--- _id: '14683' abstract: - lang: eng text: "Mosaic analysis with double markers (MADM) technology enables the generation of genetic mosaic tissue in mice and high-resolution phenotyping at the individual cell level. Here, we present a protocol for isolating MADM-labeled cells with high yield for downstream molecular analyses using fluorescence-activated cell sorting (FACS). We describe steps for generating MADM-labeled mice, perfusion, single-cell suspension, and debris removal. We then detail procedures for cell sorting by FACS and downstream analysis. This protocol is suitable for embryonic to adult mice.\r\nFor complete details on the use and execution of this protocol, please refer to Contreras et al. (2021).1" acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: This research was supported by the Scientific Service Units (SSU) at IST Austria through resources provided by the Imaging & Optics Facility (IOF) and Preclinical Facilities (PCF). N.A. received support from FWF Firnberg-Programme (T 1031). G.C. received support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 754411 as an ISTplus postdoctoral fellow. This work was also supported by IST Austria institutional funds, FWF SFB F78 to S.H., and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725780 LinPro) to S.H. article_number: '102771' article_processing_charge: No article_type: review author: - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Giselle T full_name: Cheung, Giselle T id: 471195F6-F248-11E8-B48F-1D18A9856A87 last_name: Cheung orcid: 0000-0001-8457-2572 - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Amberg N, Cheung GT, Hippenmeyer S. Protocol for sorting cells from mouse brains labeled with mosaic analysis with double markers by flow cytometry. STAR Protocols. 2023;5(1). doi:10.1016/j.xpro.2023.102771 apa: Amberg, N., Cheung, G. T., & Hippenmeyer, S. (2023). Protocol for sorting cells from mouse brains labeled with mosaic analysis with double markers by flow cytometry. STAR Protocols. Elsevier. https://doi.org/10.1016/j.xpro.2023.102771 chicago: Amberg, Nicole, Giselle T Cheung, and Simon Hippenmeyer. “Protocol for Sorting Cells from Mouse Brains Labeled with Mosaic Analysis with Double Markers by Flow Cytometry.” STAR Protocols. Elsevier, 2023. https://doi.org/10.1016/j.xpro.2023.102771. ieee: N. Amberg, G. T. Cheung, and S. Hippenmeyer, “Protocol for sorting cells from mouse brains labeled with mosaic analysis with double markers by flow cytometry,” STAR Protocols, vol. 5, no. 1. Elsevier, 2023. ista: Amberg N, Cheung GT, Hippenmeyer S. 2023. Protocol for sorting cells from mouse brains labeled with mosaic analysis with double markers by flow cytometry. STAR Protocols. 5(1), 102771. mla: Amberg, Nicole, et al. “Protocol for Sorting Cells from Mouse Brains Labeled with Mosaic Analysis with Double Markers by Flow Cytometry.” STAR Protocols, vol. 5, no. 1, 102771, Elsevier, 2023, doi:10.1016/j.xpro.2023.102771. short: N. Amberg, G.T. Cheung, S. Hippenmeyer, STAR Protocols 5 (2023). date_created: 2023-12-13T11:48:05Z date_published: 2023-12-08T00:00:00Z date_updated: 2023-12-18T08:06:14Z day: '08' ddc: - '570' department: - _id: SiHi doi: 10.1016/j.xpro.2023.102771 ec_funded: 1 external_id: pmid: - '38070137' intvolume: ' 5' issue: '1' keyword: - General Immunology and Microbiology - General Biochemistry - Genetics and Molecular Biology - General Neuroscience language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.xpro.2023.102771 month: '12' oa: 1 oa_version: Submitted Version pmid: 1 project: - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 059F6AB4-7A3F-11EA-A408-12923DDC885E grant_number: F07805 name: Molecular Mechanisms of Neural Stem Cell Lineage Progression - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: STAR Protocols publication_identifier: issn: - 2666-1667 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Protocol for sorting cells from mouse brains labeled with mosaic analysis with double markers by flow cytometry tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2023' ... --- _id: '14757' abstract: - lang: eng text: The cerebral cortex is comprised of a vast cell-type diversity sequentially generated by cortical progenitor cells. Faithful progenitor lineage progression requires the tight orchestration of distinct molecular and cellular mechanisms regulating proper progenitor proliferation behavior and differentiation. Correct execution of developmental programs involves a complex interplay of cell intrinsic and tissue-wide mechanisms. Many studies over the past decades have been able to determine a plethora of genes critically involved in cortical development. However, only a few made use of genetic paradigms with sparse and global gene deletion to probe cell-autonomous vs. tissue-wide contribution. In this chapter, we will elaborate on the importance of dissecting the cell-autonomous and tissue-wide mechanisms to gain a precise understanding of gene function during radial glial progenitor lineage progression. article_processing_charge: No author: - first_name: Ana full_name: Villalba Requena, Ana id: 68cb85a0-39f7-11eb-9559-9aaab4f6a247 last_name: Villalba Requena orcid: 0000-0002-5615-5277 - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: 'Villalba Requena A, Amberg N, Hippenmeyer S. Interplay of Cell‐autonomous Gene Function and Tissue‐wide Mechanisms Regulating Radial Glial Progenitor Lineage Progression. In: Huttner W, ed. Neocortical Neurogenesis in Development and Evolution. Wiley; 2023:169-191. doi:10.1002/9781119860914.ch10' apa: Villalba Requena, A., Amberg, N., & Hippenmeyer, S. (2023). Interplay of Cell‐autonomous Gene Function and Tissue‐wide Mechanisms Regulating Radial Glial Progenitor Lineage Progression. In W. Huttner (Ed.), Neocortical Neurogenesis in Development and Evolution (pp. 169–191). Wiley. https://doi.org/10.1002/9781119860914.ch10 chicago: Villalba Requena, Ana, Nicole Amberg, and Simon Hippenmeyer. “Interplay of Cell‐autonomous Gene Function and Tissue‐wide Mechanisms Regulating Radial Glial Progenitor Lineage Progression.” In Neocortical Neurogenesis in Development and Evolution, edited by Wieland Huttner, 169–91. Wiley, 2023. https://doi.org/10.1002/9781119860914.ch10. ieee: A. Villalba Requena, N. Amberg, and S. Hippenmeyer, “Interplay of Cell‐autonomous Gene Function and Tissue‐wide Mechanisms Regulating Radial Glial Progenitor Lineage Progression,” in Neocortical Neurogenesis in Development and Evolution, W. Huttner, Ed. Wiley, 2023, pp. 169–191. ista: 'Villalba Requena A, Amberg N, Hippenmeyer S. 2023.Interplay of Cell‐autonomous Gene Function and Tissue‐wide Mechanisms Regulating Radial Glial Progenitor Lineage Progression. In: Neocortical Neurogenesis in Development and Evolution. , 169–191.' mla: Villalba Requena, Ana, et al. “Interplay of Cell‐autonomous Gene Function and Tissue‐wide Mechanisms Regulating Radial Glial Progenitor Lineage Progression.” Neocortical Neurogenesis in Development and Evolution, edited by Wieland Huttner, Wiley, 2023, pp. 169–91, doi:10.1002/9781119860914.ch10. short: A. Villalba Requena, N. Amberg, S. Hippenmeyer, in:, W. Huttner (Ed.), Neocortical Neurogenesis in Development and Evolution, Wiley, 2023, pp. 169–191. date_created: 2024-01-08T13:16:36Z date_published: 2023-08-08T00:00:00Z date_updated: 2024-01-09T09:46:57Z day: '08' department: - _id: SiHi doi: 10.1002/9781119860914.ch10 editor: - first_name: Wieland full_name: Huttner, Wieland last_name: Huttner language: - iso: eng month: '08' oa_version: None page: 169-191 publication: Neocortical Neurogenesis in Development and Evolution publication_identifier: eisbn: - '9781119860914' publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Interplay of Cell‐autonomous Gene Function and Tissue‐wide Mechanisms Regulating Radial Glial Progenitor Lineage Progression type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12802' abstract: - lang: eng text: Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Inspired by the discovery that mutations in SLC7A5, a transporter of metabolically essential large neutral amino acids (LNAAs), lead to autism, we employed metabolomic profiling to study the metabolic states of the cerebral cortex across different developmental stages. We found that the forebrain undergoes significant metabolic remodeling throughout development, with certain groups of metabolites showing stage-specific changes, but what are the consequences of perturbing this metabolic program? By manipulating Slc7a5 expression in neural cells, we found that the metabolism of LNAAs and lipids are interconnected in the cortex. Deletion of Slc7a5 in neurons affects the postnatal metabolic state, leading to a shift in lipid metabolism. Additionally, it causes stage- and cell-type-specific alterations in neuronal activity patterns, resulting in a long-term circuit dysfunction. acknowledged_ssus: - _id: PreCl - _id: EM-Fac - _id: Bio - _id: LifeSc acknowledgement: We thank A. Freeman and V. Voronin for technical assistance, S. Deixler, A. Stichelberger, M. Schunn, and the Preclinical Facility for managing our animal colony. We thank L. Andersen and J. Sonntag, who were involved in generating the MADM lines. We thank the ISTA LSF Mass Spectrometry Core Facility for assistance with the proteomic analysis, as well as the ISTA electron microscopy and Imaging and Optics facility for technical support. Metabolomics LC-MS/MS analysis was performed by the Metabolomics Facility at Vienna BioCenter Core Facilities (VBCF). We acknowledge the support of the EMBL Metabolomics Core Facility (MCF) for lipidomics and intracellular metabolomics mass spectrometry data acquisition and analysis. RNA sequencing was performed by the Next Generation Sequencing Facility at VBCF. Schematics were generated using Biorender.com. This work was supported by the Austrian Science Fund (FWF, DK W1232-B24) and by the European Union’s Horizon 2020 research and innovation program (ERC) grant 725780 (LinPro) to S.H. and 715508 (REVERSEAUTISM) to G.N. