--- _id: '9410' abstract: - lang: eng text: Antibiotic concentrations vary dramatically in the body and the environment. Hence, understanding the dynamics of resistance evolution along antibiotic concentration gradients is critical for predicting and slowing the emergence and spread of resistance. While it has been shown that increasing the concentration of an antibiotic slows resistance evolution, how adaptation to one antibiotic concentration correlates with fitness at other points along the gradient has not received much attention. Here, we selected populations of Escherichia coli at several points along a concentration gradient for three different antibiotics, asking how rapidly resistance evolved and whether populations became specialized to the antibiotic concentration they were selected on. Populations selected at higher concentrations evolved resistance more slowly but exhibited equal or higher fitness across the whole gradient. Populations selected at lower concentrations evolved resistance rapidly, but overall fitness in the presence of antibiotics was lower. However, these populations readily adapted to higher concentrations upon subsequent selection. Our results indicate that resistance management strategies must account not only for the rates of resistance evolution but also for the fitness of evolved strains. acknowledgement: We would like to thank Martin Ackermann, Camilo Barbosa, Nick Barton, Jonathan Bollback, Sebastian Bonhoeffer, Nick Colegrave, Calin Guet, Alex Hall, Sally Otto, Tiago Paixao, Srdjan Sarikas, Hinrich Schulenburg, Marjon de Vos and Michael Whitlock for insightful support. article_number: '20200913' article_processing_charge: No author: - first_name: Mato full_name: Lagator, Mato id: 345D25EC-F248-11E8-B48F-1D18A9856A87 last_name: Lagator - first_name: Hildegard full_name: Uecker, Hildegard id: 2DB8F68A-F248-11E8-B48F-1D18A9856A87 last_name: Uecker orcid: 0000-0001-9435-2813 - first_name: Paul full_name: Neve, Paul last_name: Neve citation: ama: Lagator M, Uecker H, Neve P. Adaptation at different points along antibiotic concentration gradients. Biology letters. 2021;17(5). doi:10.1098/rsbl.2020.0913 apa: Lagator, M., Uecker, H., & Neve, P. (2021). Adaptation at different points along antibiotic concentration gradients. Biology Letters. Royal Society of London. https://doi.org/10.1098/rsbl.2020.0913 chicago: Lagator, Mato, Hildegard Uecker, and Paul Neve. “Adaptation at Different Points along Antibiotic Concentration Gradients.” Biology Letters. Royal Society of London, 2021. https://doi.org/10.1098/rsbl.2020.0913. ieee: M. Lagator, H. Uecker, and P. Neve, “Adaptation at different points along antibiotic concentration gradients,” Biology letters, vol. 17, no. 5. Royal Society of London, 2021. ista: Lagator M, Uecker H, Neve P. 2021. Adaptation at different points along antibiotic concentration gradients. Biology letters. 17(5), 20200913. mla: Lagator, Mato, et al. “Adaptation at Different Points along Antibiotic Concentration Gradients.” Biology Letters, vol. 17, no. 5, 20200913, Royal Society of London, 2021, doi:10.1098/rsbl.2020.0913. short: M. Lagator, H. Uecker, P. Neve, Biology Letters 17 (2021). date_created: 2021-05-23T22:01:43Z date_published: 2021-05-12T00:00:00Z date_updated: 2023-08-08T13:44:35Z day: '12' ddc: - '570' department: - _id: NiBa doi: 10.1098/rsbl.2020.0913 ec_funded: 1 external_id: isi: - '000651501400001' pmid: - ' 33975485' file: - access_level: open_access checksum: 9c13c1f5af7609c97c741f11d293188a content_type: application/pdf creator: kschuh date_created: 2021-05-25T14:09:03Z date_updated: 2021-05-25T14:09:03Z file_id: '9425' file_name: 2021_BiologyLetters_Lagator.pdf file_size: 726759 relation: main_file success: 1 file_date_updated: 2021-05-25T14:09:03Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Biology letters publication_identifier: eissn: - 1744957X publication_status: published publisher: Royal Society of London quality_controlled: '1' scopus_import: '1' status: public title: Adaptation at different points along antibiotic concentration gradients tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2021' ... --- _id: '1063' abstract: - lang: eng text: Severe environmental change can drive a population extinct unless the population adapts in time to the new conditions (“evolutionary rescue”). How does biparental sexual reproduction influence the chances of population persistence compared to clonal reproduction or selfing? In this article, we set up a one‐locus two‐allele model for adaptation in diploid species, where rescue is contingent on the establishment of the mutant homozygote. Reproduction can occur by random mating, selfing, or clonally. Random mating generates and destroys the rescue mutant; selfing is efficient at generating it but at the same time depletes the heterozygote, which can lead to a low mutant frequency in the standing genetic variation. Due to these (and other) antagonistic effects, we find a nontrivial dependence of population survival on the rate of sex/selfing, which is strongly influenced by the dominance coefficient of the mutation before and after the environmental change. Importantly, since mating with the wild‐type breaks the mutant homozygote up, a slow decay of the wild‐type population size can impede rescue in randomly mating populations. article_processing_charge: No author: - first_name: Hildegard full_name: Uecker, Hildegard id: 2DB8F68A-F248-11E8-B48F-1D18A9856A87 last_name: Uecker orcid: 0000-0001-9435-2813 citation: ama: Uecker H. Evolutionary rescue in randomly mating, selfing, and clonal populations. Evolution. 