--- _id: '14517' abstract: - lang: eng text: 'State-of-the-art transmon qubits rely on large capacitors, which systematically improve their coherence due to reduced surface-loss participation. However, this approach increases both the footprint and the parasitic cross-coupling and is ultimately limited by radiation losses—a potential roadblock for scaling up quantum processors to millions of qubits. In this work we present transmon qubits with sizes as low as 36 × 39 µm2 with 100-nm-wide vacuum-gap capacitors that are micromachined from commercial silicon-on-insulator wafers and shadow evaporated with aluminum. We achieve a vacuum participation ratio up to 99.6% in an in-plane design that is compatible with standard coplanar circuits. Qubit relaxationtime measurements for small gaps with high zero-point electric field variance of up to 22 V/m reveal a double exponential decay indicating comparably strong qubit interaction with long-lived two-level systems. The exceptionally high selectivity of up to 20 dB to the superconductor-vacuum interface allows us to precisely back out the sub-single-photon dielectric loss tangent of aluminum oxide previously exposed to ambient conditions. In terms of future scaling potential, we achieve a ratio of qubit quality factor to a footprint area equal to 20 µm−2, which is comparable with the highest T1 devices relying on larger geometries, a value that could improve substantially for lower surface-loss superconductors. ' acknowledged_ssus: - _id: NanoFab acknowledgement: "This work was supported by the Austrian Science Fund (FWF) through BeyondC (F7105), the European Research Council under Grant Agreement No. 758053 (ERC StG QUNNECT) and a NOMIS foundation research grant. M.Z. was the recipient of a SAIA scholarship, E.R. of\r\na DOC fellowship of the Austrian Academy of Sciences, and M.P. of a Pöttinger scholarship at IST Austria. S.B. acknowledges support from Marie Skłodowska Curie Program No. 707438 (MSC-IF SUPEREOM). J.M.F. acknowledges support from the Horizon Europe Program HORIZON-CL4-2022-QUANTUM-01-SGA via Project No. 101113946 OpenSuperQPlus100 and the ISTA Nanofabrication Facility." article_number: '044054' article_processing_charge: No article_type: original author: - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Zemlicka M, Redchenko E, Peruzzo M, et al. Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Physical Review Applied. 2023;20(4). doi:10.1103/PhysRevApplied.20.044054' apa: 'Zemlicka, M., Redchenko, E., Peruzzo, M., Hassani, F., Trioni, A., Barzanjeh, S., & Fink, J. M. (2023). Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Physical Review Applied. American Physical Society. https://doi.org/10.1103/PhysRevApplied.20.044054' chicago: 'Zemlicka, Martin, Elena Redchenko, Matilda Peruzzo, Farid Hassani, Andrea Trioni, Shabir Barzanjeh, and Johannes M Fink. “Compact Vacuum-Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses.” Physical Review Applied. American Physical Society, 2023. https://doi.org/10.1103/PhysRevApplied.20.044054.' ieee: 'M. Zemlicka et al., “Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses,” Physical Review Applied, vol. 20, no. 4. American Physical Society, 2023.' ista: 'Zemlicka M, Redchenko E, Peruzzo M, Hassani F, Trioni A, Barzanjeh S, Fink JM. 2023. Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Physical Review Applied. 20(4), 044054.' mla: 'Zemlicka, Martin, et al. “Compact Vacuum-Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses.” Physical Review Applied, vol. 20, no. 4, 044054, American Physical Society, 2023, doi:10.1103/PhysRevApplied.20.044054.' short: M. Zemlicka, E. Redchenko, M. Peruzzo, F. Hassani, A. Trioni, S. Barzanjeh, J.M. Fink, Physical Review Applied 20 (2023). date_created: 2023-11-12T23:00:55Z date_published: 2023-10-20T00:00:00Z date_updated: 2023-11-13T09:22:47Z day: '20' department: - _id: JoFi doi: 10.1103/PhysRevApplied.20.044054 ec_funded: 1 external_id: arxiv: - '2206.14104' intvolume: ' 20' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2206.14104 month: '10' oa: 1 oa_version: Preprint project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: eb9b30ac-77a9-11ec-83b8-871f581d53d2 name: Protected states of quantum matter - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' - _id: bdb7cfc1-d553-11ed-ba76-d2eaab167738 grant_number: '101080139' name: Open Superconducting Quantum Computers (OpenSuperQPlus) publication: Physical Review Applied publication_identifier: eissn: - 2331-7019 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '14520' relation: research_data status: public scopus_import: '1' status: public title: 'Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 20 year: '2023' ... --- _id: '13227' abstract: - lang: eng text: Currently available quantum processors are dominated by noise, which