TY - GEN AB - Dataset for manuscript 'Social network plasticity decreases disease transmission in a eusocial insect' Compared to previous versions: - raw image files added - correction of URLs within README.txt file AU - Stroeymeyt, Nathalie AU - Grasse, Anna V AU - Crespi, Alessandro AU - Mersch, Danielle AU - Cremer, Sylvia AU - Keller, Laurent ID - 13055 TI - Social network plasticity decreases disease transmission in a eusocial insect ER - TY - JOUR AB - Conventional ultra-high sensitivity detectors in the millimeter-wave range are usually cooled as their own thermal noise at room temperature would mask the weak received radiation. The need for cryogenic systems increases the cost and complexity of the instruments, hindering the development of, among others, airborne and space applications. In this work, the nonlinear parametric upconversion of millimeter-wave radiation to the optical domain inside high-quality (Q) lithium niobate whispering-gallery mode (WGM) resonators is proposed for ultra-low noise detection. We experimentally demonstrate coherent upconversion of millimeter-wave signals to a 1550 nm telecom carrier, with a photon conversion efficiency surpassing the state-of-the-art by 2 orders of magnitude. Moreover, a theoretical model shows that the thermal equilibrium of counterpropagating WGMs is broken by overcoupling the millimeter-wave WGM, effectively cooling the upconverted mode and allowing ultra-low noise detection. By theoretically estimating the sensitivity of a correlation radiometer based on the presented scheme, it is found that room-temperature radiometers with better sensitivity than state-of-the-art high-electron-mobility transistor (HEMT)-based radiometers can be designed. This detection paradigm can be used to develop room-temperature instrumentation for radio astronomy, earth observation, planetary missions, and imaging systems. AU - Botello, Gabriel AU - Sedlmeir, Florian AU - Rueda Sanchez, Alfredo R AU - Abdalmalak, Kerlos AU - Brown, Elliott AU - Leuchs, Gerd AU - Preu, Sascha AU - Segovia Vargas, Daniel AU - Strekalov, Dmitry AU - Munoz, Luis AU - Schwefel, Harald ID - 22 IS - 10 JF - Optica SN - 23342536 TI - Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters VL - 5 ER - TY - JOUR AB - Recently, contract-based design has been proposed as an “orthogonal” approach that complements system design methodologies proposed so far to cope with the complexity of system design. Contract-based design provides a rigorous scaffolding for verification, analysis, abstraction/refinement, and even synthesis. A number of results have been obtained in this domain but a unified treatment of the topic that can help put contract-based design in perspective was missing. This monograph intends to provide such a treatment where contracts are precisely defined and characterized so that they can be used in design methodologies with no ambiguity. In particular, this monograph identifies the essence of complex system design using contracts through a mathematical “meta-theory”, where all the properties of the methodology are derived from a very abstract and generic notion of contract. We show that the meta-theory provides deep and illuminating links with existing contract and interface theories, as well as guidelines for designing new theories. Our study encompasses contracts for both software and systems, with emphasis on the latter. We illustrate the use of contracts with two examples: requirement engineering for a parking garage management, and the development of contracts for timing and scheduling in the context of the Autosar methodology in use in the automotive sector. AU - Benveniste, Albert AU - Nickovic, Dejan AU - Caillaud, Benoît AU - Passerone, Roberto AU - Raclet, Jean Baptiste AU - Reinkemeier, Philipp AU - Sangiovanni-Vincentelli, Alberto AU - Damm, Werner AU - Henzinger, Thomas A AU - Larsen, Kim G. ID - 5677 IS - 2-3 JF - Foundations and Trends in Electronic Design Automation SN - 1551-3939 TI - Contracts for system design VL - 12 ER - TY - JOUR AB - It is shown that two fundamentally different phenomena, the bound states in continuum and the spectral singularity (or time-reversed spectral singularity), can occur simultaneously. This can be achieved in a rectangular core dielectric waveguide with an embedded active (or absorbing) layer. In such a system a two-dimensional bound state in a continuum is created in the plane of a waveguide cross section, and it is emitted or absorbed along the waveguide core. The idea can be used for experimental implementation of a laser or a coherent-perfect-absorber for a photonic bound state that resides in a continuous spectrum. AU - Midya, Bikashkali AU - Konotop, Vladimir ID - 435 IS - 3 JF - Optics Letters TI - Coherent-perfect-absorber and laser for bound states in a continuum VL - 43 ER - TY - JOUR AB - Genome-scale diversity data are increasingly available in a variety of biological systems, and can be used to reconstruct the past evolutionary history of species divergence. However, extracting the full demographic information from these data is not trivial, and requires inferential methods that account for the diversity of coalescent histories throughout the genome. Here, we evaluate the potential and limitations of one such approach. We reexamine a well-known system of mussel sister species, using the joint site frequency spectrum (jSFS) of synonymousmutations computed either fromexome capture or RNA-seq, in an Approximate Bayesian Computation (ABC) framework. We first assess the best sampling strategy (number of: individuals, loci, and bins in the jSFS), and show that model selection is robust to variation in the number of individuals and loci. In contrast, different binning choices when summarizing the jSFS, strongly affect the results: including classes of low and high frequency shared polymorphisms can more effectively reveal recent migration events. We then take advantage of the flexibility of ABC to compare more realistic models of speciation, including variation in migration rates through time (i.e., periodic connectivity) and across genes (i.e., genome-wide heterogeneity in migration rates). We show that these models were consistently selected as the most probable, suggesting that mussels have experienced a complex history of gene flow during divergence and that the species boundary is semi-permeable. Our work provides a comprehensive evaluation of ABC demographic inference in mussels based on the coding jSFS, and supplies guidelines for employing different sequencing techniques and sampling strategies. We emphasize, perhaps surprisingly, that inferences are less limited by the volume of data, than by the way in which they are analyzed. AU - Fraisse, Christelle AU - Roux, Camille AU - Gagnaire, Pierre AU - Romiguier, Jonathan AU - Faivre, Nicolas AU - Welch, John AU - Bierne, Nicolas ID - 139 IS - 7 JF - PeerJ TI - The divergence history of European blue mussel species reconstructed from Approximate Bayesian Computation: The effects of sequencing techniques and sampling strategies VL - 2018 ER - TY - JOUR AB - Secondary contact is the reestablishment of gene flow between sister populations that have diverged. For instance, at the end of the Quaternary glaciations in Europe, secondary contact occurred during the northward expansion of the populations which had found refugia in the southern peninsulas. With the advent of multi-locus markers, secondary contact can be investigated using various molecular signatures including gradients of allele frequency, admixture clines, and local increase of genetic differentiation. We use coalescent simulations to investigate if molecular data provide enough information to distinguish between secondary contact following range expansion and an alternative evolutionary scenario consisting of a barrier to gene flow in an isolation-by-distance model. We find that an excess of linkage disequilibrium and of genetic diversity at the suture zone is a unique signature of secondary contact. We also find that the directionality index ψ, which was proposed to study range expansion, is informative to distinguish between the two hypotheses. However, although evidence for secondary contact is usually conveyed by statistics related to admixture coefficients, we find that they can be confounded by isolation-by-distance. We recommend to account for the spatial repartition of individuals when investigating secondary contact in order to better reflect the complex spatio-temporal evolution of populations and species. AU - Bertl, Johanna AU - Ringbauer, Harald AU - Blum, Michaël ID - 33 IS - 10 JF - PeerJ TI - Can secondary contact following range expansion be distinguished from barriers to gene flow? VL - 2018 ER - TY - JOUR AB - Cell polarity, manifested by the localization of proteins to distinct polar plasma membrane domains, is a key prerequisite of multicellular life. In plants, PIN auxin transporters are prominent polarity markers crucial for a plethora of developmental processes. Cell polarity mechanisms in plants are distinct from other eukaryotes and still largely elusive. In particular, how the cell polarities are propagated and maintained following cell division remains unknown. Plant cytokinesis is orchestrated by the cell plate—a transient centrifugally growing endomembrane compartment ultimately forming the cross wall1. Trafficking of polar membrane proteins is typically redirected to the cell plate, and these will consequently have opposite polarity in at least one of the daughter cells2–5. Here, we provide mechanistic insights into post-cytokinetic re-establishment of cell polarity as manifested by the apical, polar localization of PIN2. We show that the apical domain is defined in a cell-intrinsic manner and that re-establishment of PIN2 localization to this domain requires de novo protein secretion and endocytosis, but not basal-to-apical transcytosis. Furthermore, we identify a PINOID-related kinase WAG1, which phosphorylates PIN2 in vitro6 and is transcriptionally upregulated specifically in dividing cells, as a crucial regulator of post-cytokinetic PIN2 polarity re-establishment. AU - Glanc, Matous AU - Fendrych, Matyas AU - Friml, Jirí ID - 5673 IS - 12 JF - Nature Plants SN - 2055-0278 TI - Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division VL - 4 ER - TY - JOUR AB - We consider a class of students learning a language from a teacher. The situation can be interpreted as a group of child learners receiving input from the linguistic environment. The teacher provides sample sentences. The students try to learn the grammar from the teacher. In addition to just listening to the teacher, the students can also communicate with each other. The students hold hypotheses about the grammar and change them if they receive counter evidence. The process stops when all students have converged to the correct grammar. We study how the time to convergence depends on the structure of the classroom by introducing and evaluating various complexity measures. We find that structured communication between students, although potentially introducing confusion, can greatly reduce some of the complexity measures. Our theory can also be interpreted as applying to the scientific process, where nature is the teacher and the scientists are the students. AU - Ibsen-Jensen, Rasmus AU - Tkadlec, Josef AU - Chatterjee, Krishnendu AU - Nowak, Martin ID - 198 IS - 140 JF - Journal of the Royal Society Interface TI - Language acquisition with communication between learners VL - 15 ER - TY - JOUR AB - The emergence of syntax during childhood is a remarkable example of how complex correlations unfold in nonlinear ways through development. In particular, rapid transitions seem to occur as children reach the age of two, which seems to separate a two-word, tree-like network of syntactic relations among words from the scale-free graphs associated with the adult, complex grammar. Here, we explore the evolution of syntax networks through language acquisition using the chromatic number, which captures the transition and provides a natural link to standard theories on syntactic structures. The data analysis is compared to a null model of network growth dynamics which is shown to display non-trivial and sensible differences. At a more general level, we observe that the chromatic classes define independent regions of the graph, and thus, can be interpreted as the footprints of incompatibility relations, somewhat as opposed to modularity considerations. AU - Corominas-Murtra, Bernat AU - Fibla, Martí Sànchez AU - Valverde, Sergi AU - Solé, Ricard ID - 5859 IS - 12 JF - Royal Society Open Science SN - 2054-5703 TI - Chromatic transitions in the emergence of syntax networks VL - 5 ER - TY - JOUR AB - Pore-forming toxins (PFT) are virulence factors that transform from soluble to membrane-bound states. The Yersinia YaxAB system represents a family of binary α-PFTs with orthologues in human, insect, and plant pathogens, with unknown structures. YaxAB was shown to be cytotoxic and likely involved in pathogenesis, though the molecular basis for its two-component lytic mechanism remains elusive. Here, we present crystal structures of YaxA and YaxB, together with a cryo-electron microscopy map of the YaxAB complex. Our structures reveal a pore predominantly composed of decamers of YaxA–YaxB heterodimers. Both subunits bear membrane-active moieties, but only YaxA is capable of binding to membranes by itself. YaxB can subsequently be recruited to membrane-associated YaxA and induced to present its lytic transmembrane helices. Pore formation can progress by further oligomerization of YaxA–YaxB dimers. Our results allow for a comparison between pore assemblies belonging to the wider ClyA-like family of α-PFTs, highlighting diverse pore architectures. AU - Bräuning, Bastian AU - Bertosin, Eva AU - Praetorius, Florian M AU - Ihling, Christian AU - Schatt, Alexandra AU - Adler, Agnes AU - Richter, Klaus AU - Sinz, Andrea AU - Dietz, Hendrik AU - Groll, Michael ID - 14284 JF - Nature Communications KW - General Physics and Astronomy KW - General Biochemistry KW - Genetics and Molecular Biology KW - General Chemistry KW - Multidisciplinary SN - 2041-1723 TI - Structure and mechanism of the two-component α-helical pore-forming toxin YaxAB VL - 9 ER - TY - THES AB - Function and activity of biomolecules often depend on their spatial arrangement. The method introduced here allows genetically encoding the spatial arrangement of proteins and DNA. The approach relies on staple proteins that fold double-stranded DNA into user-defined shapes. This thesis describes the development of staple proteins based on the DNA recognition of TAL effectors and presents experimentally derived rules for designing a variety of self-assembling nanoscale shapes featuring structural motifs such as curvature, vertices, corners, and multilayer helix packing. AU - Praetorius, Florian M ID - 14306 TI - Genetically encoding the spatial arrangement of DNA and proteins in self-assembling nanostructures ER - TY - GEN AB - We study the unique solution $m$ of the Dyson equation \[ -m(z)^{-1} = z - a + S[m(z)] \] on a von Neumann algebra $\mathcal{A}$ with the constraint $\mathrm{Im}\,m\geq 0$. Here, $z$ lies in the complex upper half-plane, $a$ is a self-adjoint element of $\mathcal{A}$ and $S$ is a positivity-preserving linear operator on $\mathcal{A}$. We show that $m$ is the Stieltjes transform of a compactly supported $\mathcal{A}$-valued measure on $\mathbb{R}$. Under suitable assumptions, we establish that this measure has a uniformly $1/3$-H\"{o}lder continuous density with respect to the Lebesgue measure, which is supported on finitely many intervals, called bands. In fact, the density is analytic inside the bands with a square-root growth at the edges and internal cubic root cusps whenever the gap between two bands vanishes. The shape of these singularities is universal and no other singularity may occur. We give a precise asymptotic description of $m$ near the singular points. These asymptotics generalize the analysis at the regular edges given in the companion paper on the Tracy-Widom universality for the edge eigenvalue statistics for correlated random matrices [arXiv:1804.07744] and they play a key role in the proof of the Pearcey universality at the cusp for Wigner-type matrices [arXiv:1809.03971,arXiv:1811.04055]. We also extend the finite dimensional band mass formula from [arXiv:1804.07744] to the von Neumann algebra setting by showing that the spectral mass of the bands is topologically rigid under deformations and we conclude that these masses are quantized in some important cases. AU - Alt, Johannes AU - Erdös, László AU - Krüger, Torben H ID - 6183 T2 - arXiv TI - The Dyson equation with linear self-energy: Spectral bands, edges and cusps ER - TY - GEN AB - We prove that any convex body in the plane can be partitioned into m convex parts of equal areas and perimeters for any integer m≥2; this result was previously known for prime powers m=pk. We also give a higher-dimensional generalization. AU - Akopyan, Arseniy AU - Avvakumov, Sergey AU - Karasev, Roman ID - 75 TI - Convex fair partitions into arbitrary number of pieces ER - TY - JOUR AB - We investigate the free boundary Schur process, a variant of the