--- _id: '11337' abstract: - lang: eng text: 'Nonanalytic points in the return probability of a quantum state as a function of time, known as dynamical quantum phase transitions (DQPTs), have received great attention in recent years, but the understanding of their mechanism is still incomplete. In our recent work [Phys. Rev. Lett. 126, 040602 (2021)], we demonstrated that one-dimensional DQPTs can be produced by two distinct mechanisms, namely semiclassical precession and entanglement generation, leading to the definition of precession (pDQPTs) and entanglement (eDQPTs) dynamical quantum phase transitions. In this manuscript, we extend and investigate the notion of p- and eDQPTs in two-dimensional systems by considering semi-infinite ladders of varying width. For square lattices, we find that pDQPTs and eDQPTs persist and are characterized by similar phenomenology as in 1D: pDQPTs are associated with a magnetization sign change and a wide entanglement gap, while eDQPTs correspond to suppressed local observables and avoided crossings in the entanglement spectrum. However, DQPTs show higher sensitivity to the ladder width and other details, challenging the extrapolation to the thermodynamic limit especially for eDQPTs. Moving to honeycomb lattices, we also demonstrate that lattices with an odd number of nearest neighbors give rise to phenomenologies beyond the one-dimensional classification.' acknowledgement: "We acknowledge support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 850899).\r\nS.D.N. also acknowledges funding from the Institute of Science and Technology (IST) Austria, and from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 754411." article_number: '165149' article_processing_charge: No article_type: original author: - first_name: Stefano full_name: De Nicola, Stefano id: 42832B76-F248-11E8-B48F-1D18A9856A87 last_name: De Nicola orcid: 0000-0002-4842-6671 - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: De Nicola S, Michailidis A, Serbyn M. Entanglement and precession in two-dimensional dynamical quantum phase transitions. Physical Review B. 2022;105. doi:10.1103/PhysRevB.105.165149 apa: De Nicola, S., Michailidis, A., & Serbyn, M. (2022). Entanglement and precession in two-dimensional dynamical quantum phase transitions. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.105.165149 chicago: De Nicola, Stefano, Alexios Michailidis, and Maksym Serbyn. “Entanglement and Precession in Two-Dimensional Dynamical Quantum Phase Transitions.” Physical Review B. American Physical Society, 2022. https://doi.org/10.1103/PhysRevB.105.165149. ieee: S. De Nicola, A. Michailidis, and M. Serbyn, “Entanglement and precession in two-dimensional dynamical quantum phase transitions,” Physical Review B, vol. 105. American Physical Society, 2022. ista: De Nicola S, Michailidis A, Serbyn M. 2022. Entanglement and precession in two-dimensional dynamical quantum phase transitions. Physical Review B. 105, 165149. mla: De Nicola, Stefano, et al. “Entanglement and Precession in Two-Dimensional Dynamical Quantum Phase Transitions.” Physical Review B, vol. 105, 165149, American Physical Society, 2022, doi:10.1103/PhysRevB.105.165149. short: S. De Nicola, A. Michailidis, M. Serbyn, Physical Review B 105 (2022). date_created: 2022-04-28T08:06:10Z date_published: 2022-04-15T00:00:00Z date_updated: 2023-08-03T06:33:33Z day: '15' department: - _id: MaSe doi: 10.1103/PhysRevB.105.165149 ec_funded: 1 external_id: arxiv: - '2112.11273' isi: - '000806812400004' intvolume: ' 105' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2112.11273' month: '04' oa: 1 oa_version: Preprint project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review B publication_identifier: eisbn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Entanglement and precession in two-dimensional dynamical quantum phase transitions type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 105 year: '2022' ... --- _id: '11469' abstract: - lang: eng text: Thermalizing and localized many-body quantum systems present two distinct dynamical phases of matter. Recently the fate of a localized system coupled to a thermalizing system viewed as a quantum bath received significant theoretical and experimental attention. In this work, we study a mobile impurity, representing a small quantum bath, that interacts locally with an Anderson insulator with a finite density of localized particles. Using static Hartree approximation to obtain an effective disorder strength, we formulate an analytic criterion for the perturbative stability of the localization. Next, we use an approximate dynamical Hartree method and the quasi-exact time-evolved block decimation (TEBD) algorithm to study the dynamics of the system. We find that the dynamical Hartree approach which completely ignores entanglement between the impurity and localized particles predicts the delocalization of the system. In contrast, the full numerical simulation of the unitary dynamics with TEBD suggests the stability of localization on numerically accessible timescales. Finally, using an extension of the density matrix renormalization group algorithm to excited states (DMRG-X), we approximate the highly excited eigenstates of the system. We find that the impurity remains localized in the eigenstates and entanglement is enhanced in a finite region around the position of the impurity, confirming the dynamical predictions. Dynamics and the DMRG-X results provide compelling evidence for the stability of localization. acknowledged_ssus: - _id: ScienComp acknowledgement: We thank M. Ljubotina for insightful discussions. P. B., A. M. and M. S. acknowledge support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 850899). D. A. was supported by the Swiss National Science Foundation and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 864597). The development of parallel TEBD code was supported by S. Elefante from the Scientific Computing (SciComp) that is part of Scientific Service Units (SSU) of IST Austria. Some of the computations were performed on the Baobab cluster of the University of Geneva. article_number: '224208' article_processing_charge: No article_type: original author: - first_name: Pietro full_name: Brighi, Pietro id: 4115AF5C-F248-11E8-B48F-1D18A9856A87 last_name: Brighi orcid: 0000-0002-7969-2729 - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: Kristina full_name: Kirova, Kristina id: 4aeda2ae-f847-11ec-98e0-c4a66fe174d4 last_name: Kirova - first_name: Dmitry A. full_name: Abanin, Dmitry A. last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Brighi P, Michailidis A, Kirova K, Abanin DA, Serbyn M. Localization of a mobile impurity interacting with an Anderson insulator. Physical Review B. 2022;105(22). doi:10.1103/physrevb.105.224208 apa: Brighi, P., Michailidis, A., Kirova, K., Abanin, D. A., & Serbyn, M. (2022). Localization of a mobile impurity interacting with an Anderson insulator. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.105.224208 chicago: Brighi, Pietro, Alexios Michailidis, Kristina Kirova, Dmitry A. Abanin, and Maksym Serbyn. “Localization of a Mobile Impurity Interacting with an Anderson Insulator.” Physical Review B. American Physical Society, 2022. https://doi.org/10.1103/physrevb.105.224208. ieee: P. Brighi, A. Michailidis, K. Kirova, D. A. Abanin, and M. Serbyn, “Localization of a mobile impurity interacting with an Anderson insulator,” Physical Review B, vol. 105, no. 22. American Physical Society, 2022. ista: Brighi P, Michailidis A, Kirova K, Abanin DA, Serbyn M. 2022. Localization of a mobile impurity interacting with an Anderson insulator. Physical Review B. 105(22), 224208. mla: Brighi, Pietro, et al. “Localization of a Mobile Impurity Interacting with an Anderson Insulator.” Physical Review B, vol. 105, no. 22, 224208, American Physical Society, 2022, doi:10.1103/physrevb.105.224208. short: P. Brighi, A. Michailidis, K. Kirova, D.A. Abanin, M. Serbyn, Physical Review B 105 (2022). date_created: 2022-06-29T20:19:51Z date_published: 2022-06-27T00:00:00Z date_updated: 2023-09-05T12:12:52Z day: '27' department: - _id: MaSe doi: 10.1103/physrevb.105.224208 ec_funded: 1 external_id: arxiv: - '2111.08603' isi: - '000823050000001' intvolume: ' 105' isi: 1 issue: '22' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2111.08603 Focus to learn more' month: '06' oa: 1 oa_version: Preprint project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '12732' relation: dissertation_contains status: public status: public title: Localization of a mobile impurity interacting with an Anderson insulator type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 105 year: '2022' ... --- _id: '11471' abstract: - lang: eng text: 'Variational quantum algorithms are promising algorithms for achieving quantum advantage on nearterm devices. The quantum hardware is used to implement a variational wave function and measure observables, whereas the classical computer is used to store and update the variational parameters. The optimization landscape of expressive variational ansätze is however dominated by large regions in parameter space, known as barren plateaus, with vanishing gradients, which prevents efficient optimization. In this work we propose a general algorithm to avoid barren plateaus in the initialization and throughout the optimization. To this end we define a notion of weak barren plateaus (WBPs) based on the entropies of local reduced density matrices. The presence of WBPs can be efficiently quantified using recently introduced shadow tomography of the quantum state with a classical computer. We demonstrate that avoidance of WBPs suffices to ensure sizable gradients in the initialization. In addition, we demonstrate that decreasing the gradient step size, guided by the entropies allows WBPs to be avoided during the optimization process. This paves the way for efficient barren plateau-free optimization on near-term devices. ' acknowledgement: "We thank Marco Cerezo, Zoe Holmes, and Nicholas Hunter-Jones for fruitful discussion and valuable feedback. We also acknowledge Adam Smith, Johannes Jakob Meyer, and Victor V. Albert for comments on the paper. The simulations were performed in the Julia programming\r\nlanguage [65] using the Yao module [66]. S.H.S., R.A.M., A.A.M. and M.S. acknowledge support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 850899)." article_number: '020365' article_processing_charge: No article_type: original author: - first_name: Stefan full_name: Sack, Stefan id: dd622248-f6e0-11ea-865d-ce382a1c81a5 last_name: Sack orcid: 0000-0001-5400-8508 - first_name: Raimel A full_name: Medina Ramos, Raimel A id: CE680B90-D85A-11E9-B684-C920E6697425 last_name: Medina Ramos orcid: 0000-0002-5383-2869 - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: Richard full_name: Kueng, Richard last_name: Kueng - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Sack S, Medina Ramos RA, Michailidis A, Kueng R, Serbyn M. Avoiding barren plateaus using classical shadows. PRX Quantum. 2022;3(2). doi:10.1103/prxquantum.3.020365 apa: Sack, S., Medina Ramos, R. A., Michailidis, A., Kueng, R., & Serbyn, M. (2022). Avoiding barren plateaus using classical shadows. PRX Quantum. American Physical Society. https://doi.org/10.1103/prxquantum.3.020365 chicago: Sack, Stefan, Raimel A Medina Ramos, Alexios Michailidis, Richard Kueng, and Maksym Serbyn. “Avoiding Barren Plateaus Using Classical Shadows.” PRX Quantum. American Physical Society, 2022. https://doi.org/10.1103/prxquantum.3.020365. ieee: S. Sack, R. A. Medina Ramos, A. Michailidis, R. Kueng, and M. Serbyn, “Avoiding barren plateaus using classical shadows,” PRX Quantum, vol. 3, no. 2. American Physical Society, 2022. ista: Sack S, Medina Ramos RA, Michailidis A, Kueng R, Serbyn M. 2022. Avoiding barren plateaus using classical shadows. PRX Quantum. 3(2), 020365. mla: Sack, Stefan, et al. “Avoiding Barren Plateaus Using Classical Shadows.” PRX Quantum, vol. 3, no. 2, 020365, American Physical Society, 2022, doi:10.1103/prxquantum.3.020365. short: S. Sack, R.A. Medina Ramos, A. Michailidis, R. Kueng, M. Serbyn, PRX Quantum 3 (2022). date_created: 2022-06-29T20:21:32Z date_published: 2022-06-29T00:00:00Z date_updated: 2023-12-13T14:47:24Z day: '29' ddc: - '530' department: - _id: MaSe doi: 10.1103/prxquantum.3.020365 ec_funded: 1 external_id: arxiv: - '2201.08194' isi: - '000822564300001' file: - access_level: open_access checksum: a7706b28d24a0e32a55ea04b82a2df43 content_type: application/pdf creator: dernst date_created: 2022-06-30T07:14:48Z date_updated: 2022-06-30T07:14:48Z file_id: '11472' file_name: 2022_PRXQuantum_Sack.pdf file_size: 4231591 relation: main_file success: 1 file_date_updated: 2022-06-30T07:14:48Z has_accepted_license: '1' intvolume: ' 3' isi: 1 issue: '2' keyword: - General Medicine language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: PRX Quantum publication_identifier: issn: - 2691-3399 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '14622' relation: dissertation_contains status: public status: public title: Avoiding barren plateaus using classical shadows tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 3 year: '2022' ... --- _id: '9618' abstract: - lang: eng text: The control of nonequilibrium quantum dynamics in many-body systems is challenging because interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We investigate nonequilibrium dynamics after rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we show that coherent revivals associated with so-called quantum many-body scars can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating new ways to steer complex dynamics in many-body systems and enabling potential applications in quantum information science. acknowledgement: 'We thank many members of the Harvard AMO community, particularly E. Urbach, S. Dakoulas, and J. Doyle for their efforts enabling safe and productive operation of our laboratories during 2020. We thank D. Abanin, I. Cong, F. Machado, H. Pichler, N. Yao, B. Ye, and H. Zhou for stimulating discussions. Funding: We acknowledge financial support from the Center for Ultracold Atoms, the National Science Foundation, the Vannevar Bush Faculty Fellowship, the U.S. Department of Energy (LBNL QSA Center and grant no. DE-SC0021013), the Office of Naval Research, the Army Research Office MURI, the DARPA DRINQS program (grant no. D18AC00033), and the DARPA ONISQ program (grant no. W911NF2010021). The authors acknowledge support from the NSF Graduate Research Fellowship Program (grant DGE1745303) and The Fannie and John Hertz Foundation (D.B.); a National Defense Science and Engineering Graduate (NDSEG) fellowship (H.L.); a fellowship from the Max Planck/Harvard Research Center for Quantum Optics (G.S.); Gordon College (T.T.W.); the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 850899) (A.A.M. and M.S.); a Department of Energy Computational Science Graduate Fellowship under award number DE-SC0021110 (N.M.); the Moore Foundation’s EPiQS Initiative grant no. GBMF4306, the NUS Development grant AY2019/2020, and the Stanford Institute of Theoretical Physics (W.W.H.); and the Miller Institute for Basic Research in Science (S.C.). Author contributions: D.B., A.O., H.L., A.K., G.S., S.E., and T.T.W. contributed to the building of the experimental setup, performed the measurements, and analyzed the data. A.A.M., N.M., W.W.H., S.C., and M.S. performed theoretical analysis. All work was supervised by M.G., V.V., and M.D.L. All authors discussed the results and contributed to the manuscript. Competing interests: M.G., V.V., and M.D.L. are co-founders and shareholders of QuEra Computing. A.O. is a shareholder of QuEra Computing. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and the supplementary materials.' article_processing_charge: No article_type: original author: - first_name: D. full_name: Bluvstein, D. last_name: Bluvstein - first_name: A. full_name: Omran, A. last_name: Omran - first_name: H. full_name: Levine, H. last_name: Levine - first_name: A. full_name: Keesling, A. last_name: Keesling - first_name: G. full_name: Semeghini, G. last_name: Semeghini - first_name: S. full_name: Ebadi, S. last_name: Ebadi - first_name: T. T. full_name: Wang, T. T. last_name: Wang - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: N. full_name: Maskara, N. last_name: Maskara - first_name: W. W. full_name: Ho, W. W. last_name: Ho - first_name: S. full_name: Choi, S. last_name: Choi - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: M. full_name: Greiner, M. last_name: Greiner - first_name: V. full_name: Vuletić, V. last_name: Vuletić - first_name: M. D. full_name: Lukin, M. D. last_name: Lukin citation: ama: Bluvstein D, Omran A, Levine H, et al. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science. 2021;371(6536):1355-1359. doi:10.1126/science.abg2530 apa: Bluvstein, D., Omran, A., Levine, H., Keesling, A., Semeghini, G., Ebadi, S., … Lukin, M. D. (2021). Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science. AAAS. https://doi.org/10.1126/science.abg2530 chicago: Bluvstein, D., A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T. Wang, et al. “Controlling Quantum Many-Body Dynamics in Driven Rydberg Atom Arrays.” Science. AAAS, 2021. https://doi.org/10.1126/science.abg2530. ieee: D. Bluvstein et al., “Controlling quantum many-body dynamics in driven Rydberg atom arrays,” Science, vol. 371, no. 6536. AAAS, pp. 1355–1359, 2021. ista: Bluvstein D, Omran A, Levine H, Keesling A, Semeghini G, Ebadi S, Wang TT, Michailidis A, Maskara N, Ho WW, Choi S, Serbyn M, Greiner M, Vuletić V, Lukin MD. 2021. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science. 371(6536), 1355–1359. mla: Bluvstein, D., et al. “Controlling Quantum Many-Body Dynamics in Driven Rydberg Atom Arrays.” Science, vol. 371, no. 6536, AAAS, 2021, pp. 1355–59, doi:10.1126/science.abg2530. short: D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T.T. Wang, A. Michailidis, N. Maskara, W.W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletić, M.D. Lukin, Science 371 (2021) 1355–1359. date_created: 2021-06-29T12:04:05Z date_published: 2021-03-26T00:00:00Z date_updated: 2023-08-10T13:57:07Z day: '26' ddc: - '539' department: - _id: MaSe doi: 10.1126/science.abg2530 ec_funded: 1 external_id: arxiv: - '2012.12276' isi: - '000636043400048' pmid: - '33632894' file: - access_level: open_access checksum: 0b356fd10ab9bb95177d4c047d4e9c1a content_type: application/pdf creator: patrickd date_created: 2021-09-23T14:00:05Z date_updated: 2021-09-23T14:00:05Z file_id: '10040' file_name: scars_subharmonic_combined_manuscript_2_11_2021 (2)-1.pdf file_size: 3671159 relation: main_file success: 1 file_date_updated: 2021-09-23T14:00:05Z has_accepted_license: '1' intvolume: ' 371' isi: 1 issue: '6536' keyword: - Multidisciplinary language: - iso: eng month: '03' oa: 1 oa_version: Preprint page: 1355-1359 pmid: 1 project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: AAAS quality_controlled: '1' scopus_import: '1' status: public title: Controlling quantum many-body dynamics in driven Rydberg atom arrays type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 371 year: '2021' ... --- _id: '9903' abstract: - lang: eng text: Eigenstate thermalization in quantum many-body systems implies that eigenstates at high energy are similar to random vectors. Identifying systems where at least some eigenstates are nonthermal is an outstanding question. In this Letter we show that interacting quantum models that have a nullspace—a degenerate subspace of eigenstates at zero energy (zero modes), which corresponds to infinite temperature, provide a route to nonthermal eigenstates. We analytically show the existence of a zero mode which can be represented as a matrix product state for a certain class of local Hamiltonians. In the more general case we use a subspace disentangling algorithm to generate an orthogonal basis of zero modes characterized by increasing entanglement entropy. We show evidence for an area-law entanglement scaling of the least-entangled zero mode in the broad parameter regime, leading to a conjecture that all local Hamiltonians with the nullspace feature zero modes with area-law entanglement scaling and, as such, break the strong thermalization hypothesis. Finally, we find zero modes in constrained models and propose a setup for observing their experimental signatures. acknowledgement: "We acknowledge useful discussions with V. Gritsev and A. Garkun and suggestions on implementation of the\r\nPPXPP model by D. Bluvstein. A. M. and M. S. were supported by the European Research Council (ERC) under\r\nthe European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 850899)" article_number: '060602' article_processing_charge: Yes (in subscription journal) article_type: letter_note author: - first_name: Volker full_name: Karle, Volker id: D7C012AE-D7ED-11E9-95E8-1EC5E5697425 last_name: Karle orcid: 0000-0002-6963-0129 - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 citation: ama: Karle V, Serbyn M, Michailidis A. Area-law entangled eigenstates from nullspaces of local Hamiltonians. Physical Review Letters. 2021;127(6). doi:10.1103/physrevlett.127.060602 apa: Karle, V., Serbyn, M., & Michailidis, A. (2021). Area-law entangled eigenstates from nullspaces of local Hamiltonians. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.127.060602 chicago: Karle, Volker, Maksym Serbyn, and Alexios Michailidis. “Area-Law Entangled Eigenstates from Nullspaces of Local Hamiltonians.” Physical Review Letters. American Physical Society, 2021. https://doi.org/10.1103/physrevlett.127.060602. ieee: V. Karle, M. Serbyn, and A. Michailidis, “Area-law entangled eigenstates from nullspaces of local Hamiltonians,” Physical Review Letters, vol. 127, no. 6. American Physical Society, 2021. ista: Karle V, Serbyn M, Michailidis A. 2021. Area-law entangled eigenstates from nullspaces of local Hamiltonians. Physical Review Letters. 127(6), 060602. mla: Karle, Volker, et al. “Area-Law Entangled Eigenstates from Nullspaces of Local Hamiltonians.” Physical Review Letters, vol. 127, no. 6, 060602, American Physical Society, 2021, doi:10.1103/physrevlett.127.060602. short: V. Karle, M. Serbyn, A. Michailidis, Physical Review Letters 127 (2021). date_created: 2021-08-13T09:27:39Z date_published: 2021-08-06T00:00:00Z date_updated: 2023-08-11T10:43:27Z day: '06' ddc: - '539' department: - _id: MaSe - _id: GradSch - _id: MiLe doi: 10.1103/physrevlett.127.060602 ec_funded: 1 external_id: arxiv: - '2102.13633' isi: - '000684276000002' file: - access_level: open_access checksum: 51218f302dcef99d90d1209809fcc874 content_type: application/pdf creator: mserbyn date_created: 2021-08-13T09:28:08Z date_updated: 2021-08-13T09:28:08Z file_id: '9904' file_name: PhysRevLett.127.060602_SOM.pdf file_size: 5064231 relation: main_file success: 1 file_date_updated: 2021-08-13T09:28:08Z has_accepted_license: '1' intvolume: ' 127' isi: 1 issue: '6' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Area-law entangled eigenstates from nullspaces of local Hamiltonians tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 127 year: '2021' ... --- _id: '9960' abstract: - lang: eng text: The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays [Bluvstein et al. Science 371, 1355 (2021)] demonstrated that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving, generating stable subharmonic responses over a wide parameter regime. We analyze a simple, related model where these phenomena originate from spatiotemporal ordering in an effective Floquet unitary, corresponding to discrete time-crystalline behavior