severely limits their applicability and motivates the search for new physical qubit encodings. In this work, we introduce the inductively shunted transmon, a weakly flux-tunable superconducting qubit that offers charge offset protection for all levels and a 20-fold reduction in flux dispersion compared to the state-of-the-art resulting in a constant coherence over a full flux quantum. The parabolic confinement provided by the inductive shunt as well as the linearity of the geometric superinductor facilitates a high-power readout that resolves quantum jumps with a fidelity and QND-ness of >90% and without the need for a Josephson parametric amplifier. Moreover, the device reveals quantum tunneling physics between the two prepared fluxon ground states with a measured average decay time of up to 3.5 h. In the future, fast time-domain control of the transition matrix elements could offer a new path forward to also achieve full qubit control in the decay-protected fluxon basis. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: The authors thank J. Koch for discussions and support with the scQubits python package, I. Rozhansky and A. Poddubny for important insights into photon-assisted tunneling, S. Barzanjeh and G. Arnold for theory, E. Redchenko, S. Pepic, the MIBA workshop and the IST nanofabrication facility for technical contributions, as well as L. Drmic, P. Zielinski and R. Sett for software development. We acknowledge the prompt support of Quantum Machines to implement active state preparation with their OPX+. This work was supported by a NOMIS foundation research grant (J.F.), the Austrian Science Fund (FWF) through BeyondC F7105 (J.F.) and IST Austria. article_number: '3968' article_processing_charge: No article_type: original author: - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Lucky full_name: Kapoor, Lucky id: 84b9700b-15b2-11ec-abd3-831089e67615 last_name: Kapoor - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Hassani F, Peruzzo M, Kapoor L, Trioni A, Zemlicka M, Fink JM. Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours. Nature Communications. 2023;14. doi:10.1038/s41467-023-39656-2 apa: Hassani, F., Peruzzo, M., Kapoor, L., Trioni, A., Zemlicka, M., & Fink, J. M. (2023). Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-39656-2 chicago: Hassani, Farid, Matilda Peruzzo, Lucky Kapoor, Andrea Trioni, Martin Zemlicka, and Johannes M Fink. “Inductively Shunted Transmons Exhibit Noise Insensitive Plasmon States and a Fluxon Decay Exceeding 3 Hours.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-39656-2. ieee: F. Hassani, M. Peruzzo, L. Kapoor, A. Trioni, M. Zemlicka, and J. M. Fink, “Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Hassani F, Peruzzo M, Kapoor L, Trioni A, Zemlicka M, Fink JM. 2023. Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours. Nature Communications. 14, 3968. mla: Hassani, Farid, et al. “Inductively Shunted Transmons Exhibit Noise Insensitive Plasmon States and a Fluxon Decay Exceeding 3 Hours.” Nature Communications, vol. 14, 3968, Springer Nature, 2023, doi:10.1038/s41467-023-39656-2. short: F. Hassani, M. Peruzzo, L. Kapoor, A. Trioni, M. Zemlicka, J.M. Fink, Nature Communications 14 (2023). date_created: 2023-07-16T22:01:08Z date_published: 2023-07-05T00:00:00Z date_updated: 2023-12-13T11:32:25Z day: '05' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41467-023-39656-2 external_id: isi: - '001024729900009' pmid: - '37407570' file: - access_level: open_access checksum: a85773b5fe23516f60f7d5d31b55c200 content_type: application/pdf creator: dernst date_created: 2023-07-18T08:43:07Z date_updated: 2023-07-18T08:43:07Z file_id: '13248' file_name: 2023_NatureComm_Hassani.pdf file_size: 2899592 relation: main_file success: 1 file_date_updated: 2023-07-18T08:43:07Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 2622978C-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '14520' abstract: - lang: eng text: 'This dataset comprises all data shown in the figures of the submitted article "Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses" at arxiv.org/abs/2206.14104. Additional raw data are available from the corresponding author on reasonable request.' article_processing_charge: No author: - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Zemlicka M, Redchenko E, Peruzzo M, et al. Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses. 2022. doi:10.5281/ZENODO.8408897' apa: 'Zemlicka, M., Redchenko, E., Peruzzo, M., Hassani, F., Trioni, A., Barzanjeh, S., & Fink, J. M. (2022). Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Zenodo. https://doi.org/10.5281/ZENODO.8408897' chicago: 'Zemlicka, Martin, Elena Redchenko, Matilda Peruzzo, Farid Hassani, Andrea Trioni, Shabir Barzanjeh, and Johannes M Fink. “Compact Vacuum Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses.” Zenodo, 2022. https://doi.org/10.5281/ZENODO.8408897.' ieee: 'M. Zemlicka et al., “Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses.” Zenodo, 2022.' ista: 'Zemlicka M, Redchenko E, Peruzzo M, Hassani F, Trioni A, Barzanjeh S, Fink JM. 2022. Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses, Zenodo, 10.5281/ZENODO.8408897.' mla: 'Zemlicka, Martin, et al. Compact Vacuum Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses. Zenodo, 2022, doi:10.5281/ZENODO.8408897.' short: M. Zemlicka, E. Redchenko, M. Peruzzo, F. Hassani, A. Trioni, S. Barzanjeh, J.M. Fink, (2022). date_created: 2023-11-13T08:09:10Z date_published: 2022-06-28T00:00:00Z date_updated: 2023-11-13T09:22:48Z day: '28' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.8408897 has_accepted_license: '1' license: https://creativecommons.org/publicdomain/zero/1.0/ main_file_link: - open_access: '1' url: https://doi.org/10.5281/ZENODO.8408897 month: '06' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '14517' relation: used_in_publication status: public status: public title: 'Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '10645' abstract: - lang: eng text: "Superconducting qubits have emerged as a highly versatile and useful platform for quantum technological applications [1]. Bluefors and Zurich Instruments have supported the growth of this field from the 2010s onwards by providing well-engineered and reliable measurement infrastructure [2]– [6]. Having a long and stable qubit lifetime is a critical system property. Therefore, considerable effort has already gone into measuring qubit energy-relaxation timescales and their fluctuations, see Refs. [7]–[10] among others. Accurately extracting the statistics of a quantum device requires users to perform time consuming measurements. One measurement challenge is that the detection of the state-dependent\r\nresponse of a superconducting resonator due to a dispersively-coupled qubit requires an inherently low signal level. Consequently, measurements must be performed using a microwave probe that contains only a few microwave photons. Improving the signal-to-noise ratio (SNR) by using near-quantum limited parametric amplifiers as well as the use of optimized signal processing enabled by efficient room temperature instrumentation help to reduce measurement time. An empirical observation for fixed frequency transmons from recent literature is that as the energy-relaxation time \U0001D447\U0001D4471 increases, so do its natural temporal fluctuations [7], [10]. This necessitates many repeated measurements to understand the statistics (see for example, Ref. [10]). In addition, as state-of-the-art qubits increase in lifetime, longer\r\nmeasurement times are expected to obtain accurate statistics. As described below, the scaling of the widths of the qubit energy-relaxation distributions also reveal clues about the origin of the energy-relaxation." alternative_title: - Bluefors Blog article_processing_charge: No author: - first_name: Slawomir full_name: Simbierowicz, Slawomir last_name: Simbierowicz - first_name: Chunyan full_name: Shi, Chunyan last_name: Shi - first_name: Michele full_name: Collodo, Michele last_name: Collodo - first_name: Moritz full_name: Kirste, Moritz last_name: Kirste - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Jonas full_name: Bylander, Jonas last_name: Bylander - first_name: Daniel full_name: Perez Lozano, Daniel last_name: Perez Lozano - first_name: Russell full_name: Lake, Russell last_name: Lake citation: ama: 'Simbierowicz S, Shi C, Collodo M, et al. Qubit Energy-Relaxation Statistics in the Bluefors Quantum Measurement System. Helsinki, Finland: Bluefors Oy; 2021.' apa: 'Simbierowicz, S., Shi, C., Collodo, M., Kirste, M., Hassani, F., Fink, J. M., … Lake, R. (2021). Qubit energy-relaxation statistics in the Bluefors quantum measurement system. Helsinki, Finland: Bluefors Oy.' chicago: 'Simbierowicz, Slawomir, Chunyan Shi, Michele Collodo, Moritz Kirste, Farid Hassani, Johannes M Fink, Jonas Bylander, Daniel Perez Lozano, and Russell Lake. Qubit Energy-Relaxation Statistics in the Bluefors Quantum Measurement System. Helsinki, Finland: Bluefors Oy, 2021.' ieee: 'S. Simbierowicz et al., Qubit energy-relaxation statistics in the Bluefors quantum measurement system. Helsinki, Finland: Bluefors Oy, 2021.' ista: 'Simbierowicz S, Shi C, Collodo M, Kirste M, Hassani F, Fink JM, Bylander J, Perez Lozano D, Lake R. 2021. Qubit energy-relaxation statistics in the Bluefors quantum measurement system, Helsinki, Finland: Bluefors Oy, 8p.' mla: Simbierowicz, Slawomir, et al. Qubit Energy-Relaxation Statistics in the Bluefors Quantum Measurement System. Bluefors Oy, 2021. short: S. Simbierowicz, C. Shi, M. Collodo, M. Kirste, F. Hassani, J.M. Fink, J. Bylander, D. Perez Lozano, R. Lake, Qubit