TY - CONF AB - In this work we consider the list-decodability and list-recoverability of arbitrary q-ary codes, for all integer values of q ≥ 2. A code is called (p,L)_q-list-decodable if every radius pn Hamming ball contains less than L codewords; (p,𝓁,L)_q-list-recoverability is a generalization where we place radius pn Hamming balls on every point of a combinatorial rectangle with side length 𝓁 and again stipulate that there be less than L codewords. Our main contribution is to precisely calculate the maximum value of p for which there exist infinite families of positive rate (p,𝓁,L)_q-list-recoverable codes, the quantity we call the zero-rate threshold. Denoting this value by p_*, we in fact show that codes correcting a p_*+ε fraction of errors must have size O_ε(1), i.e., independent of n. Such a result is typically referred to as a "Plotkin bound." To complement this, a standard random code with expurgation construction shows that there exist positive rate codes correcting a p_*-ε fraction of errors. We also follow a classical proof template (typically attributed to Elias and Bassalygo) to derive from the zero-rate threshold other tradeoffs between rate and decoding radius for list-decoding and list-recovery. Technically, proving the Plotkin bound boils down to demonstrating the Schur convexity of a certain function defined on the q-simplex as well as the convexity of a univariate function derived from it. We remark that an earlier argument claimed similar results for q-ary list-decoding; however, we point out that this earlier proof is flawed. AU - Resch, Nicolas AU - Yuan, Chen AU - Zhang, Yihan ID - 14083 SN - 1868-8969 T2 - 50th International Colloquium on Automata, Languages, and Programming TI - Zero-rate thresholds and new capacity bounds for list-decoding and list-recovery VL - 261 ER - TY - JOUR AB - We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let N > 0 and L ∈ Z ≽2 . A multiple packing is a set C of points in R n such that any point in R n lies in the intersection of at most L – 1 balls of radius √ nN around points in C . Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. In this paper, we derive the best known lower bounds on the optimal density of list-decodable infinite constellations for constant L under a stronger notion called average-radius multiple packing. To this end, we apply tools from high-dimensional geometry and large deviation theory. AU - Zhang, Yihan AU - Vatedka, Shashank ID - 12838 IS - 7 JF - IEEE Transactions on Information Theory SN - 0018-9448 TI - Multiple packing: Lower bounds via infinite constellations VL - 69 ER - TY - JOUR AB - We derive lower bounds on the maximal rates for multiple packings in high-dimensional Euclidean spaces. For any N > 0 and L ∈ Z ≥2 , a multiple packing is a set C of points in R n such that any point in R n lies in the intersection of at most L - 1 balls of radius √ nN around points in C . This is a natural generalization of the sphere packing problem. We study the multiple packing problem for both bounded point sets whose points have norm at most √ nP for some constant P > 0, and unbounded point sets whose points are allowed to be anywhere in R n . Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied over finite fields. We derive the best known lower bounds on the optimal multiple packing density. This is accomplished by establishing an inequality which relates the list-decoding error exponent for additive white Gaussian noise channels, a quantity of average-case nature, to the list-decoding radius, a quantity of worst-case nature. We also derive novel bounds on the list-decoding error exponent for infinite constellations and closed-form expressions for the list-decoding error exponents for the power-constrained AWGN channel, which may be of independent interest beyond multiple packing. AU - Zhang, Yihan AU - Vatedka, Shashank ID - 14665 JF - IEEE Transactions on Information Theory SN - 0018-9448 TI - Multiple packing: Lower bounds via error exponents ER - TY - JOUR AB - We consider zero-error communication over a two-transmitter deterministic adversarial multiple access channel (MAC) governed by an adversary who has access to the transmissions of both senders (hence called omniscient ) and aims to maliciously corrupt the communication. None of the encoders, jammer and decoder is allowed to randomize using private or public randomness. This enforces a combinatorial nature of the problem. Our model covers a large family of channels studied in the literature, including all deterministic discrete memoryless noisy or noiseless MACs. In this work, given an arbitrary two-transmitter deterministic omniscient adversarial MAC, we characterize when the capacity region: 1) has nonempty interior (in particular, is two-dimensional); 2) consists of two line segments (in particular, has empty interior); 3) consists of one line segment (in particular, is one-dimensional); 4) or only contains (0,0) (in particular, is zero-dimensional). This extends a recent result by Wang et al. (201 9) from the point-to-point setting