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Lisa full_name: Knaus, Lisa id: 3B2ABCF4-F248-11E8-B48F-1D18A9856A87 last_name: Knaus - first_name: Bernadette full_name: Basilico, Bernadette id: 36035796-5ACA-11E9-A75E-7AF2E5697425 last_name: Basilico orcid: 0000-0003-1843-3173 - first_name: Daniel full_name: Malzl, Daniel last_name: Malzl - first_name: Maria full_name: Gerykova Bujalkova, Maria last_name: Gerykova Bujalkova - first_name: Mateja full_name: Smogavec, Mateja last_name: Smogavec - first_name: Lena A. full_name: Schwarz, Lena A. last_name: Schwarz - first_name: Sarah full_name: Gorkiewicz, Sarah id: f141a35d-15a9-11ec-9fb2-fef6becc7b6f last_name: Gorkiewicz - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler orcid: 0000-0002-7462-0048 - first_name: Christian full_name: Knittl-Frank, Christian last_name: Knittl-Frank - first_name: Marianna full_name: Tassinari, Marianna id: 7af593f1-d44a-11ed-bf94-a3646a6bb35e last_name: Tassinari - first_name: Nuno full_name: Maulide, Nuno last_name: Maulide - first_name: Thomas full_name: Rülicke, Thomas last_name: Rülicke - first_name: Jörg full_name: Menche, Jörg last_name: Menche - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 citation: ama: Knaus L, Basilico B, Malzl D, et al. Large neutral amino acid levels tune perinatal neuronal excitability and survival. Cell. 2023;186(9):1950-1967.e25. doi:10.1016/j.cell.2023.02.037 apa: Knaus, L., Basilico, B., Malzl, D., Gerykova Bujalkova, M., Smogavec, M., Schwarz, L. A., … Novarino, G. (2023). Large neutral amino acid levels tune perinatal neuronal excitability and survival. Cell. Elsevier. https://doi.org/10.1016/j.cell.2023.02.037 chicago: Knaus, Lisa, Bernadette Basilico, Daniel Malzl, Maria Gerykova Bujalkova, Mateja Smogavec, Lena A. Schwarz, Sarah Gorkiewicz, et al. “Large Neutral Amino Acid Levels Tune Perinatal Neuronal Excitability and Survival.” Cell. Elsevier, 2023. https://doi.org/10.1016/j.cell.2023.02.037. ieee: L. Knaus et al., “Large neutral amino acid levels tune perinatal neuronal excitability and survival,” Cell, vol. 186, no. 9. Elsevier, p. 1950–1967.e25, 2023. ista: Knaus L, Basilico B, Malzl D, Gerykova Bujalkova M, Smogavec M, Schwarz LA, Gorkiewicz S, Amberg N, Pauler F, Knittl-Frank C, Tassinari M, Maulide N, Rülicke T, Menche J, Hippenmeyer S, Novarino G. 2023. Large neutral amino acid levels tune perinatal neuronal excitability and survival. Cell. 186(9), 1950–1967.e25. mla: Knaus, Lisa, et al. “Large Neutral Amino Acid Levels Tune Perinatal Neuronal Excitability and Survival.” Cell, vol. 186, no. 9, Elsevier, 2023, p. 1950–1967.e25, doi:10.1016/j.cell.2023.02.037. short: L. Knaus, B. Basilico, D. Malzl, M. Gerykova Bujalkova, M. Smogavec, L.A. Schwarz, S. Gorkiewicz, N. Amberg, F. Pauler, C. Knittl-Frank, M. Tassinari, N. Maulide, T. Rülicke, J. Menche, S. Hippenmeyer, G. Novarino, Cell 186 (2023) 1950–1967.e25. date_created: 2023-04-05T08:15:40Z date_published: 2023-04-27T00:00:00Z date_updated: 2024-02-07T08:03:32Z day: '27' ddc: - '570' department: - _id: SiHi - _id: GaNo doi: 10.1016/j.cell.2023.02.037 ec_funded: 1 external_id: isi: - '000991468700001' file: - access_level: open_access checksum: 47e94fbe19e86505b429cb7a5b503ce6 content_type: application/pdf creator: dernst date_created: 2023-05-02T09:26:21Z date_updated: 2023-05-02T09:26:21Z file_id: '12889' file_name: 2023_Cell_Knaus.pdf file_size: 15712841 relation: main_file success: 1 file_date_updated: 2023-05-02T09:26:21Z has_accepted_license: '1' intvolume: ' 186' isi: 1 issue: '9' keyword: - General Biochemistry - Genetics and Molecular Biology language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 1950-1967.e25 project: - _id: 2548AE96-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: W1232-B24 name: Molecular Drug Targets - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development - _id: 25444568-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715508' name: Probing the Reversibility of Autism Spectrum Disorders by Employing in vivo and in vitro Models publication: Cell publication_identifier: issn: - 0092-8674 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/feed-them-or-lose-them/ record: - id: '13107' relation: dissertation_contains status: public scopus_import: '1' status: public title: Large neutral amino acid levels tune perinatal neuronal excitability and survival tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 186 year: '2023' ... --- _id: '14257' abstract: - lang: eng text: Mapping the complex and dense arrangement of cells and their connectivity in brain tissue demands nanoscale spatial resolution imaging. Super-resolution optical microscopy excels at visualizing specific molecules and individual cells but fails to provide tissue context. Here we developed Comprehensive Analysis of Tissues across Scales (CATS), a technology to densely map brain tissue architecture from millimeter regional to nanometer synaptic scales in diverse chemically fixed brain preparations, including rodent and human. CATS uses fixation-compatible extracellular labeling and optical imaging, including stimulated emission depletion or expansion microscopy, to comprehensively delineate cellular structures. It enables three-dimensional reconstruction of single synapses and mapping of synaptic connectivity by identification and analysis of putative synaptic cleft regions. Applying CATS to the mouse hippocampal mossy fiber circuitry, we reconstructed and quantified the synaptic input and output structure of identified neurons. We furthermore demonstrate applicability to clinically derived human tissue samples, including formalin-fixed paraffin-embedded routine diagnostic specimens, for visualizing the cellular architecture of brain tissue in health and disease. acknowledged_ssus: - _id: ScienComp - _id: Bio - _id: PreCl - _id: LifeSc - _id: M-Shop - _id: E-Lib acknowledgement: 'We thank J. Vorlaufer, N. Agudelo-Dueñas, W. Jahr and A. Wartak for microscope maintenance and troubleshooting; C. Kreuzinger, A. Freeman and I. Erber for technical assistance; and M. Tomschik for support with obtaining human samples. We gratefully acknowledge E. Miguel for setting up webKnossos and M. Šuplata for computational support and hardware control. We are grateful to R. Shigemoto and B. Bickel for generous support and M. Sixt and S. Boyd (Stanford University) for discussions and critical reading of the paper. PSD95-HaloTag mice were kindly provided by S. Grant (University of Edinburgh). We acknowledge expert support by Institute of Science and Technology Austria’s scientific computing, imaging and optics, preclinical and lab support facilities and by the Miba machine shop and library. We gratefully acknowledge funding by the following sources: Austrian Science Fund (FWF) grant I3600-B27 (J.G.D.); Austrian Science Fund (FWF) grant DK W1232 (J.G.D. and J.M.M.); Austrian Science Fund (FWF) grant Z 312-B27, Wittgenstein award (P.J.); Austrian Science Fund (FWF) projects I4685-B, I6565-B (SYNABS) and DOC 33-B27 (R.H.); Gesellschaft für Forschungsförderung NÖ (NFB) grant LSC18-022 (J.G.D.); European Union’s Horizon 2020 research and innovation programme, European Research Council (ERC) grant 715508 – REVERSEAUTISM (G.N.); European Union’s Horizon 2020 research and innovation programme, European Research Council (ERC) grant 692692 – GIANTSYN (P.J.); Marie Skłodowska-Curie Actions Fellowship GA no. 665385 under the EU Horizon 2020 program (J.M.M. and J.L.); and Marie Skłodowska-Curie Actions Individual Fellowship no. 101026635 under the EU Horizon 2020 program (J.F.W.).' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Julia M full_name: Michalska, Julia M id: 443DB6DE-F248-11E8-B48F-1D18A9856A87 last_name: Michalska orcid: 0000-0003-3862-1235 - first_name: Julia full_name: Lyudchik, Julia id: 46E28B80-F248-11E8-B48F-1D18A9856A87 last_name: Lyudchik - first_name: Philipp full_name: Velicky, Philipp id: 39BDC62C-F248-11E8-B48F-1D18A9856A87 last_name: Velicky orcid: 0000-0002-2340-7431 - first_name: Hana full_name: Korinkova, Hana id: ee3cb6ca-ec98-11ea-ae11-ff703e2254ed last_name: Korinkova - first_name: Jake full_name: Watson, Jake id: 63836096-4690-11EA-BD4E-32803DDC885E last_name: Watson orcid: 0000-0002-8698-3823 - first_name: Alban full_name: Cenameri, Alban id: 9ac8f577-2357-11eb-997a-e566c5550886 last_name: Cenameri - first_name: Christoph M full_name: Sommer, Christoph M id: 4DF26D8C-F248-11E8-B48F-1D18A9856A87 last_name: Sommer orcid: 0000-0003-1216-9105 - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Alessandro full_name: Venturino, Alessandro id: 41CB84B2-F248-11E8-B48F-1D18A9856A87 last_name: Venturino orcid: 0000-0003-2356-9403 - first_name: Karl full_name: Roessler, Karl last_name: Roessler - first_name: Thomas full_name: Czech, Thomas last_name: Czech - first_name: Romana full_name: Höftberger, Romana last_name: Höftberger - first_name: Sandra full_name: Siegert, Sandra id: 36ACD32E-F248-11E8-B48F-1D18A9856A87 last_name: Siegert orcid: 0000-0001-8635-0877 - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 - first_name: Johann G full_name: Danzl, Johann G id: 42EFD3B6-F248-11E8-B48F-1D18A9856A87 last_name: Danzl orcid: 0000-0001-8559-3973 citation: ama: Michalska JM, Lyudchik J, Velicky P, et al. Imaging brain tissue architecture across millimeter to nanometer scales. Nature Biotechnology. 