--- _id: '14517' abstract: - lang: eng text: 'State-of-the-art transmon qubits rely on large capacitors, which systematically improve their coherence due to reduced surface-loss participation. However, this approach increases both the footprint and the parasitic cross-coupling and is ultimately limited by radiation losses—a potential roadblock for scaling up quantum processors to millions of qubits. In this work we present transmon qubits with sizes as low as 36 × 39 µm2 with 100-nm-wide vacuum-gap capacitors that are micromachined from commercial silicon-on-insulator wafers and shadow evaporated with aluminum. We achieve a vacuum participation ratio up to 99.6% in an in-plane design that is compatible with standard coplanar circuits. Qubit relaxationtime measurements for small gaps with high zero-point electric field variance of up to 22 V/m reveal a double exponential decay indicating comparably strong qubit interaction with long-lived two-level systems. The exceptionally high selectivity of up to 20 dB to the superconductor-vacuum interface allows us to precisely back out the sub-single-photon dielectric loss tangent of aluminum oxide previously exposed to ambient conditions. In terms of future scaling potential, we achieve a ratio of qubit quality factor to a footprint area equal to 20 µm−2, which is comparable with the highest T1 devices relying on larger geometries, a value that could improve substantially for lower surface-loss superconductors. ' acknowledged_ssus: - _id: NanoFab acknowledgement: "This work was supported by the Austrian Science Fund (FWF) through BeyondC (F7105), the European Research Council under Grant Agreement No. 758053 (ERC StG QUNNECT) and a NOMIS foundation research grant. M.Z. was the recipient of a SAIA scholarship, E.R. of\r\na DOC fellowship of the Austrian Academy of Sciences, and M.P. of a Pöttinger scholarship at IST Austria. S.B. acknowledges support from Marie Skłodowska Curie Program No. 707438 (MSC-IF SUPEREOM). J.M.F. acknowledges support from the Horizon Europe Program HORIZON-CL4-2022-QUANTUM-01-SGA via Project No. 101113946 OpenSuperQPlus100 and the ISTA Nanofabrication Facility." article_number: '044054' article_processing_charge: No article_type: original author: - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Zemlicka M, Redchenko E, Peruzzo M, et al. Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Physical Review Applied. 2023;20(4). doi:10.1103/PhysRevApplied.20.044054' apa: 'Zemlicka, M., Redchenko, E., Peruzzo, M., Hassani, F., Trioni, A., Barzanjeh, S., & Fink, J. M. (2023). Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Physical Review Applied. American Physical Society. https://doi.org/10.1103/PhysRevApplied.20.044054' chicago: 'Zemlicka, Martin, Elena Redchenko, Matilda Peruzzo, Farid Hassani, Andrea Trioni, Shabir Barzanjeh, and Johannes M Fink. “Compact Vacuum-Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses.” Physical Review Applied. American Physical Society, 2023. https://doi.org/10.1103/PhysRevApplied.20.044054.' ieee: 'M. Zemlicka et al., “Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses,” Physical Review Applied, vol. 20, no. 4. American Physical Society, 2023.' ista: 'Zemlicka M, Redchenko E, Peruzzo M, Hassani F, Trioni A, Barzanjeh S, Fink JM. 2023. Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Physical Review Applied. 20(4), 044054.' mla: 'Zemlicka, Martin, et al. “Compact Vacuum-Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses.” Physical Review Applied, vol. 20, no. 4, 044054, American Physical Society, 2023, doi:10.1103/PhysRevApplied.20.044054.' short: M. Zemlicka, E. Redchenko, M. Peruzzo, F. Hassani, A. Trioni, S. Barzanjeh, J.M. Fink, Physical Review Applied 20 (2023). date_created: 2023-11-12T23:00:55Z date_published: 2023-10-20T00:00:00Z date_updated: 2023-11-13T09:22:47Z day: '20' department: - _id: JoFi doi: 10.1103/PhysRevApplied.20.044054 ec_funded: 1 external_id: arxiv: - '2206.14104' intvolume: ' 20' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2206.14104 month: '10' oa: 1 oa_version: Preprint project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: eb9b30ac-77a9-11ec-83b8-871f581d53d2 name: Protected states of quantum matter - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' - _id: bdb7cfc1-d553-11ed-ba76-d2eaab167738 grant_number: '101080139' name: Open Superconducting Quantum Computers (OpenSuperQPlus) publication: Physical Review Applied publication_identifier: eissn: - 2331-7019 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '14520' relation: research_data status: public scopus_import: '1' status: public title: 'Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 20 year: '2023' ... --- _id: '14520' abstract: - lang: eng text: 'This dataset comprises all data shown in the figures of the submitted article "Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses" at arxiv.org/abs/2206.14104. Additional raw data are available from the corresponding author on reasonable request.' article_processing_charge: No author: - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Zemlicka M, Redchenko E, Peruzzo M, et al. Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses. 2022. doi:10.5281/ZENODO.8408897' apa: 'Zemlicka, M., Redchenko, E., Peruzzo, M., Hassani, F., Trioni, A., Barzanjeh, S., & Fink, J. M. (2022). Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Zenodo. https://doi.org/10.5281/ZENODO.8408897' chicago: 'Zemlicka, Martin, Elena Redchenko, Matilda Peruzzo, Farid Hassani, Andrea Trioni, Shabir Barzanjeh, and Johannes M Fink. “Compact Vacuum Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses.” Zenodo, 2022. https://doi.org/10.5281/ZENODO.8408897.' ieee: 'M. Zemlicka et al., “Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses.” Zenodo, 2022.' ista: 'Zemlicka M, Redchenko E, Peruzzo M, Hassani F, Trioni A, Barzanjeh S, Fink JM. 2022. Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses, Zenodo, 10.5281/ZENODO.8408897.' mla: 'Zemlicka, Martin, et al. Compact Vacuum Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses. Zenodo, 2022, doi:10.5281/ZENODO.8408897.' short: M. Zemlicka, E. Redchenko, M. Peruzzo, F. Hassani, A. Trioni, S. Barzanjeh, J.M. Fink, (2022). date_created: 2023-11-13T08:09:10Z date_published: 2022-06-28T00:00:00Z date_updated: 2023-11-13T09:22:48Z day: '28' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.8408897 has_accepted_license: '1' main_file_link: - open_access: '1' url: https://doi.org/10.5281/ZENODO.8408897 month: '06' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '14517' relation: used_in_publication status: public status: public title: 'Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '8529' abstract: - lang: eng text: Practical quantum networks require low-loss and noise-resilient optical interconnects as well as non-Gaussian resources for entanglement distillation and distributed quantum computation. The latter could be provided by superconducting circuits but existing solutions to interface the microwave and optical domains lack either scalability or efficiency, and in most cases the conversion noise is not known. In this work we utilize the unique opportunities of silicon photonics, cavity optomechanics and superconducting circuits to demonstrate a fully integrated, coherent transducer interfacing the microwave X and the telecom S bands with a total (internal) bidirectional transduction efficiency of 1.2% (135%) at millikelvin temperatures. The coupling relies solely on the radiation pressure interaction mediated by the femtometer-scale motion of two silicon nanobeams reaching a Vπ as low as 16 μV for sub-nanowatt pump powers. Without the associated optomechanical gain, we achieve a total (internal) pure conversion efficiency of up to 0.019% (1.6%), relevant for future noise-free operation on this qubit-compatible platform. acknowledged_ssus: - _id: NanoFab acknowledgement: We thank Yuan Chen for performing supplementary FEM simulations and Andrew Higginbotham, Ralf Riedinger, Sungkun Hong, and Lorenzo Magrini for valuable discussions. This work was supported by IST Austria, the IST nanofabrication facility (NFF), the European Union’s Horizon 2020 research and innovation program under grant agreement no. 732894 (FET Proactive HOT) and the European Research Council under grant agreement no. 758053 (ERC StG QUNNECT). G.A. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. W.H. is the recipient of an ISTplus postdoctoral fellowship with funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 754411. J.M.F. acknowledges support from the Austrian Science Fund (FWF) through BeyondC (F71), a NOMIS foundation research grant, and the EU’s Horizon 2020 research and innovation program under grant agreement no. 862644 (FET Open QUARTET). article_number: '4460' article_processing_charge: No article_type: original author: - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Arnold GM, Wulf M, Barzanjeh S, et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nature Communications. 2020;11. doi:10.1038/s41467-020-18269-z apa: Arnold, G. M., Wulf, M., Barzanjeh, S., Redchenko, E., Rueda Sanchez, A. R., Hease, W. J., … Fink, J. M. (2020). Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-18269-z chicago: Arnold, Georg M, Matthias Wulf, Shabir Barzanjeh, Elena Redchenko, Alfredo R Rueda Sanchez, William J Hease, Farid Hassani, and Johannes M Fink. “Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-18269-z. ieee: G. M. Arnold et al., “Converting microwave and telecom photons with a silicon photonic nanomechanical interface,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Arnold GM, Wulf M, Barzanjeh S, Redchenko E, Rueda Sanchez AR, Hease WJ, Hassani F, Fink JM. 2020. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nature Communications. 11, 4460. mla: Arnold, Georg M., et al. “Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface.” Nature Communications, vol. 11, 4460, Springer Nature, 2020, doi:10.1038/s41467-020-18269-z. short: G.M. Arnold, M. Wulf, S. Barzanjeh, E. Redchenko, A.R. Rueda Sanchez, W.J. Hease, F. Hassani, J.M. Fink, Nature Communications 11 (2020). date_created: 2020-09-18T10:56:20Z date_published: 2020-09-08T00:00:00Z date_updated: 2023-08-22T09:27:12Z day: '08' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41467-020-18269-z ec_funded: 1 external_id: isi: - '000577280200001' file: - access_level: open_access checksum: 88f92544889eb18bb38e25629a422a86 content_type: application/pdf creator: dernst date_created: 2020-09-18T13:02:37Z date_updated: 2020-09-18T13:02:37Z file_id: '8530' file_name: 2020_NatureComm_Arnold.pdf file_size: 1002818 relation: main_file success: 1 file_date_updated: 2020-09-18T13:02:37Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - General Biochemistry - Genetics and Molecular Biology - General Physics and Astronomy - General Chemistry language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41467-020-18912-9 - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-to-transport-microwave-quantum-information-via-optical-fiber/ record: - id: '13056' relation: research_data status: public status: public title: Converting microwave and telecom photons with a silicon photonic nanomechanical interface tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '13056' abstract: - lang: eng text: This datasets comprises all data shown in plots of the submitted article "Converting microwave and telecom photons with a silicon photonic nanomechanical interface". Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Arnold GM, Wulf M, Barzanjeh S, et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. 2020. doi:10.5281/ZENODO.3961561 apa: Arnold, G. M., Wulf, M., Barzanjeh, S., Redchenko, E., Rueda Sanchez, A. R., Hease, W. J., … Fink, J. M. (2020). Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Zenodo. https://doi.org/10.5281/ZENODO.3961561 chicago: Arnold, Georg M, Matthias Wulf, Shabir Barzanjeh, Elena Redchenko, Alfredo R Rueda Sanchez, William J Hease, Farid Hassani, and Johannes M Fink. “Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface.” Zenodo, 2020. https://doi.org/10.5281/ZENODO.3961561. ieee: G. M. Arnold et al., “Converting microwave and telecom photons with a silicon photonic nanomechanical interface.” Zenodo, 2020. ista: Arnold GM, Wulf M, Barzanjeh S, Redchenko E, Rueda Sanchez AR, Hease WJ, Hassani F, Fink JM. 2020. Converting microwave and telecom photons with a silicon photonic nanomechanical interface, Zenodo, 10.5281/ZENODO.3961561. mla: Arnold, Georg M., et al. Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface. Zenodo, 2020, doi:10.5281/ZENODO.3961561. short: G.M. Arnold, M. Wulf, S. Barzanjeh, E. Redchenko, A.R. Rueda Sanchez, W.J. Hease, F. Hassani, J.M. Fink, (2020). date_created: 2023-05-23T13:37:41Z date_published: 2020-07-27T00:00:00Z date_updated: 2023-08-22T09:27:11Z day: '27' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.3961561 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.3961562 month: '07' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '8529' relation: used_in_publication status: public status: public title: Converting microwave and telecom photons with a silicon photonic nanomechanical interface tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7910' abstract: - lang: eng text: Quantum illumination uses entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. Its advantage is particularly evident at low signal powers, a promising feature for applications such as noninvasive biomedical scanning or low-power short-range radar. Here, we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields to illuminate a room-temperature object at a distance of 1 m in a free-space detection setup. We implement a digital phase-conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions, despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared with the relative classical benchmark. Our results highlight the opportunities and challenges in the way toward a first room-temperature application of microwave quantum circuits. article_number: eabb0451 article_processing_charge: No article_type: original author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: S. full_name: Pirandola, S. last_name: Pirandola - first_name: D full_name: Vitali, D last_name: Vitali - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Barzanjeh S, Pirandola S, Vitali D, Fink JM. Microwave quantum illumination using a digital receiver. Science Advances. 2020;6(19). doi:10.1126/sciadv.abb0451 apa: Barzanjeh, S., Pirandola, S., Vitali, D., & Fink, J. M. (2020). Microwave quantum illumination using a digital receiver. Science Advances. AAAS. https://doi.org/10.1126/sciadv.abb0451 chicago: Barzanjeh, Shabir, S. Pirandola, D Vitali, and Johannes M Fink. “Microwave Quantum Illumination Using a Digital Receiver.” Science Advances. AAAS, 2020. https://doi.org/10.1126/sciadv.abb0451. ieee: S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, “Microwave quantum illumination using a digital receiver,” Science Advances, vol. 6, no. 19. AAAS, 2020. ista: Barzanjeh S, Pirandola S, Vitali D, Fink JM. 2020. Microwave quantum illumination using a digital receiver. Science Advances. 