@article{13117, abstract = {The ability to control the direction of scattered light is crucial to provide flexibility and scalability for a wide range of on-chip applications, such as integrated photonics, quantum information processing, and nonlinear optics. Tunable directionality can be achieved by applying external magnetic fields that modify optical selection rules, by using nonlinear effects, or interactions with vibrations. However, these approaches are less suitable to control microwave photon propagation inside integrated superconducting quantum devices. Here, we demonstrate on-demand tunable directional scattering based on two periodically modulated transmon qubits coupled to a transmission line at a fixed distance. By changing the relative phase between the modulation tones, we realize unidirectional forward or backward photon scattering. Such an in-situ switchable mirror represents a versatile tool for intra- and inter-chip microwave photonic processors. In the future, a lattice of qubits can be used to realize topological circuits that exhibit strong nonreciprocity or chirality.}, author = {Redchenko, Elena and Poshakinskiy, Alexander V. and Sett, Riya and Zemlicka, Martin and Poddubny, Alexander N. and Fink, Johannes M}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Tunable directional photon scattering from a pair of superconducting qubits}}, doi = {10.1038/s41467-023-38761-6}, volume = {14}, year = {2023}, } @misc{13124, abstract = {This dataset comprises all data shown in the figures of the submitted article "Tunable directional photon scattering from a pair of superconducting qubits" at arXiv:2205.03293. Additional raw data are available from the corresponding author on reasonable request.}, author = {Redchenko, Elena and Poshakinskiy, Alexander and Sett, Riya and Zemlicka, Martin and Poddubny, Alexander and Fink, Johannes M}, publisher = {Zenodo}, title = {{Tunable directional photon scattering from a pair of superconducting qubits}}, doi = {10.5281/ZENODO.7858567}, year = {2023}, } @article{14517, abstract = {State-of-the-art transmon qubits rely on large capacitors, which systematically improve their coherence due to reduced surface-loss participation. However, this approach increases both the footprint and the parasitic cross-coupling and is ultimately limited by radiation losses—a potential roadblock for scaling up quantum processors to millions of qubits. In this work we present transmon qubits with sizes as low as 36 × 39 µm2 with 100-nm-wide vacuum-gap capacitors that are micromachined from commercial silicon-on-insulator wafers and shadow evaporated with aluminum. We achieve a vacuum participation ratio up to 99.6% in an in-plane design that is compatible with standard coplanar circuits. Qubit relaxationtime measurements for small gaps with high zero-point electric field variance of up to 22 V/m reveal a double exponential decay indicating comparably strong qubit interaction with long-lived two-level systems. The exceptionally high selectivity of up to 20 dB to the superconductor-vacuum interface allows us to precisely back out the sub-single-photon dielectric loss tangent of aluminum oxide previously exposed to ambient conditions. In terms of future scaling potential, we achieve a ratio of qubit quality factor to a footprint area equal to 20 µm−2, which is comparable with the highest T1 devices relying on larger geometries, a value that could improve substantially for lower surface-loss superconductors. }, author = {Zemlicka, Martin and Redchenko, Elena and Peruzzo, Matilda and Hassani, Farid and Trioni, Andrea and Barzanjeh, Shabir and Fink, Johannes M}, issn = {2331-7019}, journal = {Physical Review Applied}, number = {4}, publisher = {American Physical Society}, title = {{Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses}}, doi = {10.1103/PhysRevApplied.20.044054}, volume = {20}, year = {2023}, } @article{13227, abstract = {Currently available quantum processors are dominated by noise, which severely limits their applicability and motivates the search for new physical qubit encodings. In this work, we introduce the inductively shunted transmon, a weakly flux-tunable superconducting qubit that offers charge offset protection for all levels and a 20-fold reduction in flux dispersion compared to the state-of-the-art resulting in a constant coherence over a full flux quantum. The parabolic confinement provided by the inductive shunt as well as the linearity of the geometric superinductor facilitates a high-power readout that resolves quantum jumps with a fidelity and QND-ness of >90% and without the need for a Josephson parametric amplifier. Moreover, the device reveals quantum tunneling physics between the two prepared fluxon ground states with a measured average decay time of up to 3.5 h. In the future, fast time-domain control of the transition matrix elements could offer a new path forward to also achieve full qubit control in the decay-protected fluxon basis.