TY - JOUR AB - Directional transport of the phytohormone auxin is a versatile, plant-specific mechanism regulating many aspects of plant development. The recently identified plant hormones, strigolactones (SLs), are implicated in many plant traits; among others, they modify the phenotypic output of PIN-FORMED (PIN) auxin transporters for fine-tuning of growth and developmental responses. Here, we show in pea and Arabidopsis that SLs target processes dependent on the canalization of auxin flow, which involves auxin feedback on PIN subcellular distribution. D14 receptor- and MAX2 F-box-mediated SL signaling inhibits the formation of auxin-conducting channels after wounding or from artificial auxin sources, during vasculature de novo formation and regeneration. At the cellular level, SLs interfere with auxin effects on PIN polar targeting, constitutive PIN trafficking as well as clathrin-mediated endocytosis. Our results identify a non-transcriptional mechanism of SL action, uncoupling auxin feedback on PIN polarity and trafficking, thereby regulating vascular tissue formation and regeneration. AU - Zhang, J AU - Mazur, E AU - Balla, J AU - Gallei, Michelle C AU - Kalousek, P AU - Medveďová, Z AU - Li, Y AU - Wang, Y AU - Prat, Tomas AU - Vasileva, Mina K AU - Reinöhl, V AU - Procházka, S AU - Halouzka, R AU - Tarkowski, P AU - Luschnig, C AU - Brewer, PB AU - Friml, Jiří ID - 8138 IS - 1 JF - Nature Communications SN - 2041-1723 TI - Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization VL - 11 ER - TY - JOUR AB - Spontaneously arising channels that transport the phytohormone auxin provide positional cues for self-organizing aspects of plant development such as flexible vasculature regeneration or its patterning during leaf venation. The auxin canalization hypothesis proposes a feedback between auxin signaling and transport as the underlying mechanism, but molecular players await discovery. We identified part of the machinery that routes auxin transport. The auxin-regulated receptor CAMEL (Canalization-related Auxin-regulated Malectin-type RLK) together with CANAR (Canalization-related Receptor-like kinase) interact with and phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated PIN polarization, which macroscopically manifests as defects in leaf venation and vasculature regeneration after wounding. The CAMEL-CANAR receptor complex is part of the auxin feedback that coordinates polarization of individual cells during auxin canalization. AU - Hajny, Jakub AU - Prat, Tomas AU - Rydza, N AU - Rodriguez Solovey, Lesia AU - Tan, Shutang AU - Verstraeten, Inge AU - Domjan, David AU - Mazur, E AU - Smakowska-Luzan, E AU - Smet, W AU - Mor, E AU - Nolf, J AU - Yang, B AU - Grunewald, W AU - Molnar, Gergely AU - Belkhadir, Y AU - De Rybel, B AU - Friml, Jiří ID - 8721 IS - 6516 JF - Science SN - 0036-8075 TI - Receptor kinase module targets PIN-dependent auxin transport during canalization VL - 370 ER - TY - JOUR AB - Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. AU - Prat, Tomas AU - Hajny, Jakub AU - Grunewald, Wim AU - Vasileva, Mina K AU - Molnar, Gergely AU - Tejos, Ricardo AU - Schmid, Markus AU - Sauer, Michael AU - Friml, Jirí ID - 449 IS - 1 JF - PLoS Genetics TI - WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity VL - 14 ER - TY - THES AB - Plant hormone auxin and its transport between cells belong to the most important mechanisms controlling plant development. Auxin itself could change localization of PINs and thereby control direction of its own flow. We performed an expression profiling experiment in Arabidopsis roots to identify potential regulators of PIN polarity which are transcriptionally regulated by auxin signalling. We identified several novel regulators and performed a detailed characterization of the transcription factor WRKY23 (At2g47260) and its role in auxin feedback on PIN polarity. Gain-of-function and dominant-negative mutants revealed that WRKY23 plays a crucial role in mediating the auxin effect on PIN polarity. In concordance, typical polar auxin transport processes such as gravitropism and leaf vascular pattern formation were disturbed by interfering with WRKY23 function. In order to identify direct targets of WRKY23, we performed consequential expression profiling experiments using a WRKY23 inducible gain-of-function line and dominant-negative WRKY23 line that is defunct in PIN re-arrangement. Among several genes mostly related to the groups of cell wall and defense process regulators, we identified LYSINE-HISTIDINE TRANSPORTER 1 (LHT1; At5g40780), a small amino acid permease gene from the amino acid/auxin permease family (AAAP), we present its detailed characterisation in auxin feedback on PIN repolarization, identified its transcriptional regulation, we propose a potential mechanism of its action. Moreover, we identified also a member of receptor-like protein kinase LRR-RLK (LEUCINE-RICH