@article{13212, abstract = {Auxin is the major plant hormone regulating growth and development (Friml, 2022). Forward genetic approaches in the model plant Arabidopsis thaliana have identified major components of auxin signalling and established the canonical mechanism mediating transcriptional and thus developmental reprogramming. In this textbook view, TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFBs) are auxin receptors, which act as F-box subunits determining the substrate specificity of the Skp1-Cullin1-F box protein (SCF) type E3 ubiquitin ligase complex. Auxin acts as a “molecular glue” increasing the affinity between TIR1/AFBs and the Aux/IAA repressors. Subsequently, Aux/IAAs are ubiquitinated and degraded, thus releasing auxin transcription factors from their repression making them free to mediate transcription of auxin response genes (Yu et al., 2022). Nonetheless, accumulating evidence suggests existence of rapid, non-transcriptional responses downstream of TIR1/AFBs such as auxin-induced cytosolic calcium (Ca2+) transients, plasma membrane depolarization and apoplast alkalinisation, all converging on the process of root growth inhibition and root gravitropism (Li et al., 2022). Particularly, these rapid responses are mostly contributed by predominantly cytosolic AFB1, while the long-term growth responses are mediated by mainly nuclear TIR1 and AFB2-AFB5 (Li et al., 2021; Prigge et al., 2020; Serre et al., 2021). How AFB1 conducts auxin-triggered rapid responses and how it is different from TIR1 and AFB2-AFB5 remains elusive. Here, we compare the roles of TIR1 and AFB1 in transcriptional and rapid responses by modulating their subcellular localization in Arabidopsis and by testing their ability to mediate transcriptional responses when part of the minimal auxin circuit reconstituted in yeast.}, author = {Chen, Huihuang and Li, Lanxin and Zou, Minxia and Qi, Linlin and Friml, Jiří}, issn = {1674-2052}, journal = {Molecular Plant}, number = {7}, pages = {1117--1119}, publisher = {Elsevier }, title = {{Distinct functions of TIR1 and AFB1 receptors in auxin signalling.}}, doi = {10.1016/j.molp.2023.06.007}, volume = {16}, year = {2023}, } @article{13266, abstract = {The 3′,5′-cyclic adenosine monophosphate (cAMP) is a versatile second messenger in many mammalian signaling pathways. However, its role in plants remains not well-recognized. Recent discovery of adenylate cyclase (AC) activity for transport inhibitor response 1/auxin-signaling F-box proteins (TIR1/AFB) auxin receptors and the demonstration of its importance for canonical auxin signaling put plant cAMP research back into spotlight. This insight briefly summarizes the well-established cAMP signaling pathways in mammalian cells and describes the turbulent and controversial history of plant cAMP research highlighting the major progress and the unresolved points. We also briefly review the current paradigm of auxin signaling to provide a background for the discussion on the AC activity of TIR1/AFB auxin receptors and its potential role in transcriptional auxin signaling as well as impact of these discoveries on plant cAMP research in general.}, author = {Qi, Linlin and Friml, Jiří}, issn = {1469-8137}, journal = {New Phytologist}, number = {2}, pages = {489--495}, publisher = {Wiley}, title = {{Tale of cAMP as a second messenger in auxin signaling and beyond}}, doi = {10.1111/nph.19123}, volume = {240}, year = {2023}, } @article{12144, abstract = {The phytohormone auxin is the major coordinative signal in plant development1, mediating transcriptional reprogramming by a well-established canonical signalling pathway. TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFB) auxin receptors are F-box subunits of ubiquitin ligase complexes. In response to auxin, they associate with Aux/IAA transcriptional repressors and target them for degradation via ubiquitination2,3. Here we identify adenylate cyclase (AC) activity as an additional function of TIR1/AFB receptors across land plants. Auxin, together with Aux/IAAs, stimulates cAMP production. Three separate mutations in the AC motif of the TIR1 C-terminal region, all of which abolish the AC activity, each render TIR1 ineffective in mediating gravitropism and sustained auxin-induced root growth inhibition, and also affect auxin-induced transcriptional regulation. These results highlight the importance of TIR1/AFB AC activity in canonical auxin signalling. They also identify a unique phytohormone receptor cassette combining F-box and AC motifs, and the role of cAMP as a second messenger in plants.}, author = {Qi, Linlin and Kwiatkowski, Mateusz and Chen, Huihuang and Hörmayer, Lukas and Sinclair, Scott A and Zou, Minxia and del Genio, Charo I. and Kubeš, Martin F. and Napier, Richard and Jaworski, Krzysztof and Friml, Jiří}, issn = {1476-4687}, journal = {Nature}, number = {7934}, pages = {133--138}, publisher = {Springer Nature}, title = {{Adenylate cyclase activity of TIR1/AFB auxin receptors in plants}}, doi = {10.1038/s41586-022-05369-7}, volume = {611}, year = {2022}, } @article{9656, abstract = {Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underly differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, and a crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment.}, author = {Han, Huibin and Adamowski, Maciek and Qi, Linlin and Alotaibi, SS and Friml, Jiří}, issn = {1469-8137}, journal = {New Phytologist}, number = {2}, pages = {510--522}, publisher = {Wiley}, title = {{PIN-mediated polar auxin transport regulations in plant tropic responses}}, doi = {10.1111/nph.17617}, volume = {232}, year = {2021}, }