2023. doi:10.1038/s41587-023-01911-8 apa: Michalska, J. M., Lyudchik, J., Velicky, P., Korinkova, H., Watson, J., Cenameri, A., … Danzl, J. G. (2023). Imaging brain tissue architecture across millimeter to nanometer scales. Nature Biotechnology. Springer Nature. https://doi.org/10.1038/s41587-023-01911-8 chicago: Michalska, Julia M, Julia Lyudchik, Philipp Velicky, Hana Korinkova, Jake Watson, Alban Cenameri, Christoph M Sommer, et al. “Imaging Brain Tissue Architecture across Millimeter to Nanometer Scales.” Nature Biotechnology. Springer Nature, 2023. https://doi.org/10.1038/s41587-023-01911-8. ieee: J. M. Michalska et al., “Imaging brain tissue architecture across millimeter to nanometer scales,” Nature Biotechnology. Springer Nature, 2023. ista: Michalska JM, Lyudchik J, Velicky P, Korinkova H, Watson J, Cenameri A, Sommer CM, Amberg N, Venturino A, Roessler K, Czech T, Höftberger R, Siegert S, Novarino G, Jonas PM, Danzl JG. 2023. Imaging brain tissue architecture across millimeter to nanometer scales. Nature Biotechnology. mla: Michalska, Julia M., et al. “Imaging Brain Tissue Architecture across Millimeter to Nanometer Scales.” Nature Biotechnology, Springer Nature, 2023, doi:10.1038/s41587-023-01911-8. short: J.M. Michalska, J. Lyudchik, P. Velicky, H. Korinkova, J. Watson, A. Cenameri, C.M. Sommer, N. Amberg, A. Venturino, K. Roessler, T. Czech, R. Höftberger, S. Siegert, G. Novarino, P.M. Jonas, J.G. Danzl, Nature Biotechnology (2023). date_created: 2023-09-03T22:01:15Z date_published: 2023-08-31T00:00:00Z date_updated: 2024-02-21T12:18:18Z day: '31' department: - _id: SaSi - _id: GaNo - _id: PeJo - _id: JoDa - _id: Bio - _id: RySh doi: 10.1038/s41587-023-01911-8 ec_funded: 1 external_id: isi: - '001065254200001' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41587-023-01911-8 month: '08' oa: 1 oa_version: Published Version project: - _id: 265CB4D0-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03600 name: Optical control of synaptic function via adhesion molecules - _id: 2548AE96-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: W1232-B24 name: Molecular Drug Targets - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: 23889792-32DE-11EA-91FC-C7463DDC885E name: High content imaging to decode human immune cell interactions in health and allergic disease - _id: 25444568-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715508' name: Probing the Reversibility of Autism Spectrum Disorders by Employing in vivo and in vitro Models - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: fc2be41b-9c52-11eb-aca3-faa90aa144e9 call_identifier: H2020 grant_number: '101026635' name: Synaptic computations of the hippocampal CA3 circuitry publication: Nature Biotechnology publication_identifier: eissn: - 1546-1696 issn: - 1087-0156 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: software url: https://github.com/danzllab/CATS record: - id: '13126' relation: research_data status: public scopus_import: '1' status: public title: Imaging brain tissue architecture across millimeter to nanometer scales type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '11336' abstract: - lang: eng text: The generation of a correctly-sized cerebral cortex with all-embracing neuronal and glial cell-type diversity critically depends on faithful radial glial progenitor (RGP) cell proliferation/differentiation programs. Temporal RGP lineage progression is regulated by Polycomb Repressive Complex 2 (PRC2) and loss of PRC2 activity results in severe neurogenesis defects and microcephaly. How PRC2-dependent gene expression instructs RGP lineage progression is unknown. Here we utilize Mosaic Analysis with Double Markers (MADM)-based single cell technology and demonstrate that PRC2 is not cell-autonomously required in neurogenic RGPs but rather acts at the global tissue-wide level. Conversely, cortical astrocyte production and maturation is cell-autonomously controlled by PRC2-dependent transcriptional regulation. We thus reveal highly distinct and sequential PRC2 functions in RGP lineage progression that are dependent on complex interplays between intrinsic and tissue-wide properties. In a broader context our results imply a critical role for the genetic and cellular niche environment in neural stem cell behavior. acknowledged_ssus: - _id: PreCl - _id: Bio - _id: LifeSc acknowledgement: We thank A. Heger (IST Austria Preclinical Facility), A. Sommer and C. Czepe (VBCF GmbH, NGS Unit) and S. Gharagozlou for technical support. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Imaging & Optics Facility (IOF), Lab Support Facility (LSF), and Preclinical Facility (PCF). N.A. received funding from the FWF Firnberg-Programm (T 1031). The work was supported by IST institutional funds and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 725780 LinPro) to S.H. article_number: abq1263 article_processing_charge: No article_type: original author: - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler - first_name: Carmen full_name: Streicher, Carmen id: 36BCB99C-F248-11E8-B48F-1D18A9856A87 last_name: Streicher - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Amberg N, Pauler F, Streicher C, Hippenmeyer S. Tissue-wide genetic and cellular landscape shapes the execution of sequential PRC2 functions in neural stem cell lineage progression. Science Advances. 2022;8(44). doi:10.1126/sciadv.abq1263 apa: Amberg, N., Pauler, F., Streicher, C., & Hippenmeyer, S. (2022). Tissue-wide genetic and cellular landscape shapes the execution of sequential PRC2 functions in neural stem cell lineage progression. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.abq1263 chicago: Amberg, Nicole, Florian Pauler, Carmen Streicher, and Simon Hippenmeyer. “Tissue-Wide Genetic and Cellular Landscape Shapes the Execution of Sequential PRC2 Functions in Neural Stem Cell Lineage Progression.” Science Advances. American Association for the Advancement of Science, 2022. https://doi.org/10.1126/sciadv.abq1263. ieee: N. Amberg, F. Pauler, C. Streicher, and S. Hippenmeyer, “Tissue-wide genetic and cellular landscape shapes the execution of sequential PRC2 functions in neural stem cell lineage progression,” Science Advances, vol. 8, no. 44. American Association for the Advancement of Science, 2022. ista: Amberg N, Pauler F, Streicher C, Hippenmeyer S. 2022. Tissue-wide genetic and cellular landscape shapes the execution of sequential PRC2 functions in neural stem cell lineage progression. Science Advances. 8(44), abq1263. mla: Amberg, Nicole, et al. “Tissue-Wide Genetic and Cellular Landscape Shapes the Execution of Sequential PRC2 Functions in Neural Stem Cell Lineage Progression.” Science Advances, vol. 8, no. 44, abq1263, American Association for the Advancement of Science, 2022, doi:10.1126/sciadv.abq1263. short: N. Amberg, F. Pauler, C. Streicher, S. Hippenmeyer, Science Advances 8 (2022). date_created: 2022-04-26T15:04:50Z date_published: 2022-11-01T00:00:00Z date_updated: 2023-05-31T12:24:10Z day: '01' ddc: - '570' department: - _id: SiHi doi: 10.1126/sciadv.abq1263 ec_funded: 1 file: - access_level: open_access checksum: 0117023e188542082ca6693cf39e7f03 content_type: application/pdf creator: patrickd date_created: 2023-03-21T14:18:10Z date_updated: 2023-03-21T14:18:10Z file_id: '12742' file_name: sciadv.abq1263.pdf file_size: 2973998 relation: main_file success: 1 file_date_updated: 2023-03-21T14:18:10Z has_accepted_license: '1' intvolume: ' 8' issue: '44' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression publication: Science Advances publication_identifier: issn: - 2375-2548 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on ISTA website relation: press_release url: https://ista.ac.at/en/news/whole-tissue-shapes-brain-development/ scopus_import: '1' status: public title: Tissue-wide genetic and cellular landscape shapes the execution of sequential PRC2 functions in neural stem cell lineage progression tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2022' ... --- _id: '12282' abstract: - lang: eng text: From a simple thought to a multicellular movement acknowledgement: The authors want to thank Professors Carrie Bernecky, Tom Henzinger, Martin Loose and Gaia Novarino for accepting to be interviewed, thus giving significant contribution to the discussion that lead to this article. article_number: '260017' article_processing_charge: No article_type: letter_note author: - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Melissa A full_name: Stouffer, Melissa A id: 4C9372C4-F248-11E8-B48F-1D18A9856A87 last_name: Stouffer - first_name: Irene full_name: Vercellino, Irene id: 3ED6AF16-F248-11E8-B48F-1D18A9856A87 last_name: Vercellino orcid: 0000-0001-5618-3449 citation: ama: Amberg N, Stouffer MA, Vercellino I. Operation STEM fatale – how an equity, diversity and inclusion initiative has brought us to reflect on the current challenges in cell biology and science as a whole. Journal of Cell Science. 2022;135(8). doi:10.1242/jcs.260017 apa: Amberg, N., Stouffer, M. A., & Vercellino, I. (2022). Operation STEM fatale – how an equity, diversity and inclusion initiative has brought us to reflect on the current challenges in cell biology and science as a whole. Journal of Cell Science. The Company of Biologists. https://doi.org/10.1242/jcs.260017 chicago: Amberg, Nicole, Melissa A Stouffer, and Irene Vercellino. “Operation STEM Fatale – How an Equity, Diversity and Inclusion Initiative Has Brought Us to Reflect on the Current Challenges in Cell Biology and Science as a Whole.” Journal of Cell Science. The Company of Biologists, 2022. https://doi.org/10.1242/jcs.260017. ieee: N. Amberg, M. A. Stouffer, and I. Vercellino, “Operation STEM fatale – how an equity, diversity and inclusion initiative has brought us to reflect on the current challenges in cell biology and science as a whole,” Journal of Cell Science, vol. 135, no. 8. The Company of Biologists, 2022. ista: Amberg N, Stouffer MA, Vercellino I. 2022. Operation STEM fatale – how an equity, diversity and inclusion initiative has brought us to reflect on the current challenges in cell biology and science as a whole. Journal of Cell Science. 