in a prethermal regime. Unlike conventional discrete time crystals, the subharmonic response exists only for Néel-like initial states, associated with quantum scars. We predict robustness to perturbations and identify emergent timescales that could be observed in future experiments. Our results suggest a route to controlling entanglement in interacting quantum systems by combining periodic driving with many-body scars. acknowledgement: We thank Dmitry Abanin, Ehud Altman, Iris Cong, Sepehr Ebadi, Alex Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Rhine Samajdar, Guilia Semeghini, Tout Wang, Norman Yao, and Harry Zhou or stimulating discussions. We acknowledge support from the Center for Ultracold Atoms, the National Science Foundation, the Vannevar Bush Faculty Fellowship, the U.S. Department of Energy, the Army Research Office MURI, and the DARPA ONISQ program (M. L., N. M, W. W. H., D. B.); the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme Grant Agreement No. 850899 (A. M. and M. S.); the Department of Energy Computational Science Graduate Fellowship under Awards No. DESC0021110 (N. M.); the Moore Foundation EPiQS initiative Grant No. GBMF4306, the National University of Singapore (NUS) Development Grant AY2019/2020 and the Stanford Institute for Theoretical Physics (W. W. H.); the NSF Graduate Research Fellowship Program (Grant No. DGE1745303) and The Fannie and John Hertz Foundation (D. B.); the Miller Institute for Basic Research in Science (S. C.); DOE Quantum Systems Accelerator – Contract No. 7568717; and DOE Programmable Quantum Simulators for Lattice Gauge Theories and Gauge-Gravity Correspondence – Grant No. DE-SC0021013. article_number: '090602' article_processing_charge: No article_type: letter_note author: - first_name: N. full_name: Maskara, N. last_name: Maskara - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: W. W. full_name: Ho, W. W. last_name: Ho - first_name: D. full_name: Bluvstein, D. last_name: Bluvstein - first_name: S. full_name: Choi, S. last_name: Choi - first_name: M. D. full_name: Lukin, M. D. last_name: Lukin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: 'Maskara N, Michailidis A, Ho WW, et al. Discrete time-crystalline order enabled by quantum many-body scars: Entanglement steering via periodic driving. Physical Review Letters. 2021;127(9). doi:10.1103/PhysRevLett.127.090602' apa: 'Maskara, N., Michailidis, A., Ho, W. W., Bluvstein, D., Choi, S., Lukin, M. D., & Serbyn, M. (2021). Discrete time-crystalline order enabled by quantum many-body scars: Entanglement steering via periodic driving. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.127.090602' chicago: 'Maskara, N., Alexios Michailidis, W. W. Ho, D. Bluvstein, S. Choi, M. D. Lukin, and Maksym Serbyn. “Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving.” Physical Review Letters. American Physical Society, 2021. https://doi.org/10.1103/PhysRevLett.127.090602.' ieee: 'N. Maskara et al., “Discrete time-crystalline order enabled by quantum many-body scars: Entanglement steering via periodic driving,” Physical Review Letters, vol. 127, no. 9. American Physical Society, 2021.' ista: 'Maskara N, Michailidis A, Ho WW, Bluvstein D, Choi S, Lukin MD, Serbyn M. 2021. Discrete time-crystalline order enabled by quantum many-body scars: Entanglement steering via periodic driving. Physical Review Letters. 127(9), 090602.' mla: 'Maskara, N., et al. “Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving.” Physical Review Letters, vol. 127, no. 9, 090602, American Physical Society, 2021, doi:10.1103/PhysRevLett.127.090602.' short: N. Maskara, A. Michailidis, W.W. Ho, D. Bluvstein, S. Choi, M.D. Lukin, M. Serbyn, Physical Review Letters 127 (2021). date_created: 2021-08-28T08:08:58Z date_published: 2021-08-27T00:00:00Z date_updated: 2023-08-11T10:57:51Z day: '27' department: - _id: MaSe doi: 10.1103/PhysRevLett.127.090602 ec_funded: 1 external_id: arxiv: - '2102.13160' isi: - '000692200100002' intvolume: ' 127' isi: 1 issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2102.13160 month: '08' oa: 1 oa_version: Submitted Version project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: 'Discrete time-crystalline order enabled by quantum many-body scars: Entanglement steering via periodic driving' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 127 year: '2021' ... --- _id: '9048' abstract: - lang: eng text: The analogy between an equilibrium partition function and the return probability in many-body unitary dynamics has led to the concept of dynamical quantum phase transition (DQPT). DQPTs are defined by nonanalyticities in the return amplitude and are present in many models. In some cases, DQPTs can be related to equilibrium concepts, such as order parameters, yet their universal description is an open question. In this Letter, we provide first steps toward a classification of DQPTs by using a matrix product state description of unitary dynamics in the thermodynamic limit. This allows us to distinguish the two limiting cases of “precession” and “entanglement” DQPTs, which are illustrated using an analytical description in the quantum Ising model. While precession DQPTs are characterized by a large entanglement gap and are semiclassical in their nature, entanglement DQPTs occur near avoided crossings in the entanglement spectrum and can be distinguished by a complex pattern of nonlocal correlations. We demonstrate the existence of precession and entanglement DQPTs beyond Ising models, discuss observables that can distinguish them, and relate their interplay to complex DQPT phenomenology. acknowledgement: "S. D. N. acknowledges funding from the Institute of Science and Technology (IST) Austria and from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 754411. A. M. and M. S. were supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and\r\nInnovation Programme (Grant Agreement No. 850899)." article_number: '040602' article_processing_charge: Yes article_type: original author: - first_name: Stefano full_name: De Nicola, Stefano id: 42832B76-F248-11E8-B48F-1D18A9856A87 last_name: De Nicola orcid: 0000-0002-4842-6671 - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: De Nicola S, Michailidis A, Serbyn M. Entanglement view of dynamical quantum phase transitions. Physical Review Letters. 2021;126(4). doi:10.1103/physrevlett.126.040602 apa: De Nicola, S., Michailidis, A., & Serbyn, M. (2021). Entanglement view of dynamical quantum phase transitions. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.126.040602 chicago: De Nicola, Stefano, Alexios Michailidis, and Maksym Serbyn. “Entanglement View of Dynamical Quantum Phase Transitions.” Physical Review Letters. American Physical Society, 2021. https://doi.org/10.1103/physrevlett.126.040602. ieee: S. De Nicola, A. Michailidis, and M. Serbyn, “Entanglement view of dynamical quantum phase transitions,” Physical Review Letters, vol. 126, no. 4. American Physical Society, 2021. ista: De Nicola S, Michailidis A, Serbyn M. 2021. Entanglement view of dynamical quantum phase transitions. Physical Review Letters. 