--- _id: '15016' abstract: - lang: eng text: 'The development, evolution, and function of the vertebrate central nervous system (CNS) can be best studied using diverse model organisms. Amphibians, with their unique phylogenetic position at the transition between aquatic and terrestrial lifestyles, are valuable for understanding the origin and evolution of the tetrapod brain and spinal cord. Their metamorphic developmental transitions and unique regenerative abilities also facilitate the discovery of mechanisms for neural circuit remodeling and replacement. The genetic toolkit for amphibians, however, remains limited, with only a few species having sequenced genomes and a small number of transgenic lines available. In mammals, recombinant adeno-associated viral vectors (AAVs) have become a powerful alternative to genome modification for visualizing and perturbing the nervous system. AAVs are DNA viruses that enable neuronal transduction in both developing and adult animals with low toxicity and spatial, temporal, and cell-type specificity. However, AAVs have never been shown to transduce amphibian cells efficiently. To bridge this gap, we established a simple, scalable, and robust strategy to screen AAV serotypes in three distantly-related amphibian species: the frogs Xenopus laevis and Pelophylax bedriagae, and the salamander Pleurodeles waltl, in both developing larval tadpoles and post-metamorphic animals. For each species, we successfully identified at least two AAV serotypes capable of infecting the CNS; however, no pan-amphibian serotype was identified, indicating rapid evolution of AAV tropism. In addition, we developed an AAV-based strategy that targets isochronic cohorts of developing neurons – a critical tool for parsing neural circuit assembly. Finally, to enable visualization and manipulation of neural circuits, we identified AAV variants for retrograde tracing of neuronal projections in adult animals. Our findings expand the toolkit for amphibians to include AAVs, establish a generalizable workflow for AAV screening in non-canonical research organisms, generate testable hypotheses for the evolution of AAV tropism, and lay the foundation for modern cross-species comparisons of vertebrate CNS development, function, and evolution. ' acknowledgement: "We would like to extend our thanks to members of the Sweeney, Tosches, Shein-Idelson,\r\nYamaguchi, Kelley, and Cline Labs for their contributions to this project, discussion and support.\r\nWe additionally thank the Beckman Institute Clover Center and Viviana Gradinaru (Caltech),\r\nKimberly Ritola (UNC NeuroTools), Flavia Gama Gomez Leite (ISTA Viral Core), and Hüseyin\r\nCihan Önal (Shigemoto Group, ISTA) for their consultation and assistance regarding AAVs, as\r\nwell as Andras Simon and Alberto Joven for feedback and discussions on AAVs in Pleurodeles.\r\nTo do these experiments, we have also benefited from the tremendous support of our animal care and imaging facilities at our respective institutions, as well as the amphibian stock centers\r\n(National Xenopus Resource Center, European Xenopus Resource Center, Xenopus Express)\r\nand our funding sources: U.S. National Science Foundation (NSF) Grant Number IOS 2110086\r\n(D.B.K., L.B.S., M.A.T., A.Y., and H.T.C.); United States-Israel Binational Science Foundation\r\n(BSF) Grant Number 2020702 (M.S.-I.); NSF Award Number 1645105 (G.J.G., M.E.H.); FTI\r\nStrategy Lower Austria Dissertation Grant Number FTI21-D-046 (D.V.); Horizon Europe ERC\r\nStarting Grant Number 101041551 (L.B.S.); NIH grant number R35GM146973 (M.A.T.); Rita Allen\r\nFoundation award number GA_032522_FE (M.A.T.); European Molecular Biology Organization\r\nLong-Term Fellowship ALTF 874-2021 (A.D.); National Science Foundation Graduate Research\r\nFellowship DGE 2036197 (E.C.J.B.); NIH grant number P40OD010997 (M.E.H)." article_processing_charge: No author: - first_name: Eliza C.B. full_name: Jaeger, Eliza C.B. last_name: Jaeger - first_name: David full_name: Vijatovic, David id: cf391e77-ec3c-11ea-a124-d69323410b58 last_name: Vijatovic - first_name: Astrid full_name: Deryckere, Astrid last_name: Deryckere - first_name: Nikol full_name: Zorin, Nikol last_name: Zorin - first_name: Akemi L. full_name: Nguyen, Akemi L. last_name: Nguyen - first_name: Georgiy full_name: Ivanian, Georgiy id: eaf2b366-cfd1-11ee-bbdf-c8790f800a05 last_name: Ivanian - first_name: Jamie full_name: Woych, Jamie last_name: Woych - first_name: Rebecca C full_name: Arnold, Rebecca C id: d6cce458-14c9-11ed-a755-c1c8fc6fde6f last_name: Arnold - first_name: Alonso full_name: Ortega Gurrola, Alonso last_name: Ortega Gurrola - first_name: Arik full_name: Shvartsman, Arik last_name: Shvartsman - first_name: Francesca full_name: Barbieri, Francesca id: a9492887-8972-11ed-ae7b-bfae10998254 last_name: Barbieri - first_name: Florina-Alexandra full_name: Toma, Florina-Alexandra id: 85dd99f2-15b2-11ec-abd3-d1ae4d57f3b5 last_name: Toma - first_name: Gary J. full_name: Gorbsky, Gary J. last_name: Gorbsky - first_name: Marko E. full_name: Horb, Marko E. last_name: Horb - first_name: Hollis T. full_name: Cline, Hollis T. last_name: Cline - first_name: Timothy F. full_name: Shay, Timothy F. last_name: Shay - first_name: Darcy B. full_name: Kelley, Darcy B. last_name: Kelley - first_name: Ayako full_name: Yamaguchi, Ayako last_name: Yamaguchi - first_name: Mark full_name: Shein-Idelson, Mark last_name: Shein-Idelson - first_name: Maria Antonietta full_name: Tosches, Maria Antonietta last_name: Tosches - first_name: Lora Beatrice Jaeger full_name: Sweeney, Lora Beatrice Jaeger id: 56BE8254-C4F0-11E9-8E45-0B23E6697425 last_name: Sweeney orcid: 0000-0001-9242-5601 citation: ama: Jaeger ECB, Vijatovic D, Deryckere A, et al. Adeno-associated viral tools to trace neural development and connectivity across amphibians. bioRxiv. doi:10.1101/2024.02.15.580289 apa: Jaeger, E. C. B., Vijatovic, D., Deryckere, A., Zorin, N., Nguyen, A. L., Ivanian, G., … Sweeney, L. B. (n.d.). Adeno-associated viral tools to trace neural development and connectivity across amphibians. bioRxiv. https://doi.org/10.1101/2024.02.15.580289 chicago: Jaeger, Eliza C.B., David Vijatovic, Astrid Deryckere, Nikol Zorin, Akemi L. Nguyen, Georgiy Ivanian, Jamie Woych, et al. “Adeno-Associated Viral Tools to Trace Neural Development and Connectivity across Amphibians.” BioRxiv, n.d. https://doi.org/10.1101/2024.02.15.580289. ieee: E. C. B. Jaeger et al., “Adeno-associated viral tools to trace neural development and connectivity across amphibians,” bioRxiv. . ista: Jaeger ECB, Vijatovic D, Deryckere A, Zorin N, Nguyen AL, Ivanian G, Woych J, Arnold RC, Ortega Gurrola A, Shvartsman A, Barbieri F, Toma F-A, Gorbsky GJ, Horb ME, Cline HT, Shay TF, Kelley DB, Yamaguchi A, Shein-Idelson M, Tosches MA, Sweeney LB. Adeno-associated viral tools to trace neural development and connectivity across amphibians. bioRxiv, 10.1101/2024.02.15.580289. mla: Jaeger, Eliza C. B., et al. “Adeno-Associated Viral Tools to Trace Neural Development and Connectivity across Amphibians.” BioRxiv, doi:10.1101/2024.02.15.580289. short: E.C.B. Jaeger, D. Vijatovic, A. Deryckere, N. Zorin, A.L. Nguyen, G. Ivanian, J. Woych, R.C. Arnold, A. Ortega Gurrola, A. Shvartsman, F. Barbieri, F.-A. Toma, G.J. Gorbsky, M.E. Horb, H.T. Cline, T.F. Shay, D.B. Kelley, A. Yamaguchi, M. Shein-Idelson, M.A. Tosches, L.B. Sweeney, BioRxiv (n.d.). date_created: 2024-02-20T09:20:32Z date_published: 2024-02-16T00:00:00Z date_updated: 2024-02-20T09:34:25Z day: '16' department: - _id: LoSw - _id: MaDe - _id: GaNo doi: 10.1101/2024.02.15.580289 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2024.02.15.580289 month: '02' oa: 1 oa_version: Preprint project: - _id: bd73af52-d553-11ed-ba76-912049f0ac7a grant_number: FTI21-D-046 name: Entwicklung und Funktion der V1 Interneuronen vom Schwimmen zum Laufen während der Metamorphose von Xenopus - _id: ebb66355-77a9-11ec-83b8-b8ac210a4dae grant_number: '101041551' name: Development and Evolution of Tetrapod Motor Circuits publication: bioRxiv publication_status: submitted status: public title: Adeno-associated viral tools to trace neural development and connectivity across amphibians type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '13097' abstract: - lang: eng text: 'Vertebrate movement is orchestrated by spinal inter- and motor neurons that, together with sensory and cognitive input, produce dynamic motor behaviors. These behaviors vary from the simple undulatory swimming