6(19), eabb0451. mla: Barzanjeh, Shabir, et al. “Microwave Quantum Illumination Using a Digital Receiver.” Science Advances, vol. 6, no. 19, eabb0451, AAAS, 2020, doi:10.1126/sciadv.abb0451. short: S. Barzanjeh, S. Pirandola, D. Vitali, J.M. Fink, Science Advances 6 (2020). date_created: 2020-05-31T22:00:49Z date_published: 2020-05-06T00:00:00Z date_updated: 2023-08-24T11:10:49Z day: '06' ddc: - '530' department: - _id: JoFi doi: 10.1126/sciadv.abb0451 ec_funded: 1 external_id: arxiv: - '1908.03058' isi: - '000531171100045' file: - access_level: open_access checksum: 16fa61cc1951b444ee74c07188cda9da content_type: application/pdf creator: dernst date_created: 2020-06-02T09:18:36Z date_updated: 2020-07-14T12:48:05Z file_id: '7913' file_name: 2020_ScienceAdvances_Barzanjeh.pdf file_size: 795822 relation: main_file file_date_updated: 2020-07-14T12:48:05Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '19' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits publication: Science Advances publication_identifier: eissn: - '23752548' publication_status: published publisher: AAAS quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/scientists-demonstrate-quantum-radar-prototype/ record: - id: '9001' relation: later_version status: public scopus_import: '1' status: public title: Microwave quantum illumination using a digital receiver tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2020' ... --- _id: '9001' abstract: - lang: eng text: Quantum illumination is a sensing technique that employs entangled signal-idler beams to improve the detection efficiency of low-reflectivity objects in environments with large thermal noise. The advantage over classical strategies is evident at low signal brightness, a feature which could make the protocol an ideal prototype for non-invasive scanning or low-power short-range radar. Here we experimentally investigate the concept of quantum illumination at microwave frequencies, by generating entangled fields using a Josephson parametric converter which are then amplified to illuminate a room-temperature object at a distance of 1 meter. Starting from experimental data, we simulate the case of perfect idler photon number detection, which results in a quantum advantage compared to the relative classical benchmark. Our results highlight the opportunities and challenges on the way towards a first room-temperature application of microwave quantum circuits. acknowledgement: "This work was supported by the Institute of Science and Technology Austria (IST Austria), the European Research Council under grant agreement number 758053 (ERC StG QUNNECT) and the EU’s Horizon 2020 research and innovation programme under grant agreement number 862644 (FET Open QUARTET). S.B. acknowledges support from the Marie Skłodowska Curie\r\nfellowship number 707438 (MSC-IF SUPEREOM), DV acknowledge support from EU’s Horizon 2020 research and innovation programme under grant agreement number 732894 (FET Proactive HOT) and the Project QuaSeRT funded by the QuantERA ERANET Cofund in Quantum Technologies, and J.M.F from the Austrian Science Fund (FWF) through BeyondC (F71), a NOMIS foundation research grant, and the EU’s Horizon 2020 research and\r\ninnovation programme under grant agreement number 732894 (FET Proactive\r\nHOT)." article_number: '9266397' article_processing_charge: No author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Stefano full_name: Pirandola, Stefano last_name: Pirandola - first_name: David full_name: Vitali, David last_name: Vitali - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Barzanjeh S, Pirandola S, Vitali D, Fink JM. Microwave quantum illumination with a digital phase-conjugated receiver. In: IEEE National Radar Conference - Proceedings. Vol 2020. IEEE; 2020. doi:10.1109/RadarConf2043947.2020.9266397' apa: 'Barzanjeh, S., Pirandola, S., Vitali, D., & Fink, J. M. (2020). Microwave quantum illumination with a digital phase-conjugated receiver. In IEEE National Radar Conference - Proceedings (Vol. 2020). Florence, Italy: IEEE. https://doi.org/10.1109/RadarConf2043947.2020.9266397' chicago: Barzanjeh, Shabir, Stefano Pirandola, David Vitali, and Johannes M Fink. “Microwave Quantum Illumination with a Digital Phase-Conjugated Receiver.” In IEEE National Radar Conference - Proceedings, Vol. 2020. IEEE, 2020. https://doi.org/10.1109/RadarConf2043947.2020.9266397. ieee: S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, “Microwave quantum illumination with a digital phase-conjugated receiver,” in IEEE National Radar Conference - Proceedings, Florence, Italy, 2020, vol. 2020, no. 9. ista: 'Barzanjeh S, Pirandola S, Vitali D, Fink JM. 2020. Microwave quantum illumination with a digital phase-conjugated receiver. IEEE National Radar Conference - Proceedings. RadarConf: National Conference on Radar vol. 2020, 9266397.' mla: Barzanjeh, Shabir, et al. “Microwave Quantum Illumination with a Digital Phase-Conjugated Receiver.” IEEE National Radar Conference - Proceedings, vol. 2020, no. 9, 9266397, IEEE, 2020, doi:10.1109/RadarConf2043947.2020.9266397. short: S. Barzanjeh, S. Pirandola, D. Vitali, J.M. Fink, in:, IEEE National Radar Conference - Proceedings, IEEE, 2020. conference: end_date: 2020-09-25 location: Florence, Italy name: 'RadarConf: National Conference on Radar' start_date: 2020-09-21 date_created: 2021-01-10T23:01:17Z date_published: 2020-09-21T00:00:00Z date_updated: 2023-08-24T11:10:49Z day: '21' department: - _id: JoFi doi: 10.1109/RadarConf2043947.2020.9266397 ec_funded: 1 external_id: arxiv: - '1908.03058' isi: - '000612224900089' intvolume: ' 2020' isi: 1 issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1908.03058 month: '09' oa: 1 oa_version: Preprint project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies publication: IEEE National Radar Conference - Proceedings publication_identifier: isbn: - '9781728189420' issn: - 1097-5659 publication_status: published publisher: IEEE quality_controlled: '1' related_material: record: - id: '7910' relation: earlier_version status: public scopus_import: '1' status: public title: Microwave quantum illumination with a digital phase-conjugated receiver type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2020 year: '2020' ... --- _id: '9194' abstract: - lang: eng text: Quantum transduction, the process of converting quantum signals from one form of energy to another, is an important area of quantum science and technology. The present perspective article reviews quantum transduction between microwave and optical photons, an area that has recently seen a lot of activity and progress because of its relevance for connecting superconducting quantum processors over long distances, among other applications. Our review covers the leading approaches to achieving such transduction, with an emphasis on those based on atomic ensembles, opto-electro-mechanics, and electro-optics. We briefly discuss relevant metrics from the point of view of different applications, as well as challenges for the future. acknowledgement: "During the writing of this article we became aware of another review of quantum transduction with somewhat different emphasis [99].\r\nWe would like to thank the participants of the transduction workshop at Caltech in September 2018 for helpful and stimulating discussions. We particularly thank John Bartholomew, Andrei Faraon, Johannes Fink, Jeff Holzgrafe, Linbo Shao, Marko Lončar, Daniel Oblak, and Oskar Painter.