@article{10712, abstract = {Solute carriers are increasingly recognized as participating in a plethora of pathologies, including cancer. We describe here the involvement of the orphan solute carrier MFSD1 in the regulation of tumor cell migration. Loss of MFSD1 enabled higher levels of metastasis in a mouse model. We identified an increased migratory potential in MFSD1-/- tumor cells which was mediated by increased focal adhesion turn-over, reduced stability of mature inactive β1 integrin, and the resulting increased integrin activation index. We show that MFSD1 promoted recycling to the cell surface of endocytosed inactive β1 integrin and thereby protected β1 integrin from proteolytic degradation; this led to dampening of the integrin activation index. Furthermore, down-regulation of MFSD1 expression was observed during early steps of tumorigenesis and higher MFSD1 expression levels correlate with a better cancer patient prognosis. In sum, we describe a requirement for endolysosomal MFSD1 in efficient β1 integrin recycling to suppress tumor spread.}, author = {Roblek, Marko and Bicher, Julia and van Gogh, Merel and György, Attila and Seeböck, Rita and Szulc, Bozena and Damme, Markus and Olczak, Mariusz and Borsig, Lubor and Siekhaus, Daria E}, issn = {2234-943X}, journal = {Frontiers in Oncology}, publisher = {Frontiers}, title = {{The solute carrier MFSD1 decreases β1 integrin’s activation status and thus tumor metastasis}}, doi = {10.3389/fonc.2022.777634}, volume = {12}, year = {2022}, } @article{10918, abstract = {Cellular metabolism must adapt to changing demands to enable homeostasis. During immune responses or cancer metastasis, cells leading migration into challenging environments require an energy boost, but what controls this capacity is unclear. Here, we study a previously uncharacterized nuclear protein, Atossa (encoded by CG9005), which supports macrophage invasion into the germband of Drosophila by controlling cellular metabolism. First, nuclear Atossa increases mRNA levels of Porthos, a DEAD-box protein, and of two metabolic enzymes, lysine-α-ketoglutarate reductase (LKR/SDH) and NADPH glyoxylate reductase (GR/HPR), thus enhancing mitochondrial bioenergetics. Then Porthos supports ribosome assembly and thereby raises the translational efficiency of a subset of mRNAs, including those affecting mitochondrial functions, the electron transport chain, and metabolism. Mitochondrial respiration measurements, metabolomics, and live imaging indicate that Atossa and Porthos power up OxPhos and energy production to promote the forging of a path into tissues by leading macrophages. Since many crucial physiological responses require increases in mitochondrial energy output, this previously undescribed genetic program may modulate a wide range of cellular behaviors.}, author = {Emtenani, Shamsi and Martin, Elliot T and György, Attila and Bicher, Julia and Genger, Jakob-Wendelin and Köcher, Thomas and Akhmanova, Maria and Pereira Guarda, Mariana and Roblek, Marko and Bergthaler, Andreas and Hurd, Thomas R and Rangan, Prashanth and Siekhaus, Daria E}, issn = {1460-2075}, journal = {The Embo Journal}, publisher = {Embo Press}, title = {{Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa-Porthos axis in Drosophila}}, doi = {10.15252/embj.2021109049}, volume = {41}, year = {2022}, } @article{10614, abstract = {The infiltration of immune cells into tissues underlies the establishment of tissue-resident macrophages and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here, we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio, which are themselves required for invasion. Both the filamin and the tetraspanin enhance the cortical activity of Rho1 and the formin Diaphanous and thus the assembly of cortical actin, which is a critical function since expressing a dominant active form of Diaphanous can rescue the Dfos macrophage invasion defect. In vivo imaging shows that Dfos enhances the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the properties of the macrophage nucleus from affecting tissue entry. We thus identify strengthening the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues. }, author = {Belyaeva, Vera and Wachner, Stephanie and György, Attila and Emtenani, Shamsi and Gridchyn, Igor and Akhmanova, Maria and Linder, M and Roblek, Marko and Sibilia, M and Siekhaus, Daria E}, issn = {1545-7885}, journal = {PLoS Biology}, number = {1}, pages = {e3001494}, publisher = {Public Library of Science}, title = {{Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila}}, doi = {10.1371/journal.pbio.3001494}, volume = {20}, year = {2022}, } @article{10536, abstract = {TGFβ overexpression is commonly detected in cancer patients and correlates with poor prognosis and metastasis. Cancer progression is often associated with an enhanced recruitment of myeloid-derived cells to the tumor microenvironment. Here we show that functional TGFβ-signaling in myeloid cells is required for metastasis to the lungs and the liver. Myeloid-specific deletion of Tgfbr2 resulted in reduced spontaneous lung metastasis, which was associated with a reduction of proinflammatory cytokines in the metastatic microenvironment. Notably, CD8+ T cell depletion in myeloid-specific Tgfbr2-deficient mice rescued lung metastasis. Myeloid-specific Tgfbr2-deficiency resulted in reduced liver metastasis with an almost complete absence of myeloid cells within metastatic foci. On contrary, an accumulation of Tgfβ-responsive myeloid cells was associated with an increased recruitment of monocytes and granulocytes and higher proinflammatory cytokine levels in control mice. Monocytic cells isolated from metastatic livers of Tgfbr2-deficient mice showed increased polarization towards the M1 phenotype, Tnfα and Il-1β expression, reduced levels of M2 markers and reduced production of chemokines responsible for myeloid-cell recruitment. No significant differences in Tgfβ levels were observed at metastatic sites of any model. These data demonstrate that Tgfβ signaling in monocytic myeloid cells suppresses CD8+ T cell activity during lung metastasis, while these cells actively contribute to tumor growth during liver metastasis. Thus, myeloid cells modulate metastasis through different mechanisms in a tissue-specific manner.