135(8), 260017. mla: Amberg, Nicole, et al. “Operation STEM Fatale – How an Equity, Diversity and Inclusion Initiative Has Brought Us to Reflect on the Current Challenges in Cell Biology and Science as a Whole.” Journal of Cell Science, vol. 135, no. 8, 260017, The Company of Biologists, 2022, doi:10.1242/jcs.260017. short: N. Amberg, M.A. Stouffer, I. Vercellino, Journal of Cell Science 135 (2022). date_created: 2023-01-16T10:03:14Z date_published: 2022-04-19T00:00:00Z date_updated: 2023-08-04T10:28:04Z day: '19' department: - _id: SiHi - _id: LeSa doi: 10.1242/jcs.260017 external_id: isi: - '000798123600015' pmid: - '35438168' intvolume: ' 135' isi: 1 issue: '8' language: - iso: eng month: '04' oa_version: None pmid: 1 publication: Journal of Cell Science publication_identifier: eissn: - 1477-9137 issn: - 0021-9533 publication_status: published publisher: The Company of Biologists quality_controlled: '1' scopus_import: '1' status: public title: Operation STEM fatale – how an equity, diversity and inclusion initiative has brought us to reflect on the current challenges in cell biology and science as a whole type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 135 year: '2022' ... --- _id: '9603' abstract: - lang: eng text: Mosaic analysis with double markers (MADM) offers one approach to visualize and concomitantly manipulate genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of lineage, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autonomous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs. With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation patterns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic stem cell division. acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: PreCl acknowledgement: We thank the Bioimaging, Life Science, and Pre-Clinical Facilities at IST Austria; M.P. Postiglione, C. Simbriger, K. Valoskova, C. Schwayer, T. Hussain, M. Pieber, and V. Wimmer for initial experiments, technical support, and/or assistance; R. Shigemoto for sharing iv (Dnah11 mutant) mice; and M. Sixt and all members of the Hippenmeyer lab for discussion. This work was supported by National Institutes of Health grants ( R01-NS050580 to L.L. and F32MH096361 to L.A.S.). L.L. is an investigator of HHMI. N.A. received support from FWF Firnberg-Programm ( T 1031 ). A.H.H. is a recipient of a DOC Fellowship (24812) of the Austrian Academy of Sciences . This work also received support from IST Austria institutional funds , FWF SFB F78 to S.H., the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme ( FP7/2007-2013 ) under REA grant agreement no 618444 to S.H., and the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 725780 LinPro ) to S.H. article_number: '109274' article_processing_charge: No article_type: original author: - first_name: Ximena full_name: Contreras, Ximena id: 475990FE-F248-11E8-B48F-1D18A9856A87 last_name: Contreras - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Amarbayasgalan full_name: Davaatseren, Amarbayasgalan id: 70ADC922-B424-11E9-99E3-BA18E6697425 last_name: Davaatseren - first_name: Andi H full_name: Hansen, Andi H id: 38853E16-F248-11E8-B48F-1D18A9856A87 last_name: Hansen - first_name: Johanna full_name: Sonntag, Johanna id: 32FE7D7C-F248-11E8-B48F-1D18A9856A87 last_name: Sonntag - first_name: Lill full_name: Andersen, Lill last_name: Andersen - first_name: Tina full_name: Bernthaler, Tina last_name: Bernthaler - first_name: Carmen full_name: Streicher, Carmen id: 36BCB99C-F248-11E8-B48F-1D18A9856A87 last_name: Streicher - first_name: Anna-Magdalena full_name: Heger, Anna-Magdalena id: 4B76FFD2-F248-11E8-B48F-1D18A9856A87 last_name: Heger - first_name: Randy L. full_name: Johnson, Randy L. last_name: Johnson - first_name: Lindsay A. full_name: Schwarz, Lindsay A. last_name: Schwarz - first_name: Liqun full_name: Luo, Liqun last_name: Luo - first_name: Thomas full_name: Rülicke, Thomas last_name: Rülicke - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Contreras X, Amberg N, Davaatseren A, et al. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports. 2021;35(12). doi:10.1016/j.celrep.2021.109274 apa: Contreras, X., Amberg, N., Davaatseren, A., Hansen, A. H., Sonntag, J., Andersen, L., … Hippenmeyer, S. (2021). A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports. Cell Press. https://doi.org/10.1016/j.celrep.2021.109274 chicago: Contreras, Ximena, Nicole Amberg, Amarbayasgalan Davaatseren, Andi H Hansen, Johanna Sonntag, Lill Andersen, Tina Bernthaler, et al. “A Genome-Wide Library of MADM Mice for Single-Cell Genetic Mosaic Analysis.” Cell Reports. Cell Press, 2021. https://doi.org/10.1016/j.celrep.2021.109274. ieee: X. Contreras et al., “A genome-wide library of MADM mice for single-cell genetic mosaic analysis,” Cell Reports, vol. 35, no. 12. Cell Press, 2021. ista: Contreras X, Amberg N, Davaatseren A, Hansen AH, Sonntag J, Andersen L, Bernthaler T, Streicher C, Heger A-M, Johnson RL, Schwarz LA, Luo L, Rülicke T, Hippenmeyer S. 2021. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports. 35(12), 109274. mla: Contreras, Ximena, et al. “A Genome-Wide Library of MADM Mice for Single-Cell Genetic Mosaic Analysis.” Cell Reports, vol. 35, no. 12, 109274, Cell Press, 2021, doi:10.1016/j.celrep.2021.109274. short: X. Contreras, N. Amberg, A. Davaatseren, A.H. Hansen, J. Sonntag, L. Andersen, T. Bernthaler, C. Streicher, A.-M. Heger, R.L. Johnson, L.A. Schwarz, L. Luo, T. Rülicke, S. Hippenmeyer, Cell Reports 35 (2021). date_created: 2021-06-27T22:01:48Z date_published: 2021-06-22T00:00:00Z date_updated: 2023-08-10T13:55:00Z day: '22' ddc: - '570' department: - _id: SiHi - _id: LoSw - _id: PreCl doi: 10.1016/j.celrep.2021.109274 ec_funded: 1 external_id: isi: - '000664463600016' file: - access_level: open_access checksum: d49520fdcbbb5c2f883bddb67cee5d77 content_type: application/pdf creator: asandaue date_created: 2021-06-28T14:06:24Z date_updated: 2021-06-28T14:06:24Z file_id: '9613' file_name: 2021_CellReports_Contreras.pdf file_size: 7653149 relation: main_file success: 1 file_date_updated: 2021-06-28T14:06:24Z has_accepted_license: '1' intvolume: ' 35' isi: 1 issue: '12' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 2625A13E-B435-11E9-9278-68D0E5697425 grant_number: '24812' name: Molecular Mechanisms of Radial Neuronal Migration - _id: 25D61E48-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618444' name: Molecular Mechanisms of Cerebral Cortex Development - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Cell Reports publication_identifier: eissn: - '22111247' publication_status: published publisher: Cell Press quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/boost-for-mouse-genetic-analysis/ scopus_import: '1' status: public title: A genome-wide library of MADM mice for single-cell genetic mosaic analysis tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 35 year: '2021' ... --- _id: '10321' abstract: - lang: eng text: Mosaic analysis with double markers (MADM) technology enables the generation of genetic mosaic tissue in mice. MADM enables concomitant fluorescent cell labeling and introduction of a mutation of a gene of interest with single-cell resolution. This protocol highlights major steps for the generation of genetic mosaic tissue and the isolation and processing of respective tissues for downstream histological analysis. For complete details on the use and execution of this protocol, please refer to Contreras et al. (2021). acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: This research was supported by the Scientific Service Units (SSU) at IST Austria through resources provided by the Bioimaging (BIF) and Preclinical Facilities (PCF). We particularly thank Mohammad Goudarzi for assistance with photography of mouse perfusion and dissection. N.A. received support from FWF Firnberg-Programm (T 1031). This work was also supported by IST Austria institutional funds; FWF SFB F78 to S.H.; and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725780 LinPro) to S.H. article_number: '100939' article_processing_charge: Yes article_type: original author: - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Amberg N, Hippenmeyer S. Genetic mosaic dissection of candidate genes in mice using mosaic analysis with double markers. STAR Protocols. 2021;2(4). doi:10.1016/j.xpro.2021.100939 apa: Amberg, N., & Hippenmeyer, S. (2021). Genetic mosaic dissection of candidate genes in mice using mosaic analysis with double markers. STAR Protocols. Cell Press. https://doi.org/10.1016/j.xpro.2021.100939 chicago: Amberg, Nicole, and Simon Hippenmeyer. “Genetic Mosaic Dissection of Candidate Genes in Mice Using Mosaic Analysis with Double Markers.” STAR Protocols. Cell Press, 2021. https://doi.org/10.1016/j.xpro.2021.100939. ieee: N. Amberg and S. Hippenmeyer, “Genetic mosaic dissection of candidate genes in mice using mosaic analysis with double markers,” STAR Protocols, vol. 2, no. 4. Cell Press, 2021. ista: Amberg N, Hippenmeyer S. 2021. Genetic mosaic dissection of candidate genes in mice using mosaic analysis with double markers. STAR Protocols. 2(4), 100939. mla: Amberg, Nicole, and Simon Hippenmeyer. “Genetic Mosaic Dissection of Candidate Genes in Mice Using Mosaic Analysis with Double Markers.” STAR Protocols, vol. 2, no. 4, 100939, Cell Press, 2021, doi:10.1016/j.xpro.2021.100939. short: N. Amberg, S. Hippenmeyer, STAR Protocols 2 (2021). date_created: 2021-11-21T23:01:28Z date_published: 2021-11-10T00:00:00Z date_updated: 2023-11-16T13:08:03Z day: '10' ddc: - '573' department: - _id: SiHi doi: 10.1016/j.xpro.2021.100939 ec_funded: 1 file: - access_level: open_access checksum: 9e3f6d06bf583e7a8b6a9e9a60500a28 content_type: application/pdf creator: cchlebak date_created: 2021-11-22T08:23:58Z date_updated: 2021-11-22T08:23:58Z file_id: '10329' file_name: 2021_STARProtocols_Amberg.pdf file_size: 7309464 relation: main_file success: 1 file_date_updated: 2021-11-22T08:23:58Z has_accepted_license: '1' intvolume: ' 2' issue: '4' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression - _id: 059F6AB4-7A3F-11EA-A408-12923DDC885E grant_number: F07805 name: Molecular Mechanisms of Neural Stem Cell Lineage Progression publication: STAR Protocols publication_identifier: eissn: - 2666-1667 publication_status: published publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: Genetic mosaic dissection of candidate genes in mice using mosaic analysis with double markers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2021' ... --- _id: '8978' abstract: - lang: eng text: "Mosaic analysis with double markers (MADM) technology enables concomitant fluorescent cell labeling and induction of uniparental chromosome disomy (UPD) with single-cell resolution. In UPD, imprinted genes are either overexpressed 2-fold or are not expressed. Here, the MADM platform is utilized to probe imprinting phenotypes at the transcriptional level. This protocol highlights major steps for the generation and isolation of projection neurons and astrocytes with MADM-induced UPD from mouse cerebral cortex for downstream single-cell and low-input sample RNA-sequencing experiments.