Energy-Relaxation Statistics in the Bluefors Quantum Measurement System, Bluefors Oy, Helsinki, Finland, 2021. date_created: 2022-01-19T08:41:14Z date_published: 2021-06-03T00:00:00Z date_updated: 2022-01-19T09:11:39Z day: '03' department: - _id: JoFi keyword: - Application note language: - iso: eng main_file_link: - open_access: '1' url: https://bluefors.com/blog/application-note-qubit-energy-relaxation-statistics-bluefors-quantum-measurement-system/ month: '06' oa: 1 oa_version: Published Version page: '8' place: Helsinki, Finland publication_status: published publisher: Bluefors Oy quality_controlled: '1' status: public title: Qubit energy-relaxation statistics in the Bluefors quantum measurement system type: other_academic_publication user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '10644' abstract: - lang: eng text: The purpose of this application note is to demonstrate a working example of a superconducting qubit measurement in a Bluefors cryostat using the Keysight quantum control hardware. Our motivation is twofold. First, we provide pre-qualification data that the Bluefors cryostat, including filtering and wiring, can support long-lived qubits. Second, we demonstrate that the Keysight system (controlled using Labber) provides a straightforward solution to perform these characterization measurements. This document is intended as a brief guide for starting an experimental platform for testing superconducting qubits. The setup described here is an immediate jumping off point for a suite of applications including testing quantum logical gates, quantum optics with microwaves, or even using the qubit itself as a sensitive probe of local electromagnetic fields. Qubit measurements rely on high performance of both the physical sample environment and the measurement electronics. An overview of the cryogenic system is shown in Figure 1, and an overview of the integration between the electronics and cryostat (including wiring details) is shown in Figure 2. alternative_title: - Bluefors Blog article_processing_charge: No author: - first_name: Russell full_name: Lake, Russell last_name: Lake - first_name: Slawomir full_name: Simbierowicz, Slawomir last_name: Simbierowicz - first_name: Philip full_name: Krantz, Philip last_name: Krantz - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Lake R, Simbierowicz S, Krantz P, Hassani F, Fink JM. The Bluefors Dilution Refrigerator as an Integrated Quantum Measurement System. Helsinki, Finland: Bluefors Oy; 2021.' apa: 'Lake, R., Simbierowicz, S., Krantz, P., Hassani, F., & Fink, J. M. (2021). The Bluefors dilution refrigerator as an integrated quantum measurement system. Helsinki, Finland: Bluefors Oy.' chicago: 'Lake, Russell, Slawomir Simbierowicz, Philip Krantz, Farid Hassani, and Johannes M Fink. The Bluefors Dilution Refrigerator as an Integrated Quantum Measurement System. Helsinki, Finland: Bluefors Oy, 2021.' ieee: 'R. Lake, S. Simbierowicz, P. Krantz, F. Hassani, and J. M. Fink, The Bluefors dilution refrigerator as an integrated quantum measurement system. Helsinki, Finland: Bluefors Oy, 2021.' ista: 'Lake R, Simbierowicz S, Krantz P, Hassani F, Fink JM. 2021. The Bluefors dilution refrigerator as an integrated quantum measurement system, Helsinki, Finland: Bluefors Oy, 9p.' mla: Lake, Russell, et al. The Bluefors Dilution Refrigerator as an Integrated Quantum Measurement System. Bluefors Oy, 2021. short: R. Lake, S. Simbierowicz, P. Krantz, F. Hassani, J.M. Fink, The Bluefors Dilution Refrigerator as an Integrated Quantum Measurement System, Bluefors Oy, Helsinki, Finland, 2021. date_created: 2022-01-19T08:29:57Z date_published: 2021-04-20T00:00:00Z date_updated: 2022-01-19T09:11:33Z day: '20' department: - _id: JoFi keyword: - Application note language: - iso: eng main_file_link: - open_access: '1' url: https://bluefors.com/blog/integrated-quantum-measurement-system/ month: '04' oa: 1 oa_version: Published Version page: '9' place: Helsinki, Finland publication_status: published publisher: Bluefors Oy quality_controlled: '1' status: public title: The Bluefors dilution refrigerator as an integrated quantum measurement system type: other_academic_publication user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '13057' abstract: - lang: eng text: 'This dataset comprises all data shown in the figures of the submitted article "Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction". Additional raw data are available from the corresponding author on reasonable request.' article_processing_charge: No author: - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Grisha full_name: Szep, Grisha last_name: Szep - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Peruzzo M, Hassani F, Szep G, et al. Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. 