\r\nN L and N S acknowledge support from the Alliance for Quantum Technologies' (AQT) Intelligent Quantum Networks and Technologies (INQNET) research program and by DOE/HEP QuantISED program grant, QCCFP (Quantum Communication Channels for Fundamental Physics), award number DE-SC0019219. NS further acknowledges support by the Natural Sciences and Engineering Research Council of Canada (NSERC). SB acknowledges support from the Marie Skłodowska Curie fellowship number 707 438 (MSC-IF SUPEREOM). JPC acknowledges support from the Caltech PMA prize postdoctoral fellowship. MS acknowledges support from the ARL-CDQI and the National Science Foundation. CS acknowledges NSERC, Quantum Alberta, and the Alberta Major Innovation Fund." article_number: '020501' article_processing_charge: No article_type: review author: - first_name: Nikolai full_name: Lauk, Nikolai last_name: Lauk - first_name: Neil full_name: Sinclair, Neil last_name: Sinclair - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Jacob P full_name: Covey, Jacob P last_name: Covey - first_name: Mark full_name: Saffman, Mark last_name: Saffman - first_name: Maria full_name: Spiropulu, Maria last_name: Spiropulu - first_name: Christoph full_name: Simon, Christoph last_name: Simon citation: ama: Lauk N, Sinclair N, Barzanjeh S, et al. Perspectives on quantum transduction. Quantum Science and Technology. 2020;5(2). doi:10.1088/2058-9565/ab788a apa: Lauk, N., Sinclair, N., Barzanjeh, S., Covey, J. P., Saffman, M., Spiropulu, M., & Simon, C. (2020). Perspectives on quantum transduction. Quantum Science and Technology. IOP Publishing. https://doi.org/10.1088/2058-9565/ab788a chicago: Lauk, Nikolai, Neil Sinclair, Shabir Barzanjeh, Jacob P Covey, Mark Saffman, Maria Spiropulu, and Christoph Simon. “Perspectives on Quantum Transduction.” Quantum Science and Technology. IOP Publishing, 2020. https://doi.org/10.1088/2058-9565/ab788a. ieee: N. Lauk et al., “Perspectives on quantum transduction,” Quantum Science and Technology, vol. 5, no. 2. IOP Publishing, 2020. ista: Lauk N, Sinclair N, Barzanjeh S, Covey JP, Saffman M, Spiropulu M, Simon C. 2020. Perspectives on quantum transduction. Quantum Science and Technology. 5(2), 020501. mla: Lauk, Nikolai, et al. “Perspectives on Quantum Transduction.” Quantum Science and Technology, vol. 5, no. 2, 020501, IOP Publishing, 2020, doi:10.1088/2058-9565/ab788a. short: N. Lauk, N. Sinclair, S. Barzanjeh, J.P. Covey, M. Saffman, M. Spiropulu, C. Simon, Quantum Science and Technology 5 (2020). date_created: 2021-02-25T08:32:29Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-08-24T11:17:48Z day: '01' ddc: - '530' department: - _id: JoFi doi: 10.1088/2058-9565/ab788a ec_funded: 1 external_id: isi: - '000521449500001' file: - access_level: open_access checksum: a8562c42124a66b86836fe2489eb5f4f content_type: application/pdf creator: dernst date_created: 2021-03-02T09:47:13Z date_updated: 2021-03-02T09:47:13Z file_id: '9215' file_name: 2020_QuantumScience_Lauk.pdf file_size: 974399 relation: main_file success: 1 file_date_updated: 2021-03-02T09:47:13Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '2' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' publication: Quantum Science and Technology publication_identifier: issn: - 2058-9565 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Perspectives on quantum transduction tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2020' ... --- _id: '6609' abstract: - lang: eng text: Mechanical systems facilitate the development of a hybrid quantum technology comprising electrical, optical, atomic and acoustic degrees of freedom1, and entanglement is essential to realize quantum-enabled devices. Continuous-variable entangled fields—known as Einstein–Podolsky–Rosen (EPR) states—are spatially separated two-mode squeezed states that can be used for quantum teleportation and quantum communication2. In the optical domain, EPR states are typically generated using nondegenerate optical amplifiers3, and at microwave frequencies Josephson circuits can serve as a nonlinear medium4,5,6. An outstanding goal is to deterministically generate and distribute entangled states with a mechanical oscillator, which requires a carefully arranged balance between excitation, cooling and dissipation in an ultralow noise environment. Here we observe stationary emission of path-entangled microwave radiation from a parametrically driven 30-micrometre-long silicon nanostring oscillator, squeezing the joint field operators of two thermal modes by 3.40 decibels below the vacuum level. The motion of this micromechanical system correlates up to 50 photons per second per hertz, giving rise to a quantum discord that is robust with respect to microwave noise7. Such generalized quantum correlations of separable states are important for quantum-enhanced detection8 and provide direct evidence of the non-classical nature of the mechanical oscillator without directly measuring its state9. This noninvasive measurement scheme allows to infer information about otherwise inaccessible objects, with potential implications for sensing, open-system dynamics and fundamental tests of quantum gravity. In the future, similar on-chip devices could be used to entangle subsystems on very different energy scales, such as microwave and optical photons. acknowledged_ssus: - _id: NanoFab article_processing_charge: No author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Dylan full_name: Lewis, Dylan last_name: Lewis - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Barzanjeh S, Redchenko E, Peruzzo M, et al. Stationary entangled radiation from micromechanical motion. Nature. 2019;570:480-483. doi:10.1038/s41586-019-1320-2 apa: Barzanjeh, S., Redchenko, E., Peruzzo, M., Wulf, M., Lewis, D., Arnold, G. M., & Fink, J. M. (2019). Stationary entangled radiation from micromechanical motion. Nature. Nature Publishing Group. https://doi.org/10.1038/s41586-019-1320-2 chicago: Barzanjeh, Shabir, Elena Redchenko, Matilda Peruzzo, Matthias Wulf, Dylan Lewis, Georg M Arnold, and Johannes M Fink. “Stationary Entangled Radiation from Micromechanical Motion.” Nature. Nature Publishing Group, 2019. https://doi.org/10.1038/s41586-019-1320-2. ieee: S. Barzanjeh et al., “Stationary entangled radiation from micromechanical motion,” Nature, vol. 570. Nature Publishing Group, pp. 480–483, 2019. ista: Barzanjeh S, Redchenko E, Peruzzo M, Wulf M, Lewis D, Arnold GM, Fink JM. 2019. Stationary entangled radiation from micromechanical motion. Nature. 