@article{14795, abstract = {Metazoan development relies on the formation and remodeling of cell-cell contacts. Dynamic reorganization of adhesion receptors and the actomyosin cell cortex in space and time plays a central role in cell-cell contact formation and maturation. Nevertheless, how this process is mechanistically achieved when new contacts are formed remains unclear. Here, by building a biomimetic assay composed of progenitor cells adhering to supported lipid bilayers functionalized with E-cadherin ectodomains, we show that cortical F-actin flows, driven by the depletion of myosin-2 at the cell contact center, mediate the dynamic reorganization of adhesion receptors and cell cortex at the contact. E-cadherin-dependent downregulation of the small GTPase RhoA at the forming contact leads to both a depletion of myosin-2 and a decrease of F-actin at the contact center. At the contact rim, in contrast, myosin-2 becomes enriched by the retraction of bleb-like protrusions, resulting in a cortical tension gradient from the contact rim to its center. This tension gradient, in turn, triggers centrifugal F-actin flows, leading to further accumulation of F-actin at the contact rim and the progressive redistribution of E-cadherin from the contact center to the rim. Eventually, this combination of actomyosin downregulation and flows at the contact determines the characteristic molecular organization, with E-cadherin and F-actin accumulating at the contact rim, where they are needed to mechanically link the contractile cortices of the adhering cells.}, author = {Arslan, Feyza N and Hannezo, Edouard B and Merrin, Jack and Loose, Martin and Heisenberg, Carl-Philipp J}, issn = {1879-0445}, journal = {Current Biology}, number = {1}, pages = {171--182.e8}, publisher = {Elsevier}, title = {{Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts}}, doi = {10.1016/j.cub.2023.11.067}, volume = {34}, year = {2024}, } @article{14834, abstract = {Bacteria divide by binary fission. The protein machine responsible for this process is the divisome, a transient assembly of more than 30 proteins in and on the surface of the cytoplasmic membrane. Together, they constrict the cell envelope and remodel the peptidoglycan layer to eventually split the cell into two. For Escherichia coli, most molecular players involved in this process have probably been identified, but obtaining the quantitative information needed for a mechanistic understanding can often not be achieved from experiments in vivo alone. Since the discovery of the Z-ring more than 30 years ago, in vitro reconstitution experiments have been crucial to shed light on molecular processes normally hidden in the complex environment of the living cell. In this review, we summarize how rebuilding the divisome from purified components – or at least parts of it - have been instrumental to obtain the detailed mechanistic understanding of the bacterial cell division machinery that we have today.}, author = {Radler, Philipp and Loose, Martin}, issn = {0171-9335}, journal = {European Journal of Cell Biology}, keywords = {Cell Biology, General Medicine, Histology, Pathology and Forensic Medicine}, number = {1}, publisher = {Elsevier}, title = {{A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches}}, doi = {10.1016/j.ejcb.2023.151380}, volume = {103}, year = {2024}, } @article{15118, abstract = {Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2. Depletions and deletions in their respective genes cause severe cell division defects, generating drastically enlarged cells. Fluorescence microscopy of tagged FtsZ1, FtsZ2 and SepF in CdpB1 and CdpB2 mutant strains revealed an unusually disordered divisome that is not organized into a distinct ring-like structure. Biochemical analysis shows that SepF forms a tripartite complex with CdpB1/2 and crystal structures suggest that these two proteins might form filaments, possibly aligning SepF and the FtsZ2 ring during cell division. Overall our results indicate that PRC-domain proteins play essential roles in FtsZ-based cell division in Archaea.}, author = {Nußbaum, Phillip and Kureisaite-Ciziene, Danguole and Bellini, Dom and Van Der Does, Chris and Kojic, Marko and Taib, Najwa and Yeates, Anna and Tourte, Maxime and Gribaldo, Simonetta and Loose, Martin and Löwe, Jan and Albers, Sonja Verena}, issn = {2058-5276}, journal = {Nature Microbiology}, number = {3}, pages = {698--711}, publisher = {Springer Nature}, title = {{Proteins containing photosynthetic reaction centre domains modulate FtsZ-based archaeal cell division}}, doi = {10.1038/s41564-024-01600-5}, volume = {9}, year = {2024}, } @article{12163, abstract = {Small GTPases play essential roles in the organization of eukaryotic cells. In recent years, it has become clear that their intracellular functions result from intricate biochemical networks of the GTPase and their regulators that dynamically bind to a membrane surface. Due to the inherent complexities of their interactions, however, revealing the underlying mechanisms of action is often difficult to achieve from in vivo studies. This review summarizes in vitro reconstitution approaches developed to obtain a better mechanistic understanding of how small GTPase activities are regulated in space and time.}, author = {Loose, Martin and Auer, Albert and Brognara, Gabriel and Budiman, Hanifatul R and Kowalski, Lukasz M and Matijevic, Ivana}, issn = {1873-3468}, journal = {FEBS Letters}, keywords = {Cell Biology, Genetics, Molecular Biology, Biochemistry, Structural Biology, Biophysics}, number = {6}, pages = {762--777}, publisher = {Wiley}, title = {{In vitro reconstitution of small GTPase regulation}}, doi = {10.1002/1873-3468.14540}, volume = {597}, year = {2023}, } @unpublished{14591, abstract = {Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development by controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scissin machinery in plants, but the precise roles of these proteins in this process is not fully understood. Here, we characterised the roles of Plant Dynamin-Related Proteins 2 (DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to Dynamins’ recruiters, like Endophilin and Amphiphysin, in the CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the Dsh3p1,2,3 triple-mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggests that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME. One Sentence Summary In contrast to predictions based on mammalian systems, plant Dynamin-related proteins 2 are recruited to the site of Clathrin-mediated endocytosis independently of BAR-SH3 proteins.