2021. doi:10.5281/ZENODO.5592103' apa: 'Peruzzo, M., Hassani, F., Szep, G., Trioni, A., Redchenko, E., Zemlicka, M., & Fink, J. M. (2021). Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. Zenodo. https://doi.org/10.5281/ZENODO.5592103' chicago: 'Peruzzo, Matilda, Farid Hassani, Grisha Szep, Andrea Trioni, Elena Redchenko, Martin Zemlicka, and Johannes M Fink. “Geometric Superinductance Qubits: Controlling Phase Delocalization across a Single Josephson Junction.” Zenodo, 2021. https://doi.org/10.5281/ZENODO.5592103.' ieee: 'M. Peruzzo et al., “Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction.” Zenodo, 2021.' ista: 'Peruzzo M, Hassani F, Szep G, Trioni A, Redchenko E, Zemlicka M, Fink JM. 2021. Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction, Zenodo, 10.5281/ZENODO.5592103.' mla: 'Peruzzo, Matilda, et al. Geometric Superinductance Qubits: Controlling Phase Delocalization across a Single Josephson Junction. Zenodo, 2021, doi:10.5281/ZENODO.5592103.' short: M. Peruzzo, F. Hassani, G. Szep, A. Trioni, E. Redchenko, M. Zemlicka, J.M. Fink, (2021). date_created: 2023-05-23T13:42:27Z date_published: 2021-10-22T00:00:00Z date_updated: 2023-08-11T10:44:21Z day: '22' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.5592103 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.5592104 month: '10' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '9928' relation: used_in_publication status: public status: public title: 'Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9928' abstract: - lang: eng text: There are two elementary superconducting qubit types that derive directly from the quantum harmonic oscillator. In one, the inductor is replaced by a nonlinear Josephson junction to realize the widely used charge qubits with a compact phase variable and a discrete charge wave function. In the other, the junction is added in parallel, which gives rise to an extended phase variable, continuous wave functions, and a rich energy-level structure due to the loop topology. While the corresponding rf superconducting quantum interference device Hamiltonian was introduced as a quadratic quasi-one-dimensional potential approximation to describe the fluxonium qubit implemented with long Josephson-junction arrays, in this work we implement it directly using a linear superinductor formed by a single uninterrupted aluminum wire. We present a large variety of qubits, all stemming from the same circuit but with drastically different characteristic energy scales. This includes flux and fluxonium qubits but also the recently introduced quasicharge qubit with strongly enhanced zero-point phase fluctuations and a heavily suppressed flux dispersion. The use of a geometric inductor results in high reproducibility of the inductive energy as guaranteed by top-down lithography—a key ingredient for intrinsically protected superconducting qubits. acknowledged_ssus: - _id: NanoFab - _id: M-Shop acknowledgement: We thank W. Hughes for analytic and numerical modeling during the early stages of this work, J. Koch for discussions and support with the scqubits package, R. Sett, P. Zielinski, and L. Drmic for software development, and G. Katsaros for equipment support, as well as the MIBA workshop and the Institute of Science and Technology Austria nanofabrication facility. We thank I. Pop, S. Deleglise, and E. Flurin for discussions. This work was supported by a NOMIS Foundation research grant, the Austrian Science Fund (FWF) through BeyondC (F7105), and IST Austria. M.P. is the recipient of a Pöttinger scholarship at IST Austria. E.R. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. article_processing_charge: No article_type: original author: - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Gregory full_name: Szep, Gregory last_name: Szep - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Peruzzo M, Hassani F, Szep G, et al. Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. PRX Quantum. 2021;2(4):040341. doi:10.1103/PRXQuantum.2.040341' apa: 'Peruzzo, M., Hassani, F., Szep, G., Trioni, A., Redchenko, E., Zemlicka, M., & Fink, J. M. (2021). Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. PRX Quantum. American Physical Society. https://doi.org/10.1103/PRXQuantum.2.040341' chicago: 'Peruzzo, Matilda, Farid Hassani, Gregory Szep, Andrea Trioni, Elena Redchenko, Martin Zemlicka, and Johannes M Fink. “Geometric Superinductance Qubits: Controlling Phase Delocalization across a Single Josephson Junction.” PRX Quantum. American Physical Society, 2021. https://doi.org/10.1103/PRXQuantum.2.040341.' ieee: 'M. Peruzzo et al., “Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction,” PRX Quantum, vol. 2, no. 4. American Physical Society, p. 040341, 2021.' ista: 'Peruzzo M, Hassani F, Szep G, Trioni A, Redchenko E, Zemlicka M, Fink JM. 2021. Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction. PRX Quantum. 