126(4), 040602. mla: De Nicola, Stefano, et al. “Entanglement View of Dynamical Quantum Phase Transitions.” Physical Review Letters, vol. 126, no. 4, 040602, American Physical Society, 2021, doi:10.1103/physrevlett.126.040602. short: S. De Nicola, A. Michailidis, M. Serbyn, Physical Review Letters 126 (2021). date_created: 2021-02-01T09:20:00Z date_published: 2021-01-29T00:00:00Z date_updated: 2023-09-05T12:08:58Z day: '29' ddc: - '530' department: - _id: MaSe doi: 10.1103/physrevlett.126.040602 ec_funded: 1 external_id: arxiv: - '2008.04894' isi: - '000613148200001' file: - access_level: open_access checksum: d9acbc502390ed7a97e631d23ae19ecd content_type: application/pdf creator: dernst date_created: 2021-02-03T12:47:04Z date_updated: 2021-02-03T12:47:04Z file_id: '9074' file_name: 2021_PhysicalRevLett_DeNicola.pdf file_size: 398075 relation: main_file success: 1 file_date_updated: 2021-02-03T12:47:04Z has_accepted_license: '1' intvolume: ' 126' isi: 1 issue: '4' keyword: - General Physics and Astronomy language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Entanglement view of dynamical quantum phase transitions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 126 year: '2021' ... --- _id: '8011' abstract: - lang: eng text: 'Relaxation to a thermal state is the inevitable fate of nonequilibrium interacting quantum systems without special conservation laws. While thermalization in one-dimensional systems can often be suppressed by integrability mechanisms, in two spatial dimensions thermalization is expected to be far more effective due to the increased phase space. In this work we propose a general framework for escaping or delaying the emergence of the thermal state in two-dimensional arrays of Rydberg atoms via the mechanism of quantum scars, i.e., initial states that fail to thermalize. The suppression of thermalization is achieved in two complementary ways: by adding local perturbations or by adjusting the driving Rabi frequency according to the local connectivity of the lattice. We demonstrate that these mechanisms allow us to realize robust quantum scars in various two-dimensional lattices, including decorated lattices with nonconstant connectivity. In particular, we show that a small decrease of the Rabi frequency at the corners of the lattice is crucial for mitigating the strong boundary effects in two-dimensional systems. Our results identify synchronization as an important tool for future experiments on two-dimensional quantum scars.' article_number: '022065' article_processing_charge: No article_type: original author: - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis - first_name: C. J. full_name: Turner, C. J. last_name: Turner - first_name: Z. full_name: Papić, Z. last_name: Papić - first_name: D. A. full_name: Abanin, D. A. last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. 2020;2(2). doi:10.1103/physrevresearch.2.022065 apa: Michailidis, A., Turner, C. J., Papić, Z., Abanin, D. A., & Serbyn, M. (2020). Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.2.022065 chicago: Michailidis, Alexios, C. J. Turner, Z. Papić, D. A. Abanin, and Maksym Serbyn. “Stabilizing Two-Dimensional Quantum Scars by Deformation and Synchronization.” Physical Review Research. American Physical Society, 2020. https://doi.org/10.1103/physrevresearch.2.022065. ieee: A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and M. Serbyn, “Stabilizing two-dimensional quantum scars by deformation and synchronization,” Physical Review Research, vol. 2, no. 2. American Physical Society, 2020. ista: Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. 2020. Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. 2(2), 022065. mla: Michailidis, Alexios, et al. “Stabilizing Two-Dimensional Quantum Scars by Deformation and Synchronization.” Physical Review Research, vol. 2, no. 2, 022065, American Physical Society, 2020, doi:10.1103/physrevresearch.2.022065. short: A. Michailidis, C.J. Turner, Z. Papić, D.A. Abanin, M. Serbyn, Physical Review Research 2 (2020). date_created: 2020-06-23T12:00:19Z date_published: 2020-06-22T00:00:00Z date_updated: 2021-01-12T08:16:30Z day: '22' ddc: - '530' department: - _id: MaSe doi: 10.1103/physrevresearch.2.022065 ec_funded: 1 file: - access_level: open_access checksum: e6959dc8220f14a008d1933858795e6d content_type: application/pdf creator: dernst date_created: 2020-06-29T14:41:27Z date_updated: 2020-07-14T12:48:08Z file_id: '8050' file_name: 2020_PhysicalReviewResearch_Michailidis.pdf file_size: 2066011 relation: main_file file_date_updated: 2020-07-14T12:48:08Z has_accepted_license: '1' intvolume: ' 2' issue: '2' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Stabilizing two-dimensional quantum scars by deformation and synchronization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2020' ... --- _id: '7570' abstract: - lang: eng text: The relaxation of few-body quantum systems can strongly depend on the initial state when the system’s semiclassical phase space is mixed; i.e., regions of chaotic motion coexist with regular islands. In recent years, there has been much effort to understand the process of thermalization in strongly interacting quantum systems that often lack an obvious semiclassical limit. The time-dependent variational principle (TDVP) allows one to systematically derive an effective classical (nonlinear) dynamical system by projecting unitary many-body dynamics onto a manifold of weakly entangled variational states. We demonstrate that such dynamical systems generally possess mixed phase space. When TDVP errors are small, the mixed phase space leaves a footprint on the exact dynamics of the quantum model. For example, when the system is initialized in a state belonging to a stable periodic orbit or the surrounding regular region, it exhibits persistent many-body quantum revivals. As a proof of principle, we identify new types of “quantum many-body scars,” i.e., initial states that lead to long-time oscillations in a model of interacting Rydberg atoms in one and two dimensions. Intriguingly, the initial states that give rise to most robust revivals are typically entangled states. On the other hand, even when TDVP errors are large, as in the thermalizing tilted-field Ising model, initializing the system in a regular region of phase space leads to a surprising slowdown of thermalization. Our work establishes TDVP as a method for identifying interacting quantum systems with anomalous dynamics in arbitrary dimensions. Moreover, the mixed phase space classical variational equations allow one to find slowly thermalizing initial conditions in interacting models. Our results shed light on a link between classical and quantum chaos, pointing toward possible extensions of the classical Kolmogorov-Arnold-Moser theorem to quantum systems. article_number: '011055' article_processing_charge: No article_type: original author: - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: C. J. full_name: Turner, C. J. last_name: Turner - first_name: Z. full_name: Papić, Z. last_name: Papić - first_name: D. A. full_name: Abanin, D. A. last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. Slow quantum thermalization and many-body revivals from mixed phase space. Physical Review X. 2020;10(1). doi:10.1103/physrevx.10.011055 apa: Michailidis, A., Turner, C. J., Papić, Z., Abanin, D. A., & Serbyn, M. (2020). Slow quantum thermalization and many-body revivals from mixed phase space. Physical Review X. American Physical Society. https://doi.org/10.1103/physrevx.10.011055 chicago: Michailidis, Alexios, C. J. Turner, Z. Papić, D. A. Abanin, and Maksym Serbyn. “Slow Quantum Thermalization and Many-Body Revivals from Mixed Phase Space.” Physical Review X. American Physical Society, 2020. https://doi.org/10.1103/physrevx.10.011055. ieee: A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and M. Serbyn, “Slow quantum thermalization and many-body revivals from mixed phase space,” Physical Review X, vol. 10, no. 1. American Physical Society, 2020. ista: Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. 