\r\n\r\nFor complete details on the use and execution of this protocol, please refer to Laukoter et al. (2020b)." acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: This research was supported by the Scientific Service Units (SSU) at IST Austria through resources provided by the Bioimaging (BIF) and Preclinical Facilities (PCF). N.A received support from the FWF Firnberg-Programm (T 1031). This work was also supported by IST Austria institutional funds; FWF SFB F78 to S.H.; NÖ Forschung und Bildung n[f+b] life science call grant (C13-002) to S.H.; the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 618444 to S.H.; and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725780 LinPro) to S.H. article_number: '100215' article_processing_charge: No article_type: original author: - first_name: Susanne full_name: Laukoter, Susanne id: 2D6B7A9A-F248-11E8-B48F-1D18A9856A87 last_name: Laukoter - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Laukoter S, Amberg N, Pauler F, Hippenmeyer S. Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy. STAR Protocols. 2020;1(3). doi:10.1016/j.xpro.2020.100215 apa: Laukoter, S., Amberg, N., Pauler, F., & Hippenmeyer, S. (2020). Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy. STAR Protocols. Elsevier. https://doi.org/10.1016/j.xpro.2020.100215 chicago: Laukoter, Susanne, Nicole Amberg, Florian Pauler, and Simon Hippenmeyer. “Generation and Isolation of Single Cells from Mouse Brain with Mosaic Analysis with Double Markers-Induced Uniparental Chromosome Disomy.” STAR Protocols. Elsevier, 2020. https://doi.org/10.1016/j.xpro.2020.100215. ieee: S. Laukoter, N. Amberg, F. Pauler, and S. Hippenmeyer, “Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy,” STAR Protocols, vol. 1, no. 3. Elsevier, 2020. ista: Laukoter S, Amberg N, Pauler F, Hippenmeyer S. 2020. Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy. STAR Protocols. 1(3), 100215. mla: Laukoter, Susanne, et al. “Generation and Isolation of Single Cells from Mouse Brain with Mosaic Analysis with Double Markers-Induced Uniparental Chromosome Disomy.” STAR Protocols, vol. 1, no. 3, 100215, Elsevier, 2020, doi:10.1016/j.xpro.2020.100215. short: S. Laukoter, N. Amberg, F. Pauler, S. Hippenmeyer, STAR Protocols 1 (2020). date_created: 2020-12-30T10:17:07Z date_published: 2020-12-18T00:00:00Z date_updated: 2021-01-12T08:21:36Z day: '18' ddc: - '570' department: - _id: SiHi doi: 10.1016/j.xpro.2020.100215 ec_funded: 1 external_id: pmid: - '33377108' file: - access_level: open_access checksum: f1e9a433e9cb0f41f7b6df6b76db1f6e content_type: application/pdf creator: dernst date_created: 2021-01-07T15:57:27Z date_updated: 2021-01-07T15:57:27Z file_id: '8996' file_name: 2020_STARProtocols_Laukoter.pdf file_size: 4031449 relation: main_file success: 1 file_date_updated: 2021-01-07T15:57:27Z has_accepted_license: '1' intvolume: ' 1' issue: '3' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression - _id: 059F6AB4-7A3F-11EA-A408-12923DDC885E grant_number: F07805 name: Molecular Mechanisms of Neural Stem Cell Lineage Progression - _id: 25D92700-B435-11E9-9278-68D0E5697425 grant_number: LS13-002 name: Mapping Cell-Type Specificity of the Genomic Imprintome in the Brain - _id: 25D61E48-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618444' name: Molecular Mechanisms of Cerebral Cortex Development - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: STAR Protocols publication_identifier: issn: - 2666-1667 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1 year: '2020' ... --- _id: '7253' abstract: - lang: eng text: The cyclin-dependent kinase inhibitor p57KIP2 is encoded by the imprinted Cdkn1c locus, exhibits maternal expression, and is essential for cerebral cortex development. How Cdkn1c regulates corticogenesis is however not clear. To this end we employ Mosaic Analysis with Double Markers (MADM) technology to genetically dissect Cdkn1c gene function in corticogenesis at single cell resolution. We find that the previously described growth-inhibitory Cdkn1c function is a non-cell-autonomous one, acting on the whole organism. In contrast we reveal a growth-promoting cell-autonomous Cdkn1c function which at the mechanistic level mediates radial glial progenitor cell and nascent projection neuron survival. Strikingly, the growth-promoting function of Cdkn1c is highly dosage sensitive but not subject to genomic imprinting. Collectively, our results suggest that the Cdkn1c locus regulates cortical development through distinct cell-autonomous and non-cell-autonomous mechanisms. More generally, our study highlights the importance to probe the relative contributions of cell intrinsic gene function and tissue-wide mechanisms to the overall phenotype. acknowledged_ssus: - _id: PreCl article_number: '195' article_processing_charge: No article_type: original author: - first_name: Susanne full_name: Laukoter, Susanne id: 2D6B7A9A-F248-11E8-B48F-1D18A9856A87 last_name: Laukoter orcid: 0000-0002-7903-3010 - first_name: Robert J full_name: Beattie, Robert J id: 2E26DF60-F248-11E8-B48F-1D18A9856A87 last_name: Beattie orcid: 0000-0002-8483-8753 - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler orcid: 0000-0002-7462-0048 - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Keiichi I. full_name: Nakayama, Keiichi I. last_name: Nakayama - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Laukoter S, Beattie RJ, Pauler F, Amberg N, Nakayama KI, Hippenmeyer S. Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nature Communications. 2020;11. doi:10.1038/s41467-019-14077-2 apa: Laukoter, S., Beattie, R. J., Pauler, F., Amberg, N., Nakayama, K. I., & Hippenmeyer, S. (2020). Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-019-14077-2 chicago: Laukoter, Susanne, Robert J Beattie, Florian Pauler, Nicole Amberg, Keiichi I. Nakayama, and Simon Hippenmeyer. “Imprinted Cdkn1c Genomic Locus Cell-Autonomously Promotes Cell Survival in Cerebral Cortex Development.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-019-14077-2. ieee: S. Laukoter, R. J. Beattie, F. Pauler, N. Amberg, K. I. Nakayama, and S. Hippenmeyer, “Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Laukoter S, Beattie RJ, Pauler F, Amberg N, Nakayama KI, Hippenmeyer S. 2020. Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development. Nature Communications. 11, 195. mla: Laukoter, Susanne, et al. “Imprinted Cdkn1c Genomic Locus Cell-Autonomously Promotes Cell Survival in Cerebral Cortex Development.” Nature Communications, vol. 11, 195, Springer Nature, 2020, doi:10.1038/s41467-019-14077-2. short: S. Laukoter, R.J. Beattie, F. Pauler, N. Amberg, K.I. Nakayama, S. Hippenmeyer, Nature Communications 11 (2020). date_created: 2020-01-11T10:42:48Z date_published: 2020-01-10T00:00:00Z date_updated: 2023-08-17T14:23:41Z day: '10' ddc: - '570' department: - _id: SiHi doi: 10.1038/s41467-019-14077-2 ec_funded: 1 external_id: isi: - '000551459000005' file: - access_level: open_access checksum: ebf1ed522f4e0be8d94c939c1806a709 content_type: application/pdf creator: dernst date_created: 2020-01-13T07:42:31Z date_updated: 2020-07-14T12:47:54Z file_id: '7261' file_name: 2020_NatureComm_Laukoter.pdf file_size: 8063333 relation: main_file file_date_updated: 2020-07-14T12:47:54Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression - _id: 264E56E2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02416 name: Molecular Mechanisms Regulating Gliogenesis in the Cerebral Cortex - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development - _id: 25D92700-B435-11E9-9278-68D0E5697425 grant_number: LS13-002 name: Mapping Cell-Type Specificity of the Genomic Imprintome in the Brain publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/new-function-for-potential-tumour-suppressor-in-brain-development/ scopus_import: '1' status: public title: Imprinted Cdkn1c genomic locus cell-autonomously promotes cell survival in cerebral cortex development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '8093' abstract: - lang: eng text: "Background: The activation of the EGFR/Ras-signalling pathway in tumour cells induces a distinct chemokine repertoire, which in turn modulates the tumour microenvironment.\r\nMethods: The effects of EGFR/Ras on the expression and translation of CCL20 were analysed in a large set of epithelial cancer cell lines and tumour tissues by RT-qPCR and ELISA in vitro. CCL20 production was verified by immunohistochemistry in different tumour tissues and correlated with clinical data. The effects of CCL20 on endothelial cell migration and tumour-associated vascularisation were comprehensively analysed with chemotaxis assays in vitro and in CCR6-deficient mice in vivo.\r\nResults: Tumours facilitate progression by the EGFR/Ras-induced production of CCL20. Expression of the chemokine CCL20 in tumours correlates with advanced tumour stage, increased lymph node metastasis and decreased survival in patients. Microvascular endothelial cells abundantly express the specific CCL20 receptor CCR6. CCR6 signalling in endothelial cells induces angiogenesis. CCR6-deficient mice show significantly decreased tumour growth and tumour-associated vascularisation. The observed phenotype is dependent on CCR6 deficiency in stromal cells but not within the immune system.\r\nConclusion: We propose that the chemokine axis CCL20–CCR6 represents a novel and promising target to interfere with the tumour microenvironment, and opens an innovative multimodal strategy for cancer therapy." acknowledgement: "The authors would like to thank A. van Lierop for technical assistance. In addition, we thank C. Dullin, J. Missbach-Güntner and S. Greco for advice and assistance with fpVCT imaging. Furthermore, the authors would like to thank H. K. Horst for advice on performing matrigel plug assays. This study has also been partially presented in A. Schorr’s doctoral thesis and the funding report of the SPP 1190 ‘The tumor-vessel interface’ of the ‘Deutsche Forschungsgemeinschaft’ (DFG).