Schur process introduced by Okounkov and Reshetikhin, where we allow the first and the last partitions to be arbitrary (instead of empty in the original setting). The pfaffian Schur process, previously studied by several authors, is recovered when just one of the boundary partitions is left free. We compute the correlation functions of the process in all generality via the free fermion formalism, which we extend with the thorough treatment of “free boundary states.” For the case of one free boundary, our approach yields a new proof that the process is pfaffian. For the case of two free boundaries, we find that the process is not pfaffian, but a closely related process is. We also study three different applications of the Schur process with one free boundary: fluctuations of symmetrized last passage percolation models, limit shapes and processes for symmetric plane partitions and for plane overpartitions. AU - Betea, Dan AU - Bouttier, Jeremie AU - Nejjar, Peter AU - Vuletic, Mirjana ID - 556 IS - 12 JF - Annales Henri Poincare SN - 1424-0637 TI - The free boundary Schur process and applications I VL - 19 ER - TY - DATA AB - Graph matching problems for large displacement optical flow of RGB-D images. AU - Alhaija, Hassan AU - Sellent, Anita AU - Kondermann, Daniel AU - Rother, Carsten ID - 5573 KW - graph matching KW - quadratic assignment problem< TI - Graph matching problems for GraphFlow – 6D Large Displacement Scene Flow ER - TY - DATA AB - Data on Austrian open access publication output at Emerald from 2013-2017 including data analysis. AU - Villányi, Márton ID - 5577 KW - Publication analysis KW - Bibliography KW - Open Access TI - Emerald Austrian Publications 2013-2017 ER - TY - DATA AB - Data on Austrian open access publication output at IOP from 2012-2015 including data analysis. AU - Villányi, Márton ID - 5578 KW - Publication analysis KW - Bibliography KW - Open Access TI - IOP Austrian Publications 2012-2015 ER - TY - DATA AB - Comparison of Scopus' and publisher's data on Austrian publication output at IOP. AU - Villányi, Márton ID - 5574 KW - Publication analysis KW - Bibliography KW - Open Access TI - Data Check IOP Scopus vs. Publisher ER - TY - THES AB - Consortial subscription contracts regulate the digital access to publications between publishers and scientific libraries. However, since a couple of years the tendency towards a freely accessible publishing (Open Access) intensifies. As a consequence of this trend the contractual relationship between licensor and licensee is gradually changing as well: More and more contracts exercise influence on open access publishing. The present study attempts to compare Austrian examples of consortial licence contracts, which include components of open access. It describes the difference between pure subscription contracts and differing innovative deals including open access components. Thereby it becomes obvious that for the evaluation of this licence contracts new methods are needed. An essential new element of such analyses is the evaluation of the open access publication numbers. So this study tries to carry out such publication analyses for Austrian open access deals focusing on quantitative questions: How does the number of publications evolve? How does the open access share change? Publications reports of the publishers and database queries from Scopus form the data basis. The analysis of the data points out that differing approaches of contracts result in highly divergent results: Particular deals can prioritize a saving in costs or else the increase of the open access rate. It is to be assumed that within the following years further numerous open access deals will be negotiated. The finding of this study shall provide guidance. AU - Villányi, Márton ID - 278 TI - Lizenzverträge mit Open-Access-Komponenten an österreichischen Bibliotheken ER - TY - DATA AB - Script to perform a simple exponential lifetime fit of a ROI on time stacks acquired with a FLIM X16 TCSPC detector (+example data) AU - Hauschild, Robert ID - 5588 KW - FLIM KW - FRET KW - fluorescence lifetime imaging TI - Fluorescence lifetime analysis of FLIM X16 TCSPC data ER - TY - DATA AB - Data on Austrian open access publication output at Taylor&Francis from 2013-2017 including data analysis. AU - Villányi, Márton ID - 5582 KW - Publication analysis KW - Bibliography KW - Open Access TI - Taylor&Francis Austrian Publications 2013-2017 ER - TY - DATA AB - Data on Austrian open access publication output at Springer from 2013-2016 including data analysis. AU - Villányi, Márton ID - 5581 KW - Publication analysis KW - Bibliography KW - Open Access TI - Springer Austrian Publications 2013-2016 ER - TY - DATA AB - Data on Austrian open access publication output at SAGE from 2013-2017 including data analysis. AU - Villányi, Márton ID - 5580 KW - Publication analysis KW - Bibliography KW - Open Access TI - SAGE Austrian Publications 2013-2017 ER - TY - DATA AB - Data on Austrian open access publication output at RSC from 2013-2017 including data analysis. AU - Villányi, Márton ID - 5579 KW - Publication analysis KW - Bibliography KW - Open Access TI - RSC Austrian Publications 2013-2017 ER - TY - DATA AB - Comparison of Scopus' and FWF's data on Austrian publication output at T&F. AU - Villányi, Márton ID - 5576 KW - Publication analysis KW - Bibliography KW - Open Access TI - Data Check T&F Scopus vs. FWF ER - TY - DATA AB - Comparison of Scopus' and FWF's data on Austrian publication output at RSC. AU - Villányi, Márton ID - 5575 KW - Publication analysis KW - Bibliography KW - Open Access TI - Data Check RSC Scopus vs. FWF ER - TY - JOUR AB - Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed “pixel-by-pixel”. We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains. AU - Botella Soler, Vicent AU - Deny, Stephane AU - Martius, Georg S AU - Marre, Olivier AU - Tkacik, Gasper ID - 292 IS - 5 JF - PLoS Computational Biology TI - Nonlinear decoding of a complex movie from the mammalian retina VL - 14 ER - TY - JOUR AB - The MazF toxin sequence-specifically cleaves single-stranded RNA upon various stressful conditions, and it is activated as a part of the mazEF toxin–antitoxin module in Escherichia coli. Although autoregulation of mazEF expression through the MazE antitoxin-dependent transcriptional repression has been biochemically characterized, less is known about post-transcriptional autoregulation, as well as how both of these autoregulatory features affect growth of single cells during conditions that promote MazF production. Here, we demonstrate post-transcriptional autoregulation of mazF expression dynamics by MazF cleaving its own transcript. Single-cell analyses of bacterial populations during ectopic MazF production indicated that two-level autoregulation of mazEF expression influences cell-to-cell growth rate heterogeneity. The increase in growth rate heterogeneity is governed by the MazE antitoxin, and tuned by the MazF-dependent mazF mRNA cleavage. Also, both autoregulatory features grant rapid exit from the stress caused by mazF overexpression. Time-lapse microscopy revealed that MazF-mediated cleavage of mazF mRNA leads to increased temporal variability in length of individual cells during ectopic mazF overexpression, as explained by a stochastic model indicating that mazEF mRNA cleavage underlies temporal fluctuations in MazF levels during stress. AU - Nikolic, Nela AU - Bergmiller, Tobias AU - Vandervelde, Alexandra AU - Albanese, Tanino AU - Gelens, Lendert AU - Moll, Isabella ID - 438 IS - 6 JF - Nucleic Acids Research TI - Autoregulation of mazEF expression underlies growth heterogeneity in bacterial populations VL - 46 ER - TY - JOUR AB - XY systems usually show chromosome-wide compensation of X-linked genes, while in many ZW systems, compensation is restricted to a minority of dosage-sensitive genes. Why such differences arose is still unclear. Here, we combine comparative genomics, transcriptomics and proteomics to obtain a complete overview of the evolution of gene dosage on the Z-chromosome of Schistosoma parasites. We compare the Z-chromosome gene content of African (Schistosoma mansoni and S. haematobium) and Asian (S. japonicum) schistosomes and describe lineage-specific evolutionary strata. We use these to assess gene expression evolution following sex-linkage. The resulting patterns suggest a reduction in expression of Z-linked genes in females, combined with upregulation of the Z in both sexes, in line with the first step of Ohno’s classic model of dosage compensation evolution. Quantitative proteomics suggest that post-transcriptional mechanisms do not play a major role in balancing the expression of Z-linked genes. AU - Picard, Marion A AU - Cosseau, Celine AU - Ferré, Sabrina AU - Quack, Thomas AU - Grevelding, Christoph AU - Couté, Yohann AU - Vicoso, Beatriz ID - 131 JF - eLife TI - Evolution of gene dosage on the Z-chromosome of schistosome parasites VL - 7 ER - TY - DATA AB - This package contains data for the publication "Nonlinear decoding of a complex movie from the mammalian retina" by Deny S. et al, PLOS Comput Biol (2018). The data consists of (i) 91 spike sorted, isolated rat retinal ganglion cells that pass stability and quality criteria, recorded on the multi-electrode array, in response to the presentation of the complex movie with many randomly moving dark discs. The responses are represented as 648000 x 91 binary matrix, where the first index indicates the timebin of duration 12.5 ms, and the second index the neural identity. The matrix entry is 0/1 if the neuron didn't/did spike in the particular time bin. (ii) README file and a graphical illustration of the structure of the experiment, specifying how the 648000 timebins are split into epochs where 1, 2, 4, or 10 discs were displayed, and which stimulus segments are exact repeats or unique ball trajectories. (iii) a 648000 x 400 matrix of luminance traces for each of the 20 x 20 positions ("sites") in the movie frame, with time that is locked to the recorded raster. The luminance traces are produced as described in the manuscript by filtering the raw disc movie with a small gaussian spatial kernel. AU - Deny, Stephane AU - Marre, Olivier AU - Botella-Soler, Vicente AU - Martius, Georg S AU - Tkacik, Gasper ID - 5584 KW - retina KW - decoding KW - regression KW - neural networks KW - complex stimulus TI - Nonlinear decoding of a complex movie from the mammalian retina ER - TY - DATA AB - Input files and scripts from "Evolution of gene dosage on the Z-chromosome of schistosome parasites" by Picard M.A.L., et al (2018). AU - Vicoso, Beatriz ID - 5586 KW - schistosoma KW - Z-chromosome KW - gene expression TI - Input files and scripts from "Evolution of gene dosage on the Z-chromosome of schistosome parasites" by Picard M.A.L., et al (2018) ER - TY - DATA AB - Data and scripts are provided in support of the manuscript "Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering", and the associated Python package FAPS, available from www.github.com/ellisztamas/faps. Simulation scripts cover: 1. Performance under different mating scenarios. 2. Comparison with Colony2. 3. Effect of changing the number of Monte Carlo draws The final script covers the analysis of half-sib arrays from wild-pollinated seed in an Antirrhinum majus hybrid zone. AU - Ellis, Thomas ID - 5583 TI - Data and Python scripts supporting Python package FAPS ER - TY - DATA AB - Nela Nikolic, Tobias Bergmiller, Alexandra Vandervelde, Tanino G. Albanese, Lendert Gelens, and Isabella Moll (2018) “Autoregulation of mazEF expression underlies growth heterogeneity in bacterial populations” Nucleic Acids Research, doi: 10.15479/AT:ISTA:74; microscopy experiments by Tobias Bergmiller; image and data analysis by Nela Nikolic. AU - Bergmiller, Tobias AU - Nikolic, Nela ID - 5569 KW - microscopy KW - microfluidics TI - Time-lapse microscopy data ER - TY - JOUR AB - Which properties of metabolic networks can be derived solely from stoichiometry? Predictive results have been obtained by flux balance analysis (FBA), by postulating that cells set metabolic fluxes to maximize growth rate. Here we consider a generalization of FBA to single-cell level using maximum entropy modeling, which we extend and test experimentally. Specifically, we define for Escherichia coli metabolism a flux distribution that yields the experimental growth rate: the model, containing FBA as a limit, provides a better match to measured fluxes and it makes a wide range of predictions: on flux variability, regulation, and correlations; on the relative importance of stoichiometry vs. optimization; on scaling relations for growth rate distributions. We validate the latter here with single-cell data at different sub-inhibitory antibiotic concentrations. The model quantifies growth optimization as emerging from the interplay of competitive dynamics in the population and regulation of metabolism at the level of single cells. AU - De Martino, Daniele AU - Mc, Andersson Anna AU - Bergmiller, Tobias AU - Guet, Calin C AU - Tkacik, Gasper ID - 161 IS - 1 JF - Nature Communications TI - Statistical mechanics for metabolic networks during steady state growth VL - 9 ER - TY - DATA AB - Supporting material to the article STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH boundscoli.dat Flux Bounds of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium. polcoli.dat Matrix enconding the polytope of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium, obtained from the soichiometric matrix by standard linear algebra (reduced row echelon form). ellis.dat Approximate Lowner-John ellipsoid rounding the polytope of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium obtained with the Lovasz method. point0.dat Center of the approximate Lowner-John ellipsoid rounding the polytope of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium obtained with the Lovasz method. lovasz.cpp This c++ code file receives in input the polytope of the feasible steady states of a metabolic network, (matrix and bounds), and it gives in output an approximate Lowner-John ellipsoid rounding the polytope with the Lovasz method NB inputs are referred by defaults to the catabolic core of the E.Coli network iAF1260. For further details we refer to PLoS ONE 10.4 e0122670 (2015). sampleHRnew.cpp This c++ code file receives in input the polytope of the feasible steady states of a metabolic network, (matrix and bounds), the ellipsoid rounding the polytope, a point inside and it gives in output a max entropy sampling at fixed average growth rate of the steady states by performing an Hit-and-Run Monte Carlo Markov chain. NB inputs are referred by defaults to the catabolic core of the E.Coli network iAF1260. For further details we refer to PLoS ONE 10.4 e0122670 (2015). AU - De Martino, Daniele AU - Tkacik, Gasper ID - 5587 KW - metabolic networks KW - e.coli core KW - maximum entropy KW - monte carlo markov chain sampling KW - ellipsoidal rounding TI - Supporting materials "STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH" ER - TY - JOUR AB - The t-haplotype, a mouse meiotic driver found on chromosome 17, has been a model for autosomal segregation distortion for close to a century, but several questions remain regarding its biology and evolutionary history. A recently published set of population genomics resources for wild mice includes several individuals heterozygous for the t-haplotype, which we use to characterize this selfish element at the genomic and transcriptomic level. Our results show that large sections of the t-haplotype have been replaced by standard homologous sequences, possibly due to occasional events of recombination, and that this complicates the inference of its history. As expected for a long genomic segment of very low recombination, the t-haplotype carries an excess of fixed nonsynonymous mutations compared to the standard chromosome. This excess is stronger for regions that have not undergone recent recombination, suggesting that occasional gene flow between the t and the standard chromosome may provide a mechanism to regenerate coding sequences that have accumulated deleterious mutations. Finally, we find that t-complex genes with altered expression largely overlap with deleted or amplified regions, and that carrying a t-haplotype alters the testis expression of genes outside of the t-complex, providing new leads into the pathways involved in the biology of this segregation distorter. AU - Kelemen, Réka K AU - Vicoso, Beatriz ID - 542 IS - 1 JF - Genetics TI - Complex history and differentiation patterns of the t-haplotype, a mouse meiotic driver VL - 208 ER - TY - JOUR AB - Because of the intrinsic randomness of the evolutionary process, a mutant with a fitness advantage has some chance to be selected but no certainty. Any experiment that searches for advantageous mutants will lose many of them due to random drift. It is therefore of great interest to find population structures that improve the odds of advantageous mutants. Such structures are called amplifiers of natural selection: they increase the probability that advantageous mutants are selected. Arbitrarily strong amplifiers guarantee the selection of advantageous mutants, even for very small fitness advantage. Despite intensive research over the