@article{10335, abstract = {Van der Holst and Pendavingh introduced a graph parameter σ, which coincides with the more famous Colin de Verdière graph parameter μ for small values. However, the definition of a is much more geometric/topological directly reflecting embeddability properties of the graph. They proved μ(G) ≤ σ(G) + 2 and conjectured σ(G) ≤ σ(G) for any graph G. We confirm this conjecture. As far as we know, this is the first topological upper bound on σ(G) which is, in general, tight. Equality between μ and σ does not hold in general as van der Holst and Pendavingh showed that there is a graph G with μ(G) ≤ 18 and σ(G) ≥ 20. We show that the gap appears at much smaller values, namely, we exhibit a graph H for which μ(H) ≥ 7 and σ(H) ≥ 8. We also prove that, in general, the gap can be large: The incidence graphs Hq of finite projective planes of order q satisfy μ(Hq) ∈ O(q3/2) and σ(Hq) ≥ q2.}, author = {Kaluza, Vojtech and Tancer, Martin}, issn = {0209-9683}, journal = {Combinatorica}, pages = {1317--1345}, publisher = {Springer Nature}, title = {{Even maps, the Colin de Verdière number and representations of graphs}}, doi = {10.1007/s00493-021-4443-7}, volume = {42}, year = {2022}, } @inproceedings{7992, abstract = {Let K be a convex body in ℝⁿ (i.e., a compact convex set with nonempty interior). Given a point p in the interior of K, a hyperplane h passing through p is called barycentric if p is the barycenter of K ∩ h. In 1961, Grünbaum raised the question whether, for every K, there exists an interior point p through which there are at least n+1 distinct barycentric hyperplanes. Two years later, this was seemingly resolved affirmatively by showing that this is the case if p=p₀ is the point of maximal depth in K. However, while working on a related question, we noticed that one of the auxiliary claims in the proof is incorrect. Here, we provide a counterexample; this re-opens Grünbaum’s question. It follows from known results that for n ≥ 2, there are always at least three distinct barycentric cuts through the point p₀ ∈ K of maximal depth. Using tools related to Morse theory we are able to improve this bound: four distinct barycentric cuts through p₀ are guaranteed if n ≥ 3.}, author = {Patakova, Zuzana and Tancer, Martin and Wagner, Uli}, booktitle = {36th International Symposium on Computational Geometry}, isbn = {9783959771436}, issn = {18688969}, location = {Zürich, Switzerland}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Barycentric cuts through a convex body}}, doi = {10.4230/LIPIcs.SoCG.2020.62}, volume = {164}, year = {2020}, } @inproceedings{184, abstract = {We prove that for every d ≥ 2, deciding if a pure, d-dimensional, simplicial complex is shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj and Klee in 1978. Our reduction also yields that for every d ≥ 2 and k ≥ 0, deciding if a pure, d-dimensional, simplicial complex is k-decomposable is NP-hard. For d ≥ 3, both problems remain NP-hard when restricted to contractible pure d-dimensional complexes.}, author = {Goaoc, Xavier and Paták, Pavel and Patakova, Zuzana and Tancer, Martin and Wagner, Uli}, location = {Budapest, Hungary}, pages = {41:1 -- 41:16}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Shellability is NP-complete}}, doi = {10.4230/LIPIcs.SoCG.2018.41}, volume = {99}, year = {2018}, } @article{425, abstract = {We show that the following algorithmic problem is decidable: given a 2-dimensional simplicial complex, can it be embedded (topologically, or equivalently, piecewise linearly) in R3? By a known reduction, it suffices to decide the embeddability of a given triangulated 3-manifold X into the 3-sphere S3. The main step, which allows us to simplify X and recurse, is in proving that if X can be embedded in S3, then there is also an embedding in which X has a short meridian, that is, an essential curve in the boundary of X bounding a disk in S3 \ X with length bounded by a computable function of the number of tetrahedra of X.