2(4), 040341.' mla: 'Peruzzo, Matilda, et al. “Geometric Superinductance Qubits: Controlling Phase Delocalization across a Single Josephson Junction.” PRX Quantum, vol. 2, no. 4, American Physical Society, 2021, p. 040341, doi:10.1103/PRXQuantum.2.040341.' short: M. Peruzzo, F. Hassani, G. Szep, A. Trioni, E. Redchenko, M. Zemlicka, J.M. Fink, PRX Quantum 2 (2021) 040341. date_created: 2021-08-17T08:14:18Z date_published: 2021-11-24T00:00:00Z date_updated: 2023-09-07T13:31:22Z day: '24' ddc: - '530' department: - _id: JoFi - _id: NanoFab - _id: M-Shop doi: 10.1103/PRXQuantum.2.040341 ec_funded: 1 external_id: arxiv: - '2106.05882' isi: - '000723015100001' file: - access_level: open_access checksum: 36eb41ea43d8ca22b0efab12419e4eb2 content_type: application/pdf creator: cchlebak date_created: 2022-01-18T11:29:33Z date_updated: 2022-01-18T11:29:33Z file_id: '10641' file_name: 2021_PRXQuantum_Peruzzo.pdf file_size: 4247422 relation: main_file success: 1 file_date_updated: 2022-01-18T11:29:33Z has_accepted_license: '1' intvolume: ' 2' isi: 1 issue: '4' keyword: - quantum physics - mesoscale and nanoscale physics language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: '040341' project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 2622978C-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices publication: PRX Quantum publication_identifier: eissn: - 2691-3399 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '13057' relation: research_data status: public - id: '9920' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2 year: '2021' ... --- _id: '8529' abstract: - lang: eng text: Practical quantum networks require low-loss and noise-resilient optical interconnects as well as non-Gaussian resources for entanglement distillation and distributed quantum computation. The latter could be provided by superconducting circuits but existing solutions to interface the microwave and optical domains lack either scalability or efficiency, and in most cases the conversion noise is not known. In this work we utilize the unique opportunities of silicon photonics, cavity optomechanics and superconducting circuits to demonstrate a fully integrated, coherent transducer interfacing the microwave X and the telecom S bands with a total (internal) bidirectional transduction efficiency of 1.2% (135%) at millikelvin temperatures. The coupling relies solely on the radiation pressure interaction mediated by the femtometer-scale motion of two silicon nanobeams reaching a Vπ as low as 16 μV for sub-nanowatt pump powers. Without the associated optomechanical gain, we achieve a total (internal) pure conversion efficiency of up to 0.019% (1.6%), relevant for future noise-free operation on this qubit-compatible platform. acknowledged_ssus: - _id: NanoFab acknowledgement: We thank Yuan Chen for performing supplementary FEM simulations and Andrew Higginbotham, Ralf Riedinger, Sungkun Hong, and Lorenzo Magrini for valuable discussions. This work was supported by IST Austria, the IST nanofabrication facility (NFF), the European Union’s Horizon 2020 research and innovation program under grant agreement no. 732894 (FET Proactive HOT) and the European Research Council under grant agreement no. 758053 (ERC StG QUNNECT). G.A. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. W.H. is the recipient of an ISTplus postdoctoral fellowship with funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 754411. J.M.F. acknowledges support from the Austrian Science Fund (FWF) through BeyondC (F71), a NOMIS foundation research grant, and the EU’s Horizon 2020 research and innovation program under grant agreement no. 862644 (FET Open QUARTET). article_number: '4460' article_processing_charge: No article_type: original author: - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Arnold GM, Wulf M, Barzanjeh S, et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nature Communications. 2020;11. doi:10.1038/s41467-020-18269-z apa: Arnold, G. M., Wulf, M., Barzanjeh, S., Redchenko, E., Rueda Sanchez, A. R., Hease, W. J., … Fink, J. M. (2020). Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-18269-z chicago: Arnold, Georg M, Matthias Wulf, Shabir Barzanjeh, Elena Redchenko, Alfredo R Rueda Sanchez, William J Hease, Farid Hassani, and Johannes M Fink. “Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-18269-z. ieee: G. M. Arnold et al., “Converting microwave and telecom photons with a silicon photonic nanomechanical interface,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Arnold GM, Wulf M, Barzanjeh S, Redchenko E, Rueda Sanchez AR, Hease WJ, Hassani F, Fink JM. 2020. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nature Communications. 