}, author = {Hassani, Farid and Peruzzo, Matilda and Kapoor, Lucky and Trioni, Andrea and Zemlicka, Martin and Fink, Johannes M}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours}}, doi = {10.1038/s41467-023-39656-2}, volume = {14}, year = {2023}, } @article{14032, abstract = {Arrays of Josephson junctions are governed by a competition between superconductivity and repulsive Coulomb interactions, and are expected to exhibit diverging low-temperature resistance when interactions exceed a critical level. Here we report a study of the transport and microwave response of Josephson arrays with interactions exceeding this level. Contrary to expectations, we observe that the array resistance drops dramatically as the temperature is decreased—reminiscent of superconducting behaviour—and then saturates at low temperature. Applying a magnetic field, we eventually observe a transition to a highly resistive regime. These observations can be understood within a theoretical picture that accounts for the effect of thermal fluctuations on the insulating phase. On the basis of the agreement between experiment and theory, we suggest that apparent superconductivity in our Josephson arrays arises from melting the zero-temperature insulator.}, author = {Mukhopadhyay, Soham and Senior, Jorden L and Saez Mollejo, Jaime and Puglia, Denise and Zemlicka, Martin and Fink, Johannes M and Higginbotham, Andrew P}, issn = {1745-2481}, journal = {Nature Physics}, keywords = {General Physics and Astronomy}, pages = {1630--1635}, publisher = {Springer Nature}, title = {{Superconductivity from a melted insulator in Josephson junction arrays}}, doi = {10.1038/s41567-023-02161-w}, volume = {19}, year = {2023}, } @misc{14520, abstract = {This dataset comprises all data shown in the figures of the submitted article "Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses" at arxiv.org/abs/2206.14104. Additional raw data are available from the corresponding author on reasonable request.}, author = {Zemlicka, Martin and Redchenko, Elena and Peruzzo, Matilda and Hassani, Farid and Trioni, Andrea and Barzanjeh, Shabir and Fink, Johannes M}, publisher = {Zenodo}, title = {{Compact vacuum gap transmon qubits: Selective and sensitive probes for superconductor surface losses}}, doi = {10.5281/ZENODO.8408897}, year = {2022}, } @misc{13057, abstract = {This dataset comprises all data shown in the figures of the submitted article "Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction". Additional raw data are available from the corresponding author on reasonable request.}, author = {Peruzzo, Matilda and Hassani, Farid and Szep, Grisha and Trioni, Andrea and Redchenko, Elena and Zemlicka, Martin and Fink, Johannes M}, publisher = {Zenodo}, title = {{Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction}}, doi = {10.5281/ZENODO.5592103}, year = {2021}, } @article{9928, abstract = {There are two elementary superconducting qubit types that derive directly from the quantum harmonic oscillator. In one, the inductor is replaced by a nonlinear Josephson junction to realize the widely used charge qubits with a compact phase variable and a discrete charge wave function. In the other, the junction is added in parallel, which gives rise to an extended phase variable, continuous wave functions, and a rich energy-level structure due to the loop topology. While the corresponding rf superconducting quantum interference device Hamiltonian was introduced as a quadratic quasi-one-dimensional potential approximation to describe the fluxonium qubit implemented with long Josephson-junction arrays, in this work we implement it directly using a linear superinductor formed by a single uninterrupted aluminum wire. We present a large variety of qubits, all stemming from the same circuit but with drastically different characteristic energy scales. This includes flux and fluxonium qubits but also the recently introduced quasicharge qubit with strongly enhanced zero-point phase fluctuations and a heavily suppressed flux dispersion. The use of a geometric inductor results in high reproducibility of the inductive energy as guaranteed by top-down lithography—a key ingredient for intrinsically protected superconducting qubits.