--- _id: '14754' abstract: - lang: eng text: The large-scale laminar/turbulent spiral patterns that appear in the linearly unstable regime of counter-rotating Taylor–Couette flow are investigated from a statistical perspective by means of direct numerical simulation. Unlike the vast majority of previous numerical studies, we analyse the flow in periodic parallelogram-annular domains, following a coordinate change that aligns one of the parallelogram sides with the spiral pattern. The domain size, shape and spatial resolution have been varied and the results compared with those in a sufficiently large computational orthogonal domain with natural axial and azimuthal periodicity. We find that a minimal parallelogram of the right tilt significantly reduces the computational cost without notably compromising the statistical properties of the supercritical turbulent spiral. Its mean structure, obtained from extremely long time integrations in a co-rotating reference frame using the method of slices, bears remarkable similarity with the turbulent stripes observed in plane Couette flow, the centrifugal instability playing only a secondary role. acknowledgement: K.D.’s research was supported by Australian Research Council Discovery Early Career Researcher Award (DE170100171). B.W., R.A., F.M. and A.M. research was supported by the Spanish Ministerio de Economía y Competitividad (grant nos. FIS2016-77849-R and FIS2017-85794-P) and Ministerio de Ciencia e Innovación (grant no. PID2020-114043GB-I00) and the Generalitat de Catalunya (grant no. 2017-SGR-785). B.W.’s research was also supported by the Chinese Scholarship Council (grant CSC no. 201806440152). F.M. is a Serra-Húnter Fellow. article_number: '0112' article_processing_charge: No article_type: original author: - first_name: B. full_name: Wang, B. last_name: Wang - first_name: F. full_name: Mellibovsky, F. last_name: Mellibovsky - first_name: Roger full_name: Ayats López, Roger id: ab77522d-073b-11ed-8aff-e71b39258362 last_name: Ayats López orcid: 0000-0001-6572-0621 - first_name: K. full_name: Deguchi, K. last_name: Deguchi - first_name: A. full_name: Meseguer, A. last_name: Meseguer citation: ama: Wang B, Mellibovsky F, Ayats López R, Deguchi K, Meseguer A. Mean structure of the supercritical turbulent spiral in Taylor–Couette flow. Philosophical Transactions of the Royal Society A. 2023;381(2246). doi:10.1098/rsta.2022.0112 apa: Wang, B., Mellibovsky, F., Ayats López, R., Deguchi, K., & Meseguer, A. (2023). Mean structure of the supercritical turbulent spiral in Taylor–Couette flow. Philosophical Transactions of the Royal Society A. The Royal Society. https://doi.org/10.1098/rsta.2022.0112 chicago: Wang, B., F. Mellibovsky, Roger Ayats López, K. Deguchi, and A. Meseguer. “Mean Structure of the Supercritical Turbulent Spiral in Taylor–Couette Flow.” Philosophical Transactions of the Royal Society A. The Royal Society, 2023. https://doi.org/10.1098/rsta.2022.0112. ieee: B. Wang, F. Mellibovsky, R. Ayats López, K. Deguchi, and A. Meseguer, “Mean structure of the supercritical turbulent spiral in Taylor–Couette flow,” Philosophical Transactions of the Royal Society A, vol. 381, no. 2246. The Royal Society, 2023. ista: Wang B, Mellibovsky F, Ayats López R, Deguchi K, Meseguer A. 2023. Mean structure of the supercritical turbulent spiral in Taylor–Couette flow. Philosophical Transactions of the Royal Society A. 381(2246), 0112. mla: Wang, B., et al. “Mean Structure of the Supercritical Turbulent Spiral in Taylor–Couette Flow.” Philosophical Transactions of the Royal Society A, vol. 381, no. 2246, 0112, The Royal Society, 2023, doi:10.1098/rsta.2022.0112. short: B. Wang, F. Mellibovsky, R. Ayats López, K. Deguchi, A. Meseguer, Philosophical Transactions of the Royal Society A 381 (2023). date_created: 2024-01-08T13:11:45Z date_published: 2023-05-01T00:00:00Z date_updated: 2024-01-09T09:15:29Z day: '01' ddc: - '530' department: - _id: BjHo doi: 10.1098/rsta.2022.0112 external_id: pmid: - '36907214' file: - access_level: open_access checksum: 1978d126c0ce2f47c22ac20107cc0106 content_type: application/pdf creator: dernst date_created: 2024-01-09T09:13:53Z date_updated: 2024-01-09T09:13:53Z file_id: '14763' file_name: 2023_PhilTransactionsA_Wang_accepted.pdf file_size: 6421086 relation: main_file success: 1 file_date_updated: 2024-01-09T09:13:53Z has_accepted_license: '1' intvolume: ' 381' issue: '2246' keyword: - General Physics and Astronomy - General Engineering - General Mathematics language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '05' oa: 1 oa_version: Submitted Version pmid: 1 publication: Philosophical Transactions of the Royal Society A publication_identifier: eissn: - 1471-2962 issn: - 1364-503X publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: '1' status: public title: Mean structure of the supercritical turbulent spiral in Taylor–Couette flow tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 381 year: '2023' ... --- _id: '12137' abstract: - lang: eng text: We investigate the local self-sustained process underlying spiral turbulence in counter-rotating Taylor–Couette flow using a periodic annular domain, shaped as a parallelogram, two of whose sides are aligned with the cylindrical helix described by the spiral pattern. The primary focus of the study is placed on the emergence of drifting–rotating waves (DRW) that capture, in a relatively small domain, the main features of coherent structures typically observed in developed turbulence. The transitional dynamics of the subcritical region, far below the first instability of the laminar circular Couette flow, is determined by the upper and lower branches of DRW solutions originated at saddle-node bifurcations. The mechanism whereby these solutions self-sustain, and the chaotic dynamics they induce, are conspicuously reminiscent of other subcritical shear flows. Remarkably, the flow properties of DRW persist even as the Reynolds number is increased beyond the linear stability threshold of the base flow. Simulations in a narrow parallelogram domain stretched in the azimuthal direction to revolve around the apparatus a full turn confirm that self-sustained vortices eventually concentrate into a localised pattern. The resulting statistical steady state satisfactorily reproduces qualitatively, and to a certain degree also quantitatively, the topology and properties of spiral turbulence as calculated in a large periodic domain of sufficient aspect ratio that is representative of the real system. acknowledgement: "K.D.’s research was supported by an Australian Research Council Discovery Early Career\r\nResearcher Award (DE170100171). B.W., R.A., F.M. and A.M. research was supported by the Spanish Ministerio de Economía y Competitivdad (grant numbers FIS2016-77849-R and FIS2017-85794-P) and Ministerio de Ciencia e Innovación (grant number PID2020-114043GB-I00) and the Generalitat de Catalunya (grant 2017-SGR-785). B.W.’s research was also supported by the Chinese Scholarship Council (grant CSC no. 201806440152)." article_number: A21 article_processing_charge: No article_type: original author: - first_name: B. full_name: Wang, B. last_name: Wang - first_name: Roger full_name: Ayats López, Roger id: ab77522d-073b-11ed-8aff-e71b39258362 last_name: Ayats López orcid: 0000-0001-6572-0621 - first_name: K. full_name: Deguchi, K. last_name: Deguchi - first_name: F. full_name: Mellibovsky, F. last_name: Mellibovsky - first_name: A. full_name: Meseguer, A. last_name: Meseguer citation: ama: Wang B, Ayats López R, Deguchi K, Mellibovsky F, Meseguer A. Self-sustainment of coherent structures in counter-rotating Taylor–Couette flow. Journal of Fluid Mechanics. 2022;951. doi:10.1017/jfm.2022.828 apa: Wang, B., Ayats López, R., Deguchi, K., Mellibovsky, F., & Meseguer, A. (2022). Self-sustainment of coherent structures in counter-rotating Taylor–Couette flow. Journal of Fluid Mechanics. Cambridge University Press. https://doi.org/10.1017/jfm.2022.828 chicago: Wang, B., Roger Ayats López, K. Deguchi, F. Mellibovsky, and A. Meseguer. “Self-Sustainment of Coherent Structures in Counter-Rotating Taylor–Couette Flow.” Journal of Fluid Mechanics. Cambridge University Press, 2022. https://doi.org/10.1017/jfm.2022.828. ieee: B. Wang, R. Ayats López, K. Deguchi, F. Mellibovsky, and A. Meseguer, “Self-sustainment of coherent structures in counter-rotating Taylor–Couette flow,” Journal of Fluid Mechanics, vol. 951. Cambridge University Press, 2022. ista: Wang B, Ayats López R, Deguchi K, Mellibovsky F, Meseguer A. 2022. Self-sustainment of coherent structures in counter-rotating Taylor–Couette flow. Journal of Fluid Mechanics. 951, A21. mla: Wang, B., et al. “Self-Sustainment of Coherent Structures in Counter-Rotating Taylor–Couette Flow.” Journal of Fluid Mechanics, vol. 951, A21, Cambridge University Press, 2022, doi:10.1017/jfm.2022.828. short: B. Wang, R. Ayats López, K. Deguchi, F. Mellibovsky, A. Meseguer, Journal of Fluid Mechanics 951 (2022). date_created: 2023-01-12T12:04:17Z date_published: 2022-11-07T00:00:00Z date_updated: 2023-08-04T08:54:16Z day: '07' department: - _id: BjHo doi: 10.1017/jfm.2022.828 external_id: arxiv: - '2207.12990' isi: - '000879446900001' intvolume: ' 951' isi: 1 keyword: - Mechanical Engineering - Mechanics of Materials - Condensed Matter Physics - Applied Mathematics language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2207.12990' month: '11' oa: 1 oa_version: Preprint publication: Journal of Fluid Mechanics publication_identifier: eissn: - 