}, author = {Stefanescu, Cristina and Van Gogh, Merel and Roblek, Marko and Heikenwalder, Mathias and Borsig, Lubor}, issn = {2234-943X}, journal = {Frontiers in Oncology}, publisher = {Frontiers}, title = {{TGFβ signaling in myeloid cells promotes lung and liver metastasis through different mechanisms}}, doi = {10.3389/fonc.2021.765151}, volume = {11}, year = {2021}, } @article{6190, abstract = {Increased levels of the chemokine CCL2 in cancer patients are associated with poor prognosis. Experimental evidence suggests that CCL2 correlates with inflammatory monocyte recruitment and induction of vascular activation, but the functionality remains open. Here, we show that endothelial Ccr2 facilitates pulmonary metastasis using an endothelial-specific Ccr2-deficient mouse model (Ccr2ecKO). Similar levels of circulating monocytes and equal leukocyte recruitment to metastatic lesions of Ccr2ecKO and Ccr2fl/fl littermates were observed. The absence of endothelial Ccr2 strongly reduced pulmonary metastasis, while the primary tumor growth was unaffected. Despite a comparable cytokine milieu in Ccr2ecKO and Ccr2fl/fl littermates the absence of vascular permeability induction was observed only in Ccr2ecKO mice. CCL2 stimulation of pulmonary endothelial cells resulted in increased phosphorylation of MLC2, endothelial cell retraction, and vascular leakiness that was blocked by an addition of a CCR2 inhibitor. These data demonstrate that endothelial CCR2 expression is required for tumor cell extravasation and pulmonary metastasis. Implications: The findings provide mechanistic insight into how CCL2–CCR2 signaling in endothelial cells promotes their activation through myosin light chain phosphorylation, resulting in endothelial retraction and enhanced tumor cell migration and metastasis.}, author = {Roblek, Marko and Protsyuk, Darya and Becker, Paul F. and Stefanescu, Cristina and Gorzelanny, Christian and Glaus Garzon, Jesus F. and Knopfova, Lucia and Heikenwalder, Mathias and Luckow, Bruno and Schneider, Stefan W. and Borsig, Lubor}, issn = {15573125}, journal = {Molecular Cancer Research}, number = {3}, pages = {783--793}, publisher = {AACR}, title = {{CCL2 is a vascular permeability factor inducing CCR2-dependent endothelial retraction during lung metastasis}}, doi = {10.1158/1541-7786.MCR-18-0530}, volume = {17}, year = {2019}, } @article{6187, abstract = {Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva’s vertebrate ortholog, MFSD1, rescues the minerva mutant’s migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis.}, author = {Valosková, Katarina and Biebl, Julia and Roblek, Marko and Emtenani, Shamsi and György, Attila and Misova, Michaela and Ratheesh, Aparna and Rodrigues, Patricia and Shkarina, Katerina and Larsen, Ida Signe Bohse and Vakhrushev, Sergey Y and Clausen, Henrik and Siekhaus, Daria E}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion}}, doi = {10.7554/elife.41801}, volume = {8}, year = {2019}, } @article{544, abstract = {Drosophila melanogaster plasmatocytes, the phagocytic cells among hemocytes, are essential for immune responses, but also play key roles from early development to death through their interactions with other cell types. They regulate homeostasis and signaling during development, stem cell proliferation, metabolism, cancer, wound responses and aging, displaying intriguing molecular and functional conservation with vertebrate macrophages. Given the relative ease of genetics in Drosophila compared to vertebrates, tools permitting visualization and genetic manipulation of plasmatocytes and surrounding tissues independently at all stages would greatly aid in fully understanding these processes, but are lacking. Here we describe a comprehensive set of transgenic lines that allow this. These include extremely brightly fluorescing mCherry-based lines that allow GAL4-independent visualization of plasmatocyte nuclei, cytoplasm or actin cytoskeleton from embryonic Stage 8 through adulthood in both live and fixed samples even as heterozygotes, greatly facilitating screening. These lines allow live visualization and tracking of embryonic plasmatocytes, as well as larval plasmatocytes residing at the body wall or flowing with the surrounding hemolymph. With confocal imaging, interactions of plasmatocytes and inner tissues can be seen in live or fixed embryos, larvae and adults. They permit efficient GAL4-independent FACS analysis/sorting of plasmatocytes throughout life. To facilitate genetic analysis of reciprocal signaling, we have also made a plasmatocyte-expressing QF2 line that in combination with extant GAL4 drivers allows independent genetic manipulation of both plasmatocytes and surrounding tissues, and a GAL80 line that blocks GAL4 drivers from affecting plasmatocytes, both of which function from the early embryo to the adult.}, author = {György, Attila and Roblek, Marko and Ratheesh, Aparna and Valosková, Katarina and Belyaeva, Vera and Wachner, Stephanie and Matsubayashi, Yutaka and Sanchez Sanchez, Besaiz and Stramer, Brian and Siekhaus, Daria E}, journal = {G3: Genes, Genomes, Genetics}, number = {3}, pages = {845 -- 857}, publisher = {Genetics Society of America}, title = {{Tools allowing independent visualization and genetic manipulation of Drosophila melanogaster macrophages and surrounding tissues}}, doi = {10.1534/g3.117.300452}, volume = {8}, year = {2018}, }