REPEAT TRANSMEMBRANE PROTEIN KINASE PROTEIN 1; LRRK1; At1g05700), which also affects auxin-dependent PIN re-arrangement. We described its transcriptional behaviour, subcellular localization. Based on global expression data, we tried to identify ligand responsible for mechanism of signalling and suggest signalling partner and interactors. Additionally, we described role of novel phytohormone group, strigolactone, in auxin-dependent PIN re-arrangement, that could be a fundament for future studies in this field. Our results provide first insights into an auxin transcriptional network targeting PIN localization and thus regulating plant development. We highlighted WRKY23 transcriptional network and characterised its mediatory role in plant development. We identified direct effectors of this network, LHT1 and LRRK1, and describe their roles in PIN re-arrangement and PIN-dependent auxin transport processes. AU - Prat, Tomas ID - 1127 SN - 2663-337X TI - Identification of novel regulators of PIN polarity and development of novel auxin sensor ER - TY - JOUR AB - Redirection of intercellular auxin fluxes via relocalization of the PIN-FORMED 3 (PIN3) and PIN7 auxin efflux carriers has been suggested to be necessary for the root gravitropic response. Cytokinins have also been proposed to play a role in controlling root gravitropism, but conclusive evidence is lacking. We present a detailed study of the dynamics of root bending early after gravistimulation, which revealed a delayed gravitropic response in transgenic lines with depleted endogenous cytokinins (Pro35S:AtCKX) and cytokinin signaling mutants. Pro35S:AtCKX lines, as well as a cytokinin receptor mutant ahk3, showed aberrations in the auxin response distribution in columella cells consistent with defects in the auxin transport machinery. Using in vivo real-time imaging of PIN3-GFP and PIN7-GFP in AtCKX3 overexpression and ahk3 backgrounds, we observed wild-type-like relocalization of PIN proteins in the columella early after gravistimulation, with gravity-induced relocalization of PIN7 faster than that of PIN3. Nonetheless, the cellular distribution of PIN3 and PIN7 and expression of PIN7 and the auxin influx carrier AUX1 was affected in AtCKX overexpression lines. Based on the retained cytokinin sensitivity in pin3 pin4 pin7 mutant, we propose the AUX1-mediated auxin transport rather than columella-located PIN proteins as a target of endogenous cytokinins in the control of root gravitropism. AU - Pernisová, Markéta AU - Prat, Tomas AU - Grones, Peter AU - Haruštiaková, Danka AU - Matonohova, Martina AU - Spíchal, Lukáš AU - Nodzyński, Tomasz AU - Friml, Jirí AU - Hejátko, Jan ID - 1372 IS - 2 JF - New Phytologist TI - Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis VL - 212 ER - TY - JOUR AB - Auxin polar transport, local maxima, and gradients have become an importantmodel system for studying self-organization. Auxin distribution is regulated by auxin-dependent positive feedback loops that are not well-understood at the molecular level. Previously, we showed the involvement of the RHO of Plants (ROP) effector INTERACTOR of CONSTITUTIVELY active ROP 1 (ICR1) in regulation of auxin transport and that ICR1 levels are posttranscriptionally repressed at the site of maximum auxin accumulation at the root tip. Here, we show that bimodal regulation of ICR1 levels by auxin is essential for regulating formation of auxin local maxima and gradients. ICR1 levels increase concomitant with increase in auxin response in lateral root primordia, cotyledon tips, and provascular tissues. However, in the embryo hypophysis and root meristem, when auxin exceeds critical levels, ICR1 is rapidly destabilized by an SCF(TIR1/AFB) [SKP, Cullin, F-box (transport inhibitor response 1/auxin signaling F-box protein)]-dependent auxin signaling mechanism. Furthermore, ectopic expression of ICR1 in the embryo hypophysis resulted in reduction of auxin accumulation and concomitant root growth arrest. ICR1 disappeared during root regeneration and lateral root initiation concomitantly with the formation of a local auxin maximum in response to external auxin treatments and transiently after gravitropic stimulation. Destabilization of ICR1 was impaired after inhibition of auxin transport and signaling, proteasome function, and protein synthesis. A mathematical model based on these findings shows that an in vivo-like auxin distribution, rootward auxin flux, and shootward reflux can be simulated without assuming preexisting tissue polarity. Our experimental results and mathematical modeling indicate that regulation of auxin distribution is tightly associated with auxin-dependent ICR1 levels. AU - Hazak, Ora AU - Obolski, Uri AU - Prat, Tomas AU - Friml, Jiří AU - Hadany, Lilach AU - Yalovsky, Shaul ID - 1996 IS - 50 JF - PNAS TI - Bimodal regulation of ICR1 levels generates self-organizing auxin distribution VL - 111 ER -