570, 480–483. mla: Barzanjeh, Shabir, et al. “Stationary Entangled Radiation from Micromechanical Motion.” Nature, vol. 570, Nature Publishing Group, 2019, pp. 480–83, doi:10.1038/s41586-019-1320-2. short: S. Barzanjeh, E. Redchenko, M. Peruzzo, M. Wulf, D. Lewis, G.M. Arnold, J.M. Fink, Nature 570 (2019) 480–483. date_created: 2019-07-07T21:59:20Z date_published: 2019-06-27T00:00:00Z date_updated: 2023-08-28T12:29:56Z day: '27' department: - _id: JoFi doi: 10.1038/s41586-019-1320-2 ec_funded: 1 external_id: arxiv: - '1809.05865' isi: - '000472860000042' intvolume: ' 570' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1809.05865 month: '06' oa: 1 oa_version: Preprint page: 480-483 project: - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics' - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: Nature publication_status: published publisher: Nature Publishing Group quality_controlled: '1' scopus_import: '1' status: public title: Stationary entangled radiation from micromechanical motion type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 570 year: '2019' ... --- _id: '7156' abstract: - lang: eng text: We propose an efficient microwave-photonic modulator as a resource for stationary entangled microwave-optical fields and develop the theory for deterministic entanglement generation and quantum state transfer in multi-resonant electro-optic systems. The device is based on a single crystal whispering gallery mode resonator integrated into a 3D-microwave cavity. The specific design relies on a new combination of thin-film technology and conventional machining that is optimized for the lowest dissipation rates in the microwave, optical, and mechanical domains. We extract important device properties from finite-element simulations and predict continuous variable entanglement generation rates on the order of a Mebit/s for optical pump powers of only a few tens of microwatts. We compare the quantum state transfer fidelities of coherent, squeezed, and non-Gaussian cat states for both teleportation and direct conversion protocols under realistic conditions. Combining the unique capabilities of circuit quantum electrodynamics with the resilience of fiber optic communication could facilitate long-distance solid-state qubit networks, new methods for quantum signal synthesis, quantum key distribution, and quantum enhanced detection, as well as more power-efficient classical sensing and modulation. article_number: '108' article_processing_charge: No article_type: original author: - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Rueda Sanchez AR, Hease WJ, Barzanjeh S, Fink JM. Electro-optic entanglement source for microwave to telecom quantum state transfer. npj Quantum Information. 2019;5. doi:10.1038/s41534-019-0220-5 apa: Rueda Sanchez, A. R., Hease, W. J., Barzanjeh, S., & Fink, J. M. (2019). Electro-optic entanglement source for microwave to telecom quantum state transfer. Npj Quantum Information. Springer Nature. https://doi.org/10.1038/s41534-019-0220-5 chicago: Rueda Sanchez, Alfredo R, William J Hease, Shabir Barzanjeh, and Johannes M Fink. “Electro-Optic Entanglement Source for Microwave to Telecom Quantum State Transfer.” Npj Quantum Information. Springer Nature, 2019. https://doi.org/10.1038/s41534-019-0220-5. ieee: A. R. Rueda Sanchez, W. J. Hease, S. Barzanjeh, and J. M. Fink, “Electro-optic entanglement source for microwave to telecom quantum state transfer,” npj Quantum Information, vol. 5. Springer Nature, 2019. ista: Rueda Sanchez AR, Hease WJ, Barzanjeh S, Fink JM. 2019. Electro-optic entanglement source for microwave to telecom quantum state transfer. npj Quantum Information. 5, 108. mla: Rueda Sanchez, Alfredo R., et al. “Electro-Optic Entanglement Source for Microwave to Telecom Quantum State Transfer.” Npj Quantum Information, vol. 5, 108, Springer Nature, 2019, doi:10.1038/s41534-019-0220-5. short: A.R. Rueda Sanchez, W.J. Hease, S. Barzanjeh, J.M. Fink, Npj Quantum Information 5 (2019). date_created: 2019-12-09T08:18:56Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-09-06T11:22:39Z day: '01' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41534-019-0220-5 ec_funded: 1 external_id: arxiv: - '1909.01470' isi: - '000502996200003' file: - access_level: open_access checksum: 13e0ea1d4f9b5f5710780d9473364f58 content_type: application/pdf creator: dernst date_created: 2019-12-09T08:25:06Z date_updated: 2020-07-14T12:47:50Z file_id: '7157' file_name: 2019_NPJ_Rueda.pdf file_size: 1580132 relation: main_file file_date_updated: 2020-07-14T12:47:50Z has_accepted_license: '1' intvolume: ' 5' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits publication: npj Quantum Information publication_identifier: issn: - 2056-6387 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Electro-optic entanglement source for microwave to telecom quantum state transfer tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 5 year: '2019' ... --- _id: '287' abstract: - lang: eng text: In this paper, we discuss biological effects of electromagnetic (EM) fields in the context of cancer biology. In particular, we review the nanomechanical properties of microtubules (MTs), the latter being one of the most successful targets for cancer therapy. We propose an investigation on the coupling of electromagnetic radiation to mechanical vibrations of MTs as an important basis for biological and medical applications. In our opinion, optomechanical methods can accurately monitor and control the mechanical properties of isolated MTs in a liquid environment. Consequently, studying nanomechanical properties of MTs may give useful information for future applications to diagnostic and therapeutic technologies involving non-invasive externally applied physical fields. For example, electromagnetic fields or high intensity ultrasound can be used therapeutically avoiding harmful side effects of chemotherapeutic agents or classical radiation therapy. acknowledgement: The work of SB has been supported by the European Unions Horizon 2020 research and innovation program under the Marie Sklodowska Curie grant agreement No MSC-IF 707438 SUPEREOM. JAT gratefully acknowledges funding support from NSERC (Canada) for his research. MC acknowledges support from the Czech Science Foundation, projects 15-17102S and 17-11898S and he participates in COST Action BM1309, CA15211 and bilateral exchange project between Czech and Slovak Academies of Sciences, SAV-15-22. article_processing_charge: No author: - first_name: Vahid full_name: Salari, Vahid last_name: Salari - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Michal full_name: Cifra, Michal last_name: Cifra - first_name: Christoph full_name: Simon, Christoph last_name: Simon - first_name: Felix full_name: Scholkmann, Felix last_name: Scholkmann - first_name: Zahra full_name: Alirezaei, Zahra last_name: Alirezaei - first_name: Jack full_name: Tuszynski, Jack last_name: Tuszynski citation: ama: Salari V, Barzanjeh S, Cifra M, et al. Electromagnetic fields and optomechanics In cancer diagnostics and treatment. Frontiers in Bioscience - Landmark. 2018;23(8):1391-1406. doi:10.2741/4651 apa: Salari, V., Barzanjeh, S., Cifra, M., Simon, C., Scholkmann, F., Alirezaei, Z., & Tuszynski, J. (2018). Electromagnetic fields and optomechanics In cancer diagnostics and treatment. Frontiers in Bioscience - Landmark. Frontiers in Bioscience. https://doi.org/10.2741/4651 chicago: Salari, Vahid, Shabir Barzanjeh, Michal Cifra, Christoph Simon, Felix Scholkmann, Zahra Alirezaei, and Jack Tuszynski. “Electromagnetic Fields and Optomechanics In Cancer Diagnostics and Treatment.” Frontiers in Bioscience - Landmark. Frontiers in Bioscience, 2018. https://doi.org/10.2741/4651. ieee: V. Salari et al., “Electromagnetic fields and optomechanics In cancer diagnostics and treatment,” Frontiers in Bioscience - Landmark, vol. 23, no. 8. Frontiers in Bioscience, pp. 1391–1406, 2018. ista: Salari V, Barzanjeh S, Cifra M, Simon C, Scholkmann F, Alirezaei Z, Tuszynski J. 2018. Electromagnetic fields and optomechanics In cancer diagnostics and treatment. Frontiers in Bioscience - Landmark. 