}, author = {Gnyliukh, Nataliia and Johnson, Alexander J and Nagel, Marie-Kristin and Monzer, Aline and Hlavata, Annamaria and Isono, Erika and Loose, Martin and Friml, Jiří}, booktitle = {bioRxiv}, title = {{Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants}}, doi = {10.1101/2023.10.09.561523}, year = {2023}, } @article{14039, abstract = {Membranes are essential for life. They act as semi-permeable boundaries that define cells and organelles. In addition, their surfaces actively participate in biochemical reaction networks, where they confine proteins, align reaction partners, and directly control enzymatic activities. Membrane-localized reactions shape cellular membranes, define the identity of organelles, compartmentalize biochemical processes, and can even be the source of signaling gradients that originate at the plasma membrane and reach into the cytoplasm and nucleus. The membrane surface is, therefore, an essential platform upon which myriad cellular processes are scaffolded. In this review, we summarize our current understanding of the biophysics and biochemistry of membrane-localized reactions with particular focus on insights derived from reconstituted and cellular systems. We discuss how the interplay of cellular factors results in their self-organization, condensation, assembly, and activity, and the emergent properties derived from them.}, author = {Leonard, Thomas A. and Loose, Martin and Martens, Sascha}, issn = {1878-1551}, journal = {Developmental Cell}, number = {15}, pages = {1315--1332}, publisher = {Elsevier}, title = {{The membrane surface as a platform that organizes cellular and biochemical processes}}, doi = {10.1016/j.devcel.2023.06.001}, volume = {58}, year = {2023}, } @misc{13116, abstract = {The emergence of large-scale order in self-organized systems relies on local interactions between individual components. During bacterial cell division, FtsZ -- a prokaryotic homologue of the eukaryotic protein tubulin -- polymerizes into treadmilling filaments that further organize into a cytoskeletal ring. In vitro, FtsZ filaments can form dynamic chiral assemblies. However, how the active and passive properties of individual filaments relate to these large-scale self-organized structures remains poorly understood. Here, we connect single filament properties with the mesoscopic scale by combining minimal active matter simulations and biochemical reconstitution experiments. We show that density and flexibility of active chiral filaments define their global order. At intermediate densities, curved, flexible filaments organize into chiral rings and polar bands. An effectively nematic organization dominates for high densities and for straight, mutant filaments with increased rigidity. Our predicted phase diagram captures these features quantitatively, demonstrating how the flexibility, density and chirality of active filaments affect their collective behaviour. Our findings shed light on the fundamental properties of active chiral matter and explain how treadmilling FtsZ filaments organize during bacterial cell division. }, author = {Dunajova, Zuzana and Prats Mateu, Batirtze and Radler, Philipp and Lim, Keesiang and Brandis, Dörte and Velicky, Philipp and Danzl, Johann G and Wong, Richard W. and Elgeti, Jens and Hannezo, Edouard B and Loose, Martin}, publisher = {Institute of Science and Technology Austria}, title = {{Chiral and nematic phases of flexible active filaments}}, doi = {10.15479/AT:ISTA:13116}, year = {2023}, } @article{13314, abstract = {The emergence of large-scale order in self-organized systems relies on local interactions between individual components. During bacterial cell division, FtsZ—a prokaryotic homologue of the eukaryotic protein tubulin—polymerizes into treadmilling filaments that further organize into a cytoskeletal ring. In vitro, FtsZ filaments can form dynamic chiral assemblies. However, how the active and passive properties of individual filaments relate to these large-scale self-organized structures remains poorly understood. Here we connect single-filament properties with the mesoscopic scale by combining minimal active matter simulations and biochemical reconstitution experiments. We show that the density and flexibility of active chiral filaments define their global order. At intermediate densities, curved, flexible filaments organize into chiral rings and polar bands. An effectively nematic organization dominates for high densities and for straight, mutant filaments with increased rigidity. Our predicted phase diagram quantitatively captures these features, demonstrating how the flexibility, density and chirality of the active filaments affect their collective behaviour. Our findings shed light on the fundamental properties of active chiral matter and explain how treadmilling FtsZ filaments organize during bacterial cell division.