Q

b(x)∫
yj+2Q

log ∣x − y∣(𝟙A+τ − 𝟙A ∗ μ)(y) dy dx = O(N1/2
)

since there are O(N1/2
)many such j’s, with each some order 1 contribution. For the y’s far away, we get the contribution

−
1
2 ∑j:yj∈∂A

∫
yj+Q

b(x)∫
(yj+2Q)c

log ∣x − y∣[𝟙A+τ(y) − ∫ 𝟙A(y − a) dμ(a)] dy dx.

We compute

= −
1
2∑j
∫

yj+Q
b(x)∫ [∫

(yj−τ+2Q)c∩A
log ∣x − y − τ∣ dy − ∫

(yj−a+2Q)c∩A
log ∣x − z − a∣ dz] dμ(a) dx

= −
1
2∑j
∫

yj+Q
b(x)∫ ∫

(yj−τ+2Q)c∩A
log ∣x − y − τ∣ − log ∣x − y − a∣ dy dμ(a) dx

−
1
2∑j
∫

yj+Q
b(x)∫ [∫

(yj−τ+2Q)c∩A
− ∫

(yj−a+2Q)c∩A
] log ∣x − y − a∣ dy dμ(a) dx.

For the first term here, we again use the Taylor expansion of log. We thus get for the integrand in the x-integral

FIG. 2. Picture of the boundary region B (in gray) with the relevant translates of Q.
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b(x)∫ ∫
(yj−τ+2Q)c∩A

(x − y − τ) ⋅ (τ − a)
∣x − y − τ∣2

+O(
1

∣x − y∣2
) dy dμ(a) = O(∫

(yj−τ+2Q)c∩A

1
∣x − y∣2

dy).

Thus, computing the x-integral of this, we get a term which is O(N1/2 log N) by Proposition V.4 (note that for y ∈ (yj − τ + 2Q)c
∩ A and

x ∈ yj +Q, we have that ∣x − y∣ ≥ ℓ). For the second term, the x-integrand is

− b(x)∫ [∫
(yj−τ+2Q)c∩A

− ∫
(yj−a+2Q)c∩A

] log ∣x − y − a∣ dy dμ(a)

= −b(x)∫ [∫
(yj−a+2Q)∩A

− ∫
(yj−τ+2Q)∩A

] log ∣x − y − a∣ dy dμ(a).

This is only an integral of y’s “close” to x, and so a similar argument as above gives that when we integrate this over all x, we get a term which
is O(N1/2

). We conclude the desired
D(𝟙A+τ − 𝟙A ∗ μ, b) = O(N1/2 log N).

◻

APPENDIX B: LOWER BOUND OF THE JELLIUM ENERGY

We here present the proof of the lower bound of the jellium energy from Refs. 2 and 3.

Proposition B.1 (Refs. 2 and 3). Let ΩN be any domain with ∣ΩN ∣ = N, and let x1, . . . , xN ∈ ΩN be any configuration of points. Then,

EJel(ΩN , x1, . . . , xN) ≥ −(
3
8
+

1
4

log π)N ≃ −0.661 18 N.

In particular, eJel ≥ −(
3
8 +

1
4 log π) ≃ −0.661 18.

Proof. The idea is to smear out the electrons to a ball of radius a of uniform charge. Then, optimize the result over the radius a. Define

UBB := −
1
2∬ΩN×ΩN

log ∣x − y∣ dx dy, the background self − energy,

Uj := ∫
ΩN

log ∣xj − y∣ dy, particle j–background interaction,

Ujk := − log ∣xj − xk∣, particle j–particle k interaction,

Û j :=
1
∣Ba∣
∫

B(xj ,a)
∫

ΩN

log ∣x − y∣ dx dy, ball j–background interaction,

Û jk := −
1
∣Ba∣2
∫

B(xj ,a)
∫

B(xk ,a)
log ∣x − y∣ dx dy, ball j − ball k interaction.

Then, Û jj is twice the self-energy of ball j. We then write

EJel(ΩN , x1, . . . , xN) = UBB +
N

∑
j=1

Û j +
1
2∑j,k

Û jk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(α)

+
N

∑
j=1

Uj − Û j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(β)

+
−1
2

N

∑
j=1

Û jj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(γ)

+∑
j<k

Ujk − Û jk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(δ)

.

Now, (α) is the total electrostatic energy of the combined charge distribution of the smeared out electrons and the background, i.e.,
(α) = D(∑N

j=1
1
∣Ba ∣1B(xj ,a) − 𝟙Ω). Since the entire configuration is neutral, we have (α) ≥ 0 by Proposition V.1. In addition, (δ) ≥ 0, since if

the balls are not overlapping, then this term is 0, but if they are overlapping, then by Newton’s theorem, this term is positive. Now, (β) can be
bounded by Newton’s theorem

Uj − Û j = ∫
ΩN

log ∣xj − z∣ −
1
∣Ba∣
∫

B(xj ,a)
log ∣x − z∣ dx dz

≥
1
∣Ba∣
∫

B(xj ,a)
∫

B(xj ,a)
log ∣xj − z∣ − log ∣x − z∣ dx dz

=
1
∣Ba∣
∬

Ba×Ba

log ∣z∣ − log ∣x − z∣ dx dz.
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We have equality if B(xj, a) ⊂ ΩN but, in general, always the stated inequality. Finally, (γ) is given by (γ) = N
2∣Ba ∣2∬Ba×Ba

log ∣x − y∣ dx dy.
Computing (γ) and the bound for (β), we arrive at EJel ≥ (

1
2 log a − 1

8 −
π
4 a2
)N. By optimizing over a, we thus get EJel ≥ −(

3
8 +

1
4 log π)N

as desired. ◻
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