to the multiple access setting. Indeed, our converse arguments build upon their generalized Plotkin bound and involve delicate case analysis. One of the technical challenges is to take care of both “joint confusability” and “marginal confusability”. In particular, the treatment of marginal confusability does not follow from the point-to-point results by Wang et al. Our achievability results follow from random coding with expurgation. AU - Zhang, Yihan ID - 14751 IS - 7 JF - IEEE Transactions on Information Theory KW - Computer Science Applications KW - Information Systems SN - 0018-9448 TI - Zero-error communication over adversarial MACs VL - 69 ER - TY - JOUR AB - This paper is a collection of results on combinatorial properties of codes for the Z-channel . A Z-channel with error fraction τ takes as input a length- n binary codeword and injects in an adversarial manner up to n τ asymmetric errors, i.e., errors that only zero out bits but do not flip 0’s to 1’s. It is known that the largest ( L - 1)-list-decodable code for the Z-channel with error fraction τ has exponential size (in n ) if τ is less than a critical value that we call the ( L - 1)- list-decoding Plotkin point and has constant size if τ is larger than the threshold. The ( L -1)-list-decoding Plotkin point is known to be L -1/L-1 – L -L/ L-1 , which equals 1/4 for unique-decoding with L -1 = 1. In this paper, we derive various results for the size of the largest codes above and below the list-decoding Plotkin point. In particular, we show that the largest ( L -1)-list-decodable code ε-above the Plotkin point, for any given sufficiently small positive constant ε > 0, has size Θ L (ε -3/2 ) for any L - 1 ≥ 1. We also devise upper and lower bounds on the exponential size of codes below the list-decoding Plotkin point. AU - Polyanskii, Nikita AU - Zhang, Yihan ID - 13269 IS - 10 JF - IEEE Transactions on Information Theory SN - 0018-9448 TI - Codes for the Z-channel VL - 69 ER - TY - CONF AB - We characterize the capacity for the discrete-time arbitrarily varying channel with discrete inputs, outputs, and states when (a) the encoder and decoder do not share common randomness, (b) the input and state are subject to cost constraints, (c) the transition matrix of the channel is deterministic given the state, and (d) at each time step the adversary can only observe the current and past channel inputs when choosing the state at that time. The achievable strategy involves stochastic encoding together with list decoding and a disambiguation step. The converse uses a two-phase "babble-and-push" strategy where the adversary chooses the state randomly in the first phase, list decodes the output, and then chooses state inputs to symmetrize the channel in the second phase. These results generalize prior work on specific channels models (additive, erasure) to general discrete alphabets and models. AU - Zhang, Yihan AU - Jaggi, Sidharth AU - Langberg, Michael AU - Sarwate, Anand D. ID - 12011 SN - 2157-8095 T2 - 2022 IEEE International Symposium on Information Theory TI - The capacity of causal adversarial channels VL - 2022 ER - TY - CONF AB - In the classic adversarial communication problem, two parties communicate over a noisy channel in the presence of a malicious jamming adversary. The arbitrarily varying channels (AVCs) offer an elegant framework to study a wide range of interesting adversary models. The optimal throughput or capacity over such AVCs is intimately tied to the underlying adversary model; in some cases, capacity is unknown and the problem is known to be notoriously hard. The omniscient adversary, one which knows the sender’s entire channel transmission a priori, is one of such classic models of interest; the capacity under such an adversary remains an exciting open problem. The myopic adversary is a generalization of that model where the adversary’s observation may be corrupted over a noisy discrete memoryless channel. Through the adversary’s myopicity, one can unify the slew of different adversary models, ranging from the omniscient adversary to one that is completely blind to the transmission (the latter is the well known oblivious model where the capacity is fully characterized).In this work, we present new results on the capacity under both the omniscient and myopic adversary models. We completely characterize the positive capacity threshold over general AVCs with omniscient adversaries. The characterization is in terms of two key combinatorial objects: the set of completely positive distributions and the CP-confusability set. For omniscient AVCs with positive capacity, we present non-trivial lower and upper bounds on the capacity; unlike some of the previous bounds, our bounds hold under fairly general input and jamming constraints. Our lower bound improves upon the generalized Gilbert-Varshamov bound for general AVCs while the upper bound generalizes the well known Elias-Bassalygo bound (known for binary and q-ary alphabets). For the myopic AVCs, we build on prior results known for the so-called sufficiently