}, author = {Dunajova, Zuzana and Prats Mateu, Batirtze and Radler, Philipp and Lim, Keesiang and Brandis, Dörte and Velicky, Philipp and Danzl, Johann G and Wong, Richard W. and Elgeti, Jens and Hannezo, Edouard B and Loose, Martin}, issn = {1745-2481}, journal = {Nature Physics}, pages = {1916--1926}, publisher = {Springer Nature}, title = {{Chiral and nematic phases of flexible active filaments}}, doi = {10.1038/s41567-023-02218-w}, volume = {19}, year = {2023}, } @article{11373, abstract = {The actin-homologue FtsA is essential for E. coli cell division, as it links FtsZ filaments in the Z-ring to transmembrane proteins. FtsA is thought to initiate cell constriction by switching from an inactive polymeric to an active monomeric conformation, which recruits downstream proteins and stabilizes the Z-ring. However, direct biochemical evidence for this mechanism is missing. Here, we use reconstitution experiments and quantitative fluorescence microscopy to study divisome activation in vitro. By comparing wild-type FtsA with FtsA R286W, we find that this hyperactive mutant outperforms FtsA WT in replicating FtsZ treadmilling dynamics, FtsZ filament stabilization and recruitment of FtsN. We could attribute these differences to a faster exchange and denser packing of FtsA R286W below FtsZ filaments. Using FRET microscopy, we also find that FtsN binding promotes FtsA self-interaction. We propose that in the active divisome FtsA and FtsN exist as a dynamic copolymer that follows treadmilling filaments of FtsZ.}, author = {Radler, Philipp and Baranova, Natalia S. and Dos Santos Caldas, Paulo R and Sommer, Christoph M and Lopez Pelegrin, Maria D and Michalik, David and Loose, Martin}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry}, publisher = {Springer Nature}, title = {{In vitro reconstitution of Escherichia coli divisome activation}}, doi = {10.1038/s41467-022-30301-y}, volume = {13}, year = {2022}, } @article{8988, abstract = {The differentiation of cells depends on a precise control of their internal organization, which is the result of a complex dynamic interplay between the cytoskeleton, molecular motors, signaling molecules, and membranes. For example, in the developing neuron, the protein ADAP1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) has been suggested to control dendrite branching by regulating the small GTPase ARF6. Together with the motor protein KIF13B, ADAP1 is also thought to mediate delivery of the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to the axon tip, thus contributing to PIP3 polarity. However, what defines the function of ADAP1 and how its different roles are coordinated are still not clear. Here, we studied ADAP1’s functions using in vitro reconstitutions. We found that KIF13B transports ADAP1 along microtubules, but that PIP3 as well as PI(3,4)P2 act as stop signals for this transport instead of being transported. We also demonstrate that these phosphoinositides activate ADAP1’s enzymatic activity to catalyze GTP hydrolysis by ARF6. Together, our results support a model for the cellular function of ADAP1, where KIF13B transports ADAP1 until it encounters high PIP3/PI(3,4)P2 concentrations in the plasma membrane. Here, ADAP1 disassociates from the motor to inactivate ARF6, promoting dendrite branching.}, author = {Düllberg, Christian F and Auer, Albert and Canigova, Nikola and Loibl, Katrin and Loose, Martin}, issn = {10916490}, journal = {PNAS}, number = {1}, publisher = {National Academy of Sciences}, title = {{In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1}}, doi = {10.1073/pnas.2010054118}, volume = {118}, year = {2021}, } @article{9243, abstract = {Peptidoglycan is an essential component of the bacterial cell envelope that surrounds the cytoplasmic membrane to protect the cell from osmotic lysis. Important antibiotics such as β-lactams and glycopeptides target peptidoglycan biosynthesis. Class A penicillin-binding proteins (PBPs) are bifunctional membrane-bound peptidoglycan synthases that polymerize glycan chains and connect adjacent stem peptides by transpeptidation. How these enzymes work in their physiological membrane environment is poorly understood. Here, we developed a novel Förster resonance energy transfer-based assay to follow in real time both reactions of class A PBPs reconstituted in liposomes or supported lipid bilayers and applied this assay with PBP1B homologues from Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii in the presence or absence of their cognate lipoprotein activator. Our assay will allow unravelling the mechanisms of peptidoglycan synthesis in a lipid-bilayer environment and can be further developed to be used for high-throughput screening for new antimicrobials.}, author = {Hernández-Rocamora, Víctor M. and Baranova, Natalia S. and Peters, Katharina and Breukink, Eefjan and Loose, Martin and Vollmer, Waldemar}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Real time monitoring of peptidoglycan synthesis by membrane-reconstituted penicillin binding proteins}}, doi = {10.7554/eLife.61525}, volume = {10}, year = {2021}, } @article{9414, abstract = {Microtubule plus-end depolymerization rate is a potentially important target of physiological regulation, but it has been challenging to measure, so its role in spatial organization is poorly understood. Here we apply a method for tracking plus ends based on time difference imaging to measure depolymerization rates in large interphase asters growing in Xenopus egg extract. We observed strong spatial regulation of depolymerization rates, which were higher in the aster interior compared with the periphery, and much less regulation of polymerization or catastrophe rates. We interpret these data in terms of a limiting component model, where aster growth results in lower levels of soluble tubulin and microtubule-associated proteins (MAPs) in the interior cytosol compared with that at the periphery. The steady-state polymer fraction of tubulin was ∼30%, so tubulin is not strongly depleted in the aster interior. We propose that the limiting component for microtubule assembly is a MAP that inhibits depolymerization, and that egg asters are tuned to low microtubule density.}, author = {Ishihara, Keisuke and Decker, Franziska and Dos Santos Caldas, Paulo R and Pelletier, James F. and Loose, Martin and Brugués, Jan and Mitchison, Timothy J.