past decade, arbitrarily strong amplifiers have remained rare. Here we show how to construct a large variety of them. Our amplifiers are so simple that they could be useful in biotechnology, when optimizing biological molecules, or as a diagnostic tool, when searching for faster dividing cells or viruses. They could also occur in natural population structures. AU - Pavlogiannis, Andreas AU - Tkadlec, Josef AU - Chatterjee, Krishnendu AU - Nowak, Martin A. ID - 5751 IS - 1 JF - Communications Biology SN - 2399-3642 TI - Construction of arbitrarily strong amplifiers of natural selection using evolutionary graph theory VL - 1 ER - TY - DATA AB - File S1. Variant Calling Format file of the ingroup: 197 haploid sequences of D. melanogaster from Zambia (Africa) aligned to the D. melanogaster 5.57 reference genome. File S2. Variant Calling Format file of the outgroup: 1 haploid sequence of D. simulans aligned to the D. melanogaster 5.57 reference genome. File S3. Annotations of each transcript in coding regions with SNPeff: Ps (# of synonymous polymorphic sites); Pn (# of non-synonymous polymorphic sites); Ds (# of synonymous divergent sites); Dn (# of non-synonymous divergent sites); DoS; ⍺ MK . All variants were included. File S4. Annotations of each transcript in non-coding regions with SNPeff: Ps (# of synonymous polymorphic sites); Pu (# of UTR polymorphic sites); Ds (# of synonymous divergent sites); Du (# of UTR divergent sites); DoS; ⍺ MK . All variants were included. File S5. Annotations of each transcript in coding regions with SNPGenie: Ps (# of synonymous polymorphic sites); πs (synonymous diversity); Ss_p (total # of synonymous sites in the polymorphism data); Pn (# of non-synonymous polymorphic sites); πn (non-synonymous diversity); Sn_p (total # of non-synonymous sites in the polymorphism data); Ds (# of synonymous divergent sites); ks (synonymous evolutionary rate); Ss_d (total # of synonymous sites in the divergence data); Dn (# of non-synonymous divergent sites); kn (non-synonymous evolutionary rate); Sn_d (total # of non- synonymous sites in the divergence data); DoS; ⍺ MK . All variants were included. File S6. Gene expression values (RPKM summed over all transcripts) for each sample. Values were quantile-normalized across all samples. File S7. Final dataset with all covariates, ⍺ MK , ωA MK and DoS for coding sites, excluding variants below 5% frequency. File S8. Final dataset with all covariates, ⍺ MK , ωA MK and DoS for non-coding sites, excluding variants below 5% frequency. File S9. Final dataset with all covariates, ⍺ EWK , ωA EWK and deleterious SFS for coding sites obtained with the Eyre-Walker and Keightley method on binned data and using all variants. AU - Fraisse, Christelle ID - 5757 KW - (mal)adaptation KW - pleiotropy KW - selective constraint KW - evo-devo KW - gene expression KW - Drosophila melanogaster TI - Supplementary Files for "Pleiotropy modulates the efficacy of selection in Drosophila melanogaster" ER - TY - THES AB - The eigenvalue density of many large random matrices is well approximated by a deterministic measure, the self-consistent density of states. In the present work, we show this behaviour for several classes of random matrices. In fact, we establish that, in each of these classes, the self-consistent density of states approximates the eigenvalue density of the random matrix on all scales slightly above the typical eigenvalue spacing. For large classes of random matrices, the self-consistent density of states exhibits several universal features. We prove that, under suitable assumptions, random Gram matrices and Hermitian random matrices with decaying correlations have a 1/3-Hölder continuous self-consistent density of states ρ on R, which is analytic, where it is positive, and has either a square root edge or a cubic root cusp, where it vanishes. We, thus, extend the validity of the corresponding result for Wigner-type matrices from [4, 5, 7]. We show that ρ is determined as the inverse Stieltjes transform of the normalized trace of the unique solution m(z) to the Dyson equation −m(z) −1 = z − a + S[m(z)] on C N×N with the constraint Im m(z) ≥ 0. Here, z lies in the complex upper half-plane, a is a self-adjoint element of C N×N and S is a positivity-preserving operator on C N×N encoding the first two moments of the random matrix. In order to analyze a possible limit of ρ for N → ∞ and address some applications in free probability theory, we also consider the Dyson equation on infinite dimensional von Neumann algebras. We present two applications to random matrices. We first establish that, under certain assumptions, large random matrices with independent entries have a rotationally symmetric self-consistent density of states which is supported on a centered disk in C. Moreover, it is infinitely often differentiable apart from a jump on the boundary of this disk. Second, we show edge universality at all regular (not necessarily extreme) spectral edges for Hermitian random matrices with decaying correlations. AU - Alt, Johannes ID - 149 SN - 2663-337X TI - Dyson equation and eigenvalue statistics of random matrices ER - TY - JOUR AB - Recently it was shown that a molecule rotating in a quantum solvent can be described in terms of the “angulon” quasiparticle [M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017)]. Here we extend the angulon theory to the case of molecules possessing an additional spin-1/2 degree of freedom and study the behavior of the system in the presence of a static magnetic field. We show that exchange of angular momentum between the molecule and the solvent can be altered by the field, even though the solvent itself is non-magnetic. In particular, we demonstrate a possibility to control resonant emission of phonons with a given angular momentum using a magnetic field. AU - Rzadkowski, Wojciech AU - Lemeshko, Mikhail ID - 415 IS - 10 JF - The Journal of Chemical Physics TI - Effect of a magnetic field on molecule–solvent angular momentum transfer VL - 148 ER - TY - JOUR AB - The current state of the art in real-time two-dimensional water wave simulation requires developers to choose between efficient Fourier-based methods, which lack interactions with moving obstacles, and finite-difference or finite element methods, which handle environmental interactions but are significantly more expensive. This paper attempts to bridge this long-standing gap between complexity and performance, by proposing a new wave simulation method that can faithfully simulate wave interactions with moving obstacles in real time while simultaneously preserving minute details and accommodating very large simulation domains. Previous methods for simulating 2D water waves directly compute the change in height of the water surface, a strategy which imposes limitations based on the CFL condition (fast moving waves require small time steps) and Nyquist's limit (small wave details require closely-spaced simulation variables). This paper proposes a novel wavelet transformation that discretizes the liquid motion in terms of amplitude-like functions that vary over space, frequency, and direction, effectively generalizing Fourier-based methods to handle local interactions. Because these new variables change much more slowly over space than the original water height function, our change of variables drastically reduces the limitations of the CFL condition and Nyquist limit, allowing us to simulate highly detailed water waves at very large visual resolutions. Our discretization is amenable to fast summation and easy to parallelize. We also present basic extensions like pre-computed wave paths and two-way solid fluid coupling. Finally, we argue that our discretization provides a convenient set of variables for artistic manipulation, which we illustrate with a novel wave-painting interface. AU - Jeschke, Stefan AU - Skrivan, Tomas AU - Mueller Fischer, Matthias AU - Chentanez, Nuttapong AU - Macklin, Miles AU - Wojtan, Christopher J ID - 134 IS - 4 JF - ACM Transactions on Graphics TI - Water surface wavelets VL - 37 ER - TY - JOUR AB - We introduce a diagrammatic Monte Carlo approach to angular momentum properties of quantum many-particle systems possessing a macroscopic number of degrees of freedom. The treatment is based on a diagrammatic expansion that merges the usual Feynman diagrams with the angular momentum diagrams known from atomic and nuclear structure theory, thereby incorporating the non-Abelian algebra inherent to quantum rotations. Our approach is applicable at arbitrary coupling, is free of systematic errors and of finite-size effects, and naturally provides access to the impurity Green function. We exemplify the technique by obtaining an all-coupling solution of the angulon model; however, the method is quite general and can be applied to a broad variety of systems in which particles exchange quantum angular momentum with their many-body environment. AU - Bighin, Giacomo AU - Tscherbul, Timur AU - Lemeshko, Mikhail ID - 6339 IS - 16 JF - Physical Review Letters TI - Diagrammatic Monte Carlo approach to angular momentum in quantum many-particle systems VL - 121 ER - TY - JOUR AB - We introduce a Diagrammatic Monte Carlo (DiagMC) approach to complex molecular impurities with rotational degrees of freedom interacting with a many-particle environment. The treatment is based on the diagrammatic expansion that merges the usual Feynman diagrams with the angular momentum diagrams known from atomic and nuclear structure theory, thereby incorporating the non-Abelian algebra inherent to quantum rotations. Our approach works at arbitrary coupling, is free of systematic errors and of finite size effects, and naturally provides access to the impurity Green function. We exemplify the technique by obtaining an all-coupling solution of the angulon model, however, the method is quite general and can be applied to a broad variety of quantum impurities possessing angular momentum degrees of freedom. AU - Bighin, Giacomo AU - Tscherbul, Timur AU - Lemeshko, Mikhail ID - 417 IS - 16 JF - Physical Review Letters TI - Diagrammatic Monte Carlo approach to rotating molecular impurities VL - 121 ER - TY - CONF AB - We prove that, at least for the binary erasure channel, the polar-coding paradigm gives rise to codes that not only approach the Shannon limit but, in fact, do so under the best possible scaling of their block length as a function of the gap to capacity. This result exhibits the first known family of binary codes that attain both optimal scaling and quasi-linear complexity of encoding and decoding. Specifically, for any fixed δ > 0, we exhibit binary linear codes that ensure reliable communication at rates within ε > 0 of capacity with block length n = O(1/ε 2+δ ), construction complexity Θ(n), and encoding/decoding complexity Θ(n log n). AU - Fazeli, Arman AU - Hassani, Hamed AU - Mondelli, Marco AU - Vardy, Alexander ID - 6665 T2 - 2018 IEEE Information Theory Workshop TI - Binary linear codes with optimal scaling: Polar codes with large kernels ER - TY - JOUR AB - To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA–RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA–RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae. AU - Bravo, Jack Peter Kelly AU - Borodavka, Alexander AU - Barth, Anders AU - Calabrese, Antonio N AU - Mojzes, Peter AU - Cockburn, Joseph J B AU - Lamb, Don C AU - Tuma, Roman ID - 15143 IS - 15 JF - Nucleic Acids Research KW - Genetics SN - 0305-1048 TI - Stability of local secondary structure determines selectivity of viral RNA chaperones VL - 46 ER - TY - JOUR AB - Clathrin-mediated endocytosis (CME) is a cellular trafficking process in which cargoes and lipids are internalized from the plasma membrane into vesicles coated with clathrin and adaptor proteins. CME is essential for many developmental and physiological processes in plants, but its underlying mechanism is not well characterised compared to that in yeast and animal systems. Here, we searched for new factors involved in CME in Arabidopsis thaliana by performing Tandem Affinity Purification of proteins that interact with clathrin light chain, a principal component of the clathrin coat. Among the confirmed interactors, we found two putative homologues of the clathrin-coat uncoating factor auxilin previously described in non-plant systems. Overexpression of AUXILIN-LIKE1 and AUXILIN-LIKE2 in A. thaliana caused an arrest of seedling growth and development. This was concomitant with inhibited endocytosis due to blocking of clathrin recruitment after the initial step of adaptor protein binding to the plasma membrane. By contrast, auxilin-like(1/2) loss-of-function lines did not present endocytosis-related developmental or cellular phenotypes under normal growth conditions. This work contributes to the on-going characterization of the endocytotic machinery in plants and provides a robust tool for conditionally and specifically interfering with CME in A. thaliana. AU - Adamowski, Maciek AU - Narasimhan, Madhumitha AU - Kania, Urszula AU - Glanc, Matous AU - De Jaeger, Geert AU - Friml, Jirí ID - 412 IS - 3 JF - The Plant Cell SN - 1040-4651 TI - A functional study of AUXILIN LIKE1 and 2 two putative clathrin uncoating factors in Arabidopsis VL - 30 ER - TY - JOUR AB - With the advent of optogenetics, it became possible to change the activity of a targeted population of neurons in a temporally controlled manner. To combine the advantages of 60-channel in vivo tetrode recording and laser-based optogenetics, we have developed a closed-loop recording system that allows for the actual electrophysiological signal to be used as a trigger for the laser light mediating the optogenetic intervention. We have optimized the weight, size, and shape of the corresponding implant to make it compatible with the size, force, and movements of a behaving mouse, and we have shown that the system can efficiently block sharp wave ripple (SWR) events using those events themselves as a trigger. To demonstrate the full potential of the optogenetic recording system we present a pilot study addressing the contribution of SWR events to learning in a complex behavioral task. AU - Rangel Guerrero, Dámaris K AU - Donnett, James G. AU - Csicsvari, Jozsef L AU - Kovács, Krisztián ID - 5914 IS - 4 JF - eNeuro TI - Tetrode recording from the hippocampus of behaving mice coupled with four-point-irradiation closed-loop optogenetics: A technique to study the contribution of Hippocampal SWR events to learning VL - 5 ER - TY - JOUR AB - During metastasis, malignant cells escape the primary tumor, intravasate lymphatic vessels, and reach draining sentinel lymph nodes before they colonize distant organs via the blood circulation. Although lymph node metastasis in cancer patients correlates with poor prognosis, evidence is lacking as to whether and how tumor cells enter the bloodstream via lymph nodes. To investigate this question, we delivered carcinoma cells into the lymph nodes of mice by microinfusing the cells into afferent lymphatic vessels. We found that tumor cells rapidly infiltrated the lymph node parenchyma, invaded blood vessels, and seeded lung metastases without involvement of the thoracic duct. These results suggest that the lymph node blood vessels can serve as an exit route for systemic dissemination of cancer cells in experimental mouse models. Whether this form of tumor cell spreading occurs in cancer patients remains to be determined. AU - Brown, Markus AU - Assen, Frank P AU - Leithner, Alexander F AU - Abe, Jun AU - Schachner, Helga AU - Asfour, Gabriele AU - Bagó Horváth, Zsuzsanna AU - Stein, Jens AU - Uhrin, Pavel AU - Sixt, Michael K AU - Kerjaschki, Dontscho ID - 402 IS - 6382 JF - Science TI - Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice VL - 359 ER - TY - THES AB - Autism spectrum disorders (ASD) are a group of genetic disorders often overlapping with other neurological conditions. Despite the remarkable number of scientific breakthroughs of the last 100 years, the treatment of neurodevelopmental disorders (e.g. autism spectrum disorder, intellectual disability, epilepsy) remains a great challenge. Recent advancements in geno mics, like whole-exome or whole-genome sequencing, have enabled scientists to identify numerous mutations underlying neurodevelopmental disorders. Given the few hundred risk genes that were discovered, the etiological variability and the heterogeneous phenotypic outcomes, the need for genotype -along with phenotype- based diagnosis of individual patients becomes a requisite. Driven by this rationale, in a previous study our group described mutations, identified via whole - exome sequencing, in the gene BCKDK – encoding for a key regulator of branched chain amin o acid (BCAA) catabolism - as a cause of ASD. Following up on the role of BCAAs, in the study described here we show that the solute carrier transporter 7a5 (SLC7A5), a large neutral amino acid transporter localized mainly at the blood brain barrier (BBB), has an essential role in maintaining normal levels of brain BCAAs. In mice, deletion of Slc7a5 from the endothelial cells of the BBB leads to atypical brain amino acid profile, abnormal mRNA translation and severe neurolo gical abnormalities. Additionally, deletion of Slc7a5 from the neural progenitor