myopic model, and present new results on the positive rate communication threshold over the so-called insufficiently myopic regime (a completely insufficient myopic adversary specializes to an omniscient adversary). We present interesting examples for the widely studied models of adversarial bit-flip and bit-erasure channels. In fact, for the bit-flip AVC with additive adversarial noise as well as random noise, we completely characterize the omniscient model capacity when the random noise is sufficiently large vis-a-vis the adversary’s budget. AU - Yadav, Anuj Kumar AU - Alimohammadi, Mohammadreza AU - Zhang, Yihan AU - Budkuley, Amitalok J. AU - Jaggi, Sidharth ID - 12017 SN - 2157-8095 T2 - 2022 IEEE International Symposium on Information Theory TI - New results on AVCs with omniscient and myopic adversaries VL - 2022 ER - TY - CONF AB - We consider the problem of communication over adversarial channels with feedback. Two parties comprising sender Alice and receiver Bob seek to communicate reliably. An adversary James observes Alice's channel transmission entirely and chooses, maliciously, its additive channel input or jamming state thereby corrupting Bob's observation. Bob can communicate over a one-way reverse link with Alice; we assume that transmissions over this feedback link cannot be corrupted by James. Our goal in this work is to study the optimum throughput or capacity over such channels with feedback. We first present results for the quadratically-constrained additive channel where communication is known to be impossible when the noise-to-signal (power) ratio (NSR) is at least 1. We present a novel achievability scheme to establish that positive rate communication is possible even when the NSR is as high as 8/9. We also present new converse upper bounds on the capacity of this channel under potentially stochastic encoders and decoders. We also study feedback communication over the more widely studied q-ary alphabet channel under additive noise. For the q -ary channel, where q > 2, it is well known that capacity is positive under full feedback if and only if the adversary can corrupt strictly less than half the transmitted symbols. We generalize this result and show that the same threshold holds for positive rate communication when the noiseless feedback may only be partial; our scheme employs a stochastic decoder. We extend this characterization, albeit partially, to fully deterministic schemes under partial noiseless feedback. We also present new converse upper bounds for q-ary channels under full feedback, where the encoder and/or decoder may privately randomize. Our converse results bring to the fore an interesting alternate expression for the well known converse bound for the q—ary channel under full feedback which, when specialized to the binary channel, also equals its known capacity. AU - Joshi, Pranav AU - Purkayastha, Amritakshya AU - Zhang, Yihan AU - Budkuley, Amitalok J. AU - Jaggi, Sidharth ID - 12013 SN - 2157-8095 T2 - 2022 IEEE International Symposium on Information Theory TI - On the capacity of additive AVCs with feedback VL - 2022 ER - TY - CONF AB - We study the problem of characterizing the maximal rates of list decoding in Euclidean spaces for finite list sizes. For any positive integer L ≥ 2 and real N > 0, we say that a subset C⊂Rn is an (N,L – 1)-multiple packing or an (N,L– 1)-list decodable code if every Euclidean ball of radius nN−−−√ in ℝ n contains no more than L − 1 points of C. We study this problem with and without ℓ 2 norm constraints on C, and derive the best-known lower bounds on the maximal rate for (N,L−1) multiple packing. Our bounds are obtained via error exponents for list decoding over Additive White Gaussian Noise (AWGN) channels. We establish a curious inequality which relates the error exponent, a quantity of average-case nature, to the list-decoding radius, a quantity of worst-case nature. We derive various bounds on the error exponent for list decoding in both bounded and unbounded settings which could be of independent interest beyond multiple packing. AU - Zhang, Yihan AU - Vatedka, Shashank ID - 12018 SN - 2157-8095 T2 - 2022 IEEE International Symposium on Information Theory TI - Lower bounds on list decoding capacity using error exponents VL - 2022 ER - TY - CONF AB - We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let P, N > 0 and L∈Z≥2. A multiple packing is a set C of points in Bn(0–,nP−−−√) such that any point in ℝ n lies in the intersection of at most L – 1 balls of radius nN−−−√ around points in C. 1 In this paper, we derive two lower bounds on the largest possible density of a multiple packing. These bounds are obtained through a stronger notion called average-radius multiple packing. Specifically, we exactly pin down the asymptotics of (expurgated) Gaussian codes and (expurgated) spherical codes under average-radius multiple packing. To this end, we apply tools from high-dimensional geometry and large deviation theory. The bound for spherical codes matches the previous best known bound which was obtained for the standard (weaker) notion of multiple packing through a curious connection with error exponents [Bli99], [ZV21]. The bound for Gaussian codes suggests that they are strictly inferior to spherical codes. AU - Zhang, Yihan AU - Vatedka, Shashank ID - 12015 SN - 2157-8095 T2 - 2022 IEEE International Symposium on Information Theory TI - Lower bounds for multiple packing VL - 2022 ER - TY - CONF AB - We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let N > 0 and L∈Z≥2. A multiple packing is a set C of points in Rn such that any point in Rn lies in the intersection of at most L – 1 balls of radius nN−−−√ around points in C. Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. In this paper, we exactly pin down the asymptotic density of (expurgated) Poisson Point Processes under a stronger notion called average-radius multiple packing. To this end, we apply tools from high-dimensional geometry and large deviation theory. This gives rise to the best known lower bound on the largest multiple packing density. Our result corrects a mistake in a previous paper by Blinovsky [Bli05]. AU - Zhang, Yihan AU - Vatedka, Shashank ID - 12014 SN - 2157-8095 T2 - 2022 IEEE International Symposium on Information Theory TI - List-decodability of Poisson Point Processes VL - 2022 ER - TY - CONF AB - This paper studies combinatorial properties of codes for the Z-channel. A Z-channel with error fraction τ takes as input a length-n binary codeword and injects in an adversarial manner up to nτ asymmetric errors, i.e., errors that only zero out bits but do not flip 0’s to 1’s. It is known that the largest (L − 1)-list-decodable code for the Z-channel with error fraction τ has exponential (in n) size if τ is less than a critical value that we call the Plotkin point and has constant size if τ is larger than the threshold. The (L−1)-list-decoding Plotkin point is known to be L−1L−1−L−LL−1. In this paper, we show that the largest (L−1)-list-decodable code ε-above the Plotkin point has size Θ L (ε −3/2 ) for any L − 1 ≥ 1. AU - Polyanskii, Nikita AU - Zhang, Yihan ID - 12019 SN - 2157-8095 T2 - 2022 IEEE International Symposium on Information Theory TI - List-decodable zero-rate codes for the Z-channel VL - 2022 ER - TY - JOUR AB - We study the list decodability of different ensembles of codes over the real alphabet under the assumption of an omniscient adversary. It is a well-known result that when the source and the adversary have power constraints P and N respectively, the list decoding capacity is equal to 1/2logP/N. Random spherical codes achieve constant list sizes, and the goal of the present paper is to obtain a better understanding of the smallest achievable list size as a function of the gap to capacity. We show a reduction from arbitrary codes to spherical codes, and derive a lower bound on the list size of typical random spherical codes. We also give an upper bound on the list size achievable using nested Construction-A lattices and infinite Construction-A lattices. We then define and study a class of infinite constellations that generalize Construction-A lattices and prove upper and lower bounds for the same. Other goodness properties such as packing goodness and AWGN goodness of infinite constellations are proved along the way. Finally, we consider random lattices sampled from the Haar distribution and show that if a certain conjecture that originates in analytic number theory is true, then the list size grows as a polynomial function of the gap-to-capacity. AU - Zhang, Yihan AU - Vatedka, Shashank ID - 11639 IS - 12 JF - IEEE Transactions on Information Theory SN - 0018-9448 TI - List decoding random Euclidean codes and Infinite constellations VL - 68 ER - TY - JOUR AB - We study communication in the presence of a jamming adversary where quadratic power constraints are imposed on the transmitter and the jammer. The jamming signal is allowed to be a function of the codebook, and a noncausal but noisy observation of the transmitted codeword. For a certain range of the noise-to-signal ratios (NSRs) of the transmitter and the jammer, we are able to characterize the capacity of this channel under deterministic encoding or stochastic encoding, i.e., with no common randomness between the encoder/decoder pair. For the remaining NSR regimes, we determine the capacity under the assumption of a small amount of common randomness (at most 2log(n) bits in one sub-regime, and at most Ω(n) bits in the other sub-regime) available to the encoder-decoder pair. Our proof techniques involve a novel myopic list-decoding result for achievability, and a Plotkin-type push attack for the converse in a subregion of the NSRs, both of which may be of independent interest. We also give bounds on the strong secrecy capacity of this channel assuming that the jammer is simultaneously eavesdropping. AU - Zhang, Yihan AU - Vatedka, Shashank AU - Jaggi, Sidharth AU - Sarwate, Anand D. ID - 12273 IS - 8 JF - IEEE Transactions on Information Theory SN - 0018-9448 TI - Quadratically constrained myopic adversarial channels VL - 68 ER -