11, 4460. mla: Arnold, Georg M., et al. “Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface.” Nature Communications, vol. 11, 4460, Springer Nature, 2020, doi:10.1038/s41467-020-18269-z. short: G.M. Arnold, M. Wulf, S. Barzanjeh, E. Redchenko, A.R. Rueda Sanchez, W.J. Hease, F. Hassani, J.M. Fink, Nature Communications 11 (2020). date_created: 2020-09-18T10:56:20Z date_published: 2020-09-08T00:00:00Z date_updated: 2023-08-22T09:27:12Z day: '08' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41467-020-18269-z ec_funded: 1 external_id: isi: - '000577280200001' file: - access_level: open_access checksum: 88f92544889eb18bb38e25629a422a86 content_type: application/pdf creator: dernst date_created: 2020-09-18T13:02:37Z date_updated: 2020-09-18T13:02:37Z file_id: '8530' file_name: 2020_NatureComm_Arnold.pdf file_size: 1002818 relation: main_file success: 1 file_date_updated: 2020-09-18T13:02:37Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - General Biochemistry - Genetics and Molecular Biology - General Physics and Astronomy - General Chemistry language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41467-020-18912-9 - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-to-transport-microwave-quantum-information-via-optical-fiber/ record: - id: '13056' relation: research_data status: public status: public title: Converting microwave and telecom photons with a silicon photonic nanomechanical interface tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '13056' abstract: - lang: eng text: This datasets comprises all data shown in plots of the submitted article "Converting microwave and telecom photons with a silicon photonic nanomechanical interface". Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Arnold GM, Wulf M, Barzanjeh S, et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. 2020. doi:10.5281/ZENODO.3961561 apa: Arnold, G. M., Wulf, M., Barzanjeh, S., Redchenko, E., Rueda Sanchez, A. R., Hease, W. J., … Fink, J. M. (2020). Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Zenodo. https://doi.org/10.5281/ZENODO.3961561 chicago: Arnold, Georg M, Matthias Wulf, Shabir Barzanjeh, Elena Redchenko, Alfredo R Rueda Sanchez, William J Hease, Farid Hassani, and Johannes M Fink. “Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface.” Zenodo, 2020. https://doi.org/10.5281/ZENODO.3961561. ieee: G. M. Arnold et al., “Converting microwave and telecom photons with a silicon photonic nanomechanical interface.” Zenodo, 2020. ista: Arnold GM, Wulf M, Barzanjeh S, Redchenko E, Rueda Sanchez AR, Hease WJ, Hassani F, Fink JM. 2020. Converting microwave and telecom photons with a silicon photonic nanomechanical interface, Zenodo, 10.5281/ZENODO.3961561. mla: Arnold, Georg M., et al. Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface. Zenodo, 2020, doi:10.5281/ZENODO.3961561. short: G.M. Arnold, M. Wulf, S. Barzanjeh, E. Redchenko, A.R. Rueda Sanchez, W.J. Hease, F. Hassani, J.M. Fink, (2020). date_created: 2023-05-23T13:37:41Z date_published: 2020-07-27T00:00:00Z date_updated: 2023-08-22T09:27:11Z day: '27' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.3961561 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.3961562 month: '07' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '8529' relation: used_in_publication status: public status: public title: Converting microwave and telecom photons with a silicon photonic nanomechanical interface tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '13070' abstract: - lang: eng text: This dataset comprises all data shown in the figures of the submitted article "Surpassing the resistance quantum with a geometric superinductor". Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Peruzzo M, Trioni A, Hassani F, Zemlicka M, Fink JM. Surpassing the resistance quantum with a geometric superinductor. 2020. doi:10.5281/ZENODO.4052882 apa: Peruzzo, M., Trioni, A., Hassani, F., Zemlicka, M., & Fink, J. M. (2020). Surpassing the resistance quantum with a geometric superinductor. Zenodo. https://doi.org/10.5281/ZENODO.4052882 chicago: Peruzzo, Matilda, Andrea Trioni, Farid Hassani, Martin Zemlicka, and Johannes M Fink. “Surpassing the Resistance Quantum with a Geometric Superinductor.” Zenodo, 2020. https://doi.org/10.5281/ZENODO.4052882. ieee: M. Peruzzo, A. Trioni, F. Hassani, M. Zemlicka, and J. M. Fink, “Surpassing the resistance quantum with a geometric superinductor.” Zenodo, 2020. ista: Peruzzo M, Trioni A, Hassani F, Zemlicka M, Fink JM. 2020. Surpassing the resistance quantum with a geometric superinductor, Zenodo, 10.5281/ZENODO.4052882. mla: Peruzzo, Matilda, et al. Surpassing the Resistance Quantum with a Geometric Superinductor. Zenodo, 2020, doi:10.5281/ZENODO.4052882. short: M. Peruzzo, A. Trioni, F. Hassani, M. Zemlicka, J.M. Fink, (2020). date_created: 2023-05-23T16:42:30Z date_published: 2020-09-27T00:00:00Z date_updated: 2023-08-22T13:23:57Z day: '27' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.4052882 