1469-7645 issn: - 0022-1120 publication_status: published publisher: Cambridge University Press quality_controlled: '1' scopus_import: '1' status: public title: Self-sustainment of coherent structures in counter-rotating Taylor–Couette flow type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 951 year: '2022' ... --- _id: '12146' abstract: - lang: eng text: 'In this paper, we explore the stability and dynamical relevance of a wide variety of steady, time-periodic, quasiperiodic, and chaotic flows arising between orthogonally stretching parallel plates. We first explore the stability of all the steady flow solution families formerly identified by Ayats et al. [“Flows between orthogonally stretching parallel plates,” Phys. Fluids 33, 024103 (2021)], concluding that only the one that originates from the Stokesian approximation is actually stable. When both plates are shrinking at identical or nearly the same deceleration rates, this Stokesian flow exhibits a Hopf bifurcation that leads to stable time-periodic regimes. The resulting time-periodic orbits or flows are tracked for different Reynolds numbers and stretching rates while monitoring their Floquet exponents to identify secondary instabilities. It is found that these time-periodic flows also exhibit Neimark–Sacker bifurcations, generating stable quasiperiodic flows (tori) that may sometimes give rise to chaotic dynamics through a Ruelle–Takens–Newhouse scenario. However, chaotic dynamics is unusually observed, as the quasiperiodic flows generally become phase-locked through a resonance mechanism before a strange attractor may arise, thus restoring the time-periodicity of the flow. In this work, we have identified and tracked four different resonance regions, also known as Arnold tongues or horns. In particular, the 1 : 4 strong resonance region is explored in great detail, where the identified scenarios are in very good agreement with normal form theory. ' acknowledgement: "This work was supported by the Spanish MINECO under Grant Nos. FIS2017-85794-P and PRX18/00179, the Spanish MICINN through Grant No. PID2020-114043GB-I00, and the\r\nGeneralitat de Catalunya under Grant No. 2017-SGR-785. B.W.’s research was also supported by the Chinese Scholarship Council through Grant CSC No. 201806440152." article_number: '114111' article_processing_charge: No article_type: original author: - first_name: B. full_name: Wang, B. last_name: Wang - first_name: Roger full_name: Ayats López, Roger id: ab77522d-073b-11ed-8aff-e71b39258362 last_name: Ayats López orcid: 0000-0001-6572-0621 - first_name: A. full_name: Meseguer, A. last_name: Meseguer - first_name: F. full_name: Marques, F. last_name: Marques citation: ama: Wang B, Ayats López R, Meseguer A, Marques F. Phase-locking flows between orthogonally stretching parallel plates. Physics of Fluids. 2022;34(11). doi:10.1063/5.0124152 apa: Wang, B., Ayats López, R., Meseguer, A., & Marques, F. (2022). Phase-locking flows between orthogonally stretching parallel plates. Physics of Fluids. AIP Publishing. https://doi.org/10.1063/5.0124152 chicago: Wang, B., Roger Ayats López, A. Meseguer, and F. Marques. “Phase-Locking Flows between Orthogonally Stretching Parallel Plates.” Physics of Fluids. AIP Publishing, 2022. https://doi.org/10.1063/5.0124152. ieee: B. Wang, R. Ayats López, A. Meseguer, and F. Marques, “Phase-locking flows between orthogonally stretching parallel plates,” Physics of Fluids, vol. 34, no. 11. AIP Publishing, 2022. ista: Wang B, Ayats López R, Meseguer A, Marques F. 2022. Phase-locking flows between orthogonally stretching parallel plates. Physics of Fluids. 34(11), 114111. mla: Wang, B., et al. “Phase-Locking Flows between Orthogonally Stretching Parallel Plates.” Physics of Fluids, vol. 34, no. 11, 114111, AIP Publishing, 2022, doi:10.1063/5.0124152. short: B. Wang, R. Ayats López, A. Meseguer, F. Marques, Physics of Fluids 34 (2022). date_created: 2023-01-12T12:06:58Z date_published: 2022-11-04T00:00:00Z date_updated: 2023-10-03T11:07:58Z day: '04' department: - _id: BjHo doi: 10.1063/5.0124152 external_id: isi: - '000880665300024' intvolume: ' 34' isi: 1 issue: '11' keyword: - Condensed Matter Physics - Fluid Flow and Transfer Processes - Mechanics of Materials - Computational Mechanics - Mechanical Engineering language: - iso: eng main_file_link: - open_access: '1' url: https://upcommons.upc.edu/handle/2117/385635 month: '11' oa: 1 oa_version: Submitted Version publication: Physics of Fluids publication_identifier: eissn: - 1089-7666 issn: - 1070-6631 publication_status: published publisher: AIP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Phase-locking flows between orthogonally stretching parallel plates type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2022' ...