cell population leads to microcephaly. Interestingly, we demonstrate that BCAA intracerebroventricular administration ameliorates abnormal behaviors in adult mutant mice. Furthermore, whole - exome sequencing of patients diagnosed with neurological dis o r ders helped us identify several patients with autistic traits, microcephaly and motor delay carrying deleterious homozygous mutations in the SLC7A5 gene. In conclusion, our data elucidate a neurological syndrome defined by SLC7A5 mutations and support an essential role for t he BCAA s in human bra in function. Together with r ecent studies (described in chapter two) that have successfully made the transition into clinical practice, our findings on the role of B CAAs might have a crucial impact on the development of novel individualized therapeutic strategies for ASD. AU - Tarlungeanu, Dora-Clara ID - 395 SN - 2663-337X TI - The branched chain amino acids in autism spectrum disorders ER - TY - THES AB - Asymmetries have long been known about in the central nervous system. From gross anatomical differences, such as the presence of the parapineal organ in only one hemisphere of the developing zebrafish, to more subtle differences in activity between both hemispheres, as seen in freely roaming animals or human participants under PET and fMRI imaging analysis. The presence of asymmetries has been demonstrated to have huge behavioural implications, with their disruption often leading to the generation of neurological disorders, memory problems, changes in personality, and in an organism's health and well-being. For my Ph.D. work I aimed to tackle two important avenues of research. The first being the process of input-side dependency in the hippocampus, with the goal of finding a key gene responsible for its development (Gene X). The second project was to do with experience-induced laterality formation in the hippocampus. Specifically, how laterality in the synapse density of the CA1 stratum radiatum (s.r.) could be induced purely through environmental enrichment. Through unilateral tracer injections into the CA3, I was able to selectively measure the properties of synapses within the CA1 and investigate how they differed based upon which hemisphere the presynaptic neurone originated. Having found the existence of a previously unreported reversed (left-isomerism) i.v. mutant, through morpholocal examination of labelled terminals in the CA1 s.r., I aimed to elucidate a key gene responsible for the process of left or right determination of inputs to the CA1 s.r.. This work relates to the previous finding of input-side dependent asymmetry in the wild-type rodent, where the origin of the projecting neurone to the CA1 will determine the morphology of a synapse, to a greater degree than the hemisphere in which the projection terminates. Using left- and right-isomerism i.v. mice, in combination with whole genome sequence analysis, I highlight Ena/VASP-like (Evl) as a potential target for Gene X. In relation to this topic, I also highlight my work in the recently published paper of how knockout of PirB can lead to a lack of input-side dependency in the murine hippocampus. For the second question, I show that the environmental enrichment paradigm will lead to an asymmetry in the synapse densities in the hippocampus of mice. I also highlight that the nature of the enrichment is of less consequence than the process of enrichment itself. I demonstrate that the CA3 region will dramatically alter its projection targets, in relation to environmental stimulation, with the asymmetry in synaptic density, caused by enrichment, relying heavily on commissural fibres. I also highlight the vital importance of input-side dependent asymmetry, as a necessary component of experience-dependent laterality formation in the CA1 s.r.. However, my results suggest that it isn't the only cause, as there appears to be a CA1 dependent mechanism also at play. Upon further investigation, I highlight the significant, and highly important, finding that the changes seen in the CA1 s.r. were predominantly caused through projections from the left-CA3, with the right-CA3 having less involvement in this mechanism. AU - Case, Matthew J ID - 51 SN - 2663-337X TI - From the left to the right: A tale of asymmetries, environments, and hippocampal development ER - TY - THES AB - Genomic imprinting is an epigenetic process that leads to parent of origin-specific gene expression in a subset of genes. Imprinted genes are essential for brain development, and deregulation of imprinting is associated with neurodevelopmental diseases and the pathogenesis of psychiatric disorders. However, the cell-type specificity of imprinting at single cell resolution, and how imprinting and thus gene dosage regulates neuronal circuit assembly is still largely unknown. Here, MADM (Mosaic Analysis with Double Markers) technology was employed to assess genomic imprinting at single cell level. By visualizing MADM-induced uniparental disomies (UPDs) in distinct colors at single cell level in genetic mosaic animals, this experimental paradigm provides a unique quantitative platform to systematically assay the UPD-mediated imbalances in imprinted gene expression at unprecedented resolution. An experimental pipeline based on FACS, RNA-seq and bioinformatics analysis was established and applied to systematically map cell-type-specific ‘imprintomes’ in the mouse brain. The results revealed that parental-specific expression of imprinted genes per se is rarely cell-type-specific even at the individual cell level. Conversely, when we extended the comparison to downstream responses resulting from imbalanced imprinted gene expression, we discovered an unexpectedly high degree of cell-type specificity. Furthermore, we determined a novel function of genomic imprinting in cortical astrocyte production and in olfactory bulb (OB) granule cell generation. These results suggest important functional implication of genomic imprinting for generating cell-type diversity in the brain. In addition, MADM provides a powerful tool to study candidate genes by concomitant genetic manipulation and fluorescent labelling of single cells. MADM-based candidate gene approach was utilized to identify potential imprinted genes involved in the generation of cortical astrocytes and OB granule cells. We investigated p57Kip2, a maternally expressed gene and known cell cycle regulator. Although we found that p57Kip2 does not play a role in these processes, we detected an unexpected function of the paternal allele previously thought to be silent. Finally, we took advantage of a key property of MADM which is to allow unambiguous investigation of environmental impact on single cells. The experimental pipeline based on FACS and RNA-seq analysis of MADM-labeled cells was established to probe the functional differences of single cell loss of gene function compared to global loss of function on a transcriptional level. With this method, both common and distinct responses were isolated due to cell-autonomous and non-autonomous effects acting on genotypically identical cells. As a result, transcriptional changes were identified which result solely from the surrounding environment. Using the MADM technology to study genomic imprinting at single cell resolution, we have identified cell-type-specific gene expression, novel gene function and the impact of environment on single cell transcriptomes. Together, these provide important insights to the understanding of mechanisms regulating cell-type specificity and thus diversity in the brain. AU - Laukoter, Susanne ID - 10 SN - 2663-337X TI - Role of genomic imprinting in cerebral cortex development ER - TY - THES AB - In the here presented thesis, we explore the role of branched actin networks in cell migration and antigen presentation, the two most relevant processes in dendritic cell biology. Branched actin networks construct lamellipodial protrusions at the leading edge of migrating cells. These are typically seen as adhesive structures, which mediate force transduction to the extracellular matrix that leads to forward locomotion. We ablated Arp2/3 nucleation promoting factor WAVE in DCs and found that the resulting cells lack lamellipodial protrusions. Instead, depending on the maturation state, one or multiple filopodia were formed. By challenging these cells in a variety of migration assays we found that lamellipodial protrusions are dispensable for the locomotion of leukocytes and actually dampen the speed of migration. However, lamellipodia are critically required to negotiate complex environments that DCs experience while they travel to the next draining lymph node. Taken together our results suggest that leukocyte lamellipodia have rather a sensory- than a force transducing function. Furthermore, we show for the first time structure and dynamics of dendritic cell F-actin at the immunological synapse with naïve T cells. Dendritic cell F-actin appears as dynamic foci that are nucleated by the Arp2/3 complex. WAVE ablated dendritic cells show increased membrane tension, leading to an altered ultrastructure of the immunological synapse and severe T cell priming defects. These results point towards a previously unappreciated role of the cellular mechanics of dendritic cells in T cell activation. Additionally, we present a novel cell culture based system for the differentiation of dendritic cells from conditionally immortalized hematopoietic precursors. These precursor cells are genetically tractable via the CRISPR/Cas9 system while they retain their ability to differentiate into highly migratory dendritic cells and other immune cells. This will foster the study of all aspects of dendritic cell biology and beyond. AU - Leithner, Alexander F ID - 323 SN - 2663-337X TI - Branched actin networks in dendritic cell biology ER - TY - THES AB - The whole life cycle of plants as well as their responses to environmental stimuli is governed by a complex network of hormonal regulations. A number of studies have demonstrated an essential role of both auxin and cytokinin in the regulation of many aspects of plant growth and development including embryogenesis, postembryonic organogenic processes such as root, and shoot branching, root and shoot apical meristem activity and phyllotaxis. Over the last decades essential knowledge on the key molecular factors and pathways that spatio-temporally define auxin and cytokinin activities in the plant body has accumulated. However, how both hormonal pathways are interconnected by a complex network of interactions and feedback circuits that determines the final outcome of the individual hormone actions is still largely unknown. Root system architecture establishment and in particular formation of lateral organs is prime example of developmental process at whose regulation both auxin and cytokinin pathways converge. To dissect convergence points and pathways that tightly balance auxin - cytokinin antagonistic activities that determine the root branching pattern transcriptome profiling was applied. Genome wide expression analyses of the xylem pole pericycle, a tissue giving rise to lateral roots, led to identification of genes that are highly responsive to combinatorial auxin and cytokinin treatments and play an essential function in the auxin-cytokinin regulated root branching. SYNERGISTIC AUXIN CYTOKININ 1 (SYAC1) gene, which encodes for a protein of unknown function, was detected among the top candidate genes of which expression was synergistically up-regulated by simultaneous hormonal treatment. Plants with modulated SYAC1 activity exhibit severe defects in the root system establishment and attenuate developmental responses to both auxin and cytokinin. To explore the biological function of the SYAC1, we employed different strategies including expression pattern analysis, subcellular localization and phenotypic analyses of the syac1 loss-of-function and gain-of-function transgenic lines along with the identification of the SYAC1 interaction partners. Detailed functional characterization revealed that SYAC1 acts as a developmentally specific regulator of the secretory pathway to control deposition of cell wall components and thereby rapidly fine tune elongation growth. AU - Hurny, Andrej ID - 539 SN - 2663-337X TI - Identification and characterization of novel auxin-cytokinin cross-talk components ER - TY - THES AB - The hippocampus is a key brain region for spatial memory and navigation and is needed at all stages of memory, including encoding, consolidation, and recall. Hippocampal place cells selectively discharge at specific locations of the environment to form a cognitive map of the space. During the rest period and sleep following spatial navigation and/or learning, the waking activity of the place cells is reactivated within high synchrony events. This reactivation is thought to be important for memory consolidation and stabilization of the spatial representations. The aim of my thesis was to directly test whether the reactivation content encoded in firing patterns of place cells is important for consolidation of spatial memories. In particular, I aimed to test whether, in cases when multiple spatial memory traces are acquired during learning, the specific disruption of the reactivation of a subset of these memories leads to the selective disruption of the corresponding memory traces or through memory interference the other learned memories are disrupted as well. In this thesis, using a modified cheeseboard paradigm and a closed-loop recording setup with feedback optogenetic stimulation, I examined how the disruption of the reactivation of specific spiking patterns affects consolidation of the corresponding memory traces. To obtain multiple distinctive memories, animals had to perform a spatial task in two distinct cheeseboard environments and the reactivation of spiking patterns associated with one of the environments (target) was disrupted after learning during four hours rest period using a real-time decoding method. This real-time decoding method was capable of selectively affecting the firing rates and cofiring correlations of the target environment-encoding cells. The selective disruption led to behavioural impairment in the memory tests after the rest periods in the target environment but not in the other undisrupted control environment. In addition, the map of the target environment was less stable in the impaired memory tests compared to the learning session before than the map of the control environment. However, when the animal relearned the task, the same map recurred in the target environment that was present during learning before the disruption. Altogether my work demonstrated that the reactivation content is important: assembly-related disruption of reactivation can lead to a selective memory impairment and deficiency in map stability. These findings indeed suggest that reactivated assembly patterns reflect processes associated with the consolidation of memory traces. AU - Gridchyn, Igor ID - 48 SN - 2663-337X TI - Reactivation content is important for consolidation of spatial memory ER - TY - THES AB - Immune cells migrating to the sites of infection navigate through diverse tissue architectures and switch their migratory mechanisms upon demand. However, little is known about systemic regulators that could allow the acquisition of these mechanisms. We performed a genetic screen in Drosophila melanogaster to identify regulators of germband invasion by embryonic macrophages into the confined space between the ectoderm and mesoderm. We have found that bZIP circadian transcription factors (TFs) Kayak (dFos) and Vrille (dNFIL3) have opposite effects on macrophage germband infiltration: Kayak facilitated and Vrille inhibited it. These TFs are enriched in the macrophages during migration and genetically interact to control it. Kayak sets a less coordinated mode of migration of the macrophage group and increases the probability and length of Levy walks. Intriguingly, the motility of kayak mutant macrophages was also strongly affected during initial germband invasion but not along another less confined route. Inhibiting Rho1 signaling within the tail ectoderm partially rescued the Kayak mutant phenotype, strongly suggesting that migrating macrophages have to overcome a barrier imposed by the stiffness of the ectoderm. Also, Kayak appeared to be important for the maintenance of the round cell shape and the rear edge translocation of the macrophages invading the germband. Complementary to this, the cortical actin cytoskeleton of Kayak- deficient macrophages was strongly affected. RNA sequencing revealed the filamin Cheerio and tetraspanin TM4SF to be downstream of Kayak. Chromatin immunoprecipitation and immunostaining revealed that the formin Diaphanous is another downstream target of Kayak. Immunostaining revealed that the formin Diaphanous is another downstream target of Kayak. Indeed, Cheerio, TM4SF and Diaphanous are required within macrophages for germband invasion, and expression of constitutively active Diaphanous in macrophages was able to rescue the kayak mutant phenotype. Moreover, Cher and Diaphanous are also reduced in the macrophages overexpressing Vrille. We hypothesize that Kayak, through its targets, increases actin