of fish and larval aquatic species to the highly coordinated running, reaching and grasping of mice, humans and other mammals. This variation raises the fundamental question of how spinal circuits have changed in register with motor behavior. In simple, undulatory fish, exemplified by the lamprey, two broad classes of interneurons shape motor neuron output: ipsilateral-projecting excitatory neurons, and commissural-projecting inhibitory neurons. An additional class of ipsilateral inhibitory neurons is required to generate escape swim behavior in larval zebrafish and tadpoles. In limbed vertebrates, a more complex spinal neuron composition is observed. In this review, we provide evidence that movement elaboration correlates with an increase and specialization of these three basic interneuron types into molecularly, anatomically, and functionally distinct subpopulations. We summarize recent work linking neuron types to movement-pattern generation across fish, amphibians, reptiles, birds and mammals.' acknowledgement: 'This work was supported by the ERC Starting grant, ERC-2021-STG #101041551.' article_number: '1146449' article_processing_charge: Yes article_type: original author: - first_name: Alexia C full_name: Wilson, Alexia C id: 5230e794-15b2-11ec-abd3-e2d5335ebd1d last_name: Wilson - first_name: Lora Beatrice Jaeger full_name: Sweeney, Lora Beatrice Jaeger id: 56BE8254-C4F0-11E9-8E45-0B23E6697425 last_name: Sweeney orcid: 0000-0001-9242-5601 citation: ama: 'Wilson AC, Sweeney LB. Spinal cords: Symphonies of interneurons across species. Frontiers in Neural Circuits. 2023;17. doi:10.3389/fncir.2023.1146449' apa: 'Wilson, A. C., & Sweeney, L. B. (2023). Spinal cords: Symphonies of interneurons across species. Frontiers in Neural Circuits. Frontiers. https://doi.org/10.3389/fncir.2023.1146449' chicago: 'Wilson, Alexia C, and Lora B. Sweeney. “Spinal Cords: Symphonies of Interneurons across Species.” Frontiers in Neural Circuits. Frontiers, 2023. https://doi.org/10.3389/fncir.2023.1146449.' ieee: 'A. C. Wilson and L. B. Sweeney, “Spinal cords: Symphonies of interneurons across species,” Frontiers in Neural Circuits, vol. 17. Frontiers, 2023.' ista: 'Wilson AC, Sweeney LB. 2023. Spinal cords: Symphonies of interneurons across species. Frontiers in Neural Circuits. 17, 1146449.' mla: 'Wilson, Alexia C., and Lora B. Sweeney. “Spinal Cords: Symphonies of Interneurons across Species.” Frontiers in Neural Circuits, vol. 17, 1146449, Frontiers, 2023, doi:10.3389/fncir.2023.1146449.' short: A.C. Wilson, L.B. Sweeney, Frontiers in Neural Circuits 17 (2023). date_created: 2023-05-28T22:01:04Z date_published: 2023-04-26T00:00:00Z date_updated: 2024-01-31T10:15:53Z day: '26' ddc: - '570' department: - _id: LoSw doi: 10.3389/fncir.2023.1146449 external_id: isi: - '000984606200001' pmid: - '37180760' file: - access_level: open_access checksum: 7efd06de284a28e91e97127611a9c3fd content_type: application/pdf creator: dernst date_created: 2024-01-03T13:33:21Z date_updated: 2024-01-03T13:33:21Z file_id: '14729' file_name: 2023_FrontiersNeuralCircuits_Wilson.pdf file_size: 6667157 relation: main_file success: 1 file_date_updated: 2024-01-03T13:33:21Z has_accepted_license: '1' intvolume: ' 17' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: ebb66355-77a9-11ec-83b8-b8ac210a4dae grant_number: '101041551' name: Development and Evolution of Tetrapod Motor Circuits publication: Frontiers in Neural Circuits publication_identifier: issn: - 1662-5110 publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: 'Spinal cords: Symphonies of interneurons across species' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2023' ... --- _id: '10918' abstract: - lang: eng text: Cellular metabolism must adapt to changing demands to enable homeostasis. During immune responses or cancer metastasis, cells leading migration into challenging environments require an energy boost, but what controls this capacity is unclear. Here, we study a previously uncharacterized nuclear protein, Atossa (encoded by CG9005), which supports macrophage invasion into the germband of Drosophila by controlling cellular metabolism. First, nuclear Atossa increases mRNA levels of Porthos, a DEAD-box protein, and of two metabolic