2017;71(4):845-858. doi:10.1111/evo.13191 apa: Uecker, H. (2017). Evolutionary rescue in randomly mating, selfing, and clonal populations. Evolution. Wiley-Blackwell. https://doi.org/10.1111/evo.13191 chicago: Uecker, Hildegard. “Evolutionary Rescue in Randomly Mating, Selfing, and Clonal Populations.” Evolution. Wiley-Blackwell, 2017. https://doi.org/10.1111/evo.13191. ieee: H. Uecker, “Evolutionary rescue in randomly mating, selfing, and clonal populations,” Evolution, vol. 71, no. 4. Wiley-Blackwell, pp. 845–858, 2017. ista: Uecker H. 2017. Evolutionary rescue in randomly mating, selfing, and clonal populations. Evolution. 71(4), 845–858. mla: Uecker, Hildegard. “Evolutionary Rescue in Randomly Mating, Selfing, and Clonal Populations.” Evolution, vol. 71, no. 4, Wiley-Blackwell, 2017, pp. 845–58, doi:10.1111/evo.13191. short: H. Uecker, Evolution 71 (2017) 845–858. date_created: 2018-12-11T11:49:57Z date_published: 2017-04-01T00:00:00Z date_updated: 2023-09-20T12:10:32Z day: '01' department: - _id: NiBa doi: 10.1111/evo.13191 ec_funded: 1 external_id: isi: - '000398545200003' intvolume: ' 71' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: http://biorxiv.org/content/early/2016/10/14/081042 month: '04' oa: 1 oa_version: Submitted Version page: 845 - 858 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Evolution publication_identifier: issn: - '00143820' publication_status: published publisher: Wiley-Blackwell publist_id: '6327' quality_controlled: '1' scopus_import: '1' status: public title: Evolutionary rescue in randomly mating, selfing, and clonal populations type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 71 year: '2017' ... --- _id: '1241' abstract: - lang: eng text: 'How likely is it that a population escapes extinction through adaptive evolution? The answer to this question is of great relevance in conservation biology, where we aim at species’ rescue and the maintenance of biodiversity, and in agriculture and medicine, where we seek to hamper the emergence of pesticide or drug resistance. By reshuffling the genome, recombination has two antagonistic effects on the probability of evolutionary rescue: It generates and it breaks up favorable gene combinations. Which of the two effects prevails depends on the fitness effects of mutations and on the impact of stochasticity on the allele frequencies. In this article, we analyze a mathematical model for rescue after a sudden environmental change when adaptation is contingent on mutations at two loci. The analysis reveals a complex nonlinear dependence of population survival on recombination. We moreover find that, counterintuitively, a fast eradication of the wild type can promote rescue in the presence of recombination. The model also shows that two-step rescue is not unlikely to happen and can even be more likely than single-step rescue (where adaptation relies on a single mutation), depending on the circumstances.' acknowledgement: This work was made possible by a “For Women in Science” fellowship (L’Oréal Österreich in cooperation with the Austrian Commission for the United Nations Educational, Scientific, and Cultural Organization and the Austrian Academy of Sciences with financial support from the Federal Ministry for Science and Research Austria) and European Research Council grant 250152 (to Nick Barton). author: - first_name: Hildegard full_name: Uecker, Hildegard id: 2DB8F68A-F248-11E8-B48F-1D18A9856A87 last_name: Uecker orcid: 0000-0001-9435-2813 - first_name: Joachim full_name: Hermisson, Joachim last_name: Hermisson citation: ama: Uecker H, Hermisson J. The role of recombination in evolutionary rescue. Genetics. 2016;202(2):721-732. doi:10.1534/genetics.115.180299 apa: Uecker, H., & Hermisson, J. (2016). The role of recombination in evolutionary rescue. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.115.180299 chicago: Uecker, Hildegard, and Joachim Hermisson. “The Role of Recombination in Evolutionary Rescue.” Genetics. Genetics Society of America, 2016. https://doi.org/10.1534/genetics.115.180299. ieee: H. Uecker and J. Hermisson, “The role of recombination in evolutionary rescue,” Genetics, vol. 202, no. 2. Genetics Society of America, pp. 721–732, 2016. ista: Uecker H, Hermisson J. 2016. The role of recombination in evolutionary rescue. Genetics. 