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.4052883 month: '09' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '8755' relation: used_in_publication status: public status: public title: Surpassing the resistance quantum with a geometric superinductor tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8755' abstract: - lang: eng text: 'The superconducting circuit community has recently discovered the promising potential of superinductors. These circuit elements have a characteristic impedance exceeding the resistance quantum RQ ≈ 6.45 kΩ which leads to a suppression of ground state charge fluctuations. Applications include the realization of hardware protected qubits for fault tolerant quantum computing, improved coupling to small dipole moment objects and defining a new quantum metrology standard for the ampere. In this work we refute the widespread notion that superinductors can only be implemented based on kinetic inductance, i.e. using disordered superconductors or Josephson junction arrays. We present modeling, fabrication and characterization of 104 planar aluminum coil resonators with a characteristic impedance up to 30.9 kΩ at 5.6 GHz and a capacitance down to ≤ 1 fF, with lowloss and a power handling reaching 108 intra-cavity photons. Geometric superinductors are free of uncontrolled tunneling events and offer high reproducibility, linearity and the ability to couple magnetically - properties that significantly broaden the scope of future quantum circuits. ' acknowledged_ssus: - _id: NanoFab acknowledgement: "The authors acknowledge the support from I. Prieto and the IST Nanofabrication Facility. This work was supported by IST Austria and a NOMIS foundation research grant and the Austrian Science Fund (FWF) through BeyondC (F71). MP is the recipient of a P¨ottinger scholarship at IST Austria. JMF acknowledges support from the European Union’s Horizon 2020 research and innovation programs under grant agreement No 732894 (FET Proactive HOT), 862644 (FET Open QUARTET), and the European Research Council under grant agreement\r\nnumber 758053 (ERC StG QUNNECT). " article_number: '044055' article_processing_charge: No article_type: original author: - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Peruzzo M, Trioni A, Hassani F, Zemlicka M, Fink JM. Surpassing the resistance quantum with a geometric superinductor. Physical Review Applied. 2020;14(4). doi:10.1103/PhysRevApplied.14.044055 apa: Peruzzo, M., Trioni, A., Hassani, F., Zemlicka, M., & Fink, J. M. (2020). Surpassing the resistance quantum with a geometric superinductor. Physical Review Applied. American Physical Society. https://doi.org/10.1103/PhysRevApplied.14.044055 chicago: Peruzzo, Matilda, Andrea Trioni, Farid Hassani, Martin Zemlicka, and Johannes M Fink. “Surpassing the Resistance Quantum with a Geometric Superinductor.” Physical Review Applied. American Physical Society, 2020. https://doi.org/10.1103/PhysRevApplied.14.044055. ieee: M. Peruzzo, A. Trioni, F. Hassani, M. Zemlicka, and J. M. Fink, “Surpassing the resistance quantum with a geometric superinductor,” Physical Review Applied, vol. 14, no. 4. American Physical Society, 2020. ista: Peruzzo M, Trioni A, Hassani F, Zemlicka M, Fink JM. 2020. Surpassing the resistance quantum with a geometric superinductor. Physical Review Applied. 14(4), 044055. mla: Peruzzo, Matilda, et al. “Surpassing the Resistance Quantum with a Geometric Superinductor.” Physical Review Applied, vol. 14, no. 4, 044055, American Physical Society, 2020, doi:10.1103/PhysRevApplied.14.044055. short: M. Peruzzo, A. Trioni, F. Hassani, M. Zemlicka, J.M. Fink, Physical Review Applied 14 (2020). date_created: 2020-11-15T23:01:17Z date_published: 2020-10-29T00:00:00Z date_updated: 2023-09-07T13:31:22Z day: '29' ddc: - '530' department: - _id: JoFi doi: 10.1103/PhysRevApplied.14.044055 ec_funded: 1 external_id: arxiv: - '2007.01644' isi: - '000582797300003' file: - access_level: open_access checksum: 2a634abe75251ae7628cd54c8a4ce2e8 content_type: application/pdf creator: dernst date_created: 2021-03-29T11:43:20Z date_updated: 2021-03-29T11:43:20Z file_id: '9300' file_name: 2020_PhysReviewApplied_Peruzzo.pdf file_size: 2607823 relation: main_file success: 1 file_date_updated: 2021-03-29T11:43:20Z has_accepted_license: '1' intvolume: ' 14' isi: 1 issue: '4' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits publication: Physical Review Applied publication_identifier: eissn: - '23317019' publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '13070' relation: research_data status: public - id: '9920' relation: dissertation_contains status: public scopus_import: '1' status: public title: Surpassing the resistance quantum with a geometric superinductor type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2020' ...