\r\nThis project was funded by the SPP 1190 “The tumor-vessel interface” and HO 2092/8-1 of the ‘Deutsche Forschungsgemeinschaft’ (DFG) to B. Homey. In addition, it was supported by grants from the Austrian Science Fund (FWF, W1212 to N. Amberg and J. Klufa and I4300-B to T. Bauer), the WWTF project LS16-025 and the European Research Council (ERC) Advanced grant (ERC-2015-AdG TNT-Tumors 694883) to M. Sibilia." article_processing_charge: No article_type: original author: - first_name: Andreas full_name: Hippe, Andreas last_name: Hippe - first_name: Stephan Alexander full_name: Braun, Stephan Alexander last_name: Braun - first_name: Péter full_name: Oláh, Péter last_name: Oláh - first_name: Peter Arne full_name: Gerber, Peter Arne last_name: Gerber - first_name: Anne full_name: Schorr, Anne last_name: Schorr - first_name: Stephan full_name: Seeliger, Stephan last_name: Seeliger - first_name: Stephanie full_name: Holtz, Stephanie last_name: Holtz - first_name: Katharina full_name: Jannasch, Katharina last_name: Jannasch - first_name: Andor full_name: Pivarcsi, Andor last_name: Pivarcsi - first_name: Bettina full_name: Buhren, Bettina last_name: Buhren - first_name: Holger full_name: Schrumpf, Holger last_name: Schrumpf - first_name: Andreas full_name: Kislat, Andreas last_name: Kislat - first_name: Erich full_name: Bünemann, Erich last_name: Bünemann - first_name: Martin full_name: Steinhoff, Martin last_name: Steinhoff - first_name: Jens full_name: Fischer, Jens last_name: Fischer - first_name: Sérgio A. full_name: Lira, Sérgio A. last_name: Lira - first_name: Petra full_name: Boukamp, Petra last_name: Boukamp - first_name: Peter full_name: Hevezi, Peter last_name: Hevezi - first_name: Nikolas Hendrik full_name: Stoecklein, Nikolas Hendrik last_name: Stoecklein - first_name: Thomas full_name: Hoffmann, Thomas last_name: Hoffmann - first_name: Frauke full_name: Alves, Frauke last_name: Alves - first_name: Jonathan full_name: Sleeman, Jonathan last_name: Sleeman - first_name: Thomas full_name: Bauer, Thomas last_name: Bauer - first_name: Jörg full_name: Klufa, Jörg last_name: Klufa - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Maria full_name: Sibilia, Maria last_name: Sibilia - first_name: Albert full_name: Zlotnik, Albert last_name: Zlotnik - first_name: Anja full_name: Müller-Homey, Anja last_name: Müller-Homey - first_name: Bernhard full_name: Homey, Bernhard last_name: Homey citation: ama: Hippe A, Braun SA, Oláh P, et al. EGFR/Ras-induced CCL20 production modulates the tumour microenvironment. British Journal of Cancer. 2020;123:942-954. doi:10.1038/s41416-020-0943-2 apa: Hippe, A., Braun, S. A., Oláh, P., Gerber, P. A., Schorr, A., Seeliger, S., … Homey, B. (2020). EGFR/Ras-induced CCL20 production modulates the tumour microenvironment. British Journal of Cancer. Springer Nature. https://doi.org/10.1038/s41416-020-0943-2 chicago: Hippe, Andreas, Stephan Alexander Braun, Péter Oláh, Peter Arne Gerber, Anne Schorr, Stephan Seeliger, Stephanie Holtz, et al. “EGFR/Ras-Induced CCL20 Production Modulates the Tumour Microenvironment.” British Journal of Cancer. Springer Nature, 2020. https://doi.org/10.1038/s41416-020-0943-2. ieee: A. Hippe et al., “EGFR/Ras-induced CCL20 production modulates the tumour microenvironment,” British Journal of Cancer, vol. 123. Springer Nature, pp. 942–954, 2020. ista: Hippe A, Braun SA, Oláh P, Gerber PA, Schorr A, Seeliger S, Holtz S, Jannasch K, Pivarcsi A, Buhren B, Schrumpf H, Kislat A, Bünemann E, Steinhoff M, Fischer J, Lira SA, Boukamp P, Hevezi P, Stoecklein NH, Hoffmann T, Alves F, Sleeman J, Bauer T, Klufa J, Amberg N, Sibilia M, Zlotnik A, Müller-Homey A, Homey B. 2020. EGFR/Ras-induced CCL20 production modulates the tumour microenvironment. British Journal of Cancer. 123, 942–954. mla: Hippe, Andreas, et al. “EGFR/Ras-Induced CCL20 Production Modulates the Tumour Microenvironment.” British Journal of Cancer, vol. 123, Springer Nature, 2020, pp. 942–54, doi:10.1038/s41416-020-0943-2. short: A. Hippe, S.A. Braun, P. Oláh, P.A. Gerber, A. Schorr, S. Seeliger, S. Holtz, K. Jannasch, A. Pivarcsi, B. Buhren, H. Schrumpf, A. Kislat, E. Bünemann, M. Steinhoff, J. Fischer, S.A. Lira, P. Boukamp, P. Hevezi, N.H. Stoecklein, T. Hoffmann, F. Alves, J. Sleeman, T. Bauer, J. Klufa, N. Amberg, M. Sibilia, A. Zlotnik, A. Müller-Homey, B. Homey, British Journal of Cancer 123 (2020) 942–954. date_created: 2020-07-05T22:00:46Z date_published: 2020-09-15T00:00:00Z date_updated: 2023-08-22T07:51:12Z day: '15' ddc: - '610' department: - _id: SiHi doi: 10.1038/s41416-020-0943-2 external_id: isi: - '000544152500001' pmid: - '32601464' file: - access_level: open_access checksum: 05a8e65d49c3f5b8e37ac4afe68287e2 content_type: application/pdf creator: cchlebak date_created: 2021-12-02T12:35:12Z date_updated: 2021-12-02T12:35:12Z file_id: '10398' file_name: 2020_BrJournalCancer_Hippe.pdf file_size: 3620691 relation: main_file success: 1 file_date_updated: 2021-12-02T12:35:12Z has_accepted_license: '1' intvolume: ' 123' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 942-954 pmid: 1 publication: British Journal of Cancer publication_identifier: eissn: - 1532-1827 issn: - 0007-0920 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41416-021-01563-y record: - id: '10170' relation: later_version status: deleted scopus_import: '1' status: public title: EGFR/Ras-induced CCL20 production modulates the tumour microenvironment tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 123 year: '2020' ... --- _id: '8162' abstract: - lang: eng text: In mammalian genomes, a subset of genes is regulated by genomic imprinting, resulting in silencing of one parental allele. Imprinting is essential for cerebral cortex development, but prevalence and functional impact in individual cells is unclear. Here, we determined allelic expression in cortical cell types and established a quantitative platform to interrogate imprinting in single cells. We created cells with uniparental chromosome disomy (UPD) containing two copies of either the maternal or the paternal chromosome; hence, imprinted genes will be 2-fold overexpressed or not expressed. By genetic labeling of UPD, we determined cellular phenotypes and transcriptional responses to deregulated imprinted gene expression at unprecedented single-cell resolution. We discovered an unexpected degree of cell-type specificity and a novel function of imprinting in the regulation of cortical astrocyte survival. More generally, our results suggest functional relevance of imprinted gene expression in glial astrocyte lineage and thus for generating cortical cell-type diversity. acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: PreCl acknowledgement: We thank A. Heger (IST Austria Preclinical Facility), A. Sommer and C. Czepe (VBCF GmbH, NGS Unit), and A. Seitz and P. Moll (Lexogen GmbH) for technical support; G. Arque, S. Resch, C. Igler, C. Dotter, C. Yahya, Q. Hudson, and D. Andergassen for initial experiments and/or assistance; D. Barlow, O. Bell, and all members of the Hippenmeyer lab for discussion; and N. Barton, B. Vicoso, M. Sixt, and L. Luo for comments on earlier versions of the manuscript. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Bioimaging Facilities (BIF), Life Science Facilities (LSF), and Preclinical Facilities (PCF). A.H.H. is a recipient of a DOC fellowship (24812) of the Austrian Academy of Sciences. N.A. received support from the FWF Firnberg-Programm (T 1031). R.B. received support from the FWF Meitner-Programm (M 2416). This work was also supported by IST Austria institutional funds; a NÖ Forschung und Bildung n[f+b] life science call grant (C13-002) to S.H.; a program grant from the Human Frontiers Science Program (RGP0053/2014) to S.H.; the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement 618444 to S.H.; and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 725780 LinPro) to S.H. article_processing_charge: No article_type: original author: - first_name: Susanne full_name: Laukoter, Susanne id: 2D6B7A9A-F248-11E8-B48F-1D18A9856A87 last_name: Laukoter orcid: 0000-0002-7903-3010 - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler orcid: 0000-0002-7462-0048 - first_name: Robert J full_name: Beattie, Robert J id: 2E26DF60-F248-11E8-B48F-1D18A9856A87 last_name: Beattie orcid: 0000-0002-8483-8753 - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Andi H full_name: Hansen, Andi H id: 38853E16-F248-11E8-B48F-1D18A9856A87 last_name: Hansen - first_name: Carmen full_name: Streicher, Carmen id: 36BCB99C-F248-11E8-B48F-1D18A9856A87 last_name: Streicher - first_name: Thomas full_name: Penz, Thomas last_name: Penz - first_name: Christoph full_name: Bock, Christoph last_name: Bock orcid: 0000-0001-6091-3088 - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Laukoter S, Pauler F, Beattie RJ, et al. Cell-type specificity of genomic imprinting in cerebral cortex. Neuron. 2020;107(6):1160-1179.e9. doi:10.1016/j.neuron.2020.06.031 apa: Laukoter, S., Pauler, F., Beattie, R. J., Amberg, N., Hansen, A. H., Streicher, C., … Hippenmeyer, S. (2020). Cell-type specificity of genomic imprinting in cerebral cortex. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2020.06.031 chicago: Laukoter, Susanne, Florian Pauler, Robert J Beattie, Nicole Amberg, Andi H Hansen, Carmen Streicher, Thomas Penz, Christoph Bock, and Simon Hippenmeyer. “Cell-Type Specificity of Genomic Imprinting in Cerebral Cortex.” Neuron. Elsevier, 2020. https://doi.org/10.1016/j.neuron.2020.06.031. ieee: S. Laukoter et al., “Cell-type specificity of genomic imprinting in cerebral cortex,” Neuron, vol. 107, no. 6. Elsevier, p. 1160–1179.e9, 2020. ista: Laukoter S, Pauler F, Beattie RJ, Amberg N, Hansen AH, Streicher C, Penz T, Bock C, Hippenmeyer S. 2020. Cell-type specificity of genomic imprinting in cerebral cortex. Neuron. 