TY - JOUR AB - We investigate how the critical driving amplitude at the Floquet many-body localized (MBL) to ergodic phase transition differs between smooth and nonsmooth drives. To this end, we numerically study a disordered spin-1/2 chain which is periodically driven by a sine or square-wave drive over a wide range of driving frequencies. In both cases the critical driving amplitude increases monotonically with the frequency, and at large frequencies it is identical for the two drives. However, at low and intermediate frequencies the critical amplitude of the square-wave drive depends strongly on the frequency, while that of the sinusoidal drive is almost constant over a wide frequency range. By analyzing the density of drive-induced resonances we conclude that this difference is due to resonances induced by the higher harmonics which are present (absent) in the Fourier spectrum of the square-wave (sine) drive. Furthermore, we suggest a numerically efficient method for estimating the frequency dependence of the critical driving amplitudes for different drives which is based on calculating the density of drive-induced resonances. We conclude that delocalization occurs once the density of drive-induced resonances reaches a critical value determined only by the static system. AU - Diringer, Asaf A. AU - Gulden, Tobias ID - 8198 IS - 21 JF - Physical Review B SN - 24699950 TI - Impact of drive harmonics on the stability of Floquet many-body localization VL - 103 ER - TY - JOUR AB - We present conductance-matrix measurements in long, three-terminal hybrid superconductor-semiconductor nanowires, and compare with theoretical predictions of a magnetic-field-driven, topological quantum phase transition. By examining the nonlocal conductance, we identify the closure of the excitation gap in the bulk of the semiconductor before the emergence of zero-bias peaks, ruling out spurious gap-closure signatures from localized states. We observe that after the gap closes, nonlocal signals and zero-bias peaks fluctuate strongly at both ends, inconsistent with a simple picture of clean topological superconductivity. AU - Puglia, Denise AU - Martinez, E. A. AU - Ménard, G. C. AU - Pöschl, A. AU - Gronin, S. AU - Gardner, G. C. AU - Kallaher, R. AU - Manfra, M. J. AU - Marcus, C. M. AU - Higginbotham, Andrew P AU - Casparis, L. ID - 9570 IS - 23 JF - Physical Review B SN - 24699950 TI - Closing of the induced gap in a hybrid superconductor-semiconductor nanowire VL - 103 ER - TY - JOUR AB - We study a mobile quantum impurity, possessing internal rotational degrees of freedom, confined to a ring in the presence of a many-particle bosonic bath. By considering the recently introduced rotating polaron problem, we define the Hamiltonian and examine the energy spectrum. The weak-coupling regime is studied by means of a variational ansatz in the truncated Fock space. The corresponding spectrum indicates that there emerges a coupling between the internal and orbital angular momenta of the impurity as a consequence of the phonon exchange. We interpret the coupling as a phonon-mediated spin-orbit coupling and quantify it by using a correlation function between the internal and the orbital angular momentum operators. The strong-coupling regime is investigated within the Pekar approach, and it is shown that the correlation function of the ground state shows a kink at a critical coupling, that is explained by a sharp transition from the noninteracting state to the states that exhibit strong interaction with the surroundings. The results might find applications in such fields as spintronics or topological insulators where spin-orbit coupling is of crucial importance. AU - Maslov, Mikhail AU - Lemeshko, Mikhail AU - Yakaboylu, Enderalp ID - 7933 IS - 18 JF - Physical Review B SN - 24699950 TI - Synthetic spin-orbit coupling mediated by a bosonic environment VL - 101 ER - TY - JOUR AB - Superconductor insulator transition in transverse magnetic field is studied in the highly disordered MoC film with the product of the Fermi momentum and the mean free path kF*l close to unity. Surprisingly, the Zeeman paramagnetic effects dominate over orbital coupling on both sides of the transition. In superconducting state it is evidenced by a high upper critical magnetic field 𝐵𝑐2, by its square root dependence on temperature, as well as by the Zeeman splitting of the quasiparticle density of states (DOS) measured by scanning tunneling microscopy. At 𝐵𝑐2 a logarithmic anomaly in DOS is observed. This anomaly is further enhanced in increasing magnetic field, which is explained by the Zeeman splitting of the Altshuler-Aronov DOS driving the system into a more insulating or resistive state. Spin dependent Altshuler-Aronov correction is also needed to explain the transport behavior above 𝐵𝑐2. AU - Zemlicka, Martin AU - Kopčík, M. AU - Szabó, P. AU - Samuely, T. AU - Kačmarčík, J. AU - Neilinger, P. AU - Grajcar, M. AU - Samuely, P. ID - 8944 IS - 18 JF - Physical Review B SN - 24699950 TI - Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field VL - 102 ER - TY - JOUR AB - In the superconducting regime of FeTe(1−x)Sex, there exist two types of vortices which are distinguished by the presence or absence of zero-energy states in their core. To understand their origin, we examine the interplay of Zeeman coupling and superconducting pairings in three-dimensional metals with band inversion. Weak Zeeman fields are found to suppress intraorbital spin-singlet pairing, known to localize the states at the ends of the vortices on the surface. On the other hand, an orbital-triplet pairing is shown to be stable against Zeeman interactions, but leads to delocalized zero-energy Majorana modes which extend through the vortex. In contrast, the finite-energy vortex modes remain localized at the vortex ends even when the pairing is of orbital-triplet form. Phenomenologically, this manifests as an observed disappearance of zero-bias peaks within the cores of topological vortices upon an increase of the applied magnetic field. The presence of magnetic impurities in FeTe(1−x)Sex, which are attracted to the vortices, would lead to such Zeeman-induced delocalization of Majorana modes in a fraction of vortices that capture a large enough number of magnetic impurities. Our results provide an explanation for the dichotomy between topological and nontopological vortices recently observed in FeTe(1−x)Sex. AU - Ghazaryan, Areg AU - Lopes, P. L.S. AU - Hosur, Pavan AU - Gilbert, Matthew J. AU - Ghaemi, Pouyan ID - 7428 IS - 2 JF - Physical Review B SN - 24699950 TI - Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors VL - 101 ER -