@article{10045, abstract = {Given a fixed finite metric space (V,μ), the {\em minimum 0-extension problem}, denoted as 0-Ext[μ], is equivalent to the following optimization problem: minimize function of the form minx∈Vn∑ifi(xi)+∑ijcijμ(xi,xj) where cij,cvi are given nonnegative costs and fi:V→R are functions given by fi(xi)=∑v∈Vcviμ(xi,v). The computational complexity of 0-Ext[μ] has been recently established by Karzanov and by Hirai: if metric μ is {\em orientable modular} then 0-Ext[μ] can be solved in polynomial time, otherwise 0-Ext[μ] is NP-hard. To prove the tractability part, Hirai developed a theory of discrete convex functions on orientable modular graphs generalizing several known classes of functions in discrete convex analysis, such as L♮-convex functions. We consider a more general version of the problem in which unary functions fi(xi) can additionally have terms of the form cuv;iμ(xi,{u,v}) for {u,v}∈F, where set F⊆(V2) is fixed. We extend the complexity classification above by providing an explicit condition on (μ,F) for the problem to be tractable. In order to prove the tractability part, we generalize Hirai's theory and define a larger class of discrete convex functions. It covers, in particular, another well-known class of functions, namely submodular functions on an integer lattice. Finally, we improve the complexity of Hirai's algorithm for solving 0-Ext on orientable modular graphs. }, author = {Dvorak, Martin and Kolmogorov, Vladimir}, issn = {1436-4646}, journal = {Mathematical Programming}, keywords = {minimum 0-extension problem, metric labeling problem, discrete metric spaces, metric extensions, computational complexity, valued constraint satisfaction problems, discrete convex analysis, L-convex functions}, publisher = {Springer Nature}, title = {{Generalized minimum 0-extension problem and discrete convexity}}, doi = {10.1007/s10107-024-02064-5}, year = {2024}, } @inproceedings{13120, abstract = {We formalized general (i.e., type-0) grammars using the Lean 3 proof assistant. We defined basic notions of rewrite rules and of words derived by a grammar, and used grammars to show closure of the class of type-0 languages under four operations: union, reversal, concatenation, and the Kleene star. The literature mostly focuses on Turing machine arguments, which are possibly more difficult to formalize. For the Kleene star, we could not follow the literature and came up with our own grammar-based construction.}, author = {Dvorak, Martin and Blanchette, Jasmin}, booktitle = {14th International Conference on Interactive Theorem Proving}, isbn = {9783959772846}, issn = {1868-8969}, location = {Bialystok, Poland}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Closure properties of general grammars - formally verified}}, doi = {10.4230/LIPIcs.ITP.2023.15}, volume = {268}, year = {2023}, } @inproceedings{9592, abstract = {The convex grabbing game is a game where two players, Alice and Bob, alternate taking extremal points from the convex hull of a point set on the plane. Rational weights are given to the points. The goal of each player is to maximize the total weight over all points that they obtain. We restrict the setting to the case of binary weights. We show a construction of an arbitrarily large odd-sized point set that allows Bob to obtain almost 3/4 of the total weight. This construction answers a question asked by Matsumoto, Nakamigawa, and Sakuma in [Graphs and Combinatorics, 36/1 (2020)]. We also present an arbitrarily large even-sized point set where Bob can obtain the entirety of the total weight. Finally, we discuss conjectures about optimum moves in the convex grabbing game for both players in general.}, author = {Dvorak, Martin and Nicholson, Sara}, booktitle = {Proceedings of the 33rd Canadian Conference on Computational Geometry}, keywords = {convex grabbing game, graph grabbing game, combinatorial game, convex geometry}, location = {Halifax, NS, Canada}, title = {{Massively winning configurations in the convex grabbing game on the plane}}, year = {2021}, }