}, issn = {1939-4586}, journal = {Molecular Biology of the Cell}, number = {9}, pages = {869--879}, publisher = {American Society for Cell Biology}, title = {{Spatial variation of microtubule depolymerization in large asters}}, doi = {10.1091/MBC.E20-11-0723}, volume = {32}, year = {2021}, } @article{9907, abstract = {DivIVA is a protein initially identified as a spatial regulator of cell division in the model organism Bacillus subtilis, but its homologues are present in many other Gram-positive bacteria, including Clostridia species. Besides its role as topological regulator of the Min system during bacterial cell division, DivIVA is involved in chromosome segregation during sporulation, genetic competence, and cell wall synthesis. DivIVA localizes to regions of high membrane curvature, such as the cell poles and cell division site, where it recruits distinct binding partners. Previously, it was suggested that negative curvature sensing is the main mechanism by which DivIVA binds to these specific regions. Here, we show that Clostridioides difficile DivIVA binds preferably to membranes containing negatively charged phospholipids, especially cardiolipin. Strikingly, we observed that upon binding, DivIVA modifies the lipid distribution and induces changes to lipid bilayers containing cardiolipin. Our observations indicate that DivIVA might play a more complex and so far unknown active role during the formation of the cell division septal membrane. }, author = {Labajová, Naďa and Baranova, Natalia S. and Jurásek, Miroslav and Vácha, Robert and Loose, Martin and Barák, Imrich}, issn = {14220067}, journal = {International Journal of Molecular Sciences}, number = {15}, publisher = {MDPI}, title = {{Cardiolipin-containing lipid membranes attract the bacterial cell division protein diviva}}, doi = {10.3390/ijms22158350}, volume = {22}, year = {2021}, } @article{9887, abstract = {Clathrin-mediated endocytosis is the major route of entry of cargos into cells and thus underpins many physiological processes. During endocytosis, an area of flat membrane is remodeled by proteins to create a spherical vesicle against intracellular forces. The protein machinery which mediates this membrane bending in plants is unknown. However, it is known that plant endocytosis is actin independent, thus indicating that plants utilize a unique mechanism to mediate membrane bending against high-turgor pressure compared to other model systems. Here, we investigate the TPLATE complex, a plant-specific endocytosis protein complex. It has been thought to function as a classical adaptor functioning underneath the clathrin coat. However, by using biochemical and advanced live microscopy approaches, we found that TPLATE is peripherally associated with clathrin-coated vesicles and localizes at the rim of endocytosis events. As this localization is more fitting to the protein machinery involved in membrane bending during endocytosis, we examined cells in which the TPLATE complex was disrupted and found that the clathrin structures present as flat patches. This suggests a requirement of the TPLATE complex for membrane bending during plant clathrin–mediated endocytosis. Next, we used in vitro biophysical assays to confirm that the TPLATE complex possesses protein domains with intrinsic membrane remodeling activity. These results redefine the role of the TPLATE complex and implicate it as a key component of the evolutionarily distinct plant endocytosis mechanism, which mediates endocytic membrane bending against the high-turgor pressure in plant cells.}, author = {Johnson, Alexander J and Dahhan, Dana A and Gnyliukh, Nataliia and Kaufmann, Walter and Zheden, Vanessa and Costanzo, Tommaso and Mahou, Pierre and Hrtyan, Mónika and Wang, Jie and Aguilera Servin, Juan L and van Damme, Daniël and Beaurepaire, Emmanuel and Loose, Martin and Bednarek, Sebastian Y and Friml, Jiří}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {51}, publisher = {National Academy of Sciences}, title = {{The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis}}, doi = {10.1073/pnas.2113046118}, volume = {118}, year = {2021}, } @article{7580, abstract = {The eukaryotic endomembrane system is controlled by small GTPases of the Rab family, which are activated at defined times and locations in a switch-like manner. While this switch is well understood for an individual protein, how regulatory networks produce intracellular activity patterns is currently not known. Here, we combine in vitro reconstitution experiments with computational modeling to study a minimal Rab5 activation network. We find that the molecular interactions in this system give rise to a positive feedback and bistable collective switching of Rab5. Furthermore, we find that switching near the critical point is intrinsically stochastic and provide evidence that controlling the inactive population of Rab5 on the membrane can shape the network response. Notably, we demonstrate that collective switching can spread on the membrane surface as a traveling wave of Rab5 activation. Together, our findings reveal how biochemical signaling networks control vesicle trafficking pathways and how their nonequilibrium properties define the spatiotemporal organization of the cell.