}, author = {Peruzzo, Matilda and Hassani, Farid and Szep, Gregory and Trioni, Andrea and Redchenko, Elena and Zemlicka, Martin and Fink, Johannes M}, issn = {2691-3399}, journal = {PRX Quantum}, keywords = {quantum physics, mesoscale and nanoscale physics}, number = {4}, pages = {040341}, publisher = {American Physical Society}, title = {{Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction}}, doi = {10.1103/PRXQuantum.2.040341}, volume = {2}, year = {2021}, } @misc{13070, abstract = {This dataset comprises all data shown in the figures of the submitted article "Surpassing the resistance quantum with a geometric superinductor". Additional raw data are available from the corresponding author on reasonable request.}, author = {Peruzzo, Matilda and Trioni, Andrea and Hassani, Farid and Zemlicka, Martin and Fink, Johannes M}, publisher = {Zenodo}, title = {{Surpassing the resistance quantum with a geometric superinductor}}, doi = {10.5281/ZENODO.4052882}, year = {2020}, } @article{8944, abstract = {Superconductor insulator transition in transverse magnetic field is studied in the highly disordered MoC film with the product of the Fermi momentum and the mean free path kF*l close to unity. Surprisingly, the Zeeman paramagnetic effects dominate over orbital coupling on both sides of the transition. In superconducting state it is evidenced by a high upper critical magnetic field 𝐵𝑐2, by its square root dependence on temperature, as well as by the Zeeman splitting of the quasiparticle density of states (DOS) measured by scanning tunneling microscopy. At 𝐵𝑐2 a logarithmic anomaly in DOS is observed. This anomaly is further enhanced in increasing magnetic field, which is explained by the Zeeman splitting of the Altshuler-Aronov DOS driving the system into a more insulating or resistive state. Spin dependent Altshuler-Aronov correction is also needed to explain the transport behavior above 𝐵𝑐2.}, author = {Zemlicka, Martin and Kopčík, M. and Szabó, P. and Samuely, T. and Kačmarčík, J. and Neilinger, P. and Grajcar, M. and Samuely, P.}, issn = {24699969}, journal = {Physical Review B}, number = {18}, publisher = {American Physical Society}, title = {{Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field}}, doi = {10.1103/PhysRevB.102.180508}, volume = {102}, year = {2020}, } @article{8755, abstract = {The superconducting circuit community has recently discovered the promising potential of superinductors. These circuit elements have a characteristic impedance exceeding the resistance quantum RQ ≈ 6.45 kΩ which leads to a suppression of ground state charge fluctuations. Applications include the realization of hardware protected qubits for fault tolerant quantum computing, improved coupling to small dipole moment objects and defining a new quantum metrology standard for the ampere. In this work we refute the widespread notion that superinductors can only be implemented based on kinetic inductance, i.e. using disordered superconductors or Josephson junction arrays. We present modeling, fabrication and characterization of 104 planar aluminum coil resonators with a characteristic impedance up to 30.9 kΩ at 5.6 GHz and a capacitance down to ≤ 1 fF, with lowloss and a power handling reaching 108 intra-cavity photons. Geometric superinductors are free of uncontrolled tunneling events and offer high reproducibility, linearity and the ability to couple magnetically - properties that significantly broaden the scope of future quantum circuits. }, author = {Peruzzo, Matilda and Trioni, Andrea and Hassani, Farid and Zemlicka, Martin and Fink, Johannes M}, issn = {23317019}, journal = {Physical Review Applied}, number = {4}, publisher = {American Physical Society}, title = {{Surpassing the resistance quantum with a geometric superinductor}}, doi = {10.1103/PhysRevApplied.14.044055}, volume = {14}, year = {2020}, }