TY - JOUR AB - Photoisomerization of azobenzenes from their stable E isomer to the metastable Z state is the basis of numerous applications of these molecules. However, this reaction typically requires ultraviolet light, which limits applicability. In this study, we introduce disequilibration by sensitization under confinement (DESC), a supramolecular approach to induce the E-to-Z isomerization by using light of a desired color, including red. DESC relies on a combination of a macrocyclic host and a photosensitizer, which act together to selectively bind and sensitize E-azobenzenes for isomerization. The Z isomer lacks strong affinity for and is expelled from the host, which can then convert additional E-azobenzenes to the Z state. In this way, the host–photosensitizer complex converts photon energy into chemical energy in the form of out-of-equilibrium photostationary states, including ones that cannot be accessed through direct photoexcitation. AU - Gemen, Julius AU - Church, Jonathan R. AU - Ruoko, Tero-Petri AU - Durandin, Nikita AU - Białek, Michał J. AU - Weissenfels, Maren AU - Feller, Moran AU - Kazes, Miri AU - Borin, Veniamin A. AU - Odaybat, Magdalena AU - Kalepu, Rishir AU - Diskin-Posner, Yael AU - Oron, Dan AU - Fuchter, Matthew J. AU - Priimagi, Arri AU - Schapiro, Igor AU - Klajn, Rafal ID - 13340 IS - 6664 JF - Science TI - Disequilibrating azoarenes by visible-light sensitization under confinement VL - 381 ER - TY - JOUR AB - The architecture of self-assembled host molecules can profoundly affect the properties of the encapsulated guests. For example, a rigid cage with small windows can efficiently protect its contents from the environment; in contrast, tube-shaped, flexible hosts with large openings and an easily accessible cavity are ideally suited for catalysis. Here, we report a “Janus” nature of a Pd6L4 coordination host previously reported to exist exclusively as a tube isomer (T). We show that upon encapsulating various tetrahedrally shaped guests, T can reconfigure into a cage-shaped host (C) in quantitative yield. Extracting the guest affords empty C, which is metastable and spontaneously relaxes to T, and the T⇄C interconversion can be repeated for multiple cycles. Reversible toggling between two vastly different isomers paves the way toward controlling functional properties of coordination hosts “on demand”. AU - Hema, Kuntrapakam AU - Grommet, Angela B. AU - Białek, Michał J. AU - Wang, Jinhua AU - Schneider, Laura AU - Drechsler, Christoph AU - Yanshyna, Oksana AU - Diskin-Posner, Yael AU - Clever, Guido H. AU - Klajn, Rafal ID - 14664 IS - 45 JF - Journal of the American Chemical Society SN - 0002-7863 TI - Guest encapsulation alters the thermodynamic landscape of a coordination host VL - 145 ER -