@article{12830, abstract = {Interstitial fluid (IF) accumulation between embryonic cells is thought to be important for embryo patterning and morphogenesis. Here, we identify a positive mechanical feedback loop between cell migration and IF relocalization and find that it promotes embryonic axis formation during zebrafish gastrulation. We show that anterior axial mesendoderm (prechordal plate [ppl]) cells, moving in between the yolk cell and deep cell tissue to extend the embryonic axis, compress the overlying deep cell layer, thereby causing IF to flow from the deep cell layer to the boundary between the yolk cell and the deep cell layer, directly ahead of the advancing ppl. This IF relocalization, in turn, facilitates ppl cell protrusion formation and migration by opening up the space into which the ppl moves and, thereby, the ability of the ppl to trigger IF relocalization by pushing against the overlying deep cell layer. Thus, embryonic axis formation relies on a hydraulic feedback loop between cell migration and IF relocalization.}, author = {Huljev, Karla and Shamipour, Shayan and Nunes Pinheiro, Diana C and Preusser, Friedrich and Steccari, Irene and Sommer, Christoph M and Naik, Suyash and Heisenberg, Carl-Philipp J}, issn = {1878-1551}, journal = {Developmental Cell}, number = {7}, pages = {582--596.e7}, publisher = {Elsevier}, title = {{A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish}}, doi = {10.1016/j.devcel.2023.02.016}, volume = {58}, year = {2023}, } @article{14082, abstract = {Epithelial barrier function is commonly analyzed using transepithelial electrical resistance, which measures ion flux across a monolayer, or by adding traceable macromolecules and monitoring their passage across the monolayer. Although these methods measure changes in global barrier function, they lack the sensitivity needed to detect local or transient barrier breaches, and they do not reveal the location of barrier leaks. Therefore, we previously developed a method that we named the zinc-based ultrasensitive microscopic barrier assay (ZnUMBA), which overcomes these limitations, allowing for detection of local tight junction leaks with high spatiotemporal resolution. Here, we present expanded applications for ZnUMBA. ZnUMBA can be used in Xenopus embryos to measure the dynamics of barrier restoration and actin accumulation following laser injury. ZnUMBA can also be effectively utilized in developing zebrafish embryos as well as cultured monolayers of Madin–Darby canine kidney (MDCK) II epithelial cells. ZnUMBA is a powerful and flexible method that, with minimal optimization, can be applied to multiple systems to measure dynamic changes in barrier function with spatiotemporal precision.}, author = {Higashi, Tomohito and Stephenson, Rachel E. and Schwayer, Cornelia and Huljev, Karla and Higashi, Atsuko Y. and Heisenberg, Carl-Philipp J and Chiba, Hideki and Miller, Ann L.}, issn = {1477-9137}, journal = {Journal of Cell Science}, number = {15}, publisher = {The Company of Biologists}, title = {{ZnUMBA - a live imaging method to detect local barrier breaches}}, doi = {10.1242/jcs.260668}, volume = {136}, year = {2023}, } @phdthesis{9397, abstract = {Accumulation of interstitial fluid (IF) between embryonic cells is a common phenomenon in vertebrate embryogenesis. Unlike other model systems, where these accumulations coalesce into a large central cavity – the blastocoel, in zebrafish, IF is more uniformly distributed between the deep cells (DC) before the onset of gastrulation. This is likely due to the presence of a large extraembryonic structure – the yolk cell (YC) at the position where the blastocoel typically forms in other model organisms. IF has long been speculated to play a role in tissue morphogenesis during embryogenesis, but direct evidence supporting such function is still sparse. Here we show that the relocalization of IF to the interface between the YC and DC/epiblast is critical for axial mesendoderm (ME) cell protrusion formation and migration along this interface, a key process in embryonic axis formation. We further demonstrate that axial ME cell migration and IF relocalization engage in a positive feedback loop, where axial ME migration triggers IF accumulation ahead of the advancing axial ME tissue by mechanically compressing the overlying epiblast cell layer. Upon compression, locally induced flow relocalizes the IF through the porous epiblast tissue resulting in an IF accumulation ahead of the leading axial ME. This IF accumulation, in turn, promotes cell protrusion formation and migration of the leading axial ME cells, thereby facilitating axial ME extension. Our findings reveal a central role of dynamic IF relocalization in orchestrating germ layer morphogenesis during gastrulation.}, author = {Huljev, Karla}, issn = {2663-337X}, pages = {101}, publisher = {Institute of Science and Technology Austria}, title = {{Coordinated spatiotemporal reorganization of interstitial fluid is required for axial mesendoderm migration in zebrafish gastrulation}}, doi = {10.15479/at:ista:9397}, year = {2021}, } @unpublished{9750, abstract = {Tension of the actomyosin cell cortex plays a key role in determining cell-cell contact growth and size. The level of cortical tension outside of the cell-cell contact, when pulling at the contact edge, scales with the total size to which a cell-cell contact can grow1,2. Here we show in zebrafish primary germ layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase, and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell-cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. Once tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell-cell contact size is limited by tension stabilizing E-cadherin-actin complexes at the contact.}, author = {Slovakova, Jana and Sikora, Mateusz K and Caballero Mancebo, Silvia and Krens, Gabriel and Kaufmann, Walter and Huljev, Karla and Heisenberg, Carl-Philipp J}, booktitle = {bioRxiv}, pages = {41}, publisher = {Cold Spring Harbor Laboratory}, title = {{Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion}}, doi = {10.1101/2020.11.20.391284}, year = {2020}, }