}, author = {Bezeljak, Urban and Loya, Hrushikesh and Kaczmarek, Beata M and Saunders, Timothy E. and Loose, Martin}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {12}, pages = {6504--6549}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Stochastic activation and bistability in a Rab GTPase regulatory network}}, doi = {10.1073/pnas.1921027117}, volume = {117}, year = {2020}, } @inbook{7572, abstract = {The polymerization–depolymerization dynamics of cytoskeletal proteins play essential roles in the self-organization of cytoskeletal structures, in eukaryotic as well as prokaryotic cells. While advances in fluorescence microscopy and in vitro reconstitution experiments have helped to study the dynamic properties of these complex systems, methods that allow to collect and analyze large quantitative datasets of the underlying polymer dynamics are still missing. Here, we present a novel image analysis workflow to study polymerization dynamics of active filaments in a nonbiased, highly automated manner. Using treadmilling filaments of the bacterial tubulin FtsZ as an example, we demonstrate that our method is able to specifically detect, track and analyze growth and shrinkage of polymers, even in dense networks of filaments. We believe that this automated method can facilitate the analysis of a large variety of dynamic cytoskeletal systems, using standard time-lapse movies obtained from experiments in vitro as well as in the living cell. Moreover, we provide scripts implementing this method as supplementary material.}, author = {Dos Santos Caldas, Paulo R and Radler, Philipp and Sommer, Christoph M and Loose, Martin}, booktitle = {Methods in Cell Biology}, editor = {Tran, Phong }, issn = {0091679X}, pages = {145--161}, publisher = {Elsevier}, title = {{Computational analysis of filament polymerization dynamics in cytoskeletal networks}}, doi = {10.1016/bs.mcb.2020.01.006}, volume = {158}, year = {2020}, } @article{7387, abstract = {Most bacteria accomplish cell division with the help of a dynamic protein complex called the divisome, which spans the cell envelope in the plane of division. Assembly and activation of this machinery are coordinated by the tubulin-related GTPase FtsZ, which was found to form treadmilling filaments on supported bilayers in vitro1, as well as in live cells, in which filaments circle around the cell division site2,3. Treadmilling of FtsZ is thought to actively move proteins around the division septum, thereby distributing peptidoglycan synthesis and coordinating the inward growth of the septum to form the new poles of the daughter cells4. However, the molecular mechanisms underlying this function are largely unknown. Here, to study how FtsZ polymerization dynamics are coupled to downstream proteins, we reconstituted part of the bacterial cell division machinery using its purified components FtsZ, FtsA and truncated transmembrane proteins essential for cell division. We found that the membrane-bound cytosolic peptides of FtsN and FtsQ co-migrated with treadmilling FtsZ–FtsA filaments, but despite their directed collective behaviour, individual peptides showed random motion and transient confinement. Our work suggests that divisome proteins follow treadmilling FtsZ filaments by a diffusion-and-capture mechanism, which can give rise to a moving zone of signalling activity at the division site.}, author = {Baranova, Natalia S. and Radler, Philipp and Hernández-Rocamora, Víctor M. and Alfonso, Carlos and Lopez Pelegrin, Maria D and Rivas, Germán and Vollmer, Waldemar and Loose, Martin}, issn = {2058-5276}, journal = {Nature Microbiology}, pages = {407--417}, publisher = {Springer Nature}, title = {{Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins}}, doi = {10.1038/s41564-019-0657-5}, volume = {5}, year = {2020}, } @article{7197, abstract = {During bacterial cell division, the tubulin-homolog FtsZ forms a ring-like structure at the center of the cell. This Z-ring not only organizes the division machinery, but treadmilling of FtsZ filaments was also found to play a key role in distributing proteins at the division site. What regulates the architecture, dynamics and stability of the Z-ring is currently unknown, but FtsZ-associated proteins are known to play an important role. Here, using an in vitro reconstitution approach, we studied how the well-conserved protein ZapA affects FtsZ treadmilling and filament organization into large-scale patterns. Using high-resolution fluorescence microscopy and quantitative image analysis, we found that ZapA cooperatively increases the spatial order of the filament network, but binds only transiently to FtsZ filaments and has no effect on filament length and treadmilling velocity. Together, our data provides a model for how FtsZ-associated proteins can increase the precision and stability of the bacterial cell division machinery in a switch-like manner.}, author = {Dos Santos Caldas, Paulo R and Lopez Pelegrin, Maria D and Pearce, Daniel J. G. and Budanur, Nazmi B and Brugués, Jan and Loose, Martin}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Cooperative ordering of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinker ZapA}}, doi = {10.1038/s41467-019-13702-4}, volume = {10}, year = {2019}, } @inbook{629, abstract = {Even simple cells like bacteria have precisely regulated cellular anatomies, which allow them to grow, divide and to respond to internal or external cues with high fidelity. How spatial and temporal intracellular organization in prokaryotic cells is achieved and maintained on the basis of locally interacting proteins still remains largely a mystery. Bulk biochemical assays with purified components and in vivo experiments help us to approach key cellular processes from two opposite ends, in terms of minimal and maximal complexity. However, to understand how cellular phenomena emerge, that are more than the sum of their parts, we have to assemble cellular subsystems step by step from the bottom up. Here, we review recent in vitro reconstitution experiments with proteins of the bacterial cell division machinery and illustrate how they help to shed light on fundamental cellular mechanisms that constitute spatiotemporal order and regulate cell division.