107(6), 1160–1179.e9. mla: Laukoter, Susanne, et al. “Cell-Type Specificity of Genomic Imprinting in Cerebral Cortex.” Neuron, vol. 107, no. 6, Elsevier, 2020, p. 1160–1179.e9, doi:10.1016/j.neuron.2020.06.031. short: S. Laukoter, F. Pauler, R.J. Beattie, N. Amberg, A.H. Hansen, C. Streicher, T. Penz, C. Bock, S. Hippenmeyer, Neuron 107 (2020) 1160–1179.e9. date_created: 2020-07-23T16:03:12Z date_published: 2020-09-23T00:00:00Z date_updated: 2023-08-22T08:20:11Z day: '23' ddc: - '570' department: - _id: SiHi doi: 10.1016/j.neuron.2020.06.031 ec_funded: 1 external_id: isi: - '000579698700006' file: - access_level: open_access checksum: 7becdc16a6317304304631087ae7dd7f content_type: application/pdf creator: dernst date_created: 2020-12-02T09:26:46Z date_updated: 2020-12-02T09:26:46Z file_id: '8828' file_name: 2020_Neuron_Laukoter.pdf file_size: 8911830 relation: main_file success: 1 file_date_updated: 2020-12-02T09:26:46Z has_accepted_license: '1' intvolume: ' 107' isi: 1 issue: '6' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 1160-1179.e9 project: - _id: 2625A13E-B435-11E9-9278-68D0E5697425 grant_number: '24812' name: Molecular Mechanisms of Radial Neuronal Migration - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression - _id: 264E56E2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02416 name: Molecular Mechanisms Regulating Gliogenesis in the Cerebral Cortex - _id: 25D92700-B435-11E9-9278-68D0E5697425 grant_number: LS13-002 name: Mapping Cell-Type Specificity of the Genomic Imprintome in the Brain - _id: 25D7962E-B435-11E9-9278-68D0E5697425 grant_number: RGP0053/2014 name: Quantitative Structure-Function Analysis of Cerebral Cortex Assembly at Clonal Level - _id: 25D61E48-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618444' name: Molecular Mechanisms of Cerebral Cortex Development - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Neuron publication_identifier: issn: - 0896-6273 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Website relation: press_release url: https://ist.ac.at/en/news/cells-react-differently-to-genomic-imprinting/ scopus_import: '1' status: public title: Cell-type specificity of genomic imprinting in cerebral cortex tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2020' ... --- _id: '7815' abstract: - lang: eng text: Beginning from a limited pool of progenitors, the mammalian cerebral cortex forms highly organized functional neural circuits. However, the underlying cellular and molecular mechanisms regulating lineage transitions of neural stem cells (NSCs) and eventual production of neurons and glia in the developing neuroepithelium remains unclear. Methods to trace NSC division patterns and map the lineage of clonally related cells have advanced dramatically. However, many contemporary lineage tracing techniques suffer from the lack of cellular resolution of progeny cell fate, which is essential for deciphering progenitor cell division patterns. Presented is a protocol using mosaic analysis with double markers (MADM) to perform in vivo clonal analysis. MADM concomitantly manipulates individual progenitor cells and visualizes precise division patterns and lineage progression at unprecedented single cell resolution. MADM-based interchromosomal recombination events during the G2-X phase of mitosis, together with temporally inducible CreERT2, provide exact information on the birth dates of clones and their division patterns. Thus, MADM lineage tracing provides unprecedented qualitative and quantitative optical readouts of the proliferation mode of stem cell progenitors at the single cell level. MADM also allows for examination of the mechanisms and functional requirements of candidate genes in NSC lineage progression. This method is unique in that comparative analysis of control and mutant subclones can be performed in the same tissue environment in vivo. Here, the protocol is described in detail, and experimental paradigms to employ MADM for clonal analysis and lineage tracing in the developing cerebral cortex are demonstrated. Importantly, this protocol can be adapted to perform MADM clonal analysis in any murine stem cell niche, as long as the CreERT2 driver is present. acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: PreCl article_number: e61147 article_processing_charge: No article_type: original author: - first_name: Robert J full_name: Beattie, Robert J id: 2E26DF60-F248-11E8-B48F-1D18A9856A87 last_name: Beattie orcid: 0000-0002-8483-8753 - first_name: Carmen full_name: Streicher, Carmen id: 36BCB99C-F248-11E8-B48F-1D18A9856A87 last_name: Streicher - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Giselle T full_name: Cheung, Giselle T id: 471195F6-F248-11E8-B48F-1D18A9856A87 last_name: Cheung orcid: 0000-0001-8457-2572 - first_name: Ximena full_name: Contreras, Ximena id: 475990FE-F248-11E8-B48F-1D18A9856A87 last_name: Contreras - first_name: Andi H full_name: Hansen, Andi H id: 38853E16-F248-11E8-B48F-1D18A9856A87 last_name: Hansen - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Beattie RJ, Streicher C, Amberg N, et al. Lineage tracing and clonal analysis in developing cerebral cortex using mosaic analysis with double markers (MADM). Journal of Visual Experiments. 2020;(159). doi:10.3791/61147 apa: Beattie, R. J., Streicher, C., Amberg, N., Cheung, G. T., Contreras, X., Hansen, A. H., & Hippenmeyer, S. (2020). Lineage tracing and clonal analysis in developing cerebral cortex using mosaic analysis with double markers (MADM). Journal of Visual Experiments. MyJove Corporation. https://doi.org/10.3791/61147 chicago: Beattie, Robert J, Carmen Streicher, Nicole Amberg, Giselle T Cheung, Ximena Contreras, Andi H Hansen, and Simon Hippenmeyer. “Lineage Tracing and Clonal Analysis in Developing Cerebral Cortex Using Mosaic Analysis with Double Markers (MADM).” Journal of Visual Experiments. MyJove Corporation, 2020. https://doi.org/10.3791/61147. ieee: R. J. Beattie et al., “Lineage tracing and clonal analysis in developing cerebral cortex using mosaic analysis with double markers (MADM),” Journal of Visual Experiments, no. 159. MyJove Corporation, 2020. ista: Beattie RJ, Streicher C, Amberg N, Cheung GT, Contreras X, Hansen AH, Hippenmeyer S. 2020. Lineage tracing and clonal analysis in developing cerebral cortex using mosaic analysis with double markers (MADM). Journal of Visual Experiments. (159), e61147. mla: Beattie, Robert J., et al. “Lineage Tracing and Clonal Analysis in Developing Cerebral Cortex Using Mosaic Analysis with Double Markers (MADM).” Journal of Visual Experiments, no. 159, e61147, MyJove Corporation, 2020, doi:10.3791/61147. short: R.J. Beattie, C. Streicher, N. Amberg, G.T. Cheung, X. Contreras, A.H. Hansen, S. Hippenmeyer, Journal of Visual Experiments (2020). date_created: 2020-05-11T08:31:20Z date_published: 2020-05-08T00:00:00Z date_updated: 2024-03-27T23:30:41Z day: '08' ddc: - '570' department: - _id: SiHi doi: 10.3791/61147 ec_funded: 1 external_id: isi: - '000546406600043' file: - access_level: open_access checksum: 3154ea7f90b9fb45e084cd1c2770597d content_type: application/pdf creator: rbeattie date_created: 2020-05-11T08:28:38Z date_updated: 2020-07-14T12:48:03Z file_id: '7816' file_name: jove-protocol-61147-lineage-tracing-clonal-analysis-developing-cerebral-cortex-using.pdf file_size: 1352186 relation: main_file file_date_updated: 2020-07-14T12:48:03Z has_accepted_license: '1' isi: 1 issue: '159' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 264E56E2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02416 name: Molecular Mechanisms Regulating Gliogenesis in the Cerebral Cortex - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 2625A13E-B435-11E9-9278-68D0E5697425 grant_number: '24812' name: Molecular Mechanisms of Radial Neuronal Migration - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Journal of Visual Experiments publication_identifier: issn: - 1940-087X publication_status: published publisher: MyJove Corporation quality_controlled: '1' related_material: record: - id: '7902' relation: part_of_dissertation status: public scopus_import: '1' status: public title: Lineage tracing and clonal analysis in developing cerebral cortex using mosaic analysis with double markers (MADM) tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '6455' abstract: - lang: eng text: During corticogenesis, distinct subtypes of neurons are sequentially born from ventricular zone progenitors. How these cells are molecularly temporally patterned is poorly understood. We used single-cell RNA sequencing at high temporal resolution to trace the lineage of the molecular identities of successive generations of apical progenitors (APs) and their daughter neurons in mouse embryos. We identified a core set of evolutionarily conserved, temporally patterned genes that drive APs from internally driven to more exteroceptive states. We found that the Polycomb repressor complex 2 (PRC2) epigenetically regulates AP temporal progression. Embryonic age–dependent AP molecular states are transmitted to their progeny as successive ground states, onto which essentially conserved early postmitotic differentiation programs are applied, and are complemented by later-occurring environment-dependent signals. Thus, epigenetically regulated temporal molecular birthmarks present in progenitors act in their postmitotic progeny to seed adult neuronal diversity. article_number: eaav2522 article_processing_charge: No article_type: original author: - first_name: L full_name: Telley, L last_name: Telley - first_name: G full_name: Agirman, G last_name: Agirman - first_name: J full_name: Prados, J last_name: Prados - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: S full_name: Fièvre, S last_name: Fièvre - first_name: P full_name: Oberst, P last_name: Oberst - first_name: G full_name: Bartolini, G last_name: Bartolini - first_name: I full_name: Vitali, I last_name: Vitali - first_name: C full_name: Cadilhac, C last_name: Cadilhac - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: L full_name: Nguyen, L last_name: Nguyen - first_name: A full_name: Dayer, A last_name: Dayer - first_name: D full_name: Jabaudon, D last_name: Jabaudon citation: ama: Telley L, Agirman G, Prados J, et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science. 2019;364(6440). doi:10.1126/science.aav2522 apa: Telley, L., Agirman, G., Prados, J., Amberg, N., Fièvre, S., Oberst, P., … Jabaudon, D. (2019). Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science. AAAS. https://doi.org/10.1126/science.aav2522 chicago: Telley, L, G Agirman, J Prados, Nicole Amberg, S Fièvre, P Oberst, G Bartolini, et al. “Temporal Patterning of Apical Progenitors and Their Daughter Neurons in the Developing Neocortex.” Science. AAAS, 2019. https://doi.org/10.1126/science.aav2522. ieee: L. Telley et al., “Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex,” Science, vol. 364, no. 6440. AAAS, 2019. ista: Telley L, Agirman G, Prados J, Amberg N, Fièvre S, Oberst P, Bartolini G, Vitali I, Cadilhac C, Hippenmeyer S, Nguyen L, Dayer A, Jabaudon D. 2019. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science. 364(6440), eaav2522. mla: Telley, L., et al. “Temporal Patterning of Apical Progenitors and Their Daughter Neurons in the Developing Neocortex.” Science, vol. 364, no. 6440, eaav2522, AAAS, 2019, doi:10.1126/science.aav2522. short: L. Telley, G. Agirman, J. Prados, N. Amberg, S. Fièvre, P. Oberst, G. Bartolini, I. Vitali, C. Cadilhac, S. Hippenmeyer, L. Nguyen, A. Dayer, D. Jabaudon, Science 364 (2019). date_created: 2019-05-14T13:07:47Z date_published: 2019-05-10T00:00:00Z date_updated: 2023-09-05T11:51:09Z day: '10' department: - _id: SiHi doi: 10.1126/science.aav2522 ec_funded: 1 external_id: isi: - '000467631800034' pmid: - '31073041' intvolume: ' 364' isi: 1 issue: '6440' language: - iso: eng main_file_link: - open_access: '1' url: https://orbi.uliege.be/bitstream/2268/239604/1/Telley_Agirman_Science2019.pdf month: '05' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: AAAS quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-to-generate-a-brain-of-correct-size-and-composition/ scopus_import: '1' status: public title: Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 364 year: '2019' ... --- _id: '6451' abstract: - lang: eng text: Epidermal growth factor receptor (EGFR) signaling controls skin development and homeostasis inmice and humans, and its deficiency causes severe skin inflammation, which might affect epidermalstem cell behavior. Here, we describe the inflammation-independent effects of EGFR deficiency dur-ing skin morphogenesis and in adult hair follicle stem cells. Expression and alternative splicing analysisof RNA sequencing data from interfollicular epidermis and outer root sheath indicate that EGFR con-trols genes involved in epidermal differentiation and also in centrosome function, DNA damage, cellcycle, and apoptosis. Genetic experiments employingp53deletion in EGFR-deficient epidermis revealthat EGFR signaling exhibitsp53-dependent functions in proliferative epidermal compartments, aswell asp53-independent functions in differentiated hair shaft keratinocytes. Loss of EGFR leads toabsence of LEF1 protein specifically in the innermost epithelial hair layers, resulting in disorganizationof medulla cells. Thus, our results uncover important spatial and temporal features of cell-autonomousEGFR functions in the epidermis. article_processing_charge: No author: - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Panagiota A. full_name: Sotiropoulou, Panagiota A. last_name: Sotiropoulou - first_name: Gerwin full_name: Heller, Gerwin last_name: Heller - first_name: Beate M. full_name: Lichtenberger, Beate M. last_name: Lichtenberger - first_name: Martin full_name: Holcmann, Martin last_name: Holcmann - first_name: Bahar full_name: Camurdanoglu, Bahar last_name: Camurdanoglu - first_name: Temenuschka full_name: Baykuscheva-Gentscheva, Temenuschka last_name: Baykuscheva-Gentscheva - first_name: Cedric full_name: Blanpain, Cedric last_name: Blanpain - first_name: Maria full_name: Sibilia, Maria last_name: Sibilia citation: ama: Amberg N, Sotiropoulou PA, Heller G, et al. EGFR controls hair shaft differentiation in a p53-independent manner. iScience. 2019;15:243-256. doi:10.1016/j.isci.2019.04.018 apa: Amberg, N., Sotiropoulou, P. A., Heller, G., Lichtenberger, B. M., Holcmann, M., Camurdanoglu, B., … Sibilia, M. (2019). EGFR controls hair shaft differentiation in a p53-independent manner. IScience. Elsevier. https://doi.org/10.1016/j.isci.2019.04.018 chicago: Amberg, Nicole, Panagiota A. Sotiropoulou, Gerwin Heller, Beate M. Lichtenberger, Martin Holcmann, Bahar Camurdanoglu, Temenuschka Baykuscheva-Gentscheva, Cedric Blanpain, and Maria Sibilia. “EGFR Controls Hair Shaft Differentiation in a P53-Independent Manner.” IScience. Elsevier, 2019. https://doi.org/10.1016/j.isci.2019.04.018. ieee: N. Amberg et al., “EGFR controls hair shaft differentiation in a p53-independent manner,” iScience, vol. 15. Elsevier, pp. 243–256, 2019. ista: Amberg N, Sotiropoulou PA, Heller G, Lichtenberger BM, Holcmann M, Camurdanoglu B, Baykuscheva-Gentscheva T, Blanpain C, Sibilia M. 2019. EGFR controls hair shaft differentiation in a p53-independent manner. iScience. 15, 243–256. mla: Amberg, Nicole, et al. “EGFR Controls Hair Shaft Differentiation in a P53-Independent Manner.” IScience, vol. 15, Elsevier, 2019, pp. 243–56, doi:10.1016/j.isci.2019.04.018. short: N. Amberg, P.A. Sotiropoulou, G. Heller, B.M. Lichtenberger, M. Holcmann, B. Camurdanoglu, T. Baykuscheva-Gentscheva, C. Blanpain, M. Sibilia, IScience 15 (2019) 243–256. date_created: 2019-05-14T11:47:40Z date_published: 2019-05-31T00:00:00Z date_updated: 2023-09-08T11:38:04Z day: '31' ddc: - '570' department: - _id: SiHi doi: 10.1016/j.isci.2019.04.018 external_id: isi: - '000470104600022' file: - access_level: open_access checksum: a9ad2296726c9474ad5860c9c2f53622 content_type: application/pdf creator: dernst date_created: 2019-05-14T11:51:51Z date_updated: 2020-07-14T12:47:30Z file_id: '6452' file_name: 2019_iScience_Amberg.pdf file_size: 8365970 relation: main_file file_date_updated: 2020-07-14T12:47:30Z has_accepted_license: '1' intvolume: ' 15' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 243-256 publication: iScience publication_identifier: issn: - 2589-0042 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: EGFR controls hair shaft differentiation in a p53-independent manner tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 15 year: '2019' ... --- _id: '27' abstract: - lang: eng text: The cerebral cortex is composed of a large variety of distinct cell-types including projection neurons, interneurons and glial cells which emerge from distinct neural stem cell (NSC) lineages. The vast majority of cortical projection neurons and certain classes of glial cells are generated by radial glial progenitor cells (RGPs) in a highly orchestrated manner. Recent studies employing single cell analysis and clonal lineage tracing suggest that NSC and RGP lineage progression are regulated in a profound deterministic manner. In this review we focus on recent advances based mainly on correlative phenotypic data emerging from functional genetic studies in mice. We establish hypotheses to test in future research and outline a conceptual framework how epigenetic cues modulate the generation of cell-type diversity during cortical development. This article is protected by copyright. All rights reserved. acknowledgement: " This work was supported by IST Austria institutional funds; NÖ Forschung und Bildung \r\nn[f+b] (C13-002) to SH; a program grant from \ the Human Frontiers Science Program (RGP0053/2014) to SH; the People \ Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement No 618444 to SH, and the European \ Research Council (ERC) under the European Union’s Horizon 2020 research \ and innovation programme (grant agreement No 725780 LinPro)to SH.\r\n" article_processing_charge: Yes (via OA deal) article_type: review author: - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Susanne full_name: Laukoter, Susanne id: 2D6B7A9A-F248-11E8-B48F-1D18A9856A87 last_name: Laukoter orcid: 0000-0002-7903-3010 - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Amberg N, Laukoter S, Hippenmeyer S. Epigenetic cues modulating the generation of cell type diversity in the cerebral cortex. Journal of Neurochemistry. 2019;149(1):12-26. doi:10.1111/jnc.14601 apa: Amberg, N., Laukoter, S., & Hippenmeyer, S. (2019). Epigenetic cues modulating the generation of cell type diversity in the cerebral cortex. Journal of Neurochemistry. Wiley. https://doi.org/10.1111/jnc.14601 chicago: Amberg, Nicole, Susanne Laukoter, and Simon Hippenmeyer. “Epigenetic Cues Modulating the Generation of Cell Type Diversity in the Cerebral Cortex.” Journal of Neurochemistry. Wiley, 2019. https://doi.org/10.1111/jnc.14601. ieee: N. Amberg, S. Laukoter, and S. Hippenmeyer, “Epigenetic cues modulating the generation of cell type diversity in the cerebral cortex,” Journal of Neurochemistry, vol. 149, no. 1. Wiley, pp. 12–26, 2019. ista: Amberg N, Laukoter S, Hippenmeyer S. 2019. Epigenetic cues modulating the generation of cell type diversity in the cerebral cortex. Journal of Neurochemistry. 149(1), 12–26. mla: Amberg, Nicole, et al. “Epigenetic Cues Modulating the Generation of Cell Type Diversity in the Cerebral Cortex.” Journal of Neurochemistry, vol. 149, no. 1, Wiley, 2019, pp. 12–26, doi:10.1111/jnc.14601. short: N. Amberg, S. Laukoter, S. Hippenmeyer, Journal of Neurochemistry 149 (2019) 12–26. date_created: 2018-12-11T11:44:14Z date_published: 2019-04-01T00:00:00Z date_updated: 2023-09-11T13:40:26Z day: '01' ddc: - '570' department: - _id: SiHi doi: 10.1111/jnc.14601 ec_funded: 1 external_id: isi: - '000462680200002' file: - access_level: open_access checksum: db027721a95d36f5de36aadcd0bdf7e6 content_type: application/pdf creator: kschuh date_created: 2020-01-07T13:35:52Z date_updated: 2020-07-14T12:45:45Z file_id: '7239' file_name: 2019_Wiley_Amberg.pdf file_size: 889709 relation: main_file file_date_updated: 2020-07-14T12:45:45Z has_accepted_license: '1' intvolume: ' 149' isi: 1 issue: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 12-26 project: - _id: 25D92700-B435-11E9-9278-68D0E5697425 grant_number: LS13-002 name: Mapping Cell-Type Specificity of the Genomic Imprintome in the Brain - _id: 25D7962E-B435-11E9-9278-68D0E5697425 grant_number: RGP0053/2014 name: Quantitative Structure-Function Analysis of Cerebral Cortex Assembly at Clonal Level - _id: 25D61E48-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618444' name: Molecular Mechanisms of Cerebral Cortex Development - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Journal of Neurochemistry publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Epigenetic cues modulating the generation of cell type diversity in the cerebral cortex tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 149 year: '2019' ...