202(2), 721–732. mla: Uecker, Hildegard, and Joachim Hermisson. “The Role of Recombination in Evolutionary Rescue.” Genetics, vol. 202, no. 2, Genetics Society of America, 2016, pp. 721–32, doi:10.1534/genetics.115.180299. short: H. Uecker, J. Hermisson, Genetics 202 (2016) 721–732. date_created: 2018-12-11T11:50:54Z date_published: 2016-02-01T00:00:00Z date_updated: 2023-02-21T10:24:19Z day: '01' department: - _id: NiBa doi: 10.1534/genetics.115.180299 ec_funded: 1 intvolume: ' 202' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: http://biorxiv.org/content/early/2015/07/06/022020.abstract month: '02' oa: 1 oa_version: Preprint page: 721 - 732 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 25B67606-B435-11E9-9278-68D0E5697425 name: L'OREAL Fellowship publication: Genetics publication_status: published publisher: Genetics Society of America publist_id: '6091' quality_controlled: '1' scopus_import: 1 status: public title: The role of recombination in evolutionary rescue type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 202 year: '2016' ... --- _id: '1699' abstract: - lang: eng text: By hybridization and backcrossing, alleles can surmount species boundaries and be incorporated into the genome of a related species. This introgression of genes is of particular evolutionary relevance if it involves the transfer of adaptations between populations. However, any beneficial allele will typically be associated with other alien alleles that are often deleterious and hamper the introgression process. In order to describe the introgression of an adaptive allele, we set up a stochastic model with an explicit genetic makeup of linked and unlinked deleterious alleles. Based on the theory of reducible multitype branching processes, we derive a recursive expression for the establishment probability of the beneficial allele after a single hybridization event. We furthermore study the probability that slightly deleterious alleles hitchhike to fixation. The key to the analysis is a split of the process into a stochastic phase in which the advantageous alleles establishes and a deterministic phase in which it sweeps to fixation. We thereafter apply the theory to a set of biologically relevant scenarios such as introgression in the presence of many unlinked or few closely linked deleterious alleles. A comparison to computer simulations shows that the approximations work well over a large parameter range. acknowledgement: This work was made possible with financial support by the Vienna Science and Technology Fund (WWTF), by the Deutsche Forschungsgemeinschaft (DFG), Research Unit 1078 Natural selection in structured populations, by the Austrian Science Fund (FWF) via funding for the Vienna Graduate School for Population Genetics, and by a “For Women in Science” fellowship (L’Oréal Österreich in cooperation with the Austrian Commission for UNESCO and the Austrian Academy of Sciences with financial support from the Federal Ministry for Science and Research Austria). author: - first_name: Hildegard full_name: Uecker, Hildegard id: 2DB8F68A-F248-11E8-B48F-1D18A9856A87 last_name: Uecker orcid: 0000-0001-9435-2813 - first_name: Derek full_name: Setter, Derek last_name: Setter - first_name: Joachim full_name: Hermisson, Joachim last_name: Hermisson citation: ama: Uecker H, Setter D, Hermisson J. Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. 2015;70(7):1523-1580. doi:10.1007/s00285-014-0802-y apa: Uecker, H., Setter, D., & Hermisson, J. (2015). Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. Springer. https://doi.org/10.1007/s00285-014-0802-y chicago: Uecker, Hildegard, Derek Setter, and Joachim Hermisson. “Adaptive Gene Introgression after Secondary Contact.” Journal of Mathematical Biology. Springer, 2015. https://doi.org/10.1007/s00285-014-0802-y. ieee: H. Uecker, D. Setter, and J. Hermisson, “Adaptive gene introgression after secondary contact,” Journal of Mathematical Biology, vol. 70, no. 7. Springer, pp. 1523–1580, 2015. ista: Uecker H, Setter D, Hermisson J. 2015. Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. 70(7), 1523–1580. mla: Uecker, Hildegard, et al. “Adaptive Gene Introgression after Secondary Contact.” Journal of Mathematical Biology, vol. 70, no. 7, Springer, 2015, pp. 1523–80, doi:10.1007/s00285-014-0802-y. short: H. Uecker, D. Setter, J. Hermisson, Journal of Mathematical Biology 70 (2015) 1523–1580. date_created: 2018-12-11T11:53:32Z date_published: 2015-06-01T00:00:00Z date_updated: 2023-02-23T10:10:36Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1007/s00285-014-0802-y file: - access_level: open_access checksum: 00e3a67bda05d4cc165b3a48b41ef9ad content_type: application/pdf creator: system date_created: 2018-12-12T10:14:27Z date_updated: 2020-07-14T12:45:12Z file_id: '5079' file_name: IST-2016-458-v1+1_s00285-014-0802-y.pdf file_size: 1321527 relation: main_file file_date_updated: 2020-07-14T12:45:12Z has_accepted_license: '1' intvolume: ' 70' issue: '7' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1523 - 1580 project: - _id: 25B67606-B435-11E9-9278-68D0E5697425 name: L'OREAL Fellowship publication: Journal of Mathematical Biology publication_status: published publisher: Springer publist_id: '5442' pubrep_id: '458' quality_controlled: '1' scopus_import: 1 status: public title: Adaptive gene introgression after secondary contact tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 70 year: '2015' ...