}, author = {Matoušek, Jiří and Sedgwick, Eric and Tancer, Martin and Wagner, Uli}, journal = {Journal of the ACM}, number = {1}, publisher = {ACM}, title = {{Embeddability in the 3-Sphere is decidable}}, doi = {10.1145/3078632}, volume = {65}, year = {2018}, } @article{610, abstract = {The fact that the complete graph K5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph Kn embeds in a closed surface M (other than the Klein bottle) if and only if (n−3)(n−4) ≤ 6b1(M), where b1(M) is the first Z2-Betti number of M. On the other hand, van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of Kn+1) embeds in R2k if and only if n ≤ 2k + 1. Two decades ago, Kühnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k − 1)-connected 2k-manifold with kth Z2-Betti number bk only if the following generalized Heawood inequality holds: (k+1 n−k−1) ≤ (k+1 2k+1)bk. This is a common generalization of the case of graphs on surfaces as well as the van Kampen–Flores theorem. In the spirit of Kühnel’s conjecture, we prove that if the k-skeleton of the n-simplex embeds in a compact 2k-manifold with kth Z2-Betti number bk, then n ≤ 2bk(k 2k+2)+2k+4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k−1)-connected. Our results generalize to maps without q-covered points, in the spirit of Tverberg’s theorem, for q a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.}, author = {Goaoc, Xavier and Mabillard, Isaac and Paták, Pavel and Patakova, Zuzana and Tancer, Martin and Wagner, Uli}, journal = {Israel Journal of Mathematics}, number = {2}, pages = {841 -- 866}, publisher = {Springer}, title = {{On generalized Heawood inequalities for manifolds: A van Kampen–Flores type nonembeddability result}}, doi = {10.1007/s11856-017-1607-7}, volume = {222}, year = {2017}, } @article{1411, abstract = {We consider two systems (α1, …, αm) and (β1, …,βn) of simple curves drawn on a compact two-dimensional surface M with boundary. Each αi and each βj is either an arc meeting the boundary of M at its two endpoints, or a closed curve. The αi are pairwise disjoint except for possibly sharing endpoints, and similarly for the βj. We want to “untangle” the βj from the ai by a self-homeomorphism of M; more precisely, we seek a homeomorphism φ:M→M fixing the boundary of M pointwise such that the total number of crossings of the ai with the φ(βj) is as small as possible. This problem is motivated by an application in the algorithmic theory of embeddings and 3-manifolds. We prove that if M is planar, i.e., a sphere with h ≥ 0 boundary components (“holes”), then O(mn) crossings can be achieved (independently of h), which is asymptotically tight, as an easy lower bound shows. In general, for an arbitrary (orientable or nonorientable) surface M with h holes and of (orientable or nonorientable) genus g ≥ 0, we obtain an O((m + n)4) upper bound, again independent of h and g. The proofs rely, among other things, on a result concerning simultaneous planar drawings of graphs by Erten and Kobourov.}, author = {Matoušek, Jiří and Sedgwick, Eric and Tancer, Martin and Wagner, Uli}, journal = {Israel Journal of Mathematics}, number = {1}, pages = {37 -- 79}, publisher = {Springer}, title = {{Untangling two systems of noncrossing curves}}, doi = {10.1007/s11856-016-1294-9}, volume = {212}, year = {2016}, } @article{1688, abstract = {We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer d, there is a constant (Formula presented.) such that whenever (Formula presented.) are n-element subsets of (Formula presented.), we can find a point (Formula presented.) and subsets (Formula presented.) for every i∈[d+1], each of size at least cdn, such that p belongs to all rainbowd-simplices determined by (Formula presented.) simplices with one vertex in each Yi. We show a super-exponentially decreasing upper bound (Formula presented.). The ideas used in the proof of the upper bound also help us to prove Pach’s theorem with (Formula presented.), which is a lower bound doubly exponentially decreasing in d (up to some polynomial in the exponent). For comparison, Pach’s original approach yields a triply exponentially decreasing lower bound. On the other hand, Fox, Pach, and Suk recently obtained a hypergraph density result implying a proof of Pach’s theorem with (Formula presented.). In our construction for the upper bound, we use the fact that the minimum solid angle of every d-simplex is super-exponentially small. This fact was previously unknown and might be of independent interest. For the lower bound, we improve the ‘separation’ part of the argument by showing that in one of the key steps only d+1 separations are necessary, compared to 2d separations in the original proof. We also provide a measure version of Pach’s theorem.