}, author = {Loose, Martin and Zieske, Katja and Schwille, Petra}, booktitle = {Prokaryotic Cytoskeletons}, pages = {419 -- 444}, publisher = {Springer}, title = {{Reconstitution of protein dynamics involved in bacterial cell division}}, doi = {10.1007/978-3-319-53047-5_15}, volume = {84}, year = {2017}, } @inbook{1213, abstract = {Bacterial cytokinesis is commonly initiated by the Z-ring, a dynamic cytoskeletal structure that assembles at the site of division. Its primary component is FtsZ, a tubulin-like GTPase, that like its eukaryotic relative forms protein filaments in the presence of GTP. Since the discovery of the Z-ring 25 years ago, various models for the role of FtsZ have been suggested. However, important information about the architecture and dynamics of FtsZ filaments during cytokinesis is still missing. One reason for this lack of knowledge has been the small size of bacteria, which has made it difficult to resolve the orientation and dynamics of individual FtsZ filaments in the Z-ring. While superresolution microscopy experiments have helped to gain more information about the organization of the Z-ring in the dividing cell, they were not yet able to elucidate a mechanism of how FtsZ filaments reorganize during assembly and disassembly of the Z-ring. In this chapter, we explain how to use an in vitro reconstitution approach to investigate the self-organization of FtsZ filaments recruited to a biomimetic lipid bilayer by its membrane anchor FtsA. We show how to perform single-molecule experiments to study the behavior of individual FtsZ monomers during the constant reorganization of the FtsZ-FtsA filament network. We describe how to analyze the dynamics of single molecules and explain why this information can help to shed light onto possible mechanism of Z-ring constriction. We believe that similar experimental approaches will be useful to study the mechanism of membrane-based polymerization of other cytoskeletal systems, not only from prokaryotic but also eukaryotic origin.}, author = {Baranova, Natalia and Loose, Martin}, booktitle = {Cytokinesis}, editor = {Echard, Arnaud }, issn = {0091679X}, pages = {355 -- 370}, publisher = {Academic Press}, title = {{Single-molecule measurements to study polymerization dynamics of FtsZ-FtsA copolymers}}, doi = {10.1016/bs.mcb.2016.03.036}, volume = {137}, year = {2017}, } @article{960, abstract = {The human cerebral cortex is the seat of our cognitive abilities and composed of an extraordinary number of neurons, organized in six distinct layers. The establishment of specific morphological and physiological features in individual neurons needs to be regulated with high precision. Impairments in the sequential developmental programs instructing corticogenesis lead to alterations in the cortical cytoarchitecture which is thought to represent the major underlying cause for several neurological disorders including neurodevelopmental and psychiatric diseases. In this review we discuss the role of cell polarity at sequential stages during cortex development. We first provide an overview of morphological cell polarity features in cortical neural stem cells and newly-born postmitotic neurons. We then synthesize a conceptual molecular and biochemical framework how cell polarity is established at the cellular level through a break in symmetry in nascent cortical projection neurons. Lastly we provide a perspective how the molecular mechanisms applying to single cells could be probed and integrated in an in vivo and tissue-wide context.}, author = {Hansen, Andi H and Düllberg, Christian F and Mieck, Christine and Loose, Martin and Hippenmeyer, Simon}, issn = {16625102}, journal = {Frontiers in Cellular Neuroscience}, publisher = {Frontiers Research Foundation}, title = {{Cell polarity in cerebral cortex development - cellular architecture shaped by biochemical networks}}, doi = {10.3389/fncel.2017.00176}, volume = {11}, year = {2017}, } @inbook{1544, abstract = {Cell division in prokaryotes and eukaryotes is commonly initiated by the well-controlled binding of proteins to the cytoplasmic side of the cell membrane. However, a precise characterization of the spatiotemporal dynamics of membrane-bound proteins is often difficult to achieve in vivo. Here, we present protocols for the use of supported lipid bilayers to rebuild the cytokinetic machineries of cells with greatly different dimensions: the bacterium Escherichia coli and eggs of the vertebrate Xenopus laevis. Combined with total internal reflection fluorescence microscopy, these experimental setups allow for precise quantitative analyses of membrane-bound proteins. The protocols described to obtain glass-supported membranes from bacterial and vertebrate lipids can be used as starting points for other reconstitution experiments. We believe that similar biochemical assays will be instrumental to study the biochemistry and biophysics underlying a variety of complex cellular tasks, such as signaling, vesicle trafficking, and cell motility.}, author = {Nguyen, Phuong and Field, Christine and Groen, Aaron and Mitchison, Timothy and Loose, Martin}, booktitle = {Building a Cell from its Components Parts}, pages = {223 -- 241}, publisher = {Academic Press}, title = {{Using supported bilayers to study the spatiotemporal organization of membrane-bound proteins}}, doi = {10.1016/bs.mcb.2015.01.007}, volume = {128}, year = {2015}, } @article{1989, abstract = {During animal cell division, the cleavage furrow is positioned by microtubules that signal to the actin cortex at the cell midplane. We developed a cell-free system to recapitulate cytokinesis signaling using cytoplasmic extract from Xenopus eggs. Microtubules grew out as asters from artificial centrosomes and met to organize antiparallel overlap zones. These zones blocked the interpenetration of neighboring asters and recruited cytokinesis midzone proteins, including the chromosomal passenger complex (CPC) and centralspindlin. The CPC was transported to overlap zones, which required two motor proteins, Kif4A and a Kif20A paralog. Using supported lipid bilayers to mimic the plasma membrane, we observed the recruitment of cleavage furrow markers, including an active RhoA reporter, at microtubule overlaps. This system opens further approaches to understanding the biophysics of cytokinesis signaling.