polymerization and cortical tension in macrophages and thus allows extra force generation necessary for macrophage dissemination and migration through confined stiff tissues, while Vrille counterbalances it. AU - Belyaeva, Vera ID - 9 SN - 2663-337X TI - Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo ER - TY - THES AB - A major challenge in neuroscience research is to dissect the circuits that orchestrate behavior in health and disease. Proteins from a wide range of non-mammalian species, such as microbial opsins, have been successfully transplanted to specific neuronal targets to override their natural communication patterns. The goal of our work is to manipulate synaptic communication in a manner that closely incorporates the functional intricacies of synapses by preserving temporal encoding (i.e. the firing pattern of the presynaptic neuron) and connectivity (i.e. target specific synapses rather than specific neurons). Our strategy to achieve this goal builds on the use of non-mammalian transplants to create a synthetic synapse. The mode of modulation comes from pre-synaptic uptake of a synthetic neurotransmitter (SN) into synaptic vesicles by means of a genetically targeted transporter selective for the SN. Upon natural vesicular release, exposure of the SN to the synaptic cleft will modify the post-synaptic potential through an orthogonal ligand gated ion channel. To achieve this goal we have functionally characterized a mixed cationic methionine-gated ion channel from Arabidopsis thaliana, designed a method to functionally characterize a synthetic transporter in isolated synaptic vesicles without the need for transgenic animals, identified and extracted multiple prokaryotic uptake systems that are substrate specific for methionine (Met), and established a primary/cell line co-culture system that would allow future combinatorial testing of this orthogonal transmitter-transporter-channel trifecta. Synthetic synapses will provide a unique opportunity to manipulate synaptic communication while maintaining the electrophysiological integrity of the pre-synaptic cell. In this way, information may be preserved that was generated in upstream circuits and that could be essential for concerted function and information processing. AU - Mckenzie, Catherine ID - 6266 SN - 2663-337X TI - Design and characterization of methods and biological components to realize synthetic neurotransmission ER - TY - THES AB - The Wnt/planar cell polarity (Wnt/PCP) pathway determines planar polarity of epithelial cells in both vertebrates and invertebrates. The role that Wnt/PCP signaling plays in mesenchymal contexts, however, is only poorly understood. While previous studies have demonstrated the capacity of Wnt/PCP signaling to polarize and guide directed migration of mesenchymal cells, it remains unclear whether endogenous Wnt/PCP signaling performs these functions instructively, as it does in epithelial cells. Here we developed a light-switchable version of the Wnt/PCP receptor Frizzled 7 (Fz7) to unambiguously distinguish between an instructive and a permissive role of Wnt/PCP signaling for the directional collective migration of mesendoderm progenitor cells during zebrafish gastrulation. We show that prechordal plate (ppl) cell migration is defective in maternal-zygotic fz7a and fz7b (MZ fz7a,b) double mutant embryos, and that Fz7 functions cell-autonomously in this process by promoting ppl cell protrusion formation and directed migration. We further show that local activation of Fz7 can direct ppl cell migration both in vitro and in vivo. Surprisingly, however, uniform Fz7 activation is sufficient to fully rescue the ppl cell migration defect in MZ fz7a,b mutant embryos, indicating that Wnt/PCP signaling functions permissively rather than instructively in directed mesendoderm cell migration during zebrafish gastrulation. AU - Capek, Daniel ID - 50 SN - 2663-337X TI - Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration ER - TY - THES AB - Expression of genes is a fundamental molecular phenotype that is subject to evolution by different types of mutations. Both the rate and the effect of mutations may depend on the DNA sequence context of a particular gene or a particular promoter sequence. In this thesis I investigate the nature of this dependence using simple genetic systems in Escherichia coli. With these systems I explore the evolution of constitutive gene expression from random starting sequences at different loci on the chromosome and at different locations in sequence space. First, I dissect chromosomal neighborhood effects that underlie locus-dependent differences in the potential of a gene under selection to become more highly expressed. Next, I find that the effects of point mutations in promoter sequences are dependent on sequence context, and that an existing energy matrix model performs poorly in predicting relative expression of unrelated sequences. Finally, I show that a substantial fraction of random sequences contain functional promoters and I present an extended thermodynamic model that predicts promoter strength in full sequence space. Taken together, these results provide new insights and guides on how to integrate information on sequence context to improve our qualitative and quantitative understanding of bacterial gene expression, with implications for rapid evolution of drug resistance, de novo evolution of genes, and horizontal gene transfer. AU - Steinrück, Magdalena ID - 26 SN - 2663-337X TI - The influence of sequence context on the evolution of bacterial gene expression ER - TY - JOUR AB - Solid-state qubit manipulation and read-out fidelities are reaching fault-tolerance, but quantum error correction requires millions of physical qubits and therefore a scalable quantum computer architecture. To solve signal-line bandwidth and fan-out problems, microwave sources required for qubit manipulation might be embedded close to the qubit chip, typically operating at temperatures below 4 K. Here, we perform the first low temperature measurements of a 130 nm BiCMOS based SiGe voltage controlled oscillator at cryogenic temperature. We determined the frequency and output power dependence on temperature and magnetic field up to 5 T and measured the temperature influence on its noise performance. The device maintains its full functionality from 300 K to 4 K. The carrier frequency at 4 K increases by 3% with respect to the carrier frequency at 300 K, and the output power at 4 K increases by 10 dB relative to the output power at 300 K. The frequency tuning range of approximately 20% remains unchanged between 300 K and 4 K. In an in-plane magnetic field of 5 T, the carrier frequency shifts by only 0.02% compared to the frequency at zero magnetic field. AU - Hollmann, Arne AU - Jirovec, Daniel AU - Kucharski, Maciej AU - Kissinger, Dietmar AU - Fischer, Gunter AU - Schreiber, Lars R. ID - 5816 IS - 11 JF - Review of Scientific Instruments SN - 00346748 TI - 30 GHz-voltage controlled oscillator operating at 4 K VL - 89 ER - TY - THES AB - Antibiotic resistance can emerge spontaneously through genomic mutation and render treatment ineffective. To counteract this process, in addition to the discovery and description of resistance mechanisms,a deeper understanding of resistanceevolvabilityand its determinantsis needed. To address this challenge, this thesisuncoversnew genetic determinants of resistance evolvability using a customized robotic setup, exploressystematic ways in which resistance evolution is perturbed due to dose-responsecharacteristics of drugs and mutation rate differences,and mathematically investigates the evolutionary fate of one specific type of evolvability modifier -a stress-induced mutagenesis allele.We find severalgenes which strongly inhibit or potentiate resistance evolution. In order to identify them, we first developedan automated high-throughput feedback-controlled protocol whichkeeps the population size and selection pressure approximately constant for hundreds of cultures by dynamically re-diluting the cultures and adjusting the antibiotic concentration. We implementedthis protocol on a customized liquid handling robot and propagated 100 different gene deletion strains of Escherichia coliin triplicate for over 100 generations in tetracycline and in chloramphenicol, and comparedtheir adaptation rates.We find a diminishing returns pattern, where initially sensitive strains adapted more compared to less sensitive ones. Our data uncover that deletions of certain genes which do not affect mutation rate,including efflux pump components, a chaperone and severalstructural and regulatory genes can strongly and reproducibly alterresistance evolution. Sequencing analysis of evolved populations indicates that epistasis with resistance mutations is the most likelyexplanation. This work could inspire treatment strategies in which targeted inhibitors of evolvability mechanisms will be given alongside antibiotics to slow down resistance evolution and extend theefficacy of antibiotics.We implemented astochasticpopulation genetics model, toverifyways in which general properties, namely, dose-response characteristics of drugs and mutation rates, influence evolutionary dynamics. In particular, under the exposure to antibiotics with shallow dose-response curves,bacteria have narrower distributions of fitness effects of new mutations. We show that in silicothis also leads to slower resistance evolution. We see and confirm with experiments that increased mutation rates, apart from speeding up evolution, also leadto high reproducibility of phenotypic adaptation in a context of continually strong selection pressure.Knowledge of these patterns can aid in predicting the dynamics of antibiotic resistance evolutionand adapting treatment schemes accordingly.Focusing on a previously described type of evolvability modifier –a stress-induced mutagenesis allele –we find conditions under which it can persist in a population under periodic selectionakin to clinical treatment. We set up a deterministic infinite populationcontinuous time model tracking the frequencies of a mutator and resistance allele and evaluate various treatment schemes in how well they maintain a stress-induced mutator allele. In particular,a high diversity of stresses is crucial for the persistence of the mutator allele. This leads to a general trade-off where exactly those diversifying treatment schemes which are likely to decrease levels of resistance could lead to stronger selection of highly evolvable genotypes.In the long run, this work will lead to a deeper understanding of the genetic and cellular mechanisms involved in antibiotic resistance evolution and could inspire new strategies for slowing down its rate. AU - Lukacisinova, Marta ID - 6263 SN - 2663-337X TI - Genetic determinants of antibiotic resistance evolution ER - TY - JOUR AB - Drosophila melanogaster plasmatocytes, the phagocytic cells among hemocytes, are essential for immune responses, but also play key roles from early development to death through their interactions with other cell types. They regulate homeostasis and signaling during development, stem cell proliferation, metabolism, cancer, wound responses and aging, displaying intriguing molecular and functional conservation with vertebrate macrophages. Given the relative ease of genetics in Drosophila compared to vertebrates, tools permitting visualization and genetic manipulation of plasmatocytes and surrounding tissues independently at all stages would greatly aid in fully understanding these processes, but are lacking. Here we describe a comprehensive set of transgenic lines that allow this. These include extremely brightly fluorescing mCherry-based lines that allow GAL4-independent visualization of plasmatocyte nuclei, cytoplasm or actin cytoskeleton from embryonic Stage 8 through adulthood in both live and fixed samples even as heterozygotes, greatly facilitating screening. These lines allow live visualization and tracking of embryonic plasmatocytes, as well as larval plasmatocytes residing at the body wall or flowing with the surrounding hemolymph. With confocal imaging, interactions of plasmatocytes and inner tissues can be seen in live or fixed embryos, larvae and adults. They permit efficient GAL4-independent FACS analysis/sorting of plasmatocytes throughout life. To facilitate genetic analysis of reciprocal signaling, we have also made a plasmatocyte-expressing QF2 line that in combination with extant GAL4 drivers allows independent genetic manipulation of both plasmatocytes and surrounding tissues, and a GAL80 line that blocks GAL4 drivers from affecting plasmatocytes, both of which function from the early embryo to the adult. AU - György, Attila AU - Roblek, Marko AU - Ratheesh, Aparna AU - Valosková, Katarina AU - Belyaeva, Vera AU - Wachner, Stephanie AU - Matsubayashi, Yutaka AU - Sanchez Sanchez, Besaiz AU - Stramer, Brian AU - Siekhaus, Daria E ID - 544 IS - 3 JF - G3: Genes, Genomes, Genetics TI - Tools allowing independent visualization and genetic manipulation of Drosophila melanogaster macrophages and surrounding tissues VL - 8 ER - TY - JOUR AB - Metabotropic GABAB receptors mediate slow inhibitory effects presynaptically and postsynaptically through the modulation of different effector signalling pathways. Here, we analysed the distribution of GABAB receptors using highly sensitive SDS-digested freeze-fracture replica labelling in mouse cerebellar Purkinje cells. Immunoreactivity for GABAB1 was observed on presynaptic and, more abundantly, on postsynaptic compartments, showing both scattered and clustered distribution patterns. Quantitative analysis of immunoparticles revealed a somato-dendritic gradient, with the density of immunoparticles increasing 26-fold from somata to dendritic spines. To understand the spatial relationship of GABAB receptors with two key effector ion channels, the G protein-gated inwardly rectifying K+ (GIRK/Kir3) channel and the voltage-dependent Ca2+ channel, biochemical and immunohistochemical approaches were performed. Co-immunoprecipitation analysis demonstrated that GABAB receptors co-assembled with GIRK and CaV2.1 channels in the cerebellum. Using double-labelling immunoelectron microscopic techniques, co-clustering between GABAB1 and GIRK2 was detected in dendritic spines, whereas they were mainly segregated in the dendritic shafts. In contrast, co-clustering of GABAB1 and CaV2.1 was detected in dendritic shafts but not spines. Presynaptically, although no significant co-clustering of GABAB1 and GIRK2 or CaV2.1 channels was detected, inter-cluster distance for GABAB1 and GIRK2 was significantly smaller in the active zone than in the dendritic shafts, and that for GABAB1 and CaV2.1 was significantly smaller in the active zone than in the dendritic shafts and spines. Thus, GABAB receptors are associated with GIRK and CaV2.1 channels in different subcellular compartments. These data provide a better framework for understanding the different roles played by GABAB receptors and their effector ion channels in the cerebellar network. AU - Luján, Rafael AU - Aguado, Carolina AU - Ciruela, Francisco AU - Cózar, Javier AU - Kleindienst, David AU - De La Ossa, Luis AU - Bettler, Bernhard AU - Wickman, Kevin AU - Watanabe, Masahiko AU - Shigemoto, Ryuichi AU - Fukazawa, Yugo ID - 612 IS - 3 JF - Brain Structure and Function TI - Differential association of GABAB receptors with their effector ion channels in Purkinje cells VL - 223 ER - TY - JOUR AB - Parvalbumin-positive (PV+) GABAergic interneurons in hippocampal microcircuits are thought to play a key role in several higher network functions, such as feedforward and feedback inhibition, network oscillations, and pattern separation. Fast lateral inhibition mediated by GABAergic interneurons may implement a winner-takes-all mechanism in the hippocampal input layer. However, it is not clear whether the functional connectivity rules of granule cells (GCs) and interneurons in the dentate gyrus are consistent with such a mechanism. Using simultaneous patch-clamp recordings from up to seven GCs and up to four PV+ interneurons in the dentate gyrus, we find that connectivity is structured in space, synapse-specific, and enriched in specific disynaptic motifs. In contrast to the neocortex, lateral inhibition in the dentate gyrus (in which a GC inhibits neighboring GCs via a PV+ interneuron) is ~ 10-times more abundant than recurrent inhibition (in which a GC inhibits itself). Thus, unique connectivity rules may enable the dentate gyrus to perform specific higher-order computations AU - Espinoza Martinez, Claudia AU - Guzmán, José AU - Zhang, Xiaomin AU - Jonas, Peter M ID - 21 IS - 1 JF - Nature Communications TI - Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus VL - 9 ER - TY - CONF AB - Crypto-currencies are digital assets designed to work as a medium of exchange, e.g., Bitcoin, but they are susceptible to attacks (dishonest behavior of participants). A framework for the analysis of attacks in crypto-currencies requires (a) modeling of game-theoretic aspects to analyze incentives for deviation from honest behavior; (b) concurrent interactions between participants; and (c) analysis of long-term monetary gains. Traditional game-theoretic approaches for the analysis of