}, author = {Karasev, Roman and Kynčl, Jan and Paták, Pavel and Patakova, Zuzana and Tancer, Martin}, journal = {Discrete & Computational Geometry}, number = {3}, pages = {610 -- 636}, publisher = {Springer}, title = {{Bounds for Pach's selection theorem and for the minimum solid angle in a simplex}}, doi = {10.1007/s00454-015-9720-z}, volume = {54}, year = {2015}, } @inproceedings{1511, abstract = {The fact that the complete graph K_5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K_n embeds in a closed surface M if and only if (n-3)(n-4) is at most 6b_1(M), where b_1(M) is the first Z_2-Betti number of M. On the other hand, Van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of K_{n+1}) embeds in R^{2k} if and only if n is less or equal to 2k+2. Two decades ago, Kuhnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k-1)-connected 2k-manifold with kth Z_2-Betti number b_k only if the following generalized Heawood inequality holds: binom{n-k-1}{k+1} is at most binom{2k+1}{k+1} b_k. This is a common generalization of the case of graphs on surfaces as well as the Van Kampen--Flores theorem. In the spirit of Kuhnel's conjecture, we prove that if the k-skeleton of the n-simplex embeds in a 2k-manifold with kth Z_2-Betti number b_k, then n is at most 2b_k binom{2k+2}{k} + 2k + 5. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k-1)-connected. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.}, author = {Goaoc, Xavier and Mabillard, Isaac and Paták, Pavel and Patakova, Zuzana and Tancer, Martin and Wagner, Uli}, location = {Eindhoven, Netherlands}, pages = {476 -- 490}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{On generalized Heawood inequalities for manifolds: A Van Kampen–Flores-type nonembeddability result}}, doi = {10.4230/LIPIcs.SOCG.2015.476}, volume = {34 }, year = {2015}, } @inproceedings{2157, abstract = {We show that the following algorithmic problem is decidable: given a 2-dimensional simplicial complex, can it be embedded (topologically, or equivalently, piecewise linearly) in ℝ3? By a known reduction, it suffices to decide the embeddability of a given triangulated 3-manifold X into the 3-sphere S3. The main step, which allows us to simplify X and recurse, is in proving that if X can be embedded in S3, then there is also an embedding in which X has a short meridian, i.e., an essential curve in the boundary of X bounding a disk in S3 nX with length bounded by a computable function of the number of tetrahedra of X.}, author = {Matoušek, Jiří and Sedgwick, Eric and Tancer, Martin and Wagner, Uli}, booktitle = {Proceedings of the Annual Symposium on Computational Geometry}, location = {Kyoto, Japan}, pages = {78 -- 84}, publisher = {ACM}, title = {{Embeddability in the 3 sphere is decidable}}, doi = {10.1145/2582112.2582137}, year = {2014}, } @inproceedings{2244, abstract = {We consider two systems (α1,...,αm) and (β1,...,βn) of curves drawn on a compact two-dimensional surface ℳ with boundary. Each αi and each βj is either an arc meeting the boundary of ℳ at its two endpoints, or a closed curve. The αi are pairwise disjoint except for possibly sharing endpoints, and similarly for the βj. We want to "untangle" the βj from the αi by a self-homeomorphism of ℳ; more precisely, we seek an homeomorphism φ: ℳ → ℳ fixing the boundary of ℳ pointwise such that the total number of crossings of the αi with the φ(βj) is as small as possible. This problem is motivated by an application in