2020. Slow quantum thermalization and many-body revivals from mixed phase space. Physical Review X. 10(1), 011055. mla: Michailidis, Alexios, et al. “Slow Quantum Thermalization and Many-Body Revivals from Mixed Phase Space.” Physical Review X, vol. 10, no. 1, 011055, American Physical Society, 2020, doi:10.1103/physrevx.10.011055. short: A. Michailidis, C.J. Turner, Z. Papić, D.A. Abanin, M. Serbyn, Physical Review X 10 (2020). date_created: 2020-03-08T18:02:01Z date_published: 2020-03-04T00:00:00Z date_updated: 2023-08-18T07:01:07Z day: '04' ddc: - '530' department: - _id: MaSe doi: 10.1103/physrevx.10.011055 external_id: arxiv: - '1905.08564' isi: - '000517969300001' file: - access_level: open_access checksum: 4b3f2c13873d35230173c73d0e11c408 content_type: application/pdf creator: dernst date_created: 2020-03-12T12:13:07Z date_updated: 2020-07-14T12:48:00Z file_id: '7581' file_name: 2020_PhysicalReviewX_Michailidis.pdf file_size: 17828638 relation: main_file file_date_updated: 2020-07-14T12:48:00Z has_accepted_license: '1' intvolume: ' 10' isi: 1 issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: Physical Review X publication_identifier: issn: - 2160-3308 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/classical-physics-helps-predict-fate-of-interacting-quantum-systems/ scopus_import: '1' status: public title: Slow quantum thermalization and many-body revivals from mixed phase space tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2020' ... --- _id: '6575' abstract: - lang: eng text: Motivated by recent experimental observations of coherent many-body revivals in a constrained Rydbergatom chain, we construct a weak quasilocal deformation of the Rydberg-blockaded Hamiltonian, whichmakes the revivals virtually perfect. Our analysis suggests the existence of an underlying nonintegrableHamiltonian which supports an emergent SU(2)-spin dynamics within a small subspace of the many-bodyHilbert space. We show that such perfect dynamics necessitates the existence of atypical, nonergodicenergy eigenstates—quantum many-body scars. Furthermore, using these insights, we construct a toymodel that hosts exact quantum many-body scars, providing an intuitive explanation of their origin. Ourresults offer specific routes to enhancing coherent many-body revivals and provide a step towardestablishing the stability of quantum many-body scars in the thermodynamic limit. article_number: '220603' article_processing_charge: No article_type: original author: - first_name: Soonwon full_name: Choi, Soonwon last_name: Choi - first_name: Christopher J. full_name: Turner, Christopher J. last_name: Turner - first_name: Hannes full_name: Pichler, Hannes last_name: Pichler - first_name: Wen Wei full_name: Ho, Wen Wei last_name: Ho - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: Zlatko full_name: Papić, Zlatko last_name: Papić - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Mikhail D. full_name: Lukin, Mikhail D. last_name: Lukin - first_name: Dmitry A. full_name: Abanin, Dmitry A. last_name: Abanin citation: ama: Choi S, Turner CJ, Pichler H, et al. Emergent SU(2) dynamics and perfect quantum many-body scars. Physical Review Letters. 2019;122(22). doi:10.1103/PhysRevLett.122.220603 apa: Choi, S., Turner, C. J., Pichler, H., Ho, W. W., Michailidis, A., Papić, Z., … Abanin, D. A. (2019). Emergent SU(2) dynamics and perfect quantum many-body scars. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.122.220603 chicago: Choi, Soonwon, Christopher J. Turner, Hannes Pichler, Wen Wei Ho, Alexios Michailidis, Zlatko Papić, Maksym Serbyn, Mikhail D. Lukin, and Dmitry A. Abanin. “Emergent SU(2) Dynamics and Perfect Quantum Many-Body Scars.” Physical Review Letters. American Physical Society, 2019. https://doi.org/10.1103/PhysRevLett.122.220603. ieee: S. Choi et al., “Emergent SU(2) dynamics and perfect quantum many-body scars,” Physical Review Letters, vol. 122, no. 22. American Physical Society, 2019. ista: Choi S, Turner CJ, Pichler H, Ho WW, Michailidis A, Papić Z, Serbyn M, Lukin MD, Abanin DA. 2019. Emergent SU(2) dynamics and perfect quantum many-body scars. Physical Review Letters. 122(22), 220603. mla: Choi, Soonwon, et al. “Emergent SU(2) Dynamics and Perfect Quantum Many-Body Scars.” Physical Review Letters, vol. 122, no. 22, 220603, American Physical Society, 2019, doi:10.1103/PhysRevLett.122.220603. short: S. Choi, C.J. Turner, H. Pichler, W.W. Ho, A. Michailidis, Z. Papić, M. Serbyn, M.D. Lukin, D.A. Abanin, Physical Review Letters 122 (2019). date_created: 2019-06-23T21:59:13Z date_published: 2019-06-07T00:00:00Z date_updated: 2024-02-28T13:12:22Z day: '07' department: - _id: MaSe doi: 10.1103/PhysRevLett.122.220603 external_id: arxiv: - '1812.05561' isi: - '000470885800005' intvolume: ' 122' isi: 1 issue: '22' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1812.05561 month: '06' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_identifier: eissn: - '10797114' issn: - '00319007' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Emergent SU(2) dynamics and perfect quantum many-body scars type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 122 year: '2019' ... --- _id: '7013' abstract: - lang: eng text: Chains of superconducting circuit devices provide a natural platform for studies of synthetic bosonic quantum matter. Motivated by the recent experimental progress in realizing disordered and interacting chains of superconducting transmon devices, we study the bosonic many-body localization phase transition using the methods of exact diagonalization as well as matrix product state dynamics. We estimate the location of transition separating the ergodic and the many-body localized phases as a function of the disorder strength and the many-body on-site interaction strength. The main difference between the bosonic model realized by superconducting circuits and similar fermionic model is that the effect of the on-site interaction is stronger due to the possibility of multiple excitations occupying the same site. The phase transition is found to be robust upon including longer-range hopping and interaction terms present in the experiments. Furthermore, we calculate experimentally relevant local observables and show that their temporal fluctuations can be used to distinguish between the dynamics of Anderson insulator, many-body localization, and delocalized phases. While we consider unitary dynamics, neglecting the effects of dissipation, decoherence, and measurement back action, the timescales on which the dynamics is unitary are sufficient for observation of characteristic dynamics in the many-body localized phase. Moreover, the experimentally available disorder strength and interactions allow for tuning the many-body localization phase transition, thus making the arrays of superconducting circuit devices a promising platform for exploring localization physics and phase transition. article_number: '134504' article_processing_charge: No article_type: original author: - first_name: Tuure full_name: Orell, Tuure last_name: Orell - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Matti full_name: Silveri, Matti last_name: Silveri citation: ama: Orell T, Michailidis A, Serbyn M, Silveri M. Probing the many-body localization phase transition with superconducting circuits. Physical Review B. 2019;100(13). doi:10.1103/physrevb.100.134504 apa: Orell, T., Michailidis, A., Serbyn, M., & Silveri, M. (2019). Probing the many-body localization phase transition with superconducting circuits. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.100.134504 chicago: Orell, Tuure, Alexios Michailidis, Maksym Serbyn, and Matti Silveri. “Probing the Many-Body Localization Phase Transition with Superconducting Circuits.” Physical Review B. American Physical Society, 2019. https://doi.org/10.1103/physrevb.100.134504. ieee: T. Orell, A. Michailidis, M. Serbyn, and M. Silveri, “Probing the many-body localization phase transition with superconducting circuits,” Physical Review B, vol. 100, no. 13. American Physical Society, 2019. ista: Orell T, Michailidis A, Serbyn M, Silveri M. 2019. Probing the many-body localization phase transition with superconducting circuits. Physical Review B. 100(13), 134504. mla: Orell, Tuure, et al. “Probing the Many-Body Localization Phase Transition with Superconducting Circuits.” Physical Review B, vol. 100, no. 13, 134504, American Physical Society, 2019, doi:10.1103/physrevb.100.134504. short: T. Orell, A. Michailidis, M. Serbyn, M. Silveri, Physical Review B 100 (2019). date_created: 2019-11-13T08:25:48Z date_published: 2019-10-01T00:00:00Z date_updated: 2024-02-28T13:13:13Z day: '01' department: - _id: MaSe doi: 10.1103/physrevb.100.134504 external_id: arxiv: - '1907.04043' isi: - '000489036500004' intvolume: ' 100' isi: 1 issue: '13' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.04043 month: '10' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Probing the many-body localization phase transition with superconducting circuits type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 100 year: '2019' ... --- _id: '327' abstract: - lang: eng text: Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations. acknowledgement: 'We thank F. Huveneers for useful discussions. Z.P. and A.M. acknowledge support by EPSRC Grant No. EP/P009409/1 and and the Royal Society Research Grant No. RG160635. Statement of compliance with EPSRC policy framework on research data: This publication is theoretical work that does not require supporting research data. D.A. acknowledges support by the Swiss National Science Foundation. M.Z., M.M. and T.P. acknowledge Grants J1-7279 (M.Z.) and N1-0025 (M.M. and T.P.) of Slovenian Research Agency, and Advanced Grant of European Research Council, Grant No. 694544 - OMNES (T.P.).' article_number: '104307' article_processing_charge: No author: - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: Marko full_name: Žnidarič, Marko last_name: Žnidarič - first_name: Mariya full_name: Medvedyeva, Mariya last_name: Medvedyeva - first_name: Dmitry full_name: Abanin, Dmitry last_name: Abanin - first_name: Tomaž full_name: Prosen, Tomaž last_name: Prosen - first_name: Zlatko full_name: Papić, Zlatko last_name: Papić citation: ama: Michailidis A, Žnidarič M, Medvedyeva M, Abanin D, Prosen T, Papić Z. Slow dynamics in translation-invariant quantum lattice models. Physical Review B. 2018;97(10). doi:10.1103/PhysRevB.97.104307 apa: Michailidis, A., Žnidarič, M., Medvedyeva, M., Abanin, D., Prosen, T., & Papić, Z. (2018). Slow dynamics in translation-invariant quantum lattice models. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.97.104307 chicago: Michailidis, Alexios, Marko Žnidarič, Mariya Medvedyeva, Dmitry Abanin, Tomaž Prosen, and Zlatko Papić. “Slow Dynamics in Translation-Invariant Quantum Lattice Models.” Physical Review B. American Physical Society, 2018. https://doi.org/10.1103/PhysRevB.97.104307. ieee: A. Michailidis, M. Žnidarič, M. Medvedyeva, D. Abanin, T. Prosen, and Z. Papić, “Slow dynamics in translation-invariant quantum lattice models,” Physical Review B, vol. 97, no. 10. American Physical Society, 2018. ista: Michailidis A, Žnidarič M, Medvedyeva M, Abanin D, Prosen T, Papić Z. 2018. Slow dynamics in translation-invariant quantum lattice models. Physical Review B. 97(10), 104307. mla: Michailidis, Alexios, et al. “Slow Dynamics in Translation-Invariant Quantum Lattice Models.” Physical Review B, vol. 97, no. 10, 104307, American Physical Society, 2018, doi:10.1103/PhysRevB.97.104307. short: A. Michailidis, M. Žnidarič, M. Medvedyeva, D. Abanin, T. Prosen, Z. Papić, Physical Review B 97 (2018). date_created: 2018-12-11T11:45:50Z date_published: 2018-03-19T00:00:00Z date_updated: 2023-09-18T09:31:46Z day: '19' department: - _id: MaSe doi: 10.1103/PhysRevB.97.104307 external_id: isi: - '000427798800005' intvolume: ' 97' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1706.05026 month: '03' oa: 1 oa_version: Preprint publication: Physical Review B publication_status: published publisher: American Physical Society publist_id: '7538' quality_controlled: '1' scopus_import: '1' status: public title: Slow dynamics in translation-invariant quantum lattice models type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 97 year: '2018' ... --- _id: '296' abstract: - lang: eng text: The thermodynamic description of many-particle systems rests on the assumption of ergodicity, the ability of a system to explore all allowed configurations in the phase space. Recent studies on many-body localization have revealed the existence of systems that strongly violate ergodicity in the presence of quenched disorder. Here, we demonstrate that ergodicity can be weakly broken by a different mechanism, arising from the presence of special eigenstates in the many-body spectrum that are reminiscent of quantum scars in chaotic non-interacting systems. In the single-particle case, quantum scars correspond to wavefunctions that concentrate in the vicinity of unstable periodic classical trajectories. We show that many-body scars appear in the Fibonacci chain, a model with a constrained local Hilbert space that has recently been experimentally realized in a Rydberg-atom quantum simulator. The quantum scarred eigenstates are embedded throughout the otherwise thermalizing many-body spectrum but lead to direct experimental signatures, as we show for periodic recurrences that reproduce those observed in the experiment. Our results suggest that scarred many-body bands give rise to a new universality class of quantum dynamics, opening up opportunities for the creation of novel states with long-lived coherence in systems that are now experimentally realizable. acknowledgement: C.J.T., A.M. and Z.P. acknowledge support from EPSRC grants EP/P009409/1 and EP/M50807X/1, and Royal Society Research Grant RG160635. D.A. acknowledges support from the Swiss National Science Foundation. article_processing_charge: No article_type: original author: - first_name: Christopher full_name: Turner, Christopher last_name: Turner - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: Dmitry full_name: Abanin, Dmitry last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Zlatko full_name: Papić, Zlatko last_name: Papić citation: ama: Turner C, Michailidis A, Abanin D, Serbyn M, Papić Z. Weak ergodicity breaking from quantum many-body scars. Nature Physics. 2018;14:745-749. doi:10.1038/s41567-018-0137-5 apa: Turner, C., Michailidis, A., Abanin, D., Serbyn, M., & Papić, Z. (2018). Weak ergodicity breaking from quantum many-body scars. Nature Physics. Nature Publishing Group. https://doi.org/10.1038/s41567-018-0137-5 chicago: Turner, Christopher, Alexios Michailidis, Dmitry Abanin, Maksym Serbyn, and Zlatko Papić. “Weak Ergodicity Breaking from Quantum Many-Body Scars.” Nature Physics. Nature Publishing Group, 2018. https://doi.org/10.1038/s41567-018-0137-5. ieee: C. Turner, A. Michailidis, D. Abanin, M. Serbyn, and Z. Papić, “Weak ergodicity breaking from quantum many-body scars,” Nature Physics, vol. 14. Nature Publishing Group, pp. 745–749, 2018. ista: Turner C, Michailidis A, Abanin D, Serbyn M, Papić Z. 2018. Weak ergodicity breaking from quantum many-body scars. Nature Physics. 