}, author = {Nguyen, Phuong A and Groen, Aaron C and Martin Loose and Ishihara, Keisuke and Wühr, Martin and Field, Christine M and Mitchison, Timothy J}, journal = {Science}, number = {6206}, pages = {244 -- 247}, publisher = {American Association for the Advancement of Science}, title = {{Spatial organization of cytokinesis signaling reconstituted in a cell-free system}}, doi = {10.1126/science.1256773}, volume = {346}, year = {2014}, } @article{1990, abstract = {Bacterial cytokinesis is commonly initiated by the Z-ring, a cytoskeletal structure that assembles at the site of division. Its primary component is FtsZ, a tubulin superfamily GTPase, which is recruited to the membrane by the actin-related protein FtsA. Both proteins are required for the formation of the Z-ring, but if and how they influence each other's assembly dynamics is not known. Here, we reconstituted FtsA-dependent recruitment of FtsZ polymers to supported membranes, where both proteins self-organize into complex patterns, such as fast-moving filament bundles and chirally rotating rings. Using fluorescence microscopy and biochemical perturbations, we found that these large-scale rearrangements of FtsZ emerge from its polymerization dynamics and a dual, antagonistic role of FtsA: recruitment of FtsZ filaments to the membrane and negative regulation of FtsZ organization. Our findings provide a model for the initial steps of bacterial cell division and illustrate how dynamic polymers can self-organize into large-scale structures.}, author = {Martin Loose and Mitchison, Timothy J}, journal = {Nature Cell Biology}, number = {1}, pages = {38 -- 46}, publisher = {Nature Publishing Group}, title = {{The bacterial cell division proteins ftsA and ftsZ self-organize into dynamic cytoskeletal patterns}}, doi = {10.1038/ncb2885}, volume = {16}, year = {2014}, } @article{1988, abstract = {The rod-shaped bacterium Escherichia coli selects the cell center as site of division with the help of the proteins MinC, MinD, and MinE. This protein system collectively oscillates between the two cell poles by alternately binding to the membrane in one of the two cell halves. This dynamic behavior, which emerges from the interaction of the ATPase MinD and its activator MinE on the cell membrane, has become a paradigm for protein self-organization. Recently, it has been found that not only the binding of MinD to the membrane, but also interactions of MinE with the membrane contribute to Min-protein self-organization. Here, we show that by accounting for this finding in a computational model, we can comprehensively describe all observed Min-protein patterns in vivo and in vitro. Furthermore, by varying the system's geometry, our computations predict patterns that have not yet been reported. We confirm these predictions experimentally.}, author = {Bonny, Mike and Fischer-Friedrich, Elisabeth and Martin Loose and Schwille, Petra and Kruse, Karsten}, journal = {PLoS Computational Biology}, number = {12}, publisher = {Public Library of Science}, title = {{Membrane binding of MinE allows for a comprehensive description of Min-protein pattern formation}}, doi = {10.1371/journal.pcbi.1003347}, volume = {9}, year = {2013}, } @article{1987, abstract = {In the living cell, proteins are able to organize space much larger than their dimensions. In return, changes of intracellular space can influence biochemical reactions, allowing cells to sense their size and shape. Despite the possibility to reconstitute protein self-organization with only a few purified components, we still lack knowledge of how geometrical boundaries affect spatiotemporal protein patterns. Following a minimal systems approach, we used purified proteins and photolithographically patterned membranes to study the influence of spatial confinement on the self-organization of the Min system, a spatial regulator of bacterial cytokinesis, in vitro. We found that the emerging protein pattern responds even to the lateral, two-dimensional geometry of the membrane such that, as in the three-dimensional cell, Min protein waves travel along the longest axis of the membrane patch. This shows that for spatial sensing the Min system does not need to be enclosed in a three-dimensional compartment. Using a computational model we quantitatively analyzed our experimental findings and identified persistent binding of MinE to the membrane as requirement for the Min system to sense geometry. Our results give insight into the interplay between geometrical confinement and biochemical patterns emerging from a nonlinear reaction-diffusion system. }, author = {Schweizer, Jakob and Martin Loose and Bonny, Mike and Kruse, Karsten and Mönch, Ingolf and Schwille, Petra }, journal = {PNAS}, number = {38}, pages = {15283 -- 15288}, publisher = {National Academy of Sciences}, title = {{Geometry sensing by self-organized protein patterns}}, doi = {10.1073/pnas.1206953109}, volume = {109}, year = {2012}, } @article{1985, abstract = { In Escherichia coli, the pole-to-pole oscillation of the Min proteins directs septum formation to midcell, which is required for symmetric cell division. In vitro, protein waves emerge from the self-organization of MinD, a membrane-binding ATPase, and its activator MinE. For wave propagation, the proteins need to cycle through states of collective membrane binding and unbinding. Although MinD presumably undergoes cooperative membrane attachment, it is unclear how synchronous detachment is coordinated. We used confocal and single-molecule microscopy to elucidate the order of events during Min wave propagation. We propose that protein detachment at the rear of the wave, and the formation of the E-ring, are accomplished by two complementary processes: first, local accumulation of MinE due to rapid rebinding, leading to dynamic instability; and second, a structural change induced by membrane-interaction of MinE in an equimolar MinD-MinE (MinDE) complex, which supports the robustness of pattern formation.