security protocols consider either qualitative temporal properties such as safety and termination, or the very special class of one-shot (stateless) games. However, to analyze general attacks on protocols for crypto-currencies, both stateful analysis and quantitative objectives are necessary. In this work our main contributions are as follows: (a) we show how a class of concurrent mean-payo games, namely ergodic games, can model various attacks that arise naturally in crypto-currencies; (b) we present the first practical implementation of algorithms for ergodic games that scales to model realistic problems for crypto-currencies; and (c) we present experimental results showing that our framework can handle games with thousands of states and millions of transitions. AU - Chatterjee, Krishnendu AU - Goharshady, Amir AU - Ibsen-Jensen, Rasmus AU - Velner, Yaron ID - 66 SN - 978-3-95977-087-3 TI - Ergodic mean-payoff games for the analysis of attacks in crypto-currencies VL - 118 ER - TY - CONF AB - Smart contracts are computer programs that are executed by a network of mutually distrusting agents, without the need of an external trusted authority. Smart contracts handle and transfer assets of considerable value (in the form of crypto-currency like Bitcoin). Hence, it is crucial that their implementation is bug-free. We identify the utility (or expected payoff) of interacting with such smart contracts as the basic and canonical quantitative property for such contracts. We present a framework for such quantitative analysis of smart contracts. Such a formal framework poses new and novel research challenges in programming languages, as it requires modeling of game-theoretic aspects to analyze incentives for deviation from honest behavior and modeling utilities which are not specified as standard temporal properties such as safety and termination. While game-theoretic incentives have been analyzed in the security community, their analysis has been restricted to the very special case of stateless games. However, to analyze smart contracts, stateful analysis is required as it must account for the different program states of the protocol. Our main contributions are as follows: we present (i)~a simplified programming language for smart contracts; (ii)~an automatic translation of the programs to state-based games; (iii)~an abstraction-refinement approach to solve such games; and (iv)~experimental results on real-world-inspired smart contracts. AU - Chatterjee, Krishnendu AU - Goharshady, Amir AU - Velner, Yaron ID - 311 TI - Quantitative analysis of smart contracts VL - 10801 ER - TY - CONF AB - We present a secure approach for maintaining andreporting credit history records on the Blockchain. Our ap-proach removes third-parties such as credit reporting agen-cies from the lending process and replaces them with smartcontracts. This allows customers to interact directly with thelenders or banks while ensuring the integrity, unmalleabilityand privacy of their credit data. Additionally, each customerhas full control over complete or selective disclosure of hercredit records, eliminating the risk of privacy violations or databreaches. Moreover, our approach provides strong guaranteesfor the lenders as well. A lender can check both correctness andcompleteness of the credit data disclosed to her. This is the firstapproach that can perform all credit reporting tasks withouta central authority or changing the financial mechanisms*. AU - Goharshady, Amir Kafshdar AU - Behrouz, Ali AU - Chatterjee, Krishnendu ID - 6340 SN - 978-1-5386-7975-3 T2 - Proceedings of the IEEE International Conference on Blockchain TI - Secure Credit Reporting on the Blockchain ER - TY - JOUR AB - We study algorithmic questions wrt algebraic path properties in concurrent systems, where the transitions of the system are labeled from a complete, closed semiring. The algebraic path properties can model dataflow analysis problems, the shortest path problem, and many other natural problems that arise in program analysis. We consider that each component of the concurrent system is a graph with constant treewidth, a property satisfied by the controlflow graphs of most programs. We allow for multiple possible queries, which arise naturally in demand driven dataflow analysis. The study of multiple queries allows us to consider the tradeoff between the resource usage of the one-time preprocessing and for each individual query. The traditional approach constructs the product graph of all components and applies the best-known graph algorithm on the product. In this approach, even the answer to a single query requires the transitive closure (i.e., the results of all possible queries), which provides no room for tradeoff between preprocessing and query time. Our main contributions are algorithms that significantly improve the worst-case running time of the traditional approach, and provide various tradeoffs depending on the number of queries. For example, in a concurrent system of two components, the traditional approach requires hexic time in the worst case for answering one query as well as computing the transitive closure, whereas we show that with one-time preprocessing in almost cubic time, each subsequent query can be answered in at most linear time, and even the transitive closure can be computed in almost quartic time. Furthermore, we establish conditional optimality results showing that the worst-case running time of our algorithms cannot be improved without achieving major breakthroughs in graph algorithms (i.e., improving the worst-case bound for the shortest path problem in general graphs). Preliminary experimental results show that our algorithms perform favorably on several benchmarks. AU - Chatterjee, Krishnendu AU - Ibsen-Jensen, Rasmus AU - Goharshady, Amir Kafshdar AU - Pavlogiannis, Andreas ID - 6009 IS - 3 JF - ACM Transactions on Programming Languages and Systems SN - 0164-0925 TI - Algorithms for algebraic path properties in concurrent systems of constant treewidth components VL - 40 ER - TY - CONF AB - We consider the stochastic shortest path (SSP)problem for succinct Markov decision processes(MDPs), where the MDP consists of a set of vari-ables, and a set of nondeterministic rules that up-date the variables. First, we show that several ex-amples from the AI literature can be modeled assuccinct MDPs. Then we present computationalapproaches for upper and lower bounds for theSSP problem: (a) for computing upper bounds, ourmethod is polynomial-time in the implicit descrip-tion of the MDP; (b) for lower bounds, we present apolynomial-time (in the size of the implicit descrip-tion) reduction to quadratic programming. Our ap-proach is applicable even to infinite-state MDPs.Finally, we present experimental results to demon-strate the effectiveness of our approach on severalclassical examples from the AI literature. AU - Chatterjee, Krishnendu AU - Fu, Hongfei AU - Goharshady, Amir AU - Okati, Nastaran ID - 5977 SN - 10450823 T2 - Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence TI - Computational approaches for stochastic shortest path on succinct MDPs VL - 2018 ER - TY - JOUR AB - We show that a rather simple, steady modification of the streamwise velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarizes. Two different devices, a stationary obstacle (inset) and a device which injects fluid through an annular gap close to the wall, are used to control the flow. Both devices modify the streamwise velocity profile such that the flow in the center of the pipe is decelerated and the flow in the near wall region is accelerated. We present measurements with stereoscopic particle image velocimetry to investigate and capture the development of the relaminarizing flow downstream these devices and the specific circumstances responsible for relaminarization. We find total relaminarization up to Reynolds numbers of 6000, where the skin friction in the far downstream distance is reduced by a factor of 3.4 due to relaminarization. In a smooth straight pipe the flow remains completely laminar downstream of the control. Furthermore, we show that transient (temporary) relaminarization in a spatially confined region right downstream the devices occurs also at much higher Reynolds numbers, accompanied by a significant local skin friction drag reduction. The underlying physical mechanism of relaminarization is attributed to a weakening of the near-wall turbulence production cycle. AU - Kühnen, Jakob AU - Scarselli, Davide AU - Schaner, Markus AU - Hof, Björn ID - 422 IS - 4 JF - Flow Turbulence and Combustion TI - Relaminarization by steady modification of the streamwise velocity profile in a pipe VL - 100 ER - TY - JOUR AB - Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities, so far no methods exist to altogether eliminate turbulence if velocities are sufficiently large. We demonstrate for pipe flow that appropriate distortions to the velocity profile lead to a complete collapse of turbulence and subsequently friction losses are reduced by as much as 90%. Counterintuitively, the return to laminar motion is accomplished by initially increasing turbulence intensities or by transiently amplifying wall shear. Since neither the Reynolds number nor the shear stresses decrease (the latter often increase), these measures are not indicative of turbulence collapse. Instead, an amplification mechanism measuring the interaction between eddies and the mean shear is found to set a threshold below which turbulence is suppressed beyond recovery. AU - Kühnen, Jakob AU - Song, Baofang AU - Scarselli, Davide AU - Budanur, Nazmi B AU - Riedl, Michael AU - Willis, Ashley AU - Avila, Marc AU - Hof, Björn ID - 461 JF - Nature Physics TI - Destabilizing turbulence in pipe flow VL - 14 ER - TY - JOUR AB - Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. AU - Prat, Tomas AU - Hajny, Jakub AU - Grunewald, Wim AU - Vasileva, Mina K AU - Molnar, Gergely AU - Tejos, Ricardo AU - Schmid, Markus AU - Sauer, Michael AU - Friml, Jirí ID - 449 IS - 1 JF - PLoS Genetics TI - WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity VL - 14 ER - TY - JOUR AB - Intercellular distribution of the plant hormone auxin largely depends on the polar subcellular distribution of the plasma membrane PIN-FORMED (PIN) auxin transporters. PIN polarity switches in response to different developmental and environmental signals have been shown to redirect auxin fluxes mediating certain developmental responses. PIN phosphorylation at different sites and by different kinases is crucial for PIN function. Here we investigate the role of PIN phosphorylation during gravitropic response. Loss- and gain-of-function mutants in PINOID and related kinases but not in D6PK kinase as well as mutations mimicking constitutive dephosphorylated or phosphorylated status of two clusters of predicted phosphorylation sites partially disrupted PIN3 phosphorylation and caused defects in gravitropic bending in roots and hypocotyls. In particular, they impacted PIN3 polarity rearrangements in response to gravity and during feed-back regulation by auxin itself. Thus PIN phosphorylation, besides regulating transport activity and apical-basal targeting, is also important for the rapid polarity switches in response to environmental and endogenous signals. AU - Grones, Peter AU - Abas, Melinda F AU - Hajny, Jakub AU - Jones, Angharad AU - Waidmann, Sascha AU - Kleine Vehn, Jürgen AU - Friml, Jirí ID - 191 IS - 1 JF - Scientific Reports TI - PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism VL - 8 ER - TY - JOUR AB - Although much is known about the physiological framework of T cell motility, and numerous rate-limiting molecules have been identified through loss-of-function approaches, an integrated functional concept of T cell motility is lacking. Here, we used in vivo precision morphometry together with analysis of cytoskeletal dynamics in vitro to deconstruct the basic mechanisms of T cell migration within lymphatic organs. We show that the contributions of the integrin LFA-1 and the chemokine receptor CCR7 are complementary rather than positioned in a linear pathway, as they are during leukocyte extravasation from the blood vasculature. Our data demonstrate that CCR7 controls cortical actin flows, whereas integrins mediate substrate friction that is sufficient to drive locomotion in the absence of considerable surface adhesions and plasma membrane flux. AU - Hons, Miroslav AU - Kopf, Aglaja AU - Hauschild, Robert AU - Leithner, Alexander F AU - Gärtner, Florian R AU - Abe, Jun AU - Renkawitz, Jörg AU - Stein, Jens AU - Sixt, Michael K ID - 15 IS - 6 JF - Nature Immunology TI - Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells VL - 19 ER - TY - JOUR AB - The rapid auxin-triggered growth of the Arabidopsis hypocotyls involves the nuclear TIR1/AFB-Aux/IAA signaling and is accompanied by acidification of the apoplast and cell walls (Fendrych et al., 2016). Here, we describe in detail the method for analysis of the elongation and the TIR1/AFB-Aux/IAA-dependent auxin response in hypocotyl segments as well as the determination of relative values of the cell wall pH. AU - Li, Lanxin AU - Krens, Gabriel AU - Fendrych, Matyas AU - Friml, Jirí ID - 442 IS - 1 JF - Bio-protocol TI - Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana Hypocotyls VL - 8 ER - TY - JOUR AB - SETD5 gene mutations have been identified as a frequent cause of idiopathic intellectual disability. Here we show that Setd5-haploinsufficient mice present developmental defects such as abnormal brain-to-body weight ratios and neural crest defect-associated phenotypes. Furthermore, Setd5-mutant mice show impairments in cognitive tasks, enhanced long-term potentiation, delayed ontogenetic profile of ultrasonic vocalization, and behavioral inflexibility. Behavioral issues are accompanied by abnormal expression of postsynaptic density proteins previously associated with cognition. Our data additionally indicate that Setd5 regulates RNA polymerase II dynamics and gene transcription via its interaction with the Hdac3 and Paf1 complexes, findings potentially explaining the gene expression defects observed in Setd5-haploinsufficient mice. Our results emphasize the decisive role of Setd5 in a biological pathway found to be disrupted in humans with intellectual disability and autism spectrum disorder. AU - Deliu, Elena AU - Arecco, Niccoló AU - Morandell, Jasmin AU - Dotter, Christoph AU - Contreras, Ximena AU - Girardot, Charles AU - Käsper, Eva AU - Kozlova, Alena AU - Kishi, Kasumi AU - Chiaradia, Ilaria AU - Noh, Kyung AU - Novarino, Gaia ID - 3 IS - 12 JF - Nature Neuroscience TI - Haploinsufficiency of the intellectual disability gene SETD5 disturbs developmental gene expression and cognition VL - 21 ER - TY - JOUR AB - Indirect reciprocity explores how humans act when their reputation is at stake, and which social norms they use to assess the actions of others. A crucial question in indirect reciprocity is which social norms can maintain stable cooperation in a society. Past research has highlighted eight such norms, called “leading-eight” strategies. This past research, however, is based on the assumption that all relevant information about other population members is publicly available and that everyone agrees on who is good or bad. Instead, here we explore the reputation dynamics when information is private and noisy. We show that under these conditions, most leading-eight strategies fail to evolve. Those leading-eight strategies that do evolve are unable to sustain full cooperation.Indirect reciprocity is a mechanism for cooperation based on shared moral systems and individual reputations. It assumes that members of a community routinely observe and assess each other and that they use this information to decide who is good or bad, and who deserves cooperation. When information is transmitted publicly, such that all community members agree on each other’s reputation, previous research has highlighted eight crucial moral systems. These “leading-eight” strategies can maintain cooperation and resist invasion by defectors. However, in real populations individuals often hold their own private views of others. Once two individuals disagree about their opinion of some third party, they may also see its subsequent actions in a different light. Their opinions may further diverge over time. Herein, we explore indirect reciprocity when information transmission is private and noisy. We find that in the presence of perception errors, most leading-eight strategies cease to be stable. Even if a leading-eight strategy evolves, cooperation rates may drop considerably when errors are common. Our research highlights the role of reliable information and synchronized reputations to maintain stable moral systems. AU - Hilbe, Christian AU - Schmid, Laura AU - Tkadlec, Josef AU - Chatterjee, Krishnendu AU - Nowak, Martin ID - 2 IS - 48 JF - PNAS TI - Indirect reciprocity with private, noisy, and incomplete information VL - 115 ER - TY - JOUR AB - Gene regulatory networks evolve through rewiring of individual components—that is, through changes in regulatory connections. However, the mechanistic basis of regulatory rewiring is poorly understood. Using a canonical gene regulatory system, we quantify the properties of