enzymes, lysine-α-ketoglutarate reductase (LKR/SDH) and NADPH glyoxylate reductase (GR/HPR), thus enhancing mitochondrial bioenergetics. Then Porthos supports ribosome assembly and thereby raises the translational efficiency of a subset of mRNAs, including those affecting mitochondrial functions, the electron transport chain, and metabolism. Mitochondrial respiration measurements, metabolomics, and live imaging indicate that Atossa and Porthos power up OxPhos and energy production to promote the forging of a path into tissues by leading macrophages. Since many crucial physiological responses require increases in mitochondrial energy output, this previously undescribed genetic program may modulate a wide range of cellular behaviors. acknowledged_ssus: - _id: Bio acknowledgement: "We thank the DGRC (NIH grant 2P40OD010949-10A1) for plasmids, the BDSC (NIH grant P40OD018537) and the VDRC for fly stocks, FlyBase for essential genomic information, the BDGP in situ database for data (Tomancak et al, 2007), the IST Austria Bioimaging facility for support, the VBC Core Facilities for RNA sequencing and analysis, and C. Guet, C. Navarro, C. Desplan, T. Lecuit, I. Miguel-Aliaga, and Siekhaus group members for comments on the manuscript. The VBCF Metabolomics Facility is funded by the City of Vienna through the Vienna Business Agency. This work was supported by the Marie Curie CIG 334077/IRTIM (DES), Austrian Science Fund (FWF) Lise Meitner Fellowship M2379-B28 (MA and DES), Austrian Science Fund (FWF) grant ASI_FWF01_P29638S (DES), NIH/NIGMS (R01GM111779-06 (PR), RO1GM135628-01 (PR), European Research Council (ERC) grant no. 677006 “CMIL” (AB), and Natural Sciences and Engineering Research Council of Canada\r\n(RGPIN-2019-06766) (TRH). " article_number: e109049 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Shamsi full_name: Emtenani, Shamsi id: 49D32318-F248-11E8-B48F-1D18A9856A87 last_name: Emtenani orcid: 0000-0001-6981-6938 - first_name: Elliot T full_name: Martin, Elliot T last_name: Martin - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Julia full_name: Bicher, Julia id: 3CCBB46E-F248-11E8-B48F-1D18A9856A87 last_name: Bicher - first_name: Jakob-Wendelin full_name: Genger, Jakob-Wendelin last_name: Genger - first_name: Thomas full_name: Köcher, Thomas last_name: Köcher - first_name: Maria full_name: Akhmanova, Maria id: 3425EC26-F248-11E8-B48F-1D18A9856A87 last_name: Akhmanova orcid: 0000-0003-1522-3162 - first_name: Mariana full_name: Pereira Guarda, Mariana id: 6de81d9d-e2f2-11eb-945a-af8bc2a60b26 last_name: Pereira Guarda - first_name: Marko full_name: Roblek, Marko id: 3047D808-F248-11E8-B48F-1D18A9856A87 last_name: Roblek orcid: 0000-0001-9588-1389 - first_name: Andreas full_name: Bergthaler, Andreas last_name: Bergthaler - first_name: Thomas R full_name: Hurd, Thomas R last_name: Hurd - first_name: Prashanth full_name: Rangan, Prashanth last_name: Rangan - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 citation: ama: Emtenani S, Martin ET, György A, et al. Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa-Porthos axis in Drosophila. The Embo Journal. 2022;41. doi:10.15252/embj.2021109049 apa: Emtenani, S., Martin, E. T., György, A., Bicher, J., Genger, J.-W., Köcher, T., … Siekhaus, D. E. (2022). Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa-Porthos axis in Drosophila. The Embo Journal. Embo Press. https://doi.org/10.15252/embj.2021109049 chicago: Emtenani, Shamsi, Elliot T Martin, Attila György, Julia Bicher, Jakob-Wendelin Genger, Thomas Köcher, Maria Akhmanova, et al. “Macrophage Mitochondrial Bioenergetics and Tissue Invasion Are Boosted by an Atossa-Porthos Axis in Drosophila.” The Embo Journal. Embo Press, 2022. https://doi.org/10.15252/embj.2021109049. ieee: S. Emtenani et al., “Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa-Porthos axis in Drosophila,” The Embo Journal, vol. 41. Embo Press, 2022. ista: Emtenani S, Martin ET, György A, Bicher J, Genger J-W, Köcher T, Akhmanova M, Pereira Guarda M, Roblek M, Bergthaler A, Hurd TR, Rangan P, Siekhaus DE. 2022. Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa-Porthos axis in Drosophila. The Embo Journal. 