23(8), 1391–1406. mla: Salari, Vahid, et al. “Electromagnetic Fields and Optomechanics In Cancer Diagnostics and Treatment.” Frontiers in Bioscience - Landmark, vol. 23, no. 8, Frontiers in Bioscience, 2018, pp. 1391–406, doi:10.2741/4651. short: V. Salari, S. Barzanjeh, M. Cifra, C. Simon, F. Scholkmann, Z. Alirezaei, J. Tuszynski, Frontiers in Bioscience - Landmark 23 (2018) 1391–1406. date_created: 2018-12-11T11:45:37Z date_published: 2018-03-01T00:00:00Z date_updated: 2023-09-11T13:38:14Z day: '01' department: - _id: JoFi doi: 10.2741/4651 ec_funded: 1 external_id: isi: - '000439042800001' pmid: - '29293441' intvolume: ' 23' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://www.bioscience.org/2018/v23/af/4651/fulltext.htm month: '03' oa: 1 oa_version: Submitted Version page: 1391 - 1406 pmid: 1 project: - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' publication: Frontiers in Bioscience - Landmark publication_status: published publisher: Frontiers in Bioscience quality_controlled: '1' scopus_import: '1' status: public title: Electromagnetic fields and optomechanics In cancer diagnostics and treatment type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 23 year: '2018' ... --- _id: '436' abstract: - lang: eng text: There has been significant interest recently in using complex quantum systems to create effective nonreciprocal dynamics. Proposals have been put forward for the realization of artificial magnetic fields for photons and phonons; experimental progress is fast making these proposals a reality. Much work has concentrated on the use of such systems for controlling the flow of signals, e.g., to create isolators or directional amplifiers for optical signals. In this Letter, we build on this work but move in a different direction. We develop the theory of and discuss a potential realization for the controllable flow of thermal noise in quantum systems. We demonstrate theoretically that the unidirectional flow of thermal noise is possible within quantum cascaded systems. Viewing an optomechanical platform as a cascaded system we show here that one can ultimately control the direction of the flow of thermal noise. By appropriately engineering the mechanical resonator, which acts as an artificial reservoir, the flow of thermal noise can be constrained to a desired direction, yielding a thermal rectifier. The proposed quantum thermal noise rectifier could potentially be used to develop devices such as a thermal modulator, a thermal router, and a thermal amplifier for nanoelectronic devices and superconducting circuits. article_number: '060601 ' article_processing_charge: No author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Matteo full_name: Aquilina, Matteo last_name: Aquilina - first_name: André full_name: Xuereb, André last_name: Xuereb citation: ama: Barzanjeh S, Aquilina M, Xuereb A. Manipulating the flow of thermal noise in quantum devices. Physical Review Letters. 2018;120(6). doi:10.1103/PhysRevLett.120.060601 apa: Barzanjeh, S., Aquilina, M., & Xuereb, A. (2018). Manipulating the flow of thermal noise in quantum devices. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.120.060601 chicago: Barzanjeh, Shabir, Matteo Aquilina, and André Xuereb. “Manipulating the Flow of Thermal Noise in Quantum Devices.” Physical Review Letters. American Physical Society, 2018. https://doi.org/10.1103/PhysRevLett.120.060601. ieee: S. Barzanjeh, M. Aquilina, and A. Xuereb, “Manipulating the flow of thermal noise in quantum devices,” Physical Review Letters, vol. 120, no. 6. American Physical Society, 2018. ista: Barzanjeh S, Aquilina M, Xuereb A. 2018. Manipulating the flow of thermal noise in quantum devices. Physical Review Letters. 120(6), 060601. mla: Barzanjeh, Shabir, et al. “Manipulating the Flow of Thermal Noise in Quantum Devices.” Physical Review Letters, vol. 120, no. 6, 060601, American Physical Society, 2018, doi:10.1103/PhysRevLett.120.060601. short: S. Barzanjeh, M. Aquilina, A. Xuereb, Physical Review Letters 120 (2018). date_created: 2018-12-11T11:46:28Z date_published: 2018-02-07T00:00:00Z date_updated: 2023-09-13T08:52:27Z day: '07' department: - _id: JoFi doi: 10.1103/PhysRevLett.120.060601 ec_funded: 1 external_id: arxiv: - '1706.09051' isi: - '000424382100004' intvolume: ' 120' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1706.09051 month: '02' oa: 1 oa_version: Preprint project: - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' publication: Physical Review Letters publication_status: published publisher: American Physical Society publist_id: '7387' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/interference-as-a-new-method-for-cooling-quantum-devices/ scopus_import: '1' status: public title: Manipulating the flow of thermal noise in quantum devices type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 120 year: '2018' ... --- _id: '155' abstract: - lang: eng text: There is currently significant interest in operating devices in the quantum regime, where their behaviour cannot be explained through classical mechanics. Quantum states, including entangled states, are fragile and easily disturbed by excessive thermal noise. Here we address the question of whether it is possible to create non-reciprocal devices that encourage the flow of thermal noise towards or away from a particular quantum device in a network. Our work makes use of the cascaded systems formalism to answer this question in the affirmative, showing how a three-port device can be used as an effective thermal transistor, and illustrates how this formalism maps onto an experimentally-realisable optomechanical system. Our results pave the way to more resilient quantum devices and to the use of thermal noise as a resource. alternative_title: - Proceedings of SPIE article_number: 106721N article_processing_charge: No author: - first_name: André full_name: Xuereb, André last_name: Xuereb - first_name: Matteo full_name: Aquilina, Matteo last_name: Aquilina - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 citation: ama: 'Xuereb A, Aquilina M, Barzanjeh S. Routing thermal noise through quantum networks. In: Andrews DL, Ostendorf A, Bain AJ, Nunzi JM, eds. Vol 10672. SPIE; 2018. doi:10.1117/12.2309928' apa: 'Xuereb, A., Aquilina, M., & Barzanjeh, S. (2018). Routing thermal noise through quantum networks. In D. L. Andrews, A. Ostendorf, A. J. Bain, & J. M. Nunzi (Eds.) (Vol. 10672). Presented at the SPIE: The international society for optical engineering, Strasbourg, France: SPIE. https://doi.org/10.1117/12.2309928' chicago: Xuereb, André, Matteo Aquilina, and Shabir Barzanjeh. “Routing Thermal Noise through Quantum Networks.” edited by D L Andrews, A Ostendorf, A J Bain, and J M Nunzi, Vol. 10672. SPIE, 2018. https://doi.org/10.1117/12.2309928. ieee: 'A. Xuereb, M. Aquilina, and S. Barzanjeh, “Routing thermal noise through quantum networks,” presented at the SPIE: The international society for optical engineering, Strasbourg, France, 2018, vol. 10672.' ista: 'Xuereb A, Aquilina M, Barzanjeh S. 2018. Routing thermal noise through quantum networks. SPIE: The international society for optical engineering, Proceedings of SPIE, vol. 10672, 106721N.' mla: Xuereb, André, et al. Routing Thermal Noise through Quantum Networks. Edited by D L Andrews et al., vol. 10672, 106721N, SPIE, 2018, doi:10.1117/12.2309928. short: A. Xuereb, M. Aquilina, S. Barzanjeh, in:, D.L. Andrews, A. Ostendorf, A.J. Bain, J.M. Nunzi (Eds.), SPIE, 2018. conference: end_date: 2018-04-26 location: Strasbourg, France name: 'SPIE: The international society for optical engineering' start_date: 2018-04-22 date_created: 2018-12-11T11:44:55Z date_published: 2018-05-04T00:00:00Z date_updated: 2023-09-18T08:12:24Z day: '04' department: - _id: JoFi doi: 10.1117/12.2309928 editor: - first_name: D L full_name: Andrews, D L last_name: Andrews - first_name: A full_name: Ostendorf, A last_name: Ostendorf - first_name: A J full_name: Bain, A J last_name: Bain - first_name: J M full_name: Nunzi, J M last_name: Nunzi external_id: arxiv: - '1806.01000' isi: - '000453298500019' intvolume: ' 10672' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1806.01000 month: '05' oa: 1 oa_version: Preprint publication_status: published publisher: SPIE publist_id: '7766' quality_controlled: '1' scopus_import: '1' status: public title: Routing thermal noise through quantum networks type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10672 year: '2018' ... --- _id: '700' abstract: - lang: eng text: Microtubules provide the mechanical force required for chromosome separation during mitosis. However, little is known about the dynamic (high-frequency) mechanical properties of microtubules. Here, we theoretically propose to control the vibrations of a doubly clamped microtubule by tip electrodes and to detect its motion via the optomechanical coupling between the vibrational modes of the microtubule and an optical cavity. In the presence of a red-detuned strong pump laser, this coupling leads to optomechanical-induced transparency of an optical probe field, which can be detected with state-of-the art technology. The center frequency and line width of the transparency peak give the resonance frequency and damping rate of the microtubule, respectively, while the height of the peak reveals information about the microtubule-cavity field coupling. Our method opens the new possibilities to gain information about the physical properties of microtubules, which will enhance our capability to design physical cancer treatment protocols as alternatives to chemotherapeutic drugs. article_number: '012404' author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Vahid full_name: Salari, Vahid last_name: Salari - first_name: Jack full_name: Tuszynski, Jack last_name: Tuszynski - first_name: Michal full_name: Cifra, Michal last_name: Cifra - first_name: Christoph full_name: Simon, Christoph last_name: Simon citation: ama: Barzanjeh S, Salari V, Tuszynski J, Cifra M, Simon C. Optomechanical proposal for monitoring microtubule mechanical vibrations. Physical Review E Statistical Nonlinear and Soft Matter Physics . 2017;96(1). doi:10.1103/PhysRevE.96.012404 apa: Barzanjeh, S., Salari, V., Tuszynski, J., Cifra, M., & Simon, C. (2017). Optomechanical proposal for monitoring microtubule mechanical vibrations. Physical Review E Statistical Nonlinear and Soft Matter Physics . American Institute of Physics. https://doi.org/10.1103/PhysRevE.96.012404 chicago: Barzanjeh, Shabir, Vahid Salari, Jack Tuszynski, Michal Cifra, and Christoph Simon. “Optomechanical Proposal for Monitoring Microtubule Mechanical Vibrations.” Physical Review E Statistical Nonlinear and Soft Matter Physics . American Institute of Physics, 2017. https://doi.org/10.1103/PhysRevE.96.012404. ieee: S. Barzanjeh, V. Salari, J. Tuszynski, M. Cifra, and C. Simon, “Optomechanical proposal for monitoring microtubule mechanical vibrations,” Physical Review E Statistical Nonlinear and Soft Matter Physics , vol. 96, no. 1. American Institute of Physics, 2017. ista: Barzanjeh S, Salari V, Tuszynski J, Cifra M, Simon C. 2017. Optomechanical proposal for monitoring microtubule mechanical vibrations. Physical Review E Statistical Nonlinear and Soft Matter Physics . 96(1), 012404. mla: Barzanjeh, Shabir, et al. “Optomechanical Proposal for Monitoring Microtubule Mechanical Vibrations.” Physical Review E Statistical Nonlinear and Soft Matter Physics , vol. 96, no. 1, 012404, American Institute of Physics, 2017, doi:10.1103/PhysRevE.96.012404. short: S. Barzanjeh, V. Salari, J. Tuszynski, M. Cifra, C. Simon, Physical Review E Statistical Nonlinear and Soft Matter Physics 96 (2017). date_created: 2018-12-11T11:48:00Z date_published: 2017-07-12T00:00:00Z date_updated: 2023-02-23T12:56:35Z day: '12' department: - _id: JoFi doi: 10.1103/PhysRevE.96.012404 ec_funded: 1 intvolume: ' 96' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/pdf/1612.07061.pdf month: '07' oa: 1 oa_version: Submitted Version project: - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics' publication: ' Physical Review E Statistical Nonlinear and Soft Matter Physics ' publication_identifier: issn: - '24700045' publication_status: published publisher: American Institute of Physics publist_id: '6997' quality_controlled: '1' scopus_import: 1 status: public title: Optomechanical proposal for monitoring microtubule mechanical vibrations type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 96 year: '2017' ... --- _id: '798' abstract: - lang: eng text: Nonreciprocal circuit elements form an integral part of modern measurement and communication systems. Mathematically they require breaking of time-reversal symmetry, typically achieved using magnetic materials and more recently using the quantum Hall effect, parametric permittivity modulation or Josephson nonlinearities. Here we demonstrate an on-chip magnetic-free circulator based on reservoir-engineered electromechanic interactions. Directional circulation is achieved with controlled phase-sensitive interference of six distinct electro-mechanical signal conversion paths. The presented circulator is compact, its silicon-on-insulator platform is compatible with both superconducting qubits and silicon photonics, and its noise performance is close to the quantum limit. With a high dynamic range, a tunable bandwidth of up to 30 MHz and an in situ reconfigurability as beam splitter or wavelength converter, it could pave the way for superconducting qubit processors with multiplexed on-chip signal processing and readout. article_number: '1304' article_processing_charge: Yes (in subscription journal) author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Mahmoud full_name: Kalaee, Mahmoud last_name: Kalaee - first_name: Paul full_name: Dieterle, Paul last_name: Dieterle - first_name: Oskar full_name: Painter, Oskar last_name: Painter - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Barzanjeh S, Wulf M, Peruzzo M, et al. Mechanical on chip microwave circulator. Nature Communications. 2017;8(1). doi:10.1038/s41467-017-01304-x apa: Barzanjeh, S., Wulf, M., Peruzzo, M., Kalaee, M., Dieterle, P., Painter, O., & Fink, J. M. (2017). Mechanical on chip microwave circulator. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/s41467-017-01304-x chicago: Barzanjeh, Shabir, Matthias Wulf, Matilda Peruzzo, Mahmoud Kalaee, Paul Dieterle, Oskar Painter, and Johannes M Fink. “Mechanical on Chip Microwave Circulator.” Nature Communications. Nature Publishing Group, 2017. https://doi.org/10.1038/s41467-017-01304-x. ieee: S. Barzanjeh et al., “Mechanical on chip microwave circulator,” Nature Communications, vol. 8, no. 1. Nature Publishing Group, 2017. ista: Barzanjeh S, Wulf M, Peruzzo M, Kalaee M, Dieterle P, Painter O, Fink JM. 2017. Mechanical on chip microwave circulator. Nature Communications. 