transcription factors that determine the evolutionary potential for rewiring of regulatory connections: robustness, tunability and evolvability. In vivo repression measurements of two repressors at mutated operator sites reveal their contrasting evolutionary potential: while robustness and evolvability were positively correlated, both were in trade-off with tunability. Epistatic interactions between adjacent operators alleviated this trade-off. A thermodynamic model explains how the differences in robustness, tunability and evolvability arise from biophysical characteristics of repressor–DNA binding. The model also uncovers that the energy matrix, which describes how mutations affect repressor–DNA binding, encodes crucial information about the evolutionary potential of a repressor. The biophysical determinants of evolutionary potential for regulatory rewiring constitute a mechanistic framework for understanding network evolution. AU - Igler, Claudia AU - Lagator, Mato AU - Tkacik, Gasper AU - Bollback, Jonathan P AU - Guet, Calin C ID - 67 IS - 10 JF - Nature Ecology and Evolution TI - Evolutionary potential of transcription factors for gene regulatory rewiring VL - 2 ER - TY - DATA AB - Mean repression values and standard error of the mean are given for all operator mutant libraries. AU - Igler, Claudia AU - Lagator, Mato AU - Tkacik, Gasper AU - Bollback, Jonathan P AU - Guet, Calin C ID - 5585 TI - Data for the paper Evolutionary potential of transcription factors for gene regulatory rewiring ER - TY - JOUR AB - From microwave ovens to satellite television to the GPS and data services on our mobile phones, microwave technology is everywhere today. But one technology that has so far failed to prove its worth in this wavelength regime is quantum communication that uses the states of single photons as information carriers. This is because single microwave photons, as opposed to classical microwave signals, are extremely vulnerable to noise from thermal excitations in the channels through which they travel. Two new independent studies, one by Ze-Liang Xiang at Technische Universität Wien (Vienna), Austria, and colleagues [1] and another by Benoît Vermersch at the University of Innsbruck, also in Austria, and colleagues [2] now describe a theoretical protocol for microwave quantum communication that is resilient to thermal and other types of noise. Their approach could become a powerful technique to establish fast links between superconducting data processors in a future all-microwave quantum network. AU - Fink, Johannes M ID - 1013 IS - 32 JF - Physics TI - Viewpoint: Microwave quantum states beat the heat VL - 10 ER - TY - JOUR AU - Vahid Belarghou, Afshin AU - Šarić, Anđela AU - Idema, Timon ID - 10126 IS - 3 JF - Biophysical Journal KW - biophysics SN - 0006-3495 TI - Curvature mediated interactions in highly curved membranes VL - 112 ER - TY - JOUR AB - We study periodic homogenization by Γ-convergence of integral functionals with integrands W(x,ξ) having no polynomial growth and which are both not necessarily continuous with respect to the space variable and not necessarily convex with respect to the matrix variable. This allows to deal with homogenization of composite hyperelastic materials consisting of two or more periodic components whose the energy densities tend to infinity as the volume of matter tends to zero, i.e., W(x,ξ)=∑j∈J1Vj(x)Hj(ξ) where {Vj}j∈J is a finite family of open disjoint subsets of RN, with |∂Vj|=0 for all j∈J and ∣∣RN∖⋃j∈JVj|=0, and, for each j∈J, Hj(ξ)→∞ as detξ→0. In fact, our results apply to integrands of type W(x,ξ)=a(x)H(ξ) when H(ξ)→∞ as detξ→0 and a∈L∞(RN;[0,∞[) is 1-periodic and is either continuous almost everywhere or not continuous. When a is not continuous, we obtain a density homogenization formula which is a priori different from the classical one by Braides–Müller. Although applications to hyperelasticity are limited due to the fact that our framework is not consistent with the constraint of noninterpenetration of the matter, our results can be of technical interest to analysis of homogenization of integral functionals. AU - Anza Hafsa, Omar AU - Clozeau, Nicolas AU - Mandallena, Jean-Philippe ID - 10175 IS - 2 JF - Annales mathématiques Blaise Pascal SN - 1259-1734 TI - Homogenization of nonconvex unbounded singular integrals VL - 24 ER - TY - JOUR AB - We investigate effects of quasiparticle poisoning in a Majorana island with strong tunnel coupling to normal-metal leads. In addition to the main Coulomb blockade diamonds, "shadow" diamonds appear, shifted by 1e in gate voltage, consistent with transport through an excited (poisoned) state of the island. Comparison to a simple model yields an estimate of parity lifetime for the strongly coupled island (∼1 μs) and sets a bound for a weakly coupled island (>10 μs). Fluctuations in the gate-voltage spacing of Coulomb peaks at high field, reflecting Majorana hybridization, are enhanced by the reduced lever arm at strong coupling. When converted from gate voltage to energy units, fluctuations are consistent with previous measurements. AU - Albrecht, S M AU - Hansen, Esben AU - Higginbotham, Andrew P AU - Kuemmeth, Ferdinand AU - Jespersen, Thomas AU - Nygård, Jesper AU - Krogstrup, Peter AU - Danon, Jeroen AU - Flensberg, Karsten AU - Marcus, Charles ID - 103 IS - 13 JF - APS Physics, Physical Review Letters TI - Transport signatures of quasiparticle poisoning in a majorana island VL - 118 ER - TY - JOUR AB - Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria – via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces – results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to biochemical responses in membrane dynamics may explain how organelles orderly cohabit in the crowded cytoplasm. AU - Helle, Sebastian Carsten Johannes AU - Feng, Qian AU - Aebersold, Mathias J AU - Hirt, Luca AU - Grüter, Raphael R AU - Vahid, Afshin AU - Sirianni, Andrea AU - Mostowy, Serge AU - Snedeker, Jess G AU - Šarić, Anđela AU - Idema, Timon AU - Zambelli, Tomaso AU - Kornmann, Benoît ID - 10370 JF - eLife KW - general immunology and microbiology KW - general biochemistry KW - genetics and molecular biology KW - general medicine KW - general neuroscience SN - 2050-084X TI - Mechanical force induces mitochondrial fission VL - 6 ER - TY - JOUR AB - Biological membranes have a central role in mediating the organization of membrane-curving proteins, a dynamic process that has proven to be challenging to probe experimentally. Using atomic force microscopy, we capture the hierarchically organized assemblies of Bin/amphiphysin/Rvs (BAR) proteins on supported lipid membranes. Their structure reveals distinct long linear aggregates of proteins, regularly spaced by up to 300 nm. Employing accurate free-energy calculations from large-scale coarse-grained computer simulations, we found that the membrane mediates the interaction among protein filaments as a combination of short- and long-ranged interactions. The long-ranged component acts at strikingly long distances, giving rise to a variety of micron-sized ordered patterns. This mechanism may contribute to the long-ranged spatiotemporal control of membrane remodeling by proteins in the cell. AU - Simunovic, Mijo AU - Šarić, Anđela AU - Henderson, J. Michael AU - Lee, Ka Yee C. AU - Voth, Gregory A. ID - 10369 IS - 12 JF - ACS Central Science KW - general chemical engineering KW - general chemistry SN - 2374-7943 TI - Long-range organization of membrane-curving proteins VL - 3 ER - TY - JOUR AB - Electric charges are conserved. The same would be expected to hold for magnetic charges, yet magnetic monopoles have never been observed. It is therefore surprising that the laws of nonequilibrium thermodynamics, combined with Maxwell’s equations, suggest that colloidal particles heated or cooled in certain polar or paramagnetic solvents may behave as if they carry an electric/magnetic charge. Here, we present numerical simulations that show that the field distribution around a pair of such heated/cooled colloidal particles agrees quantitatively with the theoretical predictions for a pair of oppositely charged electric or magnetic monopoles. However, in other respects, the nonequilibrium colloidal particles do not behave as monopoles: They cannot be moved by a homogeneous applied field. The numerical evidence for the monopole-like fields around heated/cooled colloidal particles is crucial because the experimental and numerical determination of forces between such colloidal particles would be complicated by the presence of other effects, such as thermophoresis. AU - Wirnsberger, Peter AU - Fijan, Domagoj AU - Lightwood, Roger A. AU - Šarić, Anđela AU - Dellago, Christoph AU - Frenkel, Daan ID - 10373 IS - 19 JF - Proceedings of the National Academy of Sciences KW - multidisciplinary SN - 0027-8424 TI - Numerical evidence for thermally induced monopoles VL - 114 ER - TY - JOUR AB - The formation of filaments from naturally occurring protein molecules is a process at the core of a range of functional and aberrant biological phenomena, such as the assembly of the cytoskeleton or the appearance of aggregates in Alzheimer's disease. The macroscopic behaviour associated with such processes is remarkably diverse, ranging from simple nucleated growth to highly cooperative processes with a well-defined lagtime. Thus, conventionally, different molecular mechanisms have been used to explain the self-assembly of different proteins. Here we show that this range of behaviour can be quantitatively captured by a single unifying Petri net that describes filamentous growth in terms of aggregate number and aggregate mass concentrations. By considering general features associated with a particular network connectivity, we are able to establish directly the rate-determining steps of the overall aggregation reaction from the system's scaling behaviour. We illustrate the power of this framework on a range of different experimental and simulated aggregating systems. The approach is general and will be applicable to any future extensions of the reaction network of filamentous self-assembly. AU - Meisl, Georg AU - Rajah, Luke AU - Cohen, Samuel A. I. AU - Pfammatter, Manuela AU - Šarić, Anđela AU - Hellstrand, Erik AU - Buell, Alexander K. AU - Aguzzi, Adriano AU - Linse, Sara AU - Vendruscolo, Michele AU - Dobson, Christopher M. AU - Knowles, Tuomas P. J. ID - 10374 IS - 10 JF - Chemical Science KW - general chemistry SN - 2041-6520 TI - Scaling behaviour and rate-determining steps in filamentous self-assembly VL - 8 ER - TY - JOUR AB - Cellular membranes exhibit a large variety of shapes, strongly coupled to their function. Many biological processes involve dynamic reshaping of membranes, usually mediated by proteins. This interaction works both ways: while proteins influence the membrane shape, the membrane shape affects the interactions between the proteins. To study these membrane-mediated interactions on closed and anisotropically curved membranes, we use colloids adhered to ellipsoidal membrane vesicles as a model system. We find that two particles on a closed system always attract each other, and tend to align with the direction of largest curvature. Multiple particles form arcs, or, at large enough numbers, a complete ring surrounding the vesicle in its equatorial plane. The resulting vesicle shape resembles a snowman. Our results indicate that these physical interactions on membranes with anisotropic shapes can be exploited by cells to drive macromolecules to preferred regions of cellular or intracellular membranes, and utilized to initiate dynamic processes such as cell division. The same principle could be used to find the midplane of an artificial vesicle, as a first step towards dividing it into two equal parts. AU - Vahid, Afshin AU - Šarić, Anđela AU - Idema, Timon ID - 10375 IS - 28 JF - Soft Matter KW - condensed matter physics KW - general chemistry SN - 1744-683X TI - Curvature variation controls particle aggregation on fluid vesicles VL - 13 ER - TY - JOUR AB - We present a new proof rule for proving almost-sure termination of probabilistic programs, including those that contain demonic non-determinism. An important question for a probabilistic program is whether the probability mass of all its diverging runs is zero, that is that it terminates "almost surely". Proving that can be hard, and this paper presents a new method for doing so. It applies directly to the program's source code, even if the program contains demonic choice. Like others, we use variant functions (a.k.a. "super-martingales") that are real-valued and decrease randomly on each loop iteration; but our key innovation is that the amount as well as the probability of the decrease are parametric. We prove the soundness of the new rule, indicate where its applicability goes beyond existing rules, and explain its connection to classical results on denumerable (non-demonic) Markov chains. AU - Mciver, Annabelle AU - Morgan, Carroll AU - Kaminski, Benjamin Lucien AU - Katoen, Joost P ID - 10418 IS - POPL JF - Proceedings of the ACM on Programming Languages TI - A new proof rule for almost-sure termination VL - 2 ER - TY - THES AB - The superconducting state of matter enables one to observe quantum effects on the macroscopic scale and hosts many fascinating phenomena. Topological defects of the superconducting order parameter, such as vortices and fluxoid states in multiply connected structures, are often the key ingredients of these phenomena. This dissertation describes a new mode of magnetic force microscopy (Φ0-MFM) for investigating vortex and fluxoid sates in mesoscopic superconducting (SC) structures. The technique relies on the magneto-mechanical coupling of a MFM cantilever to the motion of fluxons. The novelty of the technique is that a magnetic particle attached to the cantilever is used not only to sense the state of a SC structure, but also as a primary source of the inhomogeneous magnetic field which induces that state. Φ0-MFM enables us to map the transitions between tip-induced states during a scan: at the positions of the tip, where the two lowest energy states become degenerate, small oscillations of the tip drive the transitions between these states, which causes a significant shift in the resonant frequency and dissipation of the cantilever. For narrow-wall aluminum rings, the mapped fluxoid transitions form concentric contours on a scan. We show that the changes in the cantilever resonant frequency and dissipation are well-described by a stochastic resonance (SR) of cantilever-driven thermally activated phase slips (TAPS). The SR model allows us to experimentally determine the rate of TAPS and compare it to the Langer-Ambegaokar-McCumber-Halperin (LAMH) theory for TAPS in 1D superconducting structures. Further, we use the SR model to qualitatively study the effects of a locally applied magnetic field on the phase slip rate in rings containing constrictions. The states with multiple vortices or winding numbers could be useful for the development of novel superconducting devices, or the study of vortex interactions and interference effects. Using Φ0-MFM allows us to induce, probe and control fluxoid states in thin wall structures comprised of multiple loops. We show that Φ0-MFM images of the fluxoid transitions allow us to identify the underlying states and to investigate their energetics and dynamics even in complicated structures. AU - Polshyn, Hryhoriy ID - 10663 KW - physics KW - superconductivity KW - magnetic force microscopy KW - phase slips TI - Magnetic force microscopy studies of mesoscopic superconducting structures ER - TY - CONF AB - New ways to investigate and manipulate fluxoid and vortex states of mesoscopic superconducting structures are of great interest. The states with multiple vortices or winding numbers could be useful for the study of vortex interactions and interference effects, the braiding of Majorana bound states by winding vortices, and the development of novel superconducting devices. We demonstrate a methodology based on magnetic force microscopy that allows us to induce, probe and control fluxoid states in thin wall structures comprised of multiple loops. By using micro-magnet as a source of inhomogeneous magnetic field, we can efficiently explore the configuration space of fluxoid states. Scanning over the structure reveals the energy crossing points of the lowest laying fluxoid states. This is due the strong interaction of cantilever with thermally activated fluxoid transitions at points of degeneracy. We show that measured patterns of fluxoid transitions allow to identify the states, investigate their energetics, and manipulate them. Further, we show that the dynamics of driven fluxoid transitions can be described by stochastic resonance model, which provides a unique way of measuring fluxoid transition rate and related energy barrier for chosen transitions even in complicated structures AU - Polshyn, Hryhoriy AU - Naibert, Tyler AU - Budakian, Raffi ID - 10745 IS - 4 SN - 0003-0503 T2 - APS March Meeting 2017 TI - Probing and controlling fluxoid states in multiply-connected mesoscopic superconducting structures VL - 62 ER - TY - CHAP AU - Wenzl, Bernhard ED - Parker, Joshua ED - Poole, Ralph ID - 1075 SN - 978-3643908124 T2 - Austria and America: 20th-Century Cross-Cultural Encounters TI - An American in Allied-occupied Austria: John Dos Passos Reports on "The Vienna Frontier" VL - 15 ER - TY - JOUR AB - Recent studies have shown that a subset of nucleoporins (Nups) can detach from the nuclear pore complex and move into the nuclear interior to regulate transcription. One such dynamic Nup, called Nup98, has been implicated in gene activation in healthy cells and has been shown to drive leukemogenesis when mutated in patients with acute myeloid leukemia (AML). Here we show that in hematopoietic cells, Nup98 binds predominantly to transcription start sites to recruit the Wdr82–Set1A/COMPASS (complex of proteins associated with Set1) complex, which is required for deposition of the histone 3 Lys4 trimethyl (H3K4me3)-activating mark. Depletion of Nup98 or Wdr82 abolishes Set1A recruitment to chromatin and subsequently ablates H3K4me3 at adjacent promoters. Furthermore, expression of a Nup98 fusion protein implicated in aggressive AML causes mislocalization of H3K4me3 at abnormal regions and up-regulation of associated genes. Our findings establish a function of Nup98 in hematopoietic gene activation and provide mechanistic insight into which Nup98 leukemic fusion proteins promote AML. AU - Franks, Tobias M. AU - McCloskey, Asako AU - Shokhirev, Maxim Nikolaievich AU - Benner, Chris AU - Rathore, Annie AU - HETZER, Martin W ID - 11066 IS - 22 JF - Genes & Development KW - Developmental Biology KW - Genetics SN - 0890-9369 TI - Nup98 recruits the Wdr82–Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells VL - 31 ER - TY - JOUR AB - Neural progenitor cells (NeuPCs) possess a unique nuclear architecture that changes during differentiation. Nucleoporins are linked with cell-type-specific gene regulation, coupling physical changes in nuclear structure to transcriptional output; but, whether and how they coordinate with key fate-determining transcription factors is unclear. Here we show that the nucleoporin Nup153 interacts with Sox2 in adult NeuPCs, where it is indispensable for their maintenance and controls neuronal differentiation. Genome-wide analyses show that Nup153 and Sox2 bind and co-regulate hundreds of genes. Binding of Nup153 to gene promoters or transcriptional end sites correlates with increased or decreased gene expression, respectively, and inhibiting Nup153 expression alters open chromatin configurations at its target genes, disrupts genomic localization of Sox2, and promotes differentiation in vitro and a gliogenic fate switch in vivo. Together, these findings reveal that nuclear structural proteins may exert bimodal transcriptional effects to control cell fate. AU - Toda, Tomohisa AU - Hsu, Jonathan Y. AU - Linker, Sara B. AU - Hu, Lauren AU - Schafer, Simon T. AU - Mertens, Jerome AU - Jacinto, Filipe V. AU - HETZER, Martin W AU - Gage, Fred H. ID - 11067 IS - 5 JF - Cell Stem Cell KW - Cell Biology KW - Genetics KW - Molecular Medicine SN - 1934-5909 TI - Nup153 interacts with Sox2 to enable bimodal gene regulation and maintenance of neural progenitor cells VL - 21 ER - TY - JOUR AB - Premature aging disorders provide an opportunity to study the mechanisms that drive aging. In Hutchinson-Gilford progeria syndrome (HGPS), a mutant form of the nuclear scaffold protein lamin A distorts nuclei and sequesters nuclear proteins. We sought to investigate protein homeostasis in this disease. Here, we report a widespread increase in protein turnover in HGPS-derived cells compared to normal cells. We determine that global protein synthesis is elevated as a consequence of activated nucleoli and enhanced ribosome biogenesis in HGPS-derived fibroblasts. Depleting normal lamin A or inducing mutant lamin A expression are each sufficient to drive nucleolar expansion. We further show that nucleolar size correlates with donor age in primary fibroblasts derived from healthy individuals and that ribosomal RNA production increases with age, indicating that nucleolar size and activity can serve as aging biomarkers. While limiting ribosome biogenesis extends lifespan in several systems, we show that increased ribosome biogenesis and activity are a hallmark of premature aging. AU - Buchwalter, Abigail AU - HETZER, Martin W ID - 11065 JF - Nature Communications KW - General Physics and Astronomy KW - General Biochemistry KW - Genetics and Molecular Biology KW - General Chemistry SN - 2041-1723 TI - Nucleolar expansion and elevated protein translation in premature aging VL - 8 ER - TY - JOUR AB - We present spectroscopic follow-up observations of CR7 with ALMA, targeted at constraining the infrared (IR) continuum and [C II]158 mm line-emission at high spatial resolution matched to the HST/WFC3 imaging. CR7 is a luminous Lyα emitting galaxy at z = 6.6 that consists of three separated UV-continuum components. Our observations reveal several well-separated components of [C II] emission. The two most luminous components in [C II] coincide with the brightest UV components (A and B), blueshifted by »150 km s−1 with respect to the peak of Lyα emission. Other [C II] components are observed close to UV clumps B and C and are blueshifted by »300 and ≈80 km s−1 with respect to the systemic redshift. We do not detect FIR continuum emission due to dust with a 3σ limiting luminosity LIR T L d 35 K 3.1 10 = <´ 10 ( ) . This allows us to mitigate uncertainties in the dust-corrected SFR and derive SFRs for the three UV clumps A, B, and C of 28, 5, and 7 M yr−1. All clumps have [C II] luminosities consistent within the scatter observed in the local relation between SFR and L[ ] C II , implying that strong Lyα emission does not necessarily anti-correlate with [C II] luminosity. Combining our measurements with the literature, we show that galaxies with blue UV slopes have weaker [C II] emission at fixed SFR, potentially due to their lower metallicities and/or higher photoionization. Comparison with hydrodynamical simulations suggests that CR7ʼs clumps have metallicities of 0.1 Z Z 0.2 < < . The observed ISM structure of CR7 indicates that we are likely witnessing the build up of a central galaxy in the early universe through complex accretion of satellites. AU - Matthee, Jorryt J AU - Sobral, D. AU - Boone, F. AU - Röttgering, H. AU - Schaerer, D. AU - Girard, M. AU - Pallottini, A. AU - Vallini, L. AU - Ferrara, A. AU - Darvish, B. AU - Mobasher, B. ID - 11518 IS - 2 JF - The Astrophysical Journal KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - dark ages KW - reionization KW - first stars – galaxies: formation – galaxies: high-redshift – galaxies: ISM – galaxies: kinematics and dynamics SN - 0004-637X TI - ALMA reveals metals yet no dust within multiple components in CR7 VL - 851 ER - TY - JOUR AB - We present the CAlibrating LYMan-α with Hα (CALYMHA) pilot survey and new results on Lyman α (Lyα) selected galaxies at z ∼ 2. We use a custom-built Lyα narrow-band filter at the Isaac Newton Telescope, designed to provide a matched volume coverage to the z = 2.23 Hα HiZELS survey. Here, we present the first results for the COSMOS and UDS fields. Our survey currently reaches a 3σ line flux limit of ∼4 × 10−17 erg s−1 cm−2, and a Lyα luminosity limit of ∼1042.3 erg s−1. We find 188 Lyα emitters over 7.3 × 105 Mpc3, but also find significant numbers of other line-emitting sources corresponding to He II, C III] and C IV emission lines. These sources are important contaminants, and we carefully remove them, unlike most previous studies. We find that the Lyα luminosity function at z = 2.23 is very well described by a Schechter function up to LLy α ≈ 1043 erg s−1 with L∗=1042.59+0.16−0.08 erg s−1, ϕ∗=10−3.09+0.14−0.34 Mpc−3 and α = −1.75 ± 0.25. Above LLy α ≈ 1043 erg s−1, the Lyα luminosity function becomes power-law like, driven by X-ray AGN. We find that Lyα-selected emitters have a high escape fraction of 37 ± 7 per cent, anticorrelated with Lyα luminosity and correlated with Lyα equivalent width. Lyα emitters have ubiquitous large (≈40 kpc) Lyα haloes, ∼2 times larger than their Hα extents. By directly comparing our Lyα and Hα luminosity functions, we find that the global/overall escape fraction of Lyα photons (within a 13 kpc radius) from the full population of star-forming galaxies is 5.1 ± 0.2 per cent at the peak of the star formation history. An extra 3.3 ± 0.3 per cent of Lyα photons likely still escape, but at larger radii. AU - Sobral, David AU - Matthee, Jorryt J AU - Best, Philip AU - Stroe, Andra AU - Röttgering, Huub AU - Oteo, Iván AU - Smail, Ian AU - Morabito, Leah AU - Paulino-Afonso, Ana ID - 11562 IS - 1 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - galaxies: evolution KW - galaxies: haloes KW - galaxies: high-redshift KW - galaxies: luminosity function KW - mass function KW - galaxies: statistics KW - cosmology: observations SN - 0035-8711 TI - The CALYMHA survey: Lyα luminosity function and global escape fraction of Lyα photons at z = 2.23 VL - 466 ER - TY - JOUR AB - While traditionally associated with active galactic nuclei (AGN), the properties of the C II] (λ = 2326 Å), C III] (λ, λ = 1907, 1909 Å) and C IV (λ, λ = 1549, 1551 Å) emission lines are still uncertain as large, unbiased samples of sources are scarce. We present the first blind, statistical study of C II], C III] and C IV emitters at z ∼ 0.68, 1.05, 1.53, respectively, uniformly selected down to a flux limit of ∼4 × 10−17 erg s−1 cm−1 through a narrow-band survey covering an area of ∼1.4 deg2 over COSMOS and UDS. We detect 16 C II], 35 C III] and 17 C IV emitters, whose nature we investigate using optical colours as well as Hubble Space Telescope (HST), X-ray, radio and far-infrared data. We find that z ∼ 0.7 C II] emitters are consistent with a mixture of blue (UV slope β = −2.0 ± 0.4) star-forming (SF) galaxies with discy HST structure and AGN with Seyfert-like morphologies. Bright C II] emitters have individual X-ray detections as well as high average black hole accretion rates (BHARs) of ∼0.1 M⊙ yr−1. C III] emitters at z ∼ 1.05 trace a general population of SF galaxies, with β = −0.8 ± 1.1, a variety of optical morphologies, including isolated and interacting galaxies and low BHAR (<0.02 M⊙ yr−1). Our C IV emitters at z ∼ 1.5 are consistent with young, blue quasars (β ∼ −1.9) with point-like optical morphologies, bright X-ray counterparts and large BHAR (0.8  M⊙ yr−1). We also find some surprising C II], C III] and C IV emitters with rest-frame equivalent widths (EWs) that could be as large as 50–100 Å. AGN or spatial offsets between the UV continuum stellar disc and the line-emitting regions may explain the large EW. These bright C II], C III] and C IV emitters are ideal candidates for spectroscopic follow-up to fully unveil their nature. AU - Stroe, Andra AU - Sobral, David AU - Matthee, Jorryt J AU - Calhau, João AU - Oteo, Ivan ID - 11566 IS - 3 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - galaxies: active KW - galaxies: high-redshift KW - quasars: emission lines KW - galaxies: star formation KW - cosmology: observations SN - 0035-8711 TI - A 1.4 deg2 blind survey for C II], C III] and C IV at z ∼ 0.7–1.5 – I. Nature, morphologies and equivalent widths VL - 471 ER - TY - JOUR AB - We study the production rate of ionizing photons of a sample of 588 Hα emitters (HAEs) and 160 Lyman-α emitters (LAEs) at z = 2.2 in the COSMOS field in order to assess the implied emissivity from galaxies, based on their ultraviolet (UV) luminosity. By exploring the rest-frame Lyman Continuum (LyC) with GALEX/NUV data, we find fesc < 2.8 (6.4) per cent through median (mean) stacking. By combining the Hα luminosity density with intergalactic medium emissivity measurements from absorption studies, we find a globally averaged 〈fesc〉 of 5.9+14.5−4.2 per cent at z = 2.2 if we assume HAEs are the only source of ionizing photons. We find similarly low values of the global 〈fesc〉 at z ≈ 3–5, also ruling out a high 〈fesc〉 at z < 5. These low escape fractions allow us to measure ξion, the number of produced ionizing photons per unit UV luminosity, and investigate how this depends on galaxy properties. We find a typical ξion ≈ 1024.77 ± 0.04 Hz erg−1 for HAEs and ξion ≈ 1025.14 ± 0.09 Hz erg−1 for LAEs. LAEs and low-mass HAEs at z = 2.2 show similar values of ξion as typically assumed in the reionization era, while the typical HAE is three times less ionizing. Due to an increasing ξion with increasing EW(Hα), ξion likely increases with redshift. This evolution alone is fully in line with the observed evolution of ξion between z ≈ 2 and 5, indicating a typical value of ξion ≈ 1025.4 Hz erg−1 in the reionization era. AU - Matthee, Jorryt J AU - Sobral, David AU - Best, Philip AU - Khostovan, Ali Ahmad AU - Oteo, Iván AU - Bouwens, Rychard AU - Röttgering, Huub ID - 11564 IS - 3 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - galaxies: evolution KW - galaxies: high-redshift KW - cosmology: observations KW - dark ages KW - reionization KW - first stars SN - 0035-8711 TI - The production and escape of Lyman-Continuum radiation from star-forming galaxies at z ∼ 2 and their redshift evolution VL - 465 ER - TY - JOUR AB - Recently, the C III] and C IV emission lines have been observed in galaxies in the early Universe (z > 5), providing new ways to measure their redshift and study their stellar populations and active galactic nuclei (AGN). We explore the first blind C II], C III] and C IV survey (z ∼ 0.68, 1.05, 1.53, respectively) presented in Stroe et al. (2017). We derive luminosity functions (LF) and study properties of C II], C III] and C IV line emitters through comparisons to the LFs of H α and Ly α emitters, UV selected star-forming (SF) galaxies and quasars at similar redshifts. The C II] LF at z ∼ 0.68 is equally well described by a Schechter or a power-law LF, characteristic of a mixture of SF and AGN activity. The C III] LF (z ∼ 1.05) is consistent to a scaled down version of the Schechter H α and Ly α LF at their redshift, indicating a SF origin. In stark contrast, the C IV LF at z ∼ 1.53 is well fit by a power-law, quasar-like LF. We find that the brightest UV sources (MUV < −22) will universally have C III] and C IV emission. However, on average, C III] and C IV are not as abundant as H α or Ly α emitters at the same redshift, with cosmic average ratios of ∼0.02–0.06 to H α and ∼0.01–0.1 to intrinsic Ly α. We predict that the C III] and C IV lines can only be truly competitive in confirming high-redshift candidates when the hosts are intrinsically bright and the effective Ly α escape fraction is below 1 per cent. While C III] and C IV were proposed as good tracers of young, relatively low-metallicity galaxies typical of the early Universe, we find that, at least at z ∼ 1.5, C IV is exclusively hosted by AGN/quasars, especially at large line equivalent widths. AU - Stroe, Andra AU - Sobral, David AU - Matthee, Jorryt J AU - Calhau, João AU - Oteo, Ivan ID - 11567 IS - 3 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - galaxies: active KW - galaxies: high redshift KW - galaxies: luminosity function KW - mass function KW - quasars: emission lines KW - star formation KW - cosmology: observations SN - 0035-8711 TI - A 1.4 deg2 blind survey for C II], C III] and C IV at z ∼ 0.7–1.5 – II. Luminosity functions and cosmic average line ratios VL - 471 ER - TY - JOUR AB - We use the hydrodynamical EAGLE simulation to study the magnitude and origin of the scatter in the stellar mass–halo mass relation for central galaxies. We separate cause and effect by correlating stellar masses in the baryonic simulation with halo properties in a matched dark matter only (DMO) simulation. The scatter in stellar mass increases with redshift and decreases with halo mass. At z = 0.1, it declines from 0.25 dex at M200, DMO ≈ 1011 M⊙ to 0.12 dex at M200, DMO ≈ 1013 M⊙, but the trend is weak above 1012 M⊙. For M200, DMO < 1012.5 M⊙ up to 0.04 dex of the scatter is due to scatter in the halo concentration. At fixed halo mass, a larger stellar mass corresponds to a more concentrated halo. This is likely because higher concentrations imply earlier formation times and hence more time for accretion and star formation, and/or because feedback is less efficient in haloes with higher binding energies. The maximum circular velocity, Vmax, DMO, and binding energy are therefore more fundamental properties than halo mass, meaning that they are more accurate predictors of stellar mass, and we provide fitting formulae for their relations with stellar mass. However, concentration alone cannot explain the total scatter in the Mstar−M200,DMO relation, and it does not explain the scatter in Mstar–Vmax, DMO. Halo spin, sphericity, triaxiality, substructure and environment are also not responsible for the remaining scatter, which thus could be due to more complex halo properties or non-linear/stochastic baryonic effects. AU - Matthee, Jorryt J AU - Schaye, Joop AU - Crain, Robert A. AU - Schaller, Matthieu AU - Bower, Richard AU - Theuns, Tom ID - 11565 IS - 2 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics KW - galaxies: evolution KW - galaxies: formation KW - galaxies: haloes KW - cosmology: theory SN - 0035-8711 TI - The origin of scatter in the stellar mass–halo mass relation of central galaxies in the EAGLE simulation VL - 465 ER -