}, author = {Martin Loose and Fischer-Friedrich, Elisabeth and Herold, Christoph and Kruse, Karsten and Schwille, Petra }, journal = {Nature Structural and Molecular Biology}, number = {5}, pages = {577 -- 583}, publisher = {Nature Publishing Group}, title = {{Min protein patterns emerge from rapid rebinding and membrane interaction of MinE}}, doi = {10.1038/nsmb.2037}, volume = {18}, year = {2011}, } @article{1986, abstract = {One of the most fundamental features of biological systems is probably their ability to self-organize in space and time on different scales. Despite many elaborate theoretical models of how molecular self-organization can come about, only a few experimental systems of biological origin have so far been rigorously described, due mostly to their inherent complexity. The most promising strategy of modern biophysics is thus to identify minimal biological systems showing self-organized emergent behavior. One of the best-understood examples of protein self-organization, which has recently been successfully reconstituted in vitro, is represented by the oscillations of the Min proteins in Escherichia coli. In this review, we summarize the current understanding of the mechanism of Min protein self-organization in vivo and in vitro. We discuss the potential of the Min oscillations to sense the geometry of the cell and suggest that spontaneous protein waves could be a general means of intracellular organization. We hypothesize that cooperative membrane binding and unbinding, e.g., as an energy-dependent switch, may act as an important regulatory mechanism for protein oscillations and pattern formation in the cell.}, author = {Martin Loose and Kruse, Karsten and Schwille, Petra }, journal = {Annual Review of Biophysics}, number = {1}, pages = {315 -- 336}, publisher = {Annual Reviews}, title = {{Protein self-organization: Lessons from the min system}}, doi = {10.1146/annurev-biophys-042910-155332}, volume = {40}, year = {2011}, } @article{1984, abstract = {In animal and plant cells, mitotic chromatin locally generates microtubules that self-organize into a mitotic spindle, and its dimensions and bipolar symmetry are essential for accurate chromosome segregation. By immobilizing microscopic chromatin-coated beads on slide surfaces using a microprinting technique, we have examined the effect of chromatin on the dimensions and symmetry of spindles in Xenopus laevis cytoplasmic extracts. While circular spots with diameters around 14-18 μm trigger bipolar spindle formation, larger spots generate an incorrect number of poles. We also examined lines of chromatin with various dimensions. Their length determined the number of poles that formed, with a 6 × 18 μm rectangular patch generating normal spindle morphology. Around longer lines, multiple poles formed and the structures were disorganized. While lines thinner than 10 μm generated symmetric structures, thicker lines induced the formation of asymmetric structures where all microtubules are on the same side of the line. Our results show that chromatin defines spindle shape and orientation. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.}, author = {Dinarina, Ana and Pugieux, Céline and Corral, Maria M and Martin Loose and Spatz, Joachim P and Karsenti, Éric and Nédélec, François J}, journal = {Cell}, number = {3}, pages = {502 -- 513}, publisher = {Cell Press}, title = {{Chromatin shapes the mitotic spindle}}, doi = {10.1016/j.cell.2009.05.027}, volume = {138}, year = {2009}, } @article{1983, abstract = {During many cellular processes such as cell division, polarization and motility, the plasma membrane does not only represent a passive physical barrier, but also provides a highly dynamic platform for the interplay between lipids, membrane binding proteins and cytoskeletal elements. Even though many regulators of these interactions are known, their mutual interdependence appears to be highly complex and difficult to study in a living cell. Over the past few years, in vitro studies on membrane-cytoskeleton interactions using biomimetic membranes turned out to be extremely helpful to get better mechanistic insight into the dynamics of these processes. In this review, we discuss some of the recent developments using in vitro assays to dissect the role of the players involved: lipids in the membrane, proteins binding to membranes and proteins binding to membrane proteins. We also summarize advantages and disadvantages of supported lipid bilayers as model membrane.}, author = {Martin Loose and Schwille, Petra }, journal = {Journal of Structural Biology}, number = {1}, pages = {143 -- 151}, publisher = {Academic Press}, title = {{Biomimetic membrane systems to study cellular organization}}, doi = {10.1016/j.jsb.2009.03.016}, volume = {168}, year = {2009}, } @article{1982, abstract = {In the bacterium Escherichia coli, the Min proteins oscillate between the cell poles to select the cell center as division site. This dynamic pattern has been proposed to arise by self-organization of these proteins, and several models have suggested a reaction-diffusion type mechanism. Here, we found that the Min proteins spontaneously formed planar surface waves on a flat membrane in vitro. The formation and maintenance of these patterns, which extended for hundreds of micrometers, required adenosine 5′-triphosphate (ATP), and they persisted for hours. We present a reaction-diffusion model of the MinD and MinE dynamics that accounts for our experimental observations and also captures the in vivo oscillations.}, author = {Martin Loose and Fischer-Friedrich, Elisabeth and Ries, Jonas and Kruse, Karsten and Schwille, Petra }, journal = {Science}, number = {5877}, pages = {789 -- 792}, publisher = {American Association for the Advancement of Science}, title = {{Spatial regulators for bacterial cell division self-organize into surface waves in vitro}}, doi = {10.1126/science.1154413}, volume = {320}, year = {2008}, }