8(1), 1304. mla: Barzanjeh, Shabir, et al. “Mechanical on Chip Microwave Circulator.” Nature Communications, vol. 8, no. 1, 1304, Nature Publishing Group, 2017, doi:10.1038/s41467-017-01304-x. short: S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. Dieterle, O. Painter, J.M. Fink, Nature Communications 8 (2017). date_created: 2018-12-11T11:48:33Z date_published: 2017-10-16T00:00:00Z date_updated: 2023-09-27T12:11:28Z day: '16' ddc: - '539' department: - _id: JoFi doi: 10.1038/s41467-017-01304-x ec_funded: 1 external_id: isi: - '000412999700021' file: - access_level: open_access checksum: b68dafa71d1834c23b742cd9987a3d5f content_type: application/pdf creator: system date_created: 2018-12-12T10:15:25Z date_updated: 2020-07-14T12:48:06Z file_id: '5145' file_name: IST-2017-867-v1+1_s41467-017-01304-x.pdf file_size: 1467696 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics' publication: Nature Communications publication_identifier: issn: - '20411723' publication_status: published publisher: Nature Publishing Group publist_id: '6855' pubrep_id: '867' quality_controlled: '1' scopus_import: '1' status: public title: Mechanical on chip microwave circulator tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2017' ... --- _id: '1339' abstract: - lang: eng text: "We present a microelectromechanical system, in which a silicon beam is attached to a comb-drive\r\nactuator, which is used to tune the tension in the silicon beam and thus its resonance frequency. By\r\nmeasuring the resonance frequencies of the system, we show that the comb-drive actuator and the\r\nsilicon beam behave as two strongly coupled resonators. Interestingly, the effective coupling rate\r\n(1.5 MHz) is tunable with the comb-drive actuator (10%) as well as with a side-gate (10%)\r\nplaced close to the silicon beam. In contrast, the effective spring constant of the system is insensitive\r\nto either of them and changes only by 60.5%. Finally, we show that the comb-drive actuator\r\ncan be used to switch between different coupling rates with a frequency of at least 10 kHz.\r\n" acknowledgement: We acknowledge the support from the Helmholtz Nanoelectronic Facility (HNF) and funding from the ERC (GA-Nr. 280140). article_number: '143507' author: - first_name: Gerard full_name: Verbiest, Gerard last_name: Verbiest - first_name: Duo full_name: Xu, Duo id: 3454D55E-F248-11E8-B48F-1D18A9856A87 last_name: Xu - first_name: Matthias full_name: Goldsche, Matthias last_name: Goldsche - first_name: Timofiy full_name: Khodkov, Timofiy last_name: Khodkov - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Nils full_name: Von Den Driesch, Nils last_name: Von Den Driesch - first_name: Dan full_name: Buca, Dan last_name: Buca - first_name: Christoph full_name: Stampfer, Christoph last_name: Stampfer citation: ama: Verbiest G, Xu D, Goldsche M, et al. Tunable mechanical coupling between driven microelectromechanical resonators. Applied  Physics Letter. 2016;109. doi:10.1063/1.4964122 apa: Verbiest, G., Xu, D., Goldsche, M., Khodkov, T., Barzanjeh, S., Von Den Driesch, N., … Stampfer, C. (2016). Tunable mechanical coupling between driven microelectromechanical resonators. Applied  Physics Letter. American Institute of Physics. https://doi.org/10.1063/1.4964122 chicago: Verbiest, Gerard, Duo Xu, Matthias Goldsche, Timofiy Khodkov, Shabir Barzanjeh, Nils Von Den Driesch, Dan Buca, and Christoph Stampfer. “Tunable Mechanical Coupling between Driven Microelectromechanical Resonators.” Applied  Physics Letter. American Institute of Physics, 2016. https://doi.org/10.1063/1.4964122. ieee: G. Verbiest et al., “Tunable mechanical coupling between driven microelectromechanical resonators,” Applied  Physics Letter, vol. 109. American Institute of Physics, 2016. ista: Verbiest G, Xu D, Goldsche M, Khodkov T, Barzanjeh S, Von Den Driesch N, Buca D, Stampfer C. 2016. Tunable mechanical coupling between driven microelectromechanical resonators. Applied  Physics Letter. 109, 143507. mla: Verbiest, Gerard, et al. “Tunable Mechanical Coupling between Driven Microelectromechanical Resonators.” Applied  Physics Letter, vol. 109, 143507, American Institute of Physics, 2016, doi:10.1063/1.4964122. short: G. Verbiest, D. Xu, M. Goldsche, T. Khodkov, S. Barzanjeh, N. Von Den Driesch, D. Buca, C. Stampfer, Applied  Physics Letter 109 (2016). date_created: 2018-12-11T11:51:28Z date_published: 2016-10-04T00:00:00Z date_updated: 2023-02-21T10:35:06Z day: '04' department: - _id: JoFi doi: 10.1063/1.4964122 intvolume: ' 109' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1607.04406 month: '10' oa: 1 oa_version: Preprint publication: Applied Physics Letter publication_status: published publisher: American Institute of Physics publist_id: '5928' quality_controlled: '1' scopus_import: 1 status: public title: Tunable mechanical coupling between driven microelectromechanical resonators type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 109 year: '2016' ... --- _id: '1370' abstract: - lang: eng text: 'We study coherent phonon oscillations and tunneling between two coupled nonlinear nanomechanical resonators. We show that the coupling between two nanomechanical resonators creates an effective phonon Josephson junction, which exhibits two different dynamical behaviors: Josephson oscillation (phonon-Rabi oscillation) and macroscopic self-trapping (phonon blockade). Self-trapping originates from mechanical nonlinearities, meaning that when the nonlinearity exceeds its critical value, the energy exchange between the two resonators is suppressed, and phonon Josephson oscillations between them are completely blocked. An effective classical Hamiltonian for the phonon Josephson junction is derived and its mean-field dynamics is studied in phase space. Finally, we study the phonon-phonon coherence quantified by the mean fringe visibility, and show that the interaction between the two resonators may lead to the loss of coherence in the phononic junction.' acknowledgement: 'The work of S.B. has been supported by the European Commission (Belgium) via the SCALEQIT program and by the Alexander von Humboldt Foundation. ' article_number: '033846' author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: David full_name: Vitali, David last_name: Vitali citation: ama: Barzanjeh S, Vitali D. Phonon Josephson junction with nanomechanical resonators. Physical Review A - Atomic, Molecular, and Optical Physics. 2016;93(3). doi:10.1103/PhysRevA.93.033846 apa: Barzanjeh, S., & Vitali, D. (2016). Phonon Josephson junction with nanomechanical resonators. Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society. https://doi.org/10.1103/PhysRevA.93.033846 chicago: Barzanjeh, Shabir, and David Vitali. “Phonon Josephson Junction with Nanomechanical Resonators.” Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society, 2016. https://doi.org/10.1103/PhysRevA.93.033846. ieee: S. Barzanjeh and D. Vitali, “Phonon Josephson junction with nanomechanical resonators,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 93, no. 3. American Physical Society, 2016. ista: Barzanjeh S, Vitali D. 2016. Phonon Josephson junction with nanomechanical resonators. Physical Review A - Atomic, Molecular, and Optical Physics. 93(3), 033846. mla: Barzanjeh, Shabir, and David Vitali. “Phonon Josephson Junction with Nanomechanical Resonators.” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 93, no. 3, 033846, American Physical Society, 2016, doi:10.1103/PhysRevA.93.033846. short: S. Barzanjeh, D. Vitali, Physical Review A - Atomic, Molecular, and Optical Physics 93 (2016). date_created: 2018-12-11T11:51:38Z date_published: 2016-03-28T00:00:00Z date_updated: 2023-02-21T10:36:32Z day: '28' department: - _id: JoFi doi: 10.1103/PhysRevA.93.033846 intvolume: ' 93' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1601.01818 month: '03' oa: 1 oa_version: Preprint publication: Physical Review A - Atomic, Molecular, and Optical Physics publication_status: published publisher: American Physical Society publist_id: '5841' quality_controlled: '1' scopus_import: 1 status: public title: Phonon Josephson junction with nanomechanical resonators type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 93 year: '2016' ...