the algorithmic theory of embeddings and 3-manifolds. We prove that if ℳ is planar, i.e., a sphere with h ≥ 0 boundary components ("holes"), then O(mn) crossings can be achieved (independently of h), which is asymptotically tight, as an easy lower bound shows. In general, for an arbitrary (orientable or nonorientable) surface ℳ with h holes and of (orientable or nonorientable) genus g ≥ 0, we obtain an O((m + n)4) upper bound, again independent of h and g. }, author = {Matoušek, Jiří and Sedgwick, Eric and Tancer, Martin and Wagner, Uli}, location = {Bordeaux, France}, pages = {472 -- 483}, publisher = {Springer}, title = {{Untangling two systems of noncrossing curves}}, doi = {10.1007/978-3-319-03841-4_41}, volume = {8242}, year = {2013}, } @article{2438, abstract = {The colored Tverberg theorem asserts that for eve;ry d and r there exists t=t(d,r) such that for every set C ⊂ ℝ d of cardinality (d + 1)t, partitioned into t-point subsets C 1, C 2,...,C d+1 (which we think of as color classes; e. g., the points of C 1 are red, the points of C 2 blue, etc.), there exist r disjoint sets R 1, R 2,...,R r⊆C that are rainbow, meaning that {pipe}R i∩C j{pipe}≤1 for every i,j, and whose convex hulls all have a common point. All known proofs of this theorem are topological. We present a geometric version of a recent beautiful proof by Blagojević, Matschke, and Ziegler, avoiding a direct use of topological methods. The purpose of this de-topologization is to make the proof more concrete and intuitive, and accessible to a wider audience.}, author = {Matoušek, Jiří and Martin Tancer and Uli Wagner}, journal = {Discrete & Computational Geometry}, number = {2}, pages = {245 -- 265}, publisher = {Springer}, title = {{A geometric proof of the colored Tverberg theorem}}, doi = {10.1007/s00454-011-9368-2}, volume = {47}, year = {2012}, } @article{2436, abstract = {Let EMBEDk→d be the following algorithmic problem: Given a finite simplicial complex K of dimension at most k, does there exist a (piecewise linear) embedding of K into Rd? Known results easily imply the polynomiality of EMBEDk→2 (k = 1; 2; the case k = 1, d = 2 is graph planarity) and of EMBEDk→2k for all k ≥ 3. We show that the celebrated result of Novikov on the algorithmic unsolvability of recognizing the 5-sphere implies that EMBEDd→d and EMBED (d-1)→d are undecidable for each d ≥ 5. Our main result is the NP-hardness of EMBED2→4 and, more generally, of EMBED k→d for all k; d with d ≥ 4 and d ≥ k ≥ (2d - 2)/3. These dimensions fall outside the metastable range of a theorem of Haefliger and Weber, which characterizes embeddability using the deleted product obstruction. Our reductions are based on examples, due to Segal, Spież, Freedman, Krushkal, Teichner, and Skopenkov, showing that outside the metastable range the deleted product obstruction is not sufficient to characterize embeddability. }, author = {Matoušek, Jiří and Martin Tancer and Uli Wagner}, journal = {Journal of the European Mathematical Society}, number = {2}, pages = {259 -- 295}, publisher = {European Mathematical Society}, title = {{Hardness of embedding simplicial complexes in Rd}}, doi = {10.4171/JEMS/252}, volume = {13}, year = {2011}, } @inproceedings{2433, abstract = {Let EMBEDk→d be the following algorithmic problem: Given a finite simplicial complex K of dimension at most k, does there exist a (piecewise linear) embedding of K into ℝd? Known results easily imply polynomiality of EMBEDk→2 (k = 1, 2; the case k = 1, d = 2 is graph planarity) and of EMBEDk→2k for all k ≥ 3 (even if k is not considered fixed). We show that the celebrated result of Novikov on the algorithmic unsolvability of recognizing the 5-sphere implies that EMBED d→d and EMBED(d-1)→d are undecidable for each d ≥ 5. Our main result is NP-hardness of EMBED2→4 and, more generally, of EMBEDk→d for all k, d with d ≥ 4 and d ≥ k ≥ (2d - 2)/3.}, author = {Matoušek, Jiří and Martin Tancer and Uli Wagner}, pages = {855 -- 864}, publisher = {SIAM}, title = {{Hardness of embedding simplicial complexes in ℝd}}, year = {2009}, }