14, 745–749. mla: Turner, Christopher, et al. “Weak Ergodicity Breaking from Quantum Many-Body Scars.” Nature Physics, vol. 14, Nature Publishing Group, 2018, pp. 745–49, doi:10.1038/s41567-018-0137-5. short: C. Turner, A. Michailidis, D. Abanin, M. Serbyn, Z. Papić, Nature Physics 14 (2018) 745–749. date_created: 2018-12-11T11:45:40Z date_published: 2018-05-14T00:00:00Z date_updated: 2023-09-19T10:37:55Z day: '14' department: - _id: MaSe doi: 10.1038/s41567-018-0137-5 external_id: isi: - '000438253600028' intvolume: ' 14' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://eprints.whiterose.ac.uk/130860/ month: '05' oa: 1 oa_version: Submitted Version page: 745 - 749 publication: Nature Physics publication_status: published publisher: Nature Publishing Group publist_id: '7585' quality_controlled: '1' scopus_import: '1' status: public title: Weak ergodicity breaking from quantum many-body scars type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 14 year: '2018' ... --- _id: '44' abstract: - lang: eng text: 'Recent realization of a kinetically constrained chain of Rydberg atoms by Bernien et al., [Nature (London) 551, 579 (2017)] resulted in the observation of unusual revivals in the many-body quantum dynamics. In our previous work [C. J. Turner et al., Nat. Phys. 14, 745 (2018)], such dynamics was attributed to the existence of “quantum scarred” eigenstates in the many-body spectrum of the experimentally realized model. Here, we present a detailed study of the eigenstate properties of the same model. We find that the majority of the eigenstates exhibit anomalous thermalization: the observable expectation values converge to their Gibbs ensemble values, but parametrically slower compared to the predictions of the eigenstate thermalization hypothesis (ETH). Amidst the thermalizing spectrum, we identify nonergodic eigenstates that strongly violate the ETH, whose number grows polynomially with system size. Previously, the same eigenstates were identified via large overlaps with certain product states, and were used to explain the revivals observed in experiment. Here, we find that these eigenstates, in addition to highly atypical expectation values of local observables, also exhibit subthermal entanglement entropy that scales logarithmically with the system size. Moreover, we identify an additional class of quantum scarred eigenstates, and discuss their manifestations in the dynamics starting from initial product states. We use forward scattering approximation to describe the structure and physical properties of quantum scarred eigenstates. Finally, we discuss the stability of quantum scars to various perturbations. We observe that quantum scars remain robust when the introduced perturbation is compatible with the forward scattering approximation. In contrast, the perturbations which most efficiently destroy quantum scars also lead to the restoration of “canonical” thermalization.' acknowledged_ssus: - _id: ScienComp article_number: '155134' article_processing_charge: No author: - first_name: C J full_name: Turner, C J last_name: Turner - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: D A full_name: Abanin, D A last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Z full_name: Papić, Z last_name: Papić citation: ama: 'Turner CJ, Michailidis A, Abanin DA, Serbyn M, Papić Z. Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations. Physical Review B. 2018;98(15). doi:10.1103/PhysRevB.98.155134' apa: 'Turner, C. J., Michailidis, A., Abanin, D. A., Serbyn, M., & Papić, Z. (2018). Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.98.155134' chicago: 'Turner, C J, Alexios Michailidis, D A Abanin, Maksym Serbyn, and Z Papić. “Quantum Scarred Eigenstates in a Rydberg Atom Chain: Entanglement, Breakdown of Thermalization, and Stability to Perturbations.” Physical Review B. American Physical Society, 2018. https://doi.org/10.1103/PhysRevB.98.155134.' ieee: 'C. J. Turner, A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, “Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations,” Physical Review B, vol. 98, no. 15. American Physical Society, 2018.' ista: 'Turner CJ, Michailidis A, Abanin DA, Serbyn M, Papić Z. 2018. Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations. Physical Review B. 98(15), 155134.' mla: 'Turner, C. J., et al. “Quantum Scarred Eigenstates in a Rydberg Atom Chain: Entanglement, Breakdown of Thermalization, and Stability to Perturbations.” Physical Review B, vol. 98, no. 15, 155134, American Physical Society, 2018, doi:10.1103/PhysRevB.98.155134.' short: C.J. Turner, A. Michailidis, D.A. Abanin, M. Serbyn, Z. Papić, Physical Review B 98 (2018). date_created: 2018-12-11T11:44:19Z date_published: 2018-10-22T00:00:00Z date_updated: 2023-10-10T13:28:49Z day: '22' department: - _id: MaSe doi: 10.1103/PhysRevB.98.155134 external_id: arxiv: - '1806.10933' isi: - '000447919100001' intvolume: ' 98' isi: 1 issue: '15' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1806.10933 month: '10' oa: 1 oa_version: Preprint publication: Physical Review B publication_status: published publisher: American Physical Society publist_id: '8010' quality_controlled: '1' scopus_import: '1' status: public title: 'Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 98 year: '2018' ... --- _id: '984' abstract: - lang: eng text: The entanglement spectrum of the reduced density matrix contains information beyond the von Neumann entropy and provides unique insights into exotic orders or critical behavior of quantum systems. Here, we show that strongly disordered systems in the many-body localized phase have power-law entanglement spectra, arising from the presence of extensively many local integrals of motion. The power-law entanglement spectrum distinguishes many-body localized systems from ergodic systems, as well as from ground states of gapped integrable models or free systems in the vicinity of scale-invariant critical points. We confirm our results using large-scale exact diagonalization. In addition, we develop a matrix-product state algorithm which allows us to access the eigenstates of large systems close to the localization transition, and discuss general implications of our results for variational studies of highly excited eigenstates in many-body localized systems. acknowledgement: We thank M. Stoudenmire and C. Turner for useful discussions. M. S. was supported by Gordon and Betty Moore Foundation's EPiQS Initiative through Grant No. GBMF4307. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915, and by the Swiss National Science Foundation and Alfred Sloan Foundation (D. A.). This work made use of the facilities of N8 HPC Centre of Excellence, provided and funded by the N8 consortium and EPSRC (Grant No. EP/K000225/1). The Centre is coordinated by the Universities of Leeds and Manchester. author: - first_name: Maksym full_name: Maksym Serbyn id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Alexios full_name: Alexios Michailidis id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis - first_name: Dmitry full_name: Abanin, Dmitry A last_name: Abanin - first_name: Zlatko full_name: Papić, Zlatko last_name: Papić citation: ama: Serbyn M, Michailidis A, Abanin D, Papić Z. Power-law entanglement spectrum in many-body localized phases. Physical Review Letters. 2016;117(16). doi:10.1103/PhysRevLett.117.160601 apa: Serbyn, M., Michailidis, A., Abanin, D., & Papić, Z. (2016). Power-law entanglement spectrum in many-body localized phases. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.117.160601 chicago: Serbyn, Maksym, Alexios Michailidis, Dmitry Abanin, and Zlatko Papić. “Power-Law Entanglement Spectrum in Many-Body Localized Phases.” Physical Review Letters. American Physical Society, 2016. https://doi.org/10.1103/PhysRevLett.117.160601. ieee: M. Serbyn, A. Michailidis, D. Abanin, and Z. Papić, “Power-law entanglement spectrum in many-body localized phases,” Physical Review Letters, vol. 117, no. 16. American Physical Society, 2016. ista: Serbyn M, Michailidis A, Abanin D, Papić Z. 2016. Power-law entanglement spectrum in many-body localized phases. Physical Review Letters. 117(16). mla: Serbyn, Maksym, et al. “Power-Law Entanglement Spectrum in Many-Body Localized Phases.” Physical Review Letters, vol. 117, no. 16, American Physical Society, 2016, doi:10.1103/PhysRevLett.117.160601. short: M. Serbyn, A. Michailidis, D. Abanin, Z. Papić, Physical Review Letters 117 (2016). date_created: 2018-12-11T11:49:32Z date_published: 2016-10-16T00:00:00Z date_updated: 2021-01-12T08:22:25Z day: '16' doi: 10.1103/PhysRevLett.117.160601 extern: 1 intvolume: ' 117' issue: '16' main_file_link: - open_access: '1' url: https://arxiv.org/abs/1605.05737 month: '10' oa: 1 publication: Physical Review Letters publication_status: published publisher: American Physical Society publist_id: '6414' quality_controlled: 0 status: public title: Power-law entanglement spectrum in many-body localized phases type: journal_article volume: 117 year: '2016' ...