41, e109049. mla: Emtenani, Shamsi, et al. “Macrophage Mitochondrial Bioenergetics and Tissue Invasion Are Boosted by an Atossa-Porthos Axis in Drosophila.” The Embo Journal, vol. 41, e109049, Embo Press, 2022, doi:10.15252/embj.2021109049. short: S. Emtenani, E.T. Martin, A. György, J. Bicher, J.-W. Genger, T. Köcher, M. Akhmanova, M. Pereira Guarda, M. Roblek, A. Bergthaler, T.R. Hurd, P. Rangan, D.E. Siekhaus, The Embo Journal 41 (2022). date_created: 2022-03-24T13:23:09Z date_published: 2022-03-23T00:00:00Z date_updated: 2023-08-03T06:13:14Z day: '23' ddc: - '570' department: - _id: DaSi - _id: LoSw doi: 10.15252/embj.2021109049 ec_funded: 1 external_id: isi: - '000771957000001' file: - access_level: open_access checksum: dba48580fe0fefaa4c63078d1d2a35df content_type: application/pdf creator: siekhaus date_created: 2022-03-24T13:22:41Z date_updated: 2022-03-24T13:22:41Z file_id: '10919' file_name: Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa-Porthos axis in Drosopila.pdf file_size: 4344585 relation: main_file file_date_updated: 2022-03-24T13:22:41Z has_accepted_license: '1' intvolume: ' 41' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 2536F660-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '334077' name: Investigating the role of transporters in invasive migration through junctions - _id: 264CBBAC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02379 name: Modeling epithelial tissue mechanics during cell invasion - _id: 253B6E48-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29638 name: Drosophila TNFa´s Funktion in Immunzellen publication: The Embo Journal publication_identifier: eissn: - 1460-2075 publication_status: published publisher: Embo Press quality_controlled: '1' scopus_import: '1' status: public title: Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa-Porthos axis in Drosophila tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2022' ... --- _id: '9363' abstract: - lang: eng text: Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson’s disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair. acknowledgement: We thank R. Cagan, A. Whitworth and J. Nagpal for fly lines and advice, S. Herlitze for provision of a tissue culture illuminator, and Verian Bader for help with statistical analysis. article_processing_charge: No author: - first_name: Álvaro full_name: Inglés Prieto, Álvaro id: 2A9DB292-F248-11E8-B48F-1D18A9856A87 last_name: Inglés Prieto orcid: 0000-0002-5409-8571 - first_name: Nikolas full_name: Furthmann, Nikolas last_name: Furthmann - first_name: Samuel H. full_name: Crossman, Samuel H. last_name: Crossman - first_name: Alexandra Madelaine full_name: Tichy, Alexandra Madelaine last_name: Tichy - first_name: Nina full_name: Hoyer, Nina last_name: Hoyer - first_name: Meike full_name: Petersen, Meike last_name: Petersen - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden - first_name: Julia full_name: Bicher, Julia id: 3CCBB46E-F248-11E8-B48F-1D18A9856A87 last_name: Bicher - first_name: Eva full_name: Gschaider-Reichhart, Eva id: 3FEE232A-F248-11E8-B48F-1D18A9856A87 last_name: Gschaider-Reichhart orcid: 0000-0002-7218-7738 - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 - first_name: Peter full_name: Soba, Peter last_name: Soba - first_name: Konstanze F. full_name: Winklhofer, Konstanze F. last_name: Winklhofer - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 citation: ama: Inglés Prieto Á, Furthmann N, Crossman SH, et al. Optogenetic delivery of trophic signals in a genetic model of Parkinson’s disease. PLoS genetics. 2021;17(4):e1009479. doi:10.1371/journal.pgen.1009479 apa: Inglés Prieto, Á., Furthmann, N., Crossman, S. H., Tichy, A. M., Hoyer, N., Petersen, M., … Janovjak, H. L. (2021). Optogenetic delivery of trophic signals in a genetic model of Parkinson’s disease. PLoS Genetics. Public Library of Science. https://doi.org/10.1371/journal.pgen.1009479 chicago: Inglés Prieto, Álvaro, Nikolas Furthmann, Samuel H. Crossman, Alexandra Madelaine Tichy, Nina Hoyer, Meike Petersen, Vanessa Zheden, et al. “Optogenetic Delivery of Trophic Signals in a Genetic Model of Parkinson’s Disease.” PLoS Genetics. Public Library of Science, 2021. https://doi.org/10.1371/journal.pgen.1009479. ieee: Á. Inglés Prieto et al., “Optogenetic delivery of trophic signals in a genetic model of Parkinson’s disease,” PLoS genetics, vol. 17, no. 4. Public Library of Science, p. e1009479, 2021. ista: Inglés Prieto Á, Furthmann N, Crossman SH, Tichy AM, Hoyer N, Petersen M, Zheden V, Bicher J, Gschaider-Reichhart E, György A, Siekhaus DE, Soba P, Winklhofer KF, Janovjak HL. 2021. Optogenetic delivery of trophic signals in a genetic model of Parkinson’s disease. PLoS genetics. 17(4), e1009479. mla: Inglés Prieto, Álvaro, et al. “Optogenetic Delivery of Trophic Signals in a Genetic Model of Parkinson’s Disease.” PLoS Genetics, vol. 17, no. 4, Public Library of Science, 2021, p. e1009479, doi:10.1371/journal.pgen.1009479. short: Á. Inglés Prieto, N. Furthmann, S.H. Crossman, A.M. Tichy, N. Hoyer, M. Petersen, V. Zheden, J. Bicher, E. Gschaider-Reichhart, A. György, D.E. Siekhaus, P. Soba, K.F. Winklhofer, H.L. Janovjak, PLoS Genetics 17 (2021) e1009479. date_created: 2021-05-02T22:01:29Z date_published: 2021-04-01T00:00:00Z date_updated: 2023-08-08T13:17:47Z day: '01' ddc: - '570' department: - _id: EM-Fac - _id: LoSw - _id: DaSi doi: 10.1371/journal.pgen.1009479 external_id: isi: - '000640606700001' file: - access_level: open_access checksum: 82a74668f863e8dfb22fdd4f845c92ce content_type: application/pdf creator: kschuh date_created: 2021-05-04T09:05:27Z date_updated: 2021-05-04T09:05:27Z file_id: '9369' file_name: 2021_PLOS_Ingles-Prieto.pdf file_size: 3072764 relation: main_file success: 1 file_date_updated: 2021-05-04T09:05:27Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: e1009479 publication: PLoS genetics publication_identifier: eissn: - '15537404' publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Optogenetic delivery of trophic signals in a genetic model of Parkinson's disease tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2021' ... --- _id: '9603' abstract: - lang: eng text: Mosaic analysis with double markers (MADM) offers one approach to visualize and concomitantly manipulate genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of lineage, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autonomous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs. With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation patterns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic stem cell division. acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: PreCl acknowledgement: We thank the Bioimaging, Life Science, and Pre-Clinical Facilities at IST Austria; M.P. Postiglione, C. Simbriger, K. Valoskova, C. Schwayer, T. Hussain, M. Pieber, and V. Wimmer for initial experiments, technical support, and/or assistance; R. Shigemoto for sharing iv (Dnah11 mutant) mice; and M. Sixt and all members of the Hippenmeyer lab for discussion. This work was supported by National Institutes of Health grants ( R01-NS050580 to L.L. and F32MH096361 to L.A.S.). L.L. is an investigator of HHMI. N.A. received support from FWF Firnberg-Programm ( T 1031 ). A.H.H. is a recipient of a DOC Fellowship (24812) of the Austrian Academy of Sciences . This work also received support from IST Austria institutional funds , FWF SFB F78 to S.H., the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme ( FP7/2007-2013 ) under REA grant agreement no 618444 to S.H., and the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 725780 LinPro ) to S.H. article_number: '109274' article_processing_charge: No article_type: original author: - first_name: Ximena full_name: Contreras, Ximena id: 475990FE-F248-11E8-B48F-1D18A9856A87 last_name: Contreras - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Amarbayasgalan full_name: Davaatseren, Amarbayasgalan id: 70ADC922-B424-11E9-99E3-BA18E6697425 last_name: Davaatseren - first_name: Andi H full_name: Hansen, Andi H id: 38853E16-F248-11E8-B48F-1D18A9856A87 last_name: Hansen - first_name: Johanna full_name: Sonntag, Johanna id: 32FE7D7C-F248-11E8-B48F-1D18A9856A87 last_name: Sonntag - first_name: Lill full_name: Andersen, Lill last_name: Andersen - first_name: Tina full_name: Bernthaler, Tina last_name: Bernthaler - first_name: Carmen full_name: Streicher, Carmen id: 36BCB99C-F248-11E8-B48F-1D18A9856A87 last_name: Streicher - first_name: Anna-Magdalena full_name: Heger, Anna-Magdalena id: 4B76FFD2-F248-11E8-B48F-1D18A9856A87 last_name: Heger - first_name: Randy L. full_name: Johnson, Randy L. last_name: Johnson - first_name: Lindsay A. full_name: Schwarz, Lindsay A. last_name: Schwarz - first_name: Liqun full_name: Luo, Liqun last_name: Luo - first_name: Thomas full_name: Rülicke, Thomas last_name: Rülicke - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Contreras X, Amberg N, Davaatseren A, et al. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports. 2021;35(12). doi:10.1016/j.celrep.2021.109274 apa: Contreras, X., Amberg, N., Davaatseren, A., Hansen, A. H., Sonntag, J., Andersen, L., … Hippenmeyer, S. (2021). A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports. Cell Press. https://doi.org/10.1016/j.celrep.2021.109274 chicago: Contreras, Ximena, Nicole Amberg, Amarbayasgalan Davaatseren, Andi H Hansen, Johanna Sonntag, Lill Andersen, Tina Bernthaler, et al. “A Genome-Wide Library of MADM Mice for Single-Cell Genetic Mosaic Analysis.” Cell Reports. Cell Press, 2021. https://doi.org/10.1016/j.celrep.2021.109274. ieee: X. Contreras et al., “A genome-wide library of MADM mice for single-cell genetic mosaic analysis,” Cell Reports, vol. 35, no. 12. Cell Press, 2021. ista: Contreras X, Amberg N, Davaatseren A, Hansen AH, Sonntag J, Andersen L, Bernthaler T, Streicher C, Heger A-M, Johnson RL, Schwarz LA, Luo L, Rülicke T, Hippenmeyer S. 2021. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports. 35(12), 109274. mla: Contreras, Ximena, et al. “A Genome-Wide Library of MADM Mice for Single-Cell Genetic Mosaic Analysis.” Cell Reports, vol. 35, no. 12, 109274, Cell Press, 2021, doi:10.1016/j.celrep.2021.109274. short: X. Contreras, N. Amberg, A. Davaatseren, A.H. Hansen, J. Sonntag, L. Andersen, T. Bernthaler, C. Streicher, A.-M. Heger, R.L. Johnson, L.A. Schwarz, L. Luo, T. Rülicke, S. Hippenmeyer, Cell Reports 35 (2021). date_created: 2021-06-27T22:01:48Z date_published: 2021-06-22T00:00:00Z date_updated: 2023-08-10T13:55:00Z day: '22' ddc: - '570' department: - _id: SiHi - _id: LoSw - _id: PreCl doi: 10.1016/j.celrep.2021.109274 ec_funded: 1 external_id: isi: - '000664463600016' file: - access_level: open_access checksum: d49520fdcbbb5c2f883bddb67cee5d77 content_type: application/pdf creator: asandaue date_created: 2021-06-28T14:06:24Z date_updated: 2021-06-28T14:06:24Z file_id: '9613' file_name: 2021_CellReports_Contreras.pdf file_size: 7653149 relation: main_file success: 1 file_date_updated: 2021-06-28T14:06:24Z has_accepted_license: '1' intvolume: ' 35' isi: 1 issue: '12' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '06' oa: 1 oa_version: Published Version project: - _id: 2625A13E-B435-11E9-9278-68D0E5697425 grant_number: '24812' name: Molecular Mechanisms of Radial Neuronal Migration - _id: 25D61E48-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618444' name: Molecular Mechanisms of Cerebral Cortex Development - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Cell Reports publication_identifier: eissn: - '22111247' publication_status: published publisher: Cell Press quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/boost-for-mouse-genetic-analysis/ scopus_import: '1' status: public title: A genome-wide library of MADM mice for single-cell genetic mosaic analysis tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 35 year: '2021' ... --- _id: '8914' abstract: - lang: eng text: Amyotrophic lateral sclerosis (ALS) leads to a loss of specific motor neuron populations in the spinal cord and cortex. Emerging evidence suggests that interneurons may also be affected, but a detailed characterization of interneuron loss and its potential impacts on motor neuron loss and disease progression is lacking. To examine this issue, the fate of V1 inhibitory neurons during ALS was assessed in the ventral spinal cord using the SODG93A mouse model. The V1 population makes up ∼30% of all ventral inhibitory neurons, ∼50% of direct inhibitory synaptic contacts onto motor neuron cell bodies, and is thought to play a key role in modulating motor output, in part through recurrent and reciprocal inhibitory circuits. We find that approximately half of V1 inhibitory neurons are lost in SODG93A mice at late disease stages, but that this loss is delayed relative to the loss of motor neurons and V2a excitatory neurons. We further identify V1 subpopulations based on transcription factor expression that are differentially susceptible to degeneration in SODG93A mice. At an early disease stage, we show that V1 synaptic contacts with motor neuron cell bodies increase, suggesting an upregulation of inhibition before V1 neurons are lost in substantial numbers. These data support a model in which progressive changes in V1 synaptic contacts early in disease, and in select V1 subpopulations at later stages, represent a compensatory upregulation and then deleterious breakdown of specific interneuron circuits within the spinal cord. acknowledgement: This work was made possible by the generous support of Project ALS. Imaging and related analyses were facilitated by The Waitt Advanced Biophotonics Center Core at the Salk Institute, supported by grants from NIH-NCI CCSG (P30 014195) and NINDS Neuroscience Center (NS072031). The authors would like to additionally thank Drs. Jane Dodd, Robert Brownstone, and Laskaro Zagoraiou for helpful comments on the manuscript. This manuscript is dedicated to Tom Jessell, an inspirational scientist, friend and mentor. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Alina full_name: Salamatina, Alina last_name: Salamatina - first_name: Jerry H full_name: Yang, Jerry H last_name: Yang - first_name: Susan full_name: Brenner-Morton, Susan last_name: Brenner-Morton - first_name: 'Jay B ' full_name: 'Bikoff, Jay B ' last_name: Bikoff - first_name: Linjing full_name: Fang, Linjing last_name: Fang - first_name: Christopher R full_name: Kintner, Christopher R last_name: Kintner - first_name: Thomas M full_name: Jessell, Thomas M last_name: Jessell - first_name: Lora Beatrice Jaeger full_name: Sweeney, Lora Beatrice Jaeger id: 56BE8254-C4F0-11E9-8E45-0B23E6697425 last_name: Sweeney orcid: 0000-0001-9242-5601 citation: ama: Salamatina A, Yang JH, Brenner-Morton S, et al. Differential loss of spinal interneurons in a mouse model of ALS. Neuroscience. 2020;450:81-95. doi:10.1016/j.neuroscience.2020.08.011 apa: Salamatina, A., Yang, J. H., Brenner-Morton, S., Bikoff, J. B., Fang, L., Kintner, C. R., … Sweeney, L. B. (2020). Differential loss of spinal interneurons in a mouse model of ALS. Neuroscience. Elsevier. https://doi.org/10.1016/j.neuroscience.2020.08.011 chicago: Salamatina, Alina, Jerry H Yang, Susan Brenner-Morton, Jay B Bikoff, Linjing Fang, Christopher R Kintner, Thomas M Jessell, and Lora B. Sweeney. “Differential Loss of Spinal Interneurons in a Mouse Model of ALS.” Neuroscience. Elsevier, 2020. https://doi.org/10.1016/j.neuroscience.2020.08.011. ieee: A. Salamatina et al., “Differential loss of spinal interneurons in a mouse model of ALS,” Neuroscience, vol. 450. Elsevier, pp. 81–95, 2020. ista: Salamatina A, Yang JH, Brenner-Morton S, Bikoff JB, Fang L, Kintner CR, Jessell TM, Sweeney LB. 2020. Differential loss of spinal interneurons in a mouse model of ALS. Neuroscience. 450, 81–95. mla: Salamatina, Alina, et al. “Differential Loss of Spinal Interneurons in a Mouse Model of ALS.” Neuroscience, vol. 450, Elsevier, 2020, pp. 81–95, doi:10.1016/j.neuroscience.2020.08.011. short: A. Salamatina, J.H. Yang, S. Brenner-Morton, J.B. Bikoff, L. Fang, C.R. Kintner, T.M. Jessell, L.B. Sweeney, Neuroscience 450 (2020) 81–95. date_created: 2020-12-03T11:47:31Z date_published: 2020-12-01T00:00:00Z date_updated: 2024-01-31T10:15:34Z day: '01' ddc: - '570' department: - _id: LoSw doi: 10.1016/j.neuroscience.2020.08.011 external_id: isi: - '000595588700008' pmid: - '32858144' file: - access_level: open_access checksum: da7413c819e079720669c82451b49294 content_type: application/pdf creator: dernst date_created: 2020-12-03T11:45:26Z date_updated: 2020-12-03T11:45:26Z file_id: '8915' file_name: 2020_Neuroscience_Salamatina.pdf file_size: 4071247 relation: main_file success: 1 file_date_updated: 2020-12-03T11:45:26Z has_accepted_license: '1' intvolume: ' 450' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 81-95 pmid: 1 publication: Neuroscience publication_identifier